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Artificial Neural Network (ANN) Modeling

Artificial Neural Networks are suitable in modeling high-
dimensional and highly nonlinear problems

ANN models are computationally efficient and can be more
accurate than empirical models

multilayer feedforward networks can approximate any
measurable function to any desired level of accuracy, provided a
deterministic relationship between input and target exists
(White et al., 1992)

ANNs that are too small cannot approximate the desired input-
output relationship

ANNs with too many internal parameters perform correctly in
the learning set, but give poor generalization ability

ANNs are suitable models for microwave circuit optimization
and statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta
et al., 1996, Burrascano and Mongiardo, 1998, 1999)
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Classical Neuromodeling of Microwave Components
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many learning samples are usually needed to ensure model
accuracy

the number of learning samples needed to approximate a
function grows exponentially with the ratio of the
dimensionality to the function’s degree of smoothness
(Stone, 1982)

even with sufficient training data, the reliability of MLPs for
extrapolation may be very poor
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The Aim of Space Mapping
(Bandler et al., 1994-)
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Neural Space Mapping
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Space Mapped Neuromodeling (SMN) Concept
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Frequency-Dependent Space Mapped Neuromodeling
(FDSMN) Concept
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Frequency Space Mapped Neuromodeling (FSMN) Concept
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Frequency Mapped Neuromodeling (FMN) Concept
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Frequency Partial-Space Mapped Neuromodeling
(FPSMN) Concept
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Training the ANN

the neuromapping can be found by solving the optimization
problem

TT
l

TT ][min 21 eee
w

L

w contains the internal parameters of the ANN (weights, bias,
etc.) selected as optimization variables

l is the total number of learning samples

ek is the error vector given by

for SMN
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Training the ANN (continued)
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Starting Point and Learning Samples

we chose a unit mapping (xc ≈ x f and fc ≈ freq) as the starting
point for the optimization problem

to keep a reduced set of learning data samples, we consider an n-
dimensional star distribution for the learning base points
(Bandler et al., 1989)

the number of learning base points for a microwave circuit with
n design parameters is Bp = 2n + 1

1fx

2fx

3fx
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Microstrip Right Angle Bend
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region of interest
20mil ≤ W ≤ 30mil
8mil ≤ H ≤ 16mil

8 ≤ εr ≤ 10
1GHz ≤ freq ≤ 41GHz

“coarse” model: Gupta model (Gupta, Garg and Bahl, 1979)

“fine” model: Sonnet’s em

learning set: 7 base points with “star” distribution

testing set: 50 random base points in the region of interest
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Microstrip Right Angle Bend Response Errors

comparison before neuromodeling between em  and Gupta
model at 50 random test points
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SMN Model for the Right Angle Bend (3LP:3-6-3)
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SMN Model Results for the Right Angle Bend

comparison between em  and the SMN model
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FDSMN Model for the Right Angle Bend (3LP:4-7-3)
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FDSMN Model Results for the Right Angle Bend

comparison between em  and the FDSMN model
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FSMN Model for the Right Angle Bend (3LP:4-8-4)
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implementation: an OSA90/hope  child program simulates the
coarse model at a different frequency variable through Datapipe
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FSMN Model Results for the Right Angle Bend

comparison between em  and the FSMN model
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter
(Westinghouse, 1993)
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SM Based Neuromodeling of the HTS Filter

region of interest

175mil ≤ L1 ≤ 185mil
190mil ≤ L2 ≤ 210mil
175mil ≤ L3 ≤ 185mil

18mil ≤ S1 ≤ 22mil
75mil ≤ S2 ≤ 85mil
70mil ≤ S3 ≤ 90mil

3.901GHz ≤ freq ≤ 4.161GHz

L0 = 50mil
H = 20mil
W = 7mil

εr = 23.425
loss tangent = 3×10− 5

“coarse” model: OSA90/hope  empirical models

“fine” model: Sonnet’s em  with high resolution grid

learning set: 13 base points with “star” distribution

testing set: 7 random base points in the region of interest (not
seen in the learning set)



Simulation Optimization Systems Research Laboratory
McMaster University

99-19-24

HTS Filter Responses Before Neuromodeling

responses using em  (•) and OSA90/hope  (− ) at three
learning and three test points
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HTS Filter Response Errors Before Neuromodeling

coarse model error w.r.t. em  at the learning and testing sets
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FMN Model for the HTS Filter (3LP:7-5-1)

responses using em  (•) and FMN model (− ) at the three
learning and three testing points
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FMN Model Response Errors for the HTS Filter

FMN model error w.r.t. em  at the learning and testing sets
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FPSMN Model Responses for the HTS Filter (3LP:7-7-3)

taking xs
c = [L1c S1c] T and xs

f = [L2 L3 S2 S3] T

responses using em  (•) and FPSMN model (− ) at the three
learning and three testing points
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FPSMN Model Response Errors for the HTS Filter

FPSMN model error w.r.t. em  at the learning and testing sets
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FPSMN Model for the HTS Filter: Fine Frequency Sweep

comparison between em  (•) and FPSMN model (− ) at two
learning and one testing points
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New Realizations in NeuroModeler

SM based neuromodels of several microstrip circuits have been
developed using NeuroModeler Version 1.2b (1999)

they are entered into HP ADS Version 1.1 (1999) as library
components through an ADS plugin module
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Conclusions

we present novel applications of Space Mapping technology to
the neuromodeling of microwave circuits

five powerful SM based neuromodeling techniques are
described and illustrated

Space Mapped Neuromodeling (SMN)
Frequency-Dependent Space Mapped Neuromodeling
(FDSMN)
Frequency Space Mapped Neuromodeling (FSMN)
Frequency Mapped Neuromodeling (FMN)
Frequency Partial-Space Mapped Neuromodeling
(FPSMN)

these techniques
exploit the vast set of empirical models already available
decrease the fine model evaluations needed for training
improve generalization ability
reduce complexity of the ANN topology

w.r.t. the classical neuromodeling approach

frequency-sensitive neuromappings expand the usefulness of
empirical quasi-static models

FMN effectively aligns frequency-shifted responses

Huber optimization efficiently trains the neuromappings,
exploiting its robust characteristics for data fitting


