AN ALGORITHM FOR ONE-SIDED ℓ_1 OPTIMIZATION WITH APPLICATION TO CIRCUIT DESIGN CENTERING

OSA-87-IS-12-R

October 7, 1987

AN ALGORITHM FOR ONE-SIDED ℓ_1 OPTIMIZATION WITH APPLICATION TO CIRCUIT DESIGN CENTERING

J.W. Bandler*, S.H. Chen and K. Madsen**

Optimization Systems Associates Inc. 163 Watson's Lane Dundas, Ontario, Canada L9H 6L1

Tel. 416-627-5326

SUMMARY

Gradient-based optimization techniques have become powerful tools serving practicing engineers in today's computer-aided design. The recent approach due to Hald and Madsen [1,2,3] has proved highly successful in solving minimax and ℓ_1 problems. Following the Hald and Madsen approach, we have developed a one-sided ℓ_1 algorithm which combines a trust region Gauss-Newton method and a quasi-Newton method.

The one-sided ℓ_1 optimization problem can be stated as

minimize
$$U(x) = \sum_{j \in J(x)} f_j(x),$$
 (1)

where $\mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_2 \ ... \ \mathbf{x}_n]^T$ is a set of variables, $\mathbf{f} = [\mathbf{f}_1 \ \mathbf{f}_2 \ ... \ \mathbf{f}_m]^T$ is a set of nonlinear functions, and $J(\mathbf{x}) = \{j \mid \mathbf{f}_j(\mathbf{x}) > 0\}$ identifies the set of positive functions. In circuit design \mathbf{f} may represent error functions arising from upper and lower specifications (e.g., Bandler et al. [4] have considered multiplexer design by the one-sided ℓ_1 optimization). In this summary, we present an approach to design centering and yield enhancement of which the one-sided ℓ_1 optimization constitutes an integrated part.

^{*} J.W. Bandler is also with Simulation Optimization Systems Research Laboratory and Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada L8S 4L7.

^{**} K. Madsen is with the Institute for Numerical Analysis, Technical University of Denmark, Building 302, DK-2800 Lyngby, Denmark.

Our new algorithm consists of a trust region Gauss-Newton method as Stage 1 and a quasi-Newton method as Stage 2.

In Stage 1, at the kth iteration, a feasible point x_k and a local bound Λ_k are given. The following subproblem is defined:

minimize
$$\sum_{\mathbf{h},\mathbf{y}}^{\mathbf{m}} \mathbf{y_j}$$
 (2a)

subject to

$$y_j \ge f_j(x_k) + f'_j(x_k)^T h,$$
 $j = 1, 2,..., m,$ (2b)

$$\Lambda_k \ge h_i, \quad \Lambda_k \ge -h_i, \qquad \qquad i = 1, 2, ..., n, \tag{2d}$$

where f_j' denotes the gradient vector of f_j w.r.t. x. This subproblem can be solved by a standard linear programming routine. The constraints (2b) and (2c) define a piece-wise linearized model for each f_j , as $y_j = \max\{0, f_j + (f_j')^Th\}$. The index set J(x) is approximated by $\overline{J}(x_k+h) = \{j \mid f_j(x_k) + [f_j'(x_k)]^Th > 0\}$ which is updated at each step of solving the linear program. In contrast, a more conventional approach to the one-sided problem is to define $f_j^+ = \max\{0, f_j\}$ and minimize the ℓ_1 norm of f_j^+ using a conventional (two-sided) algorithm. This approach assumes either $y_j = f_j + (f_j')^Th$ or $y_j = 0$ throughout an iteration of solving one subproblem. In other words, J(x) is approximated by $\overline{J}(x_k) = \{j \mid f_j(x_k) > 0\}$ which will not be updated for an entire iteration. In our new algorithm, by allowing the index set \overline{J} to vary within an iteration, the discontinuity at $y_j = 0$ is taken into account in solving the subproblem.

The set of constraints (2d) defines a trust region in which the linearized model is considered to be a good approximation to the nonlinear functions. The local bound Λ_k is adjusted after each iteration based on the goodness of the linearized model, using criteria similar to those described in [4].

The Stage 2 of our algorithm applies a quasi-Newton method to solving a

set of optimality equations given by

$$\sum_{j \in J} f'_{j}(x) + \sum_{j \in Z} \delta_{j} f'_{j}(x) = 0,$$

$$f_{j}(x) = 0, \quad j \in Z,$$
(3)

where Z identifies the set of functions that are zero at the optimum. The multipliers δ_j , $j \in Z$, must satisfy $1 \ge \delta_j \ge 0$. These optimality equations result from applying the Kuhn-Tucker conditions to the one-sided ℓ_1 problem. They are different from the optimality equations for the (two-sided) ℓ_1 problem [4].

Based on the theory of Hald and Madsen [1-3], our algorithm combines the trust region Gauss-Newton method (Stage 1) which provides global convergence with the quasi-Newton iteration (Stage 2) which provides fast final convergence near a solution. Also, linear equality and inequality constraints can be readily incorporated into the algorithm (similarly to [4]).

One important application of the one-sided ℓ_1 algorithm is found in circuit design centering and yield enhancement [5].

Given a set of circuit parameters ϕ and a set of performance specifications, we can calculate a set of error functions $\mathbf{e}(\phi)$ and a generalized ℓ_p function $\mathbf{v}(\mathbf{e}(\phi))$ [5,6]. The sign of \mathbf{v} signifies the acceptability of ϕ . A nonpositive \mathbf{v} indicates that all the specifications are satisfied, whereas a negative \mathbf{v} indicates that some specifications are violated.

Given a nominal design ϕ^0 , we can generate some Monte Carlo points, denoted by ϕ^k , k=1, 2,..., K, according to the statistical distribution of the toleranced circuit parameters. Let the total number of points (ϕ^k) which violate the specifications be K_{fail} , given by the total number of nonpositive $v(\phi^k)$. Then a discrete estimate of the yield is given by $(K - K_{fail})/K$. It is a matter of great significance to circuit engineers to find a centered design ϕ^0 which minimizes K_{fail} . However, a direct minimization of K_{fail} , which is a discrete number, using

gradient-based techniques is not practical.

Consider the one-sided ℓ_1 sum defined as

$$U(\boldsymbol{\phi}^0) = \sum_{\mathbf{k} \in \mathbf{J}} \alpha_{\mathbf{k}} \mathbf{v}_{\mathbf{k}}, \tag{4}$$

where $v_k = v(\phi^k)$ and $J = \{k \mid v_k > 0\}$. Notice that the variables to be optimized here are the nominal point ϕ^0 . In (4), we define a set of multipliers α_k which are calculated at the starting point as $\alpha_k = 1/v_k$ and kept constant during optimization. The one-sided ℓ_1 objective function $U(\phi^0)$ as defined in (4) becomes precisely K_{fail} (the number of Monte Carlo points that fail to meet the specification) at the starting point. By minimizing $U(\phi^0)$ which is used as a smooth and convex interpolating function for K_{fail} , we wish to achieve a centered design and an enhanced yield. The one-sided ℓ_1 algorithm described in this summary serves as a powerful tool.

Consider as an example a Chebyshev lowpass filter which has 11 parameters [7]. We assume a 1.5% relative tolerance with a uniform distribution for each circuit parameter. The nominal design by standard synthesis was used as a starting point. It has a yield of 49%. The centered solution found by our algorithm improves the yield to 84%. The solution, as shown in Table I, was achieved by a sequence of three design cycles, with a total CPU time of 66 seconds on the VAX 8600.

REFERENCES

- [1] J. Hald and K. Madsen, "Combined LP and quasi-Newton methods for minimax optimization", Math. Programming, vol. 20, 1981, pp. 49-62.
- [2] J. Hald and K. Madsen, "Combined LP and quasi-Newton methods for non-linear ℓ_1 optimization", SIAM J. Numerical Analysis, vol. 22, 1985, pp. 68-80.
- [3] K. Madsen, "Minimization of non-linear approximation functions", Dr. techn. thesis, Institute of Numerical Analysis, Tech. Univ. of Denmark, DK2800 Lyngby, Denmark, 1985.

- [4] J.W. Bandler, W. Kellermann and K. Madsen, "A nonlinear ℓ_1 optimization algorithm for design, modelling and diagnosis of networks", <u>IEEE Trans.</u> Circuits and Systems, vol. CAS-34, 1987, pp.174-181.
- [5] J.W. Bandler and S.H. Chen, "Circuit optimization: the-state-of-the-art", IEEE Trans. Microwave Theory Tech., vol. MTT-36, 1988.
- [6] J.W. Bandler and C. Charalambous, "Theory of generalized least pth approximation", <u>IEEE Trans. Circuit Theory</u>, vol. CT-19, 1972, pp. 287-289.
- [7] K. Singhal and J.F. Pinel, "Statistical design centering and tolerancing using parametric sampling", <u>IEEE Trans. Circuits and Systems</u>, vol. CAS-28, 1981, pp. 692-701.

TABLE 5.1 GENERALIZED ℓ_1 CENTERING OF THE CHEBYSHEV LOWPASS FILTER

_	Nominal Values			
Component	Case 1	Case 2	Case 3	Case 4
x_1	0.2251	0.21954	0.21705	0.21530
x ₂	0.2494	0.25157	0.24677	0.23838
x_3	0.2523	0.25529	0.24784	0.24120
x_4	0.2494	0.24807	0.24019	0.23687
x ₅	0.2251	0.22042	0.21753	0.21335
x ₆	0.2149	0.22628	0.23565	0.23093
x ₇	0.3636	0.36739	0.37212	0.38224
x ₈	0.3761	0.36929	0.38012	0.39023
x_9	0.3761	0.37341	0.38370	0.39378
x ₁₀	0.3636	0.36732	0.37716	0.38248
x ₁₁	0.2149	0.22575	0.22127	0.23129
Yield	49%	78%	80%	84%
Number of multiple circuits used		50	100	100
Starting point		Case 1	Case 2	Case 3
Number of iterations		16	18	13
CPU time (VAX 8600)		10 sec.	30 sec.	26 sec.

A uniformly distributed 1.5% relative tolerance is assumed for each component. The yield in this table was estimated by Monte Carlo analyses with 300 samples. The parameter values in Case 1 were obtained by standard filter synthesis [7].