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Abstract

We review the Space Mapping (SM) approach to circuit design
and discuss modeling of microwave circuits using Artificial
Neural Networks (ANN).  We show that SM and ANN
methodologies can be combined into a powerful design
framework.  SM based neuromodels decrease the cost of
training, improve generalization ability and reduce the
complexity of the ANN topology with respect to the classical
neuromodeling approach.  We present and illustrate a variety of
possible SM based neuromodels, including SMN, FDSMN,
FSMN, FMN and FPSM.  We contrast SM based neuromodeling
with the classical neuromodeling approach as well as with other
state-of-the-art neuromodeling techniques.  The SM based
neuromodeling techniques are illustrated by a microstrip line, a
microstrip right angle bend and an HTS filter.
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Space Mapping Optimization
(Bandler et al., 1994-)

Aggressive Space Mapping (ASM) has been applied to design
examples exploiting the EM simulators

Sonnet’s em

Ansoft HFSS

HP HFSS

coarse models exploit coarse grid EM models or circuit-
theoretic/analytical models

coarse models, decomposed into subnetworks, can even consist
of a mixture of EM based subnetworks and empirical elements
connected through circuit theory

new ASM algorithms TRASM (Bakr et al., 1998), HASM (Bakr
et al., 1999) have been proposed
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Space Mapping Based Artificial Neural Network (ANN)
Modeling
(Bandler, Ismail, Rayas-Sánchez and Zhang, 1999)

Artificial Neural Networks can model high-dimensional and
highly nonlinear problems (White et al., 1992)

ANN models are computationally efficient and can be more
accurate than empirical models

ANNs are suitable models for microwave circuit optimization
and statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta
et al., 1996, Burrascano and Mongiardo, 1998, 1999)

ANN modeling of microwave circuits based on Space Mapping
technology are exploited for the first time (Bandler et al., 1999)

this takes advantage of the vast set of empirical models already
available
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Novel Applications of Space Mapping Technology
(Bandler et al., 1999)

we illustrate several new techniques to generate SM based
neuromodels

Space Mapped Neuromodeling (SMN)

Frequency-Dependent Space Mapped Neuromodeling (FDSMN)

Frequency Space Mapped Neuromodeling (FSMN)

Frequency Mapped Neuromodeling (FMN)

Frequency Partial-Space Mapped Neuromodeling (FPSMN)

these techniques
exploit the vast set of empirical models already available
decrease the fine model evaluations needed for training
improve generalization ability
reduce complexity of the ANN topology

w.r.t. the classical neuromodeling approach
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The Aim of Space Mapping
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Biological Neuron
(Kartalopoulos, 1996)

soma

axon

dendritic tree

axonic endingnucleus
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Basic Model of a Neuron
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Neural Space Mapping

fx cx)( fxP fx cxANN

using a three layer perceptron (3LP)
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Three Layer Perceptron (3LP)

[ ]T
fnfff xxx L21=x  are n input physical parameters

[ ]T
nvvv L21=v  are input signals after scaling
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hzzz L21=z  are signals from the h hidden neurons

[ ]T
nyyy L21=y  are n output signals before scaling

[ ]T
cnccc xxx L21=x  are the neuromapping outputs

to control the relative importance of the input parameters and
define a suitable dynamic range, scaling can be used
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Three Layer Perceptron (continued)

the hidden layer signals are calculated by
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Three Layer Perceptron (continued)

to provide a scaling for the output signals equivalent to the one
used in the input

)()1(
2
1

minmaxmin fifiifici xxyxx −++= ,  ni ,,2,1 L=
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the number of optimization variables for a three-layer perceptron
with n inputs, n outputs and h hidden neurons is

n(2h+1)+h
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Space Mapped Neuromodeling (SMN) Concept
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Three-dimensional Star Distribution for the Learning Base
Points
(Bandler et al., 1989)

to keep a reduced set of learning data samples, we consider an n-
dimensional star distribution for the base learning points

the number of learning base points for a microwave circuit with
n design parameters is Bp = 2n + 1

1fx

2fx

3fx
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Frequency-Dependent Space Mapped Neuromodeling
(FDSMN) Concept
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Frequency Space Mapped Neuromodeling (FSMN) Concept
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Frequency Mapped Neuromodeling (FMN) Concept
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Frequency Partial-Space Mapped Neuromodeling
(FPSMN) Concept
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Training the ANN

the neuromapping can be found by solving the optimization
problem

TT
l

TT ][min 21 eee
w

L

w contains the internal parameters of the ANN (weights, bias,
etc.) selected as optimization variables

l is the total number of learning samples

ek is the error vector given by

for SMN
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Training the ANN (continued)
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EM-ANN Neuromodeling Concept
(Gupta et al., 1996)

an interpretation using our notation
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PKI Neuromodeling Concept
(Gupta et al., 1996)

an interpretation using our notation
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KBNN Neuromodeling Concept
(Zhang et al., 1997)

an interpretation using our notation
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Microstrip Line with High Dielectric Constant

W

H

εr

L

region of interest
5mil ≤ W ≤ 9mil

15mil ≤ H ≤ 25mil
40mil ≤ L ≤ 60mil

20 ≤ εr ≤ 25
27GHz ≤ freq ≤ 30GHz.

“coarse” model: Pozar’s formulas (Pozar, 1998)

“fine” model: Sonnet’s em

learning set: 9 base points with “star” distribution

testing set: 50 random base points in the region of interest
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Microstrip Line Response Errors

comparison before neuromodeling between em  and Pozar’s
model at 50 random test points
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SMN Model for the Microstrip Line (3LP:4-3-4)

ANN
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em

freq
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SMN Model Results for the Microstrip Line

comparison between em  and the SMN model
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SMN Model for the Microstrip Line Implemented in OSA90

Expression
! w : Width of the flat conductor in the PCB (in mils)
! h : Thickness of the PWB laminate (in mils)
! l : Length of the flat conductors (in mils)
! epsr : Dielectric constant of the PWB laminate
! Xf[i]= [w(i) h(i) l(i) epsr(i)]
i: 1;! Index for the training/test points
end

Model

#include "mcsl_hepsr.inc";
! SONNET'S MODEL:
mcsl_hepsr  @f1 @f2 0
l=(Xf[i,3]*1mil) w=(Xf[i,1]*1mil)
h=(Xf[i,2]*1mil) epsr=(Xf[i,4]);
ports @f1 0 @f2 0 ;! Ports 1-2 for Sonnet's model

! Neuromapping  (3LP: 4-3-4)
! ..........................

! input scaling
v1=-1+2*(Xf[i,1]-Xf1_min) / (Xf1_max - Xf1_min);
v2=-1+2*(Xf[i,2]-Xf2_min) / (Xf2_max - Xf2_min);
v3=-1+2*(Xf[i,3]-Xf3_min) / (Xf3_max - Xf3_min);
v4=-1+2*(Xf[i,4]-Xf4_min) / (Xf4_max - Xf4_min);

! vectors of synaptic weights of the hidden neurons : wh
wh1[4]:  [?0.0997064? ?0.00926408? ?-0.0010517? ?0.00555616?];
wh2[4]:  [?-0.0254024? ?0.100381? ?0.00506993? ?-0.0277744?];
wh3[4]:  [?-0.00263021? ?0.00403475? ?0.152244? ?0.0449023?];

! vector of bias elements for the hidden neurons : bh
bh[3]: [?0.0379664? ?-0.0373888? ?0.016498?];

! hidden layer
z1 = tanh(bh[1]+v1*wh1[1]+v2*wh1[2]+v3*wh1[3]+v4*wh1[4]);
z2 = tanh(bh[2]+v1*wh2[1]+v2*wh2[2]+v3*wh2[3]+v4*wh2[4]);
z3 = tanh(bh[3]+v1*wh3[1]+v2*wh3[2]+v3*wh3[3]+v4*wh3[4]);

! vectors of synaptic weights of the output neurons : wo
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wo1[3]: [?9.97323? ?8.37909e-005? ?6.37812e-006?];
wo2[3]: [?-0.000228351? ?10.0461? ?-7.25383e-005?];
wo3[3]: [?0.0112826? ?-0.0014412? ?6.85617?];
wo4[3]: [?0.00258169? ?0.000209437? ?-0.00683818?];
! vector of bias elements for the output neurons : bo
bo[4]: [?0.00394671? ?-0.00393648? ?0.0121073? ?-0.01383?];
! output layer
y1 = bo[1]+z1*wo1[1]+z2*wo1[2]+z3*wo1[3];
y2 = bo[2]+z1*wo2[1]+z2*wo2[2]+z3*wo2[3];
y3 = bo[3]+z1*wo3[1]+z2*wo3[2]+z3*wo3[3];
y4 = bo[4]+z1*wo4[1]+z2*wo4[2]+z3*wo4[3];

! output scaling
Xc1 = Xf1_min + 0.5*(y1+1)*(Xf1_max - Xf1_min);
Xc2 = Xf2_min + 0.5*(y2+1)*(Xf2_max - Xf2_min);
Xc3 = Xf3_min + 0.5*(y3+1)*(Xf3_max - Xf3_min);
Xc4 = Xf4_min + 0.5*(y4+1)*(Xf4_max - Xf4_min);

! POZAR'S MODEL (TRANSMISSION LINE)

epse=(Xc4+1)/2+(Xc4-1)/(2 *sqrt(1+12*Xc2/Xc1));
Zo= if((Xc1/Xc2)<1)
  (60/sqrt(epse) * log(8*Xc2/Xc1+Xc1/(4*Xc2)))
    else
  (120*pi/(sqrt(epse)*(Xc1/Xc2+1.393+0.667*log(Xc1/Xc2+1.444))));
TRL @c1  @c2  Z=Zo L=(Xc3*1mil) K=epse F=FREQ;
ports @c1 0 @c2 0 ;! Ports 3-4 for Pozar's model
CIRCUIT;
end

Sweep
AC: i: from 1 to N step 1
    FREQ: from Freq_min to Freq_max step=Freq_step
"rS11 (Sonnet)","iS11 (Sonnet)","rS21 (Sonnet)","iS21 (Sonnet)"
"rS11 (SMN)","iS11 (SMN)","rS21 (SMN)","iS21 (SMN)"
end

Specification
   AC:  i: from 1 to NL step 1
  FREQ: from Freq_min to Freq_max step=Freq_step
      "rS11 (SMN)" = "rS11 (Sonnet)"

"iS11 (SMN)" = "iS11 (Sonnet)"
"rS21 (SMN)" = "rS21 (Sonnet)"
"iS21 (SMN)" = "iS21 (Sonnet)"



Simulation Optimization Systems Research Laboratory
McMaster University

99-7-30

end

Control
Perturbation_Scale=1.0e-4;
Disable_Adjoint;
Allow_Neg_Parameters;
Optimizer=Huber;
N_iterations=100;
Display_N_digits=6;
Accuracy=1.0e-5;
Huber_threshold=0.15;
end
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Microstrip Right Angle Bend

H

εr

W

W

region of interest
20mil ≤ W ≤ 30mil
8mil ≤ H ≤ 16mil

8 ≤ εr ≤ 10
1GHz ≤ freq ≤ 41GHz

“coarse” model: Gupta model

“fine” model: Sonnet’s em

learning set: 7 base points with “star” distribution

testing set: 50 random base points in the region of interest
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Microstrip Right Angle Bend Responses

typical responses before neuromodeling
em  (o), Gupta model (•)
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Microstrip Right Angle Bend Response Errors

comparison before neuromodeling between em  and Gupta
model at 50 random test points
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SMN Model for the Right Angle Bend (3LP:3-6-3)

cx fc RR ≈
ANN

fx fRSonnet's
em

freq

lumped
circuit

Gupta's model

formulas
L,C
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SMN Model Results for the Right Angle Bend

comparison between em  and the SMN model
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FDSMN Model for the Right Angle Bend (3LP:4-7-3)
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FDSMN Model Results for the Right Angle Bend

comparison between em  and the FDSMN model
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FSMN Model for the Right Angle Bend (3LP:4-8-4)

cx
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ANN

fx fRSonnet's
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lumped
circuit

Gupta's model

formulas
L,Cfc

to implement the FSMN approach, an OSA90/hope  child
program is employed to simulate the coarse model with a
different frequency variable using Datapipe
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FSMN Model Results for the Right Angle Bend

comparison between em  and the FSMN model
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Classical Neuromodel for the Right Angle Bend (3LP:4-15-4)

ANN
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Classical Neuromodel Results for the Right Angle Bend
(Neuromodeler, 1998)

comparison between em  and classical neuromodel
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter
(Westinghouse, 1993)
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SM Based Neuromodeling of the HTS Filter

region of interest

175mil ≤ L1 ≤ 185mil
190mil ≤ L2 ≤ 210mil
175mil ≤ L3 ≤ 185mil

18mil ≤ S1 ≤ 22mil
75mil ≤ S2 ≤ 85mil
70mil ≤ S3 ≤ 90mil

3.901GHz ≤ freq ≤ 4.161GHz

L0 = 50mil
H = 20mil
W = 7mil

εr = 23.425
loss tangent = 3×10− 5

“coarse” model: OSA90/hope  empirical models

“fine” model: Sonnet’s em  with high resolution grid

learning set: 13 base points with “star” distribution

testing set: 7 random base points in the region of interest (not
seen in the learning set)
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HTS Filter Responses Before Neuromodeling

responses using em  (•) and OSA90/hope  (− ) at three
learning and three test points
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HTS Filter Response Errors Before Neuromodeling

coarse model error w.r.t. em  at the learning and testing sets

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

0

0.2

0.4

0.6

0.8

1

 E
rr

or
 in

 
S 2

1 

3.901 3.966 4.031 4.096 4.161

frequency (GHz)

0

0.2

0.4

0.6

0.8

1

 E
rr

or
 in

 
S 2

1 



Simulation Optimization Systems Research Laboratory
McMaster University

99-7-46

FMN Model for the HTS Filter (3LP:7-5-1)

responses using em  (•) and FMN model (− ) at the three
learning and three testing points
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FMN Model Response Errors for the HTS Filter

FMN model error w.r.t. em  at the learning and testing sets
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FPSMN Model Responses for the HTS Filter (3LP:7-7-3)

taking xs
c = [L1c S1c] T and xs

f = [L2 L3 S2 S3] T

responses using em  (•) and FPSMN model (− ) at the three
learning and three testing points
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FPSMN Model Response Errors for the HTS Filter

FPSMN model error w.r.t. em  at the learning and testing sets
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FPSMN Model for the HTS Filter: Fine Frequency Sweep

comparison between em  (•) and FPSMN model (− ) at two
learning and one testing points
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Conclusions

we present novel applications of Space Mapping technology to
the neuromodeling of microwave circuits

five powerful techniques to generate SM based neuromodels are
illustrated: SMN, FDSMN, FSMN, FMN and FPSM

OSA90/hope  implementations are illustrated

frequency-sensitive neuromappings expand the usefulness of
quasi-static empirical models

FMN effectively aligns frequency-shifted responses

Huber optimization efficiently trains the neuromappings,
exploiting its robust characteristics for data fitting
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