A GENERALIZED SPACE MAPPING TABLEAU APPROACH TO DEVICE MODELING

J.W. Bandler, N. Georgieva, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang

SOS-99-24-V

September 1999

© JW. Bandler, N. Georgieva, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang 1999

No part of this document may be copied, translated, transcribed or entered in any form into any machine without written permission. Address enquiries in this regard to Dr. J.W. Bandler. Excerpts may be quoted for scholarly purposes with full acknowledgement of source. This document may not be lent or circulated without this title page and its original cover.

A GENERALIZED SPACE MAPPING TABLEAU APPROACH TO DEVICE MODELING

JW. Bandler, N. Georgieva, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang*

Simulation Optimization Systems Research Laboratory and Department of Electrical and Computer Engineering McMaster University, Hamilton, Canada L8S 4K1

* Department of Electronics Carleton University, Ottawa, Canada K1S 5B6

> bandler@mcmaster.ca www.sos.mcmaster.ca

presented at

29th European Microwave Conference, Munich, Germany, October 1999

Space Mapping Concept

(Bandler et al., 1994-)

Generalized Space Mapping (GSM)

GSM is a comprehensive framework to engineering device modeling

GSM exploits the Space Mapping (SM), the Frequency Space Mapping (FSM) (*Bandler et al., 1994*) and the Multiple Space Mapping (MSM) (*Bandler et al., 1998*) concepts to build a new engineering device modeling framework

two cases are considered: the basic Space Mapping Super Model (SMSM) concept and the Frequency-Space Mapping Super Model (FSMSM) concept

Space Mapping Super Model (SMSM)

Frequency-Space Mapping Super Model (FSMSM)

Multiple Space Mapping (MSM) Concept

MSM for Device Responses (MSMDR)

Multiple Space Mapping (MSM) Concept

MSM for Frequency Intervals (MSMFI)

Simulation Optimization Systems Research Laboratory McMaster University

Mathematical Formulation for GSM

the *k*th mapping targeting the sub-response \mathbf{R}_k or the response \mathbf{R} in the *k*th frequency sub-range is given by

$$(\boldsymbol{x}_{ck}, \omega_{ck}) = \boldsymbol{P}_k(\boldsymbol{x}_f, \omega)$$

or, in matrix form, assuming a linear mapping,

$$\begin{bmatrix} \boldsymbol{x}_{ck} \\ \boldsymbol{\omega}_{ck} \end{bmatrix} = \begin{bmatrix} \boldsymbol{c}_{k} \\ \boldsymbol{\delta}_{k} \end{bmatrix} + \begin{bmatrix} \boldsymbol{B}_{k} & \boldsymbol{s}_{k} \\ \boldsymbol{t}_{k}^{T} & \boldsymbol{\sigma}_{k} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{f} \\ \boldsymbol{\omega} \end{bmatrix}$$

the mapping parameters { c_k , B_k , s_k , t_k , σ_k , δ_k } can be evaluated, directly or indirectly, by solving the optimization problem

$$\min_{\boldsymbol{c}_k, \boldsymbol{B}_k, \boldsymbol{s}_k, \boldsymbol{t}_k, \boldsymbol{\sigma}_k, \boldsymbol{\delta}_k} \| [\boldsymbol{e}_{k1}^T \quad \boldsymbol{e}_{k2}^T \quad \cdots \quad \boldsymbol{e}_{km}^T]^T \|$$

where *m* is the number of base points selected in the fine model space and e_{ki} is an error vector given by

$$e_{kj} = R_f(x_f^{(j)}, \omega) - R_c(x_{ck}^{(j)}, \omega_{ck}), \quad j = 1, 2, ..., m$$

an important variation of the mapping is to use the inverse of the frequency variable (which is proportional to the wavelength) instead of the frequency itself

Selection of the Base Points

the selection of the base points in the region of interest follows the star distribution (*Bandler et al., 1989*)

according to this distribution the number of base points for a microwave circuit with *n* design parameters is m = 2n + 1

Simulation Optimization Systems Research Laboratory McMaster University

An Implementation of SMSM and FSMSM

the SMSM or the FSMSM for the *k*th mapping can be evaluated through the following steps

select a set of *m* base points { $x_f^{(j)}$, j = 1, 2, ..., m} in the region of interest (star distribution)

the mapping parameters in the SMSM are obtained by applying direct optimization to solve

$$\min_{\boldsymbol{c}_k, \boldsymbol{B}_k} \| [\boldsymbol{e}_{k1}^T \quad \boldsymbol{e}_{k2}^T \quad \cdots \quad \boldsymbol{e}_{km}^T]^T \|$$

considering $s_k = 0$, $t_k = 0$, $\sigma_k = 1$, $\delta_k = 0$

the mapping parameters in the FSMSM are obtained by applying direct optimization to solve

$$\min_{\boldsymbol{c}_k, \boldsymbol{B}_k, \boldsymbol{s}_k, \boldsymbol{t}_k, \boldsymbol{\sigma}_k, \boldsymbol{\delta}_k} \left\| \begin{bmatrix} \boldsymbol{e}_{k1}^T & \boldsymbol{e}_{k2}^T & \cdots & \boldsymbol{e}_{km}^T \end{bmatrix}^T \right\|$$

Comparison between SMSM and FSMSM

Microstrip Transmission Line

Parameter	Minimum value	Maximum value
W	10 mil	30 mil
L	40 mil	60 mil
H	10 mil	20 mil
${\mathcal E}_r$	8	10

the frequency range is 20 GHz to 30 GHz

the number of base points is 9 and the number of test points is 50

Microstrip Transmission Line

SMSM and FSMSM mapping parameters for the microstrip transmission line

	SMSM	FSMSM
В	$\begin{bmatrix} 1.015 & -0.002 & -0.007 & -0.022 \\ -0.001 & 0.992 & 0.020 & 0.023 \\ -0.008 & 0.001 & 0.985 & 0.027 \\ 0.009 & -0.004 & 0.044 & 1.028 \end{bmatrix}$	$\begin{bmatrix} 1.026 - 0.005 & 0.006 - 0.021 \\ -0.009 & 0.965 & -0.011 & 0.017 \\ -0.002 & 0.004 & 0.979 & 0.022 \\ 0.019 - 0.001 & 0.020 & 1.025 \end{bmatrix}$
С	$\begin{bmatrix} -0.011 & -0.008 & 0.012 & -0.036 \end{bmatrix}^T$	$[-0.013 \ 0.001 \ 0.011 \ -0.010]^T$
S	0 (fixed)	$\begin{bmatrix} -0.006 & 0 & 0.002 & -0.002 \end{bmatrix}^T$
t	0 (fixed)	0
σ	1 (fixed)	1.035
δ	0 (fixed)	0.001

to display the results in a compact way we define the error in the scattering parameter S_{ij} as the modulus of the difference between the scattering parameter S_{ij}^{f} computed by the fine model and S_{ij}^{c} computed by the coarse model

error in
$$S_{ij} = \left| S_{ij}^{f} - S_{ij}^{c} \right|$$

= $\sqrt{\left(\operatorname{Re}[S_{ij}^{f}] - \operatorname{Re}[S_{ij}^{c}] \right)^{2} + \left(\operatorname{Im}[S_{ij}^{f}] - \operatorname{Im}[S_{ij}^{c}] \right)^{2}}$

Microstrip Transmission Line

the error in S_{21} at the test points

before applying any modeling technique

after applying SMSM

after applying FSMSM

Microstrip Right Angle Bend

Parameter	Minimum value	Maximum value
W	20 mil	30 mil
Н	8 mil	16 mil
${\mathcal E}_r$	8	10

the frequency range is 1 GHz to 41 GHz

the number of base points is 7 and the number of test points is 50

the fine model is analyzed by Sonnet's *em* and the "coarse" model is a Jansen empirical model (*Jansen et al.*, 1983)

the FSMSM was developed to enhance the coarse model of the microstrip right angle bend

Microstrip Right Angle Bend

the error in S_{11} and S_{21} at the test points before applying FSMSM

the errors in S_{11} and S_{21} at the test points after applying FSMSM (mapping the inverse of the frequency variable)

Parameter	Minimum value	Maximum value
W_1	20 mil	40 mil
W_2	10 mil	20 mil
Н	10 mil	20 mil
${\mathcal E}_r$	8	10

the frequency range is 2 GHz to 40 GHz

the number of base points is 9 and the number of test points is 50

the fine model is analyzed by Sonnet's *em* and the coarse model is an element of OSA90/hope

MSM for Device Responses (MSMDR) was developed to enhance the coarse model of the microstrip step junction

the mapping parameters for the microstrip step junction

	Target responses are {Im[S ₁₁], Im[S ₂₁], Im[S ₂₂], Re[S ₂₁])}	Target responses are {Re[S ₁₁], Re[S ₂₂]}
В	$\begin{bmatrix} 0.764 & 0.033 & -0.062 & 0.074 \\ 0.191 & 0.632 & 0.255 & -0.502 \\ -0.023 & 0.116 & 1.485 & 0.018 \\ 0.676 & -0.365 & -0.111 & 0.177 \end{bmatrix}$	$\begin{bmatrix} 3.071 & -0.008 & -0.010 & -0.004 \\ 0.008 & 0.202 & 0.032 & 0.004 \\ -0.001 & 0.001 & 1.152 & 0.000 \\ -0.077 & -0.118 & -0.002 & 1.241 \end{bmatrix}$
С	$\begin{bmatrix} 0.002 & -0.002 & 0.002 & -0.006 \end{bmatrix}^T$	$\begin{bmatrix} -0.001 & 0.001 & 0.000 & -0.003 \end{bmatrix}^T$
S	$\begin{bmatrix} -0.003 & 0.004 & -0.001 & -0.002 \end{bmatrix}^T$	0
t	$\begin{bmatrix} -0.001 & 0.000 & -0.005 & 0.000 \end{bmatrix}^T$	$\begin{bmatrix} -0.001 & 0.000 & -0.007 & 0.003 \end{bmatrix}^T$
σ	1.546	5.729
δ	0.113	0.065

the error in S_{11} and S_{21} at the test points before applying (MSMDR)

the error in S_{11} and S_{21} at the test points after applying (MSMDR) (mapping the inverse of the frequency variable)

the histogram of the error in S_{21} of the microstrip step junction for 50 points in the region of interest at 40 GHz

by the coarse model

by the enhanced coarse model

the fine and coarse models

the region of interest

Parameter	Minimum value	Maximum value
Н	15 mil	25 mil
X	5 mil	15 mil
Y	5 mil	15 mil
${\mathcal E}_r$	8	10

the frequency range is 2 GHz to 20 GHz with a step of 2 GHz

the number of base points is 9 and the number of test points is 50

the width W of the input lines is determined in terms of H and ε_r so that the characteristic impedance of the input lines is 50 ohm

the width W_1 is taken as 1/3 of the width W

the width W_2 is obtained so that the characteristic impedance of the microstrip line after the step connected to port 2 is twice that of the microstrip line after the step connected to port 1

MSM for Frequency Intervals (MSMFI) was developed to enhance the accuracy of the T-Junction coarse model

the total frequency range was divided into two intervals: 2 GHz to 16 GHz and 16 GHz to 20 GHz

the mapping parameters are

	2 GHz to 16 GHz	16 GHz to 20 GHz
В	$\begin{bmatrix} 1.04 & 0.07 & 0.01 & 0.08 & -0.06 & 0.00 & 0.22 \\ 0.00 & 0.89 & 0.00 & -0.07 & -0.20 & 0.06 & -0.03 \\ -0.00 & 0.07 & 0.99 & 0.04 & -0.12 & 0.01 & -0.06 \\ -0.04 & 0.00 & -0.01 & 0.97 & 0.10 & -0.06 & -0.27 \\ 0.01 & 0.04 & 0.00 & 0.03 & 0.99 & -0.05 & -0.03 \\ -0.13 & -0.05 & -0.04 & -0.16 & 0.12 & 0.99 & 0.62 \\ -0.08 & 0.12 & -0.03 & 0.00 & -0.07 & 0.03 & 0.83 \end{bmatrix}$	$\begin{bmatrix} 0.99 & 0.02 - 0.00 & 0.01 - 0.09 - 0.01 & 0.13 \\ 0.05 & 0.85 & 0.01 - 0.07 - 0.28 & 0.01 - 0.01 \\ -0.06 & 0.15 & 0.98 & 0.04 - 0.25 & 0.00 & 0.02 \\ -0.10 - 0.06 - 0.03 & 0.88 & 0.13 - 0.09 - 0.27 \\ 0.08 & 0.04 & 0.03 & 0.11 & 1.07 - 0.04 - 0.12 \\ -0.14 - 0.02 - 0.05 - 0.15 & 0.23 & 1.03 & 0.51 \\ -0.13 & 0.22 - 0.04 & 0.02 - 0.07 & 0.03 & 0.87 \end{bmatrix}$
С	$\begin{bmatrix} 0.02 & 0.01 & -0.01 & -0.03 & -0.01 & 0.07 & -0.03 \end{bmatrix}^T$	$\begin{bmatrix} 0.01 & 0.01 & -0.01 & -0.03 & -0.01 & 0.05 & -0.03 \end{bmatrix}^T$
S	$\begin{bmatrix} -0.01 & 0.09 & -0.10 & -0.02 & 0.00 & -0.02 & -0.20 \end{bmatrix}^T$	$\begin{bmatrix} 0.00 & 0.01 & -0.01 & 0.00 & 0.00 & 0.00 & -0.02 \end{bmatrix}^T$
t	0	$\begin{bmatrix} 0.01 & 0.00 & -0.02 & 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}^T$
σ	0.851	0.957
δ	-0.003	0.008

the responses of the shaped T-Junction at two test points in the region of interest by Sonnet's *em* (\bullet), by the coarse model (---) and by the enhanced coarse model (—)

the error in S_{11} and in S_{22} of the shaped T-Junction coarse model at the test points

the error in S_{11} and in S_{22} of the shaped T-Junction enhanced coarse model at the test points

Simulation Optimization Systems Research Laboratory McMaster University

Microstrip Shaped T-Junction

the enhanced coarse model for the shaped T-Junction can be utilized in optimization

the optimization variables are *X* and *Y*

the other parameters are kept fixed (W = 24 mil, H = 25 mil and $\varepsilon_r = 9.9$)

the design specifications are

$$|S_{11}| \le 1/3, |S_{22}| \le 1/3$$

in the frequency range 2 GHz to 16 GHz

the minimax optimizer in OSA90/hope reached the solution

X = 2.1 mil and Y = 21.1 mil

responses of the optimum shaped T-Junction by Sonnet's *em* (•), by the coarse model (---) and by the enhanced coarse model (--)

Conclusions

we introduce a comprehensive framework called Generalized Space mapping (GSM) to engineering device modeling

in GSM we utilize a few relevant full-wave EM simulations to match the responses of the fine model and the coarse model over a designable region of parameters and frequency

GSM generalizes the Space Mapping (SM), the Frequency Space Mapping (FSM) and the Multiple Space Mapping (MSM) concepts to build a new engineering device modeling framework

two fundamental concepts are presented: one is a basic Space Mapping Super Model (SMSM) and the other is a basic Frequency-Space Mapping Super Model (FSMSM)

MSM can be combined with SMSM and FSMSM to provide a powerful and reliable modeling tool for microwave devices

Recent Work

J.W. Bandler, R.M. Biernacki, S.H. Chen and Q.H. Wang, "Multiple space mapping EM optimization of signal integrity in high-speed digital circuits," *Proc. 5th Int. Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits* (Duisburg, Germany), 1998, pp. 138-140.

J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang, "Neuromodeling of microwave circuits exploiting space mapping technology," *IEEE MTT-S Int. Microwave Symp. Digest* (Anaheim, CA), 1999, pp. 149-152.

J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang, "Neuromodeling of microwave circuits exploiting space mapping technology," *IEEE Trans. Microwave Theory Tech.*, vol. 47, 1999.

J.W. Bandler and J.E. Rayas-Sánchez, "Circuit CAD and modeling through space mapping," *IEEE MTT-S Int. Microwave Symp.*, Workshop WSFD (Anaheim, CA), 1999.

J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang, "New directions in model development for RF/microwave components utilizing artificial neural networks and space mapping," *IEEE AP-S Int. Symp. Digest* (Orlando, FL), 1999, pp. 2572-2575.