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Abstract An extremely efficient method for quadratic approximation
of circuit response functions is presented. Using a suitable pattern
of base points, we are able to obtain all the coefficients of the
quadratic model using simple analytical formulas. Consequently, major
obstacles for quadratic approximation in the case of high dimensional-
ity, namely, the requirement for prohibitive storage and computational
effort, are in effect eliminated. For example, a circuit with 100
variables requires only 400 multiplications to build the quadratic
model we propose. We demonstrate the accuracy and efficiency of the
quadratic modeling approach in statistical circuit design.
SUMMARY

Quadratic approximation has been used as a powerful tool to
reduce the number of circuit simulations in statistical design [1-4].
The determination of a quadratic model itself for a large number of
variables, however, is generally expensive. For example, a circuit
with 20 variables needs 231 circuit simulations and the solution of a
231x231 linear system of equations in order to uniquely identify a

quadratic model.
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Recently, Biernacki and Styblinski [3] introduced a maximally
flat interpolation scheme. Their method allows the number of base
points required for an accurate model to be much less than needed for
a full quadratic approximation. Following their approach, we derive a
set of formulas drastically simplifying the computation of the quadra-
tic model. Our method takes advantage of a particular fixed pattern
of base points. All coefficients of the quadratic model can be ob-
tained explicitly using simple analytical formulas. While retaining
the advantage of [3], i.e., using a small number of base points, our
method offers additional and much more significant savings of computer
time and storage. A low pass filter example is used to illustrate
the efficiency of our method.

Quadratic Approximations

A quadratic polynomial to be used to approximate a given

function f(x), x = [x; X, ... xn]T, can be written as
n n
q(x) = a; + ) oa;(x;—x}) + ) a;;(x;—x?)(x;-x3), ¢H)
i=1 i,j=1
i>j
where x is a reference point. Determining the approximating quadra-

tic function is equivalent to determining all unknown coefficients in
(1). Suppose that m (m > n + 1) base points, x*, k=0, 1, -+, m-1,
are to be used to construct the quadratic approximation. Using the
function values at these points, f, = f(x*), we set up a system of
linear equations
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where the coefficient vectors a and v are arranged to have the follow-

Q; Y

ing orders: a = [a, a; a, ... a,]T and v = [a;; a;, ... ag,



a;, 4a;3 ... a1 5]%. The vectors f; and f, contain function val-
ues f, with appropriate dimensions. The notation used here is similar
to that of [3], but the function q(x) has been defined w.r.t. a ref-

0

erence point x° rather than w.r.t. the origin. Following [3], the

model coefficients can be solved as

v =cf(cct) le (3)
and
-1 -1
a=Q % - Q;Q,v (4)
where
-1
C=Q, - 9,%,9, (5)
and
-1
e = £, - Q,;Q;f. (6)

When m < (n + 2)(n + 1)/2, equation (3) is a minimal norm ||v]]
solution of an underdetermined system and v and a give a maximally
flat quadratic approximate to f(x).
Direct Computation of Matrix C

Here we propose that the first n+l base points are selected

by perturbing one variable at a time around the reference point x°,

x* =x" +[00...08, 0...0]T, i=1,2, ..., n, (7)

where B; is a certain length of perturbation. Matrix QIiQ12 is now

simply
0 0 |
1 B 0 |
Y, - : } 0 (8)
Y Bn |
and need not be stored. After these first (n + 1) base points, a

sequence of other base points follows with no particular restriction

about their locations. Each new base point results in the addition



of a new row to C. Suppose x* (k > n) is added as a new point. The

components of the (k — n)th row of C are simply either

Cx-n, 11y = (Xf = x})? = By (xf - x{) (9a)
or
Ch-m, (1) = (Xf = x5 -xJ), for i =j, (9b)
where the arrangement of the index pair (ij) in the new row of C cor-
responds to that of the aij's in vector v, i.e., in the order (1 1),
(22), ..., (mn), (12), (13), ..., (n-1 n). Using these formulas,
some involved matrix-vector multiplications, required by the original
approach of [3], are avoided.
Updating Model Coefficients upon Updating of Base Points
To efficiently calculate v after adding a new row in C, Bier-
nacki and Styblinski [3] used a scheme to update the UL factors of
(ccTy-1, Their scheme does not accommodate deletion of old base
points. We have derived a set of formulas to update matrix (CCT)™ 1,
allowing the freedom of adding or dropping any base point. Denote m’'
as the number of base points created after the first n+l ones. Sup-
pose m' equals half of the total number of second order coefficients.
The operational count to obtain v for adding and deleting a base point
is in the order of 6m'? and 3m’2, respectively. When excluding the
case of deleting, we use the original method of [3] to update the UL
factors of (CCT) 1. The operational count is then only in the order
of 3m’'2.
Direct Computation of Model Coefficients for Fixed Base Point Pattern
In our approach, m (m < 2n + 1) base points are used. The
first n+l ones are defined in (7) and the rest m’ (m' = m — (n + 1))
points are also selected deterministically. These m' base points are

selected by perturbing one variable at a time and, for the sake of



simplicity, the variables are perturbed consecutively, that is
x**1 = x% + [00...0 y; 0... 0]7, i=1,2, ..., m. (10)
v; 1s the length of the perturbation, which must not equal B;. It can
be seen that these m’ base points are generated by perturbing the
first m' elements of x° again. Under this arrangement, the matrix C
takes the analytical form
(11-B1)n Y I
c- (13873 | o (11)
0 b 10 |

and the vector e can be expressed as

1_71/ﬂ1 71/ﬁ1 0 |
1‘72/ﬁz 7z/ﬁz :
e=£ - | 1, /8, . /B lo| £ . @2
. . |
1_7m'/ﬂm' 0 7m’/ﬂm’ I .

From (3), (11) and (12) the coefficients are determined by

a;; = [(Euei—E0)/vy — (£5-£0/B:1/(Cvi-By), 1=1,2,...,m", (13a)
a;; =0, i=m'+l, ..., n, (13b)

and
a;; = 0, i=3j,1i,j =1, 2,..., n. (13c)

Coefficients a, and a; are easily obtained as,
a, = £, (1l4a)
a; = (£; - £,)/8; — Biay;, i=1,2, ..., n. (14b)
The operational count to calculate all coefficients by using this pat-
tern can be merely n+3m’. In the above approach all the coefficients
of mixed terms, i.e

., a i=j, are conveniently forced to be =zero

ijo
because no related information can be extracted from the fixed base

point pattern. Any of the a;;’'s in (13a), i.e., i < m', can be non-

zero because double perturbations are made along a straight line para-



llel to the ith axis. If a third perturbation is made along the same
straight line, it can be seen that the C matrix will not have a full
row rank, and, therefore, the third perturbation contains no useful
information for the quadratic interpolation.

Flexible Arrangement of Nonzero Second Order Coefficients

If some of the mixed term coefficients a; i=j, are domi-

3o
nant, the direct use of the above approach may result in a model with
poorer accuracy. A transformation of the base points is introduced to
enhance our approach.

Suppose that we have a set of base points, yk, k=0, 1, ...,
m, defined similarly to (7) and (10). Then a quadratic function can
be determined in the Y-space, which is written in a compact form

q(y) = by + ' (yy°) + 1/2 (yy°)'B(yy*), (15)
where b consists of the coefficients of the first order terms, and B
is a diagonal matrix with the diagonal elements equal to 2b,;, where
b;;'s are the coefficients of the second order terms. A transforma-
tion matrix, P, can be introduced such that

Plax! Ax? ... AX"] = [Ayt Ay? ... AY"]. (16)
Notice that the reference point is not changed, i.e., x° = y°. There-
after, q(x) is obtained by substituting P(x—x°) = (yhyo) in (15),

q(x) = a5 + a’ (x=x°) + 1/2(x—=x")TA(x=x"), (17)
where a; = by, a = P’b and A = P'BP. It follows from the above that
A may not be a diagonal matrix, i.e., some coefficients of mixed terms
are nonzero, if P is properly chosen. As an example, consider the

following matrix as P71,



[ 1 0 0...0...0...0 ]
01 0...0...0...0
Pl = 00 0...1...41...0 . (18)
00 0...1...1...0
| 0 0 0...0...0...1 |

This matrix rotates two axes such that the rotated pattern will give
some information for the coefficients of related mixed terms. The
above method can be generalized to deal with the case of more than two
axes needed to be rotated.
Example

The statistical design of a ladder low-pass filter with 11
elements [5,6] is used as an example to demonstrate the usefulness of
our method. The generalized £, centering approach to yield enhance-
ment [7] is employed. 23 base points are located in a symmetric pat-
tern, that is

Bi = 7> i=1, 2, ... 11.

The details of the computational results and the comparisons are given
in Table I. The process of yield maximization consists of two pha-

1

ses. x! and x?, the nominal values of the solutions obtained by using

exact circuit simulations, are given for the purpose of comparison.
When the maximally flat interpolation approach is adopted, each phase
uses a set of quadratic functions, which approximate the circuit cons-
traints, to reach x* and x*, respectively. The maximally flat inter-

0 3

polation approach is also used to estimate yields at x°, x® and x*.

References

[1] J.W. Bandler and H.L. Abdel-Malek, "Optimal centering, toleran-
cing, and yield determination via wupdated approximations and

cuts", IEEE Tans. Circuits and Systems, vol. CAS-25, 1978, pp.
853-871.



(2]

(3]

(6]

(7]

H.L. Abdel-Malek and J.W. Bandler, "Yield optimization for arbi-
trary statistical distributions: Part I-theory", IEEE Trans. Cir-
cuits and Systems, vol. CAS-27, 1980, pp. 245-253.

R.M. Biernacki and M.A. Styblinski, "Statistical circuit design
with a dynamic constraint approximation scheme", Proc. IEEE Int.
Symp. Circuits and Systems (San Jose, CA), 1986, pp. 976-979.

D.E. Hocevar, M.R. Lightner and T.N. Trick, "Monte Carlo based
yield maximization with quadratic model", Proc. IEEE Int. Symp.
Circuits and Systems (Newport Beach, CA), 1983, pp. 550-553.

K. Singhal and J.F. Pinel, "Statistical design centering and tole-

rancing using parametric sampling", IEEE Trans. Circuits and Sys-
tems, vol. CAS-28, 1981, pp. 692-701.

E. Wehrhahn and R. Spence, "The performance of some design center-

ing methods", Proc. IEEE Int. Symp. Circuits and Systems (Mon-
treal, Canada), 1984, pp. 1424-1438.

J.W. Bandler and S.H. Chen, "Circuit optimization: The state of
the art", IEEE Trans. Microwave Theory Tech., vol. MTT-36, 1988.



TABLE I STATISTICAL DESIGN OF A LOW-PASS FILTER

Actual Circuit

Maximally Flat

Component Nominal Simulation Interpolation
X4 Design = = m---meeccceeeee e
x? Phase 1 Phase 2 Phase 1 Phase 2
x! x2 x3 x*

X, 0.22510 0.22668 0.22511 0.22616 0.22623
X, 0.24940 0.24842 0.25050 0.24863 0.24920
X3 0.25230 0.25317 0.25023 0.25201 0.25186
X, 0.24940 0.24782 0.24982 0.24728 0.24791
X5 0.22510 0.22612 0.22715 0.22490 0.22487
Xg 0.21490 0.21648 0.22000 0.21926 0.21916
Xy 0.36360 0.36273 0.35944 0.36206 0.36253
Xg 0.37610 0.37693 0.37624 0.37748 0.37763
Xg 0.37610 0.37548 0.37760 0.37582 0.37599
X190 0.36360 0.36273 0.36003 0.36251 0.36299
Xyq 0.21490 0.21648 0.22000 0.21982 0.21973

Yield" 75.33% 91.67% 94.00% 89.00% 93.00%

Yield* 77.33% 93.33%

Yield** 91.33% 96.33%

Yield*** 95.67%

No. of samples 50 100 50 100

used for design

Starting point x0 x! x? x3

Number of 600 1700 23 23

simulations

Number of 12 17 7 5

iterations

Tolerances: 1% with independent uniform distributions for each ele-

ment.

Yields: All yield estimates are based on 300 samples.

*: The yield is estimated by using actual simulations.
+, ++, and +++: The yield is estimated by using maximally flat
interpolation with the reference point x°, x®, or x*, respectively.




