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SUMMARY
Gradient-based optimization techniques have become powerful tools serving
practicing engineers in today’s computer-aided design. The recent approach due
to Hald and Madsen [1,2,3] has proved highly successful in solving minimax and
£, problems. Following the Hald and Madsen approach, we have developed a one-
sided ¢, algorithm which combines a trust region Gauss-Newton method and a
quasi-Newton method.

The one-sided £, optimization problem can be stated as

minimize U(x) = ) fj(x), 1)
X JEI(x)
where x = [X; X, .. x,]T is a set of variables, f = [f; f, .. f_]T is a set of

nonlinear functions, and J(x) = {j | fi(x) > 0} identifies the set of positive func-
tions. In circuit design f may represent error functions arising from upper and
lower specifications (e.g., Bandler et al. [4] have considered multiplexer design by
the one-sided ¢; optimization). In this summary, we present an approach to de-
sign centering and yield enhancement of which the one-sided ¢; optimization

constitutes an integrated part.

* J.W. Bandler is also with Simulation Optimization Systems Research Labora-
tory and Department of Electrical and Computer Engineering, McMaster Univer-
sity, Hamilton, Canada L8S 4L7.

** K. Madsen is with the Institute for Numerical Analysis, Technical Univer-
sity of Denmark, Building 302, DK-2800 Lyngby, Denmark.



Our new algorithm consists of a trust region Gauss-Newton method as Stage
1 and a quasi-Newton method as Stage 2.
In Stage 1, at the kth iteration, a feasible point x, and a local bound Ay

are given. The following subproblem is defined:

minimize E Y; (2a)
h,y j=1
subject to
y; 2 fi(x) + fx,)Th, j=1,2,.,m, (2b)
yj2 0, j=1,2,.., m, (2¢)
A > h;, Ay > -h;, i=1,2,..,n, (2d)

where f; denotes the gradient vector of fj w.r.t. x. This subproblem can be sol-
ved by a standard linear programming routine. The constraints (2b) and (2c)
define a piece-wise linearized model for each f;, as y; = max({0, fj + (f})Th}. The
index set J(x) is approximated by j—(xk+h) = {1 filxg) + [f;(xk)]Th > 0} which is
updated at each step of solving the linear program. In contrast, a more conven-
tional approach to the one-sided problem is to define fj+ = max{0, fj} and mini-
mize the ¢; norm of f}‘ using a conventional (two-sided) algorithm. This approach
assumes either y; = f; + (fj)Th or y; = 0 throughout an iteration of solving one
subproblem. In other words, J(x) is approximated by ._I-(xk) = { | fj(xk) > 0}
which will not be updated for an entire iteration. In our new algorithm, by al-
lowing the index set J to vary within an iteration, the discontinuity at y; = 0 is
taken into account in solving the subproblem.

The set of constraints (2d) defines a trust region in which the linearized
model is considered to be a good approximation to the nonlinear functions. The
local bound A, is adjusted after each iteration based on the goodness of the
linearized model, using criteria similar to those described in [4].

The Stage 2 of our algorithm applies a quasi-Newton method to solving a



set of optimality equations given by

Y B+ Y &fix) =0,

j€l JEZ

(3)
fi(x) = 0, JEZ,

where Z identifies the set of functions that are zero at the optimum. The multi-
pliers 6;, j € Z, must satisfy 1 > 6; > 0. These optimality equations result from
applying the Kuhn-Tucker conditions to the one-sided ¢, problem. They are dif-
ferent from the optimality equations for the (two-sided) ¢, problem [4].

Based on the theory of Hald and Madsen [1-3], our algorithm combines the
trust region Gauss-Newton method (Stage 1) which provides global convergence
with the quasi-Newton iteration (Stage 2) which provides fast final convergence
near a solution. Also, linear equality and inequality constraints can be readily
incorporated into the algorithm (similarly to [4]).

One important application of the one-sided ¢, algorithm is found in circuit
design centering and yield enhancement [5].

Given a set of circuit parameters ¢ and a set of performance specifications,
we can calculate a set of error functions e(¢) and a generalized ¢, function
v(e(®)) [5,6]. The sign of v signifies the acceptability of ¢. A nonpositive v indi-
cates that all the specifications are satisfied, whereas a negative v indicates that
some specifications are violated.

Given a nominal design ¢% we can generate some Monte Carlo points, deno-
ted by @* k = 1, 2,., K, according to the statistical distribution of the toleran-
ced circuit parameters. Let the total number of points (¢¥) which violate the
specifications be Kg,;, given by the total number of nonpositive v(¢¥). Then a
discrete estimate of the yield is given by (K - Kea)/K. It is a matter of great
significance to circuit engineers to find a centered design ¢° which minimizes

K. However, a direct minimization of Kj,;, which is a discrete number, using



gradient-based techniques is not practical.

Consider the one-sided ¢; sum defined as

U(¢0) = Z Qx Vi, 4)
kel

where v, = v(¢¥) and J = (k | vk > 0}. Notice that the variables to be optimized
here are the nominal point ¢°. In (4), we define a set of multipliers o, which
are calculated at the starting point as o, = 1/v, and kept constant during opti-
mization. The one-sided ¢; objective function U(¢?) as defined in (4) becomes
precisely Kg,; (the number of Monte Carlo points that fail to meet the specifi-
cation) at the starting point. By minimizing U(¢?) which is used as a smooth and
convex interpolating function for K, we wish to achieve a centered design
and an enhanced yield. The one-sided ¢; algorithm described in this summary
serves as a powerful tool.

Consider as an example a Chebyshev lowpass filter which has 11 parameters
[7]. We assume a 1.5% relative tolerance with a uniform distribution for each
circuit parameter. The nominal design by standard synthesis was used as a start-
ing point. It has a yield of 49%. The centered solution found by our algorithm
improves the yield to 84%. The solution, as shown in Table I, was achieved by a
sequence of three design cycles, with a total CPU time of 66 seconds on the

VAX 8600.
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TABLE 5.1

GENERALIZED £, CENTERING OF THE CHEBYSHEV LOWPASS FILTER

Nominal Values

Component
Case 1 Case 2 Case 3 Case 4

X, 0.2251 0.21954 0.21705 0.21530
X, 0.2494 0.25157 0.24677 0.23838
X5 0.2523 0.25529 0.24784 0.24120
X, 0.2494 0.24807 0.24019 0.23687
X5 0.2251 0.22042 0.21753 0.21335
Xg 0.2149 0.22628 0.23565 0.23093
X, 0.3636 0.36739 0.37212 0.38224
Xg 0.3761 0.36929 0.38012 0.39023
Xg 0.3761 0.37341 0.38370 0.39378
Xig 0.3636 0.36732 0.37716 0.38248
Xq4 0.2149 0.22575 0.22127 0.23129
Yield 49% 78% 80% 84%
Number of multiple 50 100 100
circuits used

Starting point Case 1 Case 2 Case 3
Number of iterations 16 18 13
CPU time (VAX 8600) 10 sec. 30 sec. 26 sec.

A uniformly distributed 1.5% relative tolerance is assumed for each
component. The yield in this table was estimated by Monte Carlo
analyses with 300 samples. The parameter values in Case 1 were
obtained by standard filter synthesis [7].




