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Space Mapping Concept 

(Bandler et al., 1994-) 
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Generalized Space Mapping (GSM) 

 

GSM is a comprehensive framework to engineering device 

modeling 

 

GSM exploits the Space Mapping (SM), the Frequency Space 

Mapping (FSM) (Bandler et al., 1994) and the Multiple Space 

Mapping (MSM) (Bandler et al., 1998) concepts to build a new 

engineering device modeling framework 

 

two cases are considered: the basic Space Mapping Super Model 

(SMSM) concept and the Frequency-Space Mapping Super 

Model (FSMSM) concept 
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Space Mapping Super Model (SMSM) 
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Frequency-Space Mapping Super Model (FSMSM) 
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Multiple Space Mapping (MSM) Concept 

 

MSM for Device Responses (MSMDR) 
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Multiple Space Mapping (MSM) Concept 

 

MSM for Frequency Intervals (MSMFI) 
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Mathematical Formulation for GSM 
 

the kth mapping targeting the sub-response kR  or the response R 

in the kth frequency sub-range is given by 
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or, in matrix form, assuming a linear mapping, 
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the mapping parameters },,,,,{ kkkkkk δσtsBc  can be 

evaluated, directly or indirectly, by solving the optimization 

problem 
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where m is the number of base points selected in the fine model 

space and kje  is an error vector given by 
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an important variation of the mapping is to use the inverse of the 

frequency variable (which is proportional to the wavelength) 

instead of the frequency itself 
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Selection of the Base Points 

 

the selection of the base points in the region of interest follows 

the star distribution (Bandler et al., 1989) 

 

according to this distribution the number of base points for a 

microwave circuit with n design parameters is m = 2n + 1 
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An Implementation of SMSM and FSMSM 

 

the SMSM or the FSMSM for the kth mapping can be evaluated 

through the following steps 

 

select a set of m base points },...,2,1,{ )( mjj
f =x  in the region of 

interest (star distribution) 

 

the mapping parameters in the SMSM are obtained by applying 

direct optimization to solve 
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considering 0,1, ==== kkkk δσ0,0 ts  

 

the mapping parameters in the FSMSM are obtained by applying 

direct optimization to solve 
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Comparison between SMSM and FSMSM 

Microstrip Transmission Line 
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Parameter Minimum value Maximum value 

   
W 10 mil 30 mil 

L 40 mil 60 mil 

H 10 mil 20 mil 

r
  8 10 

 

the frequency range is 20 GHz to 30 GHz 

 

the number of base points is 9 and the number of test points is 

50 
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Microstrip Transmission Line 

SMSM and FSMSM mapping parameters for the microstrip 

transmission line 
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1.028    0.044    0.004-   0.009  

 0.027    0.985    0.001     0.008-

0.023    0.020    0.992     0.001-

0.022-  0.007-  0.002-   1.015  

 



















1.025    0.020     0.001-  0.019  

0.022   0.979     0.004    0.002-

0.017    0.011-   0.965    0.009-

0.021-  0.006     0.005-  1.026  

 

c  T0.036-   0.012   0.008-   0.011-   T0.010-   0.011   0.001   0.013-  

s 0 (fixed)

 

 T0.002-    0.002      0     0.006-  

t
 

0 (fixed)

  
0 

σ  1 (fixed) 1.035 

δ  0 (fixed) 0.001 

 

to display the results in a compact way we define the error in the 

scattering parameter ijS  as the modulus of the difference 

between the scattering parameter 
f

ijS  computed by the fine 

model and 
c
ijS  computed by the coarse model 
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Microstrip Transmission Line 

 

the error in S21 at the test points 
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before applying any modeling technique 
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after applying FSMSM 
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Microstrip Right Angle Bend 
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Parameter Minimum value Maximum value 

   W 20 mil 30 mil 

H 8 mil 16 mil 

rε  8 10 

 

the frequency range is 1 GHz to 41 GHz 

 

the number of base points is 7 and the number of test points is 

50 

 

the fine model is analyzed by Sonnet’s em and the “coarse” 

model is a Jansen empirical model (Jansen et al., 1983) 

 

the FSMSM was developed to enhance the coarse model of the 

microstrip right angle bend 
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Microstrip Right Angle Bend 

 

the error in S11 and S21 at the test points before applying FSMSM 
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the errors in S11 and S21 at the test points after applying FSMSM 

(mapping the inverse of the frequency variable) 
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Microstrip Step Junction 
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Parameter Minimum value Maximum value 

   
W1 20 mil 40 mil 

W2 10 mil 20 mil 

H 10 mil 20 mil 

rε  8 10 

 

the frequency range is 2 GHz to 40 GHz 

 

the number of base points is 9 and the number of test points is 

50 

 

the fine model is analyzed by Sonnet’s em and the coarse model 

is an element of OSA90/hope 
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Microstrip Step Junction 

 

MSM for Device Responses (MSMDR) was developed to 

enhance the coarse model of the microstrip step junction 

 

the mapping parameters for the microstrip step junction 

 

 Target responses are 

{Im[S11], Im[S21], Im[S22], 

Re[S21])} 

 

Target responses are 

{Re[S11], Re[S22]} 
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 0.177    0.111-   0.365-  0.676  

0.018    1.485     0.116    0.023-

0.502-  0.255     0.632    0.191  

0.074    0.062-   .033 0    0.764 

  


















 1.241    0.002-  0.118-   0.077-

0.000    1.152      0.001    0.001-

0.004   0.032     0.202    0.008  

0.004-  0.010-   0.008-   3.071 

  

c  T 0.006-    0.002    0.002-    0.002    T  0.003-    0.000    0.001    0.001-   

s  T 0.002-   0.001-    0.004    0.003-   0

 

t
 

 T 0.000    0.005-    0.000     0.001-    T 0.003     0.007-     0.000     0.001-   

σ  1.546 5.729 

δ  0.113 0.065 
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Microstrip Step Junction 

 

the error in S11 and S21 at the test points before applying 

(MSMDR) 
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the error in S11 and S21 at the test points after applying 

(MSMDR) (mapping the inverse of the frequency variable) 
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Microstrip Step Junction 

 

the histogram of the error in S21 of the microstrip step junction 

for 50 points in the region of interest at 40 GHz 

 

by the coarse model 
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Microstrip Shaped T-Junction 
 

the fine and coarse models 
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Microstrip Shaped T-Junction 

 

the region of interest 

 

 

Parameter Minimum value Maximum value 

   
H 15 mil 25 mil 

X 5 mil 15 mil 

Y 5 mil 15 mil 

rε  8 10 

 

the frequency range is 2 GHz to 20 GHz with a step of 2 GHz 

 

the number of base points is 9 and the number of test points is 

50 

 

the width W of the input lines is determined in terms of H and rε  

so that the characteristic impedance of the input lines is 50 ohm 

 

the width W1 is taken as 1/3 of the width W 

 

the width W2 is obtained so that the characteristic impedance of 

the microstrip line after the step connected to port 2 is twice that 

of the microstrip line after the step connected to port 1 
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Microstrip Shaped T-Junction 

 

MSM for Frequency Intervals (MSMFI) was developed to 

enhance the accuracy of the T-Junction coarse model 

 

the total frequency range was divided into two intervals: 2 GHz 

to 16 GHz and 16 GHz to 20 GHz 

 

the mapping parameters are 

 

 2 GHz to 16 GHz
 

16 GHz to 20 GHz
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−−−

−

  0.83      0.03     0.07    0.00     0.03   0.12      0.08

0.62      0.99      0.12       0.16 0.04   0.05  0.13

 0.03   0.05  0.99       0.03      0.00      0.04     0.01    

0.27   0.06  0.10      0.97       0.01  0.00     0.04

0.06   0.01     0.12  0.04       0.99      0.07     0.00

0.03   0.06     0.20  0.07   0.00       0.89     0.00   

0.22      0.00      0.06   0.08      0.01       0.07     1.04  

 





























−−−

−−−−

−−

−−−−−

−−

−−−

−−−

 0.87    0.03    0.07  0.02     0.04  0.22     0.13

0.51     1.03     0.23    0.15  0.05 0.02  0.14

0.12 0.04  1.07     0.11      0.03    0.04      0.08   

.27 0.09  0.13    0.88     0.03  0.06 0.10

0.02     0.00   0.25  0.04      0.98     0.15    0.06

0.01  0.01    0.28  0.07  0.01      0.85    0.05   

0.13     0.01  0.09  0.01     0.00  0.02    0.99   

0  

 

c 
T

] 0.03    0.07    0.01   0.03    0.01    0.01     0.02  [ −−−−

 

T
0.03]  0.05   0.01   0.03    0.01    0.01   0.01 [ −−−−  

s 
T

] 0.20   0.02    0.00     0.02   0.10    0.09    0.01[ −−−−−

 

T
0.02]   0.00    0.00     0.00     0.01   0.01    0.00 [ −−  

t 0 
T

0.00]     0.00     0.00     0.00    0.02    0.00     0.01 [ −  

σ   0.851 0.957 

δ  −0.003 0.008 



 

Simulation Optimization Systems Research Laboratory 
McMaster University  

 

 

99-24-22 

Microstrip Shaped T-Junction 

 

the responses of the shaped T-Junction at two test points in the 

region of interest by Sonnet’s em (●), by the coarse model (---) 

and by the enhanced coarse model (―) 
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Microstrip Shaped T-Junction 

 

the error in S11 and in S22 of the shaped T-Junction coarse model 

at the test points 
 

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

frequency (GHz)

E
rr

o
r 

in
 S

1
1

 

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

frequency (GHz)

E
rr

o
r 

in
 S

2
2

 

 

the error in S11 and in S22 of the shaped T-Junction enhanced 

coarse model at the test points 
 

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

frequency (GHz)

E
rr

o
r 

in
 S

1
1

 

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

frequency (GHz)

E
rr

o
r 

in
 S

2
2

 

 



 

Simulation Optimization Systems Research Laboratory 
McMaster University  

 

 

99-24-24 

Microstrip Shaped T-Junction 

 

the enhanced coarse model for the shaped T-Junction can be 

utilized in optimization 

 

the optimization variables are X and Y 

 

the other parameters are kept fixed (W = 24 mil, H = 25 mil and 

9.9=rε ) 

 

the design specifications are 

 

3/1,3/1 2211  SS  

 

in the frequency range 2 GHz to 16 GHz 

 

the minimax optimizer in OSA90/hope reached the solution  
 

X = 2.1 mil and Y = 21.1 mil 
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Microstrip Shaped T-Junction 

 

responses of the optimum shaped T-Junction by Sonnet’s em 

(●), by the coarse model (---) and by the enhanced coarse model 

(―) 
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Conclusions 

 

we introduce a comprehensive framework called Generalized 

Space mapping (GSM) to engineering device modeling 

 

in GSM we utilize a few relevant full-wave EM simulations to 

match the responses of the fine model and the coarse model over 

a designable region of parameters and frequency 

 

GSM generalizes the Space Mapping (SM), the Frequency 

Space Mapping (FSM) and the Multiple Space Mapping (MSM) 

concepts to build a new engineering device modeling framework 

 

two fundamental concepts are presented:  one is a basic Space 

Mapping Super Model (SMSM) and the other is a basic 

Frequency-Space Mapping Super Model (FSMSM) 

 

MSM can be combined with SMSM and FSMSM to provide a 

powerful and reliable modeling tool for microwave devices 
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