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Neuromodeling High Frequency Circuits
Artificial Neural Networks (ANN) are very convenient in
modeling high-dimensional and highly nonlinear
components, as those found in the microwave and high
frequency arena, due to their ability to learn and generalize
from data, their non-linear processing nature, and their
massively parallel structure.
In modeling high frequency components the learning data is
usually obtained from a detailed or “fine” model (EM
simulator or measurements). This is generally very time
consuming because the simulation/measurements must be
performed for many combinations of different values of
input parameters.  This is the main drawback of classical
ANN modeling.  Without sufficient learning samples, the
neural models may not be reliable.
Several innovative strategies to develop neuromodels take
advantage of empirical or “coarse” models already available
(circuit-equivalent models and analytical formulas): the
hybrid EM-ANN modeling approach [1], the PKI modeling
method [1], the knowledge based ANN [2] (KBNN)
approach, and the Space Mapping (SM) based
neuromodeling techniques [3].
Space Mapping Based Neuromodeling
Let the vectors xf  and xc represent the design parameters of
the fine and coarse models, respectively, and Rf (xf) and
Rc(xc) the corresponding model responses. Rf is accurate but
slow to evaluate while Rc is fast but not very accurate.
In the Space-Mapping Neuromodeling (SMN) technique an
ANN is used to implement the mapping from the fine to the
coarse input parameter space. The mapping can be found by
solving the optimization problem
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where w contains the ANN parameters (weights, bias, etc.)
selected as optimization variables, l is the total number of
learning samples, and ej is the error vector  given by
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The implicit knowledge in the coarse model, that can be
considered as an “expert”, not only allows us to decrease the
number of learning points needed, but also to reduce the
complexity of the ANN and to improve the generalization
performance. Fig. 1 illustrates the SMN concept.
Many available empirical models are based on quasi-static
analysis: they usually yield good accuracy over a limited
low range of frequencies. To overcome this limitation a
frequency-sensitive mapping can be established. Frequency
Dependent Space-Mapping Neuromodeling (FDSMN) and
Frequency-Space-Mapping Neuromodeling (FSMN) are two
other variations of SM based neuromodeling techniques that
implement this strategy [3].

Example: A Microstrip Line with High Dielectric Constant
Fig. 2 illustrates a microstrip line to be modeled in the
following region of interest: 5mil ≤ W ≤ 9mil, 15mil ≤ H ≤
25mil, 40mil ≤ L ≤ 60mil, 20 ≤ εr ≤ 25, 27GHz ≤ freq ≤
30GHz.
The coarse model, implemented in OSA90/hope  [4], con-
sists of Pozar’s formulas [5] applied to a simple trans-
mission line. Sonnet’s em  [6] is used as the fine model.
The coarse and fine models before any neuromodeling are
compared in Fig. 3 using 50 random test base points with
uniform statistical distribution in the region of interest, with
7 points per frequency sweep.
Fig. 4 shows excellent results for a SMN model imple-
mented with a three layer perceptron with 4 input neurons, 3
hidden neurons, and 4 output neurons. The ANN was imple-
mented and trained within OSA90/hope , using only 9
learning base points with Huber optimization.
Conclusions
We describe innovative schemes to combine SM technology
and ANN for the modeling of high frequency components.
SM based neuromodels exploit the vast set of empirical
models already available, decrease the number of fine model
evaluations needed for training, improve generalization
ability and reduce the complexity of the ANN topology
w.r.t. the classical neuromodeling approach.
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Fig. 1.  Space-Mapped Neuromodeling concept.
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Fig. 2.  Microstrip line.
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Fig. 3.  Error in coarse model with respect to Sonnet’s em before any neuromodeling:
         (a) modulus of the complex S11 error, (b) modulus of the complex S21 error.
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Fig. 4.  Error in SMN model with respect to Sonnet’s em: (a) modulus of
    the complex S11 error, (b) modulus of the complex S21 error.


