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Abstract  This paper presents recent advances in model development for RF/microwave
components exploiting two powerful technologies: Artificial Neural Networks (ANN) and Space
Mapping (SM).  We survey the fundamental issues on classical neuromodeling.  We review some
state-of-the-art neuromodeling techniques, emphasizing SM based neuromodeling techniques.  We
show how SM based neuromodels decrease the cost of training, improve generalization ability and
reduce the complexity of the ANN topology w.r.t. the classical neuromodeling approach.  We
illustrate these novel approaches through a practical microwave modeling problem.  We conclude
by proposing some possible exciting future applications of ANN and SM in microwave CAD.

A Brief Review of Neuromodeling of Microwave Components

ANNs are particularly suitable in modeling high-dimensional and highly nonlinear
devices, as those found in the microwave area, due to their ability to learn and generalize from
data, their non-linear processing nature, and their massively parallel structure.

The size of an ANN model does not grow exponentially with dimension and, in theory,
can approximate any degree of nonlinearity to any desired level of accuracy, provided a
deterministic relationship between input and target exists [1].  The most widely used ANN
paradigm in the microwave arena is the multi-layer perceptron (MLP), which is usually trained by
the well established backpropagation algorithm.  It has been demonstrated [2, 3] that ANNs are
suitable models for microwave circuit yield optimization and statistical design.

For microwave problems the learning data is usually obtained by either EM simulation or
by measurement.  This is expensive since the simulation/measurements must be performed for
many combinations of different values of input parameters.  This is the main drawback of classical
ANN modeling.  Without sufficient learning samples, the neural models may not be reliable.

Three innovative strategies have been proposed to reduce the learning data needed and to
improve the generalization capabilities of an ANN by incorporating empirical models: the hybrid
EM-ANN modeling approach, the knowledge based ANN (KBNN) approach, and the Space
Mapping (SM) based neuromodeling approach.

In the hybrid EM-ANN modeling approach [4], the difference in S-parameters between
the empirical model and the EM model is used to train the corresponding ANN, reducing the
number of fine model simulations due to a simpler input-output relationship.  In the knowledge
based ANN approach [5] (KBNN) the empirical model is incorporated into the internal structure
of the ANN.  Knowledge Based ANNs are non fully connected networks, with a layer assigned to
the microwave knowledge in the form of single or multidimensional functions.

By combining SM and ANN, three novel techniques are proposed in [6] to generate SM
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based neuromodels: Space-Mapped Neuromodeling (SMN), Frequency-Dependent Space-Mapped
Neuromodeling (FDSMN), and Frequency Space-Mapped Neuromodeling (FSMN).

Space Mapping Concept

The Space Mapping (SM) technique [7] combines the computational efficiency of coarse
models with the accuracy of fine models.  The coarse models are typically empirical functions or
equivalent circuits, which are computationally very efficient but have a limited validity range for
their parameters. Fine models can be provided by an electromagnetic (EM) simulator, or even by
direct measurements: they are very accurate but CPU intensive.  The SM technique establishes a
mathematical link between the coarse and the fine models, and directs the bulk of CPU intensive
evaluations to the coarse model, while preserving the accuracy offered by the fine model.

Let the vectors xc and xf represent the design parameters of the coarse and fine models,
respectively, and Rc (xc) and Rf (xf) the corresponding model responses. The aim of SM
optimization is to find an appropriate mapping P from the fine model parameter space xf to the
coarse model parameter space xc

)( fc xPx = (1)

such that
)())(( fffc xRxPR ≈ (2)

Once the mapping is found, the coarse model can be used for fast and accurate
simulations.

Space Mapping Based Neuromodeling

In the Space-Mapped Neuromodeling (SMN) approach an ANN implements the mapping
from the fine to the coarse parameter space, as illustrated in Fig. 1(a).  The mapping can be found
by solving the optimization problem

TT
l

TT ][ 21min eee
N

L (3)

where N contains the internal parameters of the neural network (weights, bias, etc.) selected as
optimization variables, l is the total number of learning samples, and ej is the error vector given by

),()( NxRxRe
jfcjffj −= ,   lj ,,2,1 K= (4)

Once the mapping is found, i.e., once the ANN is trained, a space-mapped neuromodel
for fast, accurate evaluations is immediately available.

Frequency-Sensitive Neuromapping

Many available empirical models are based on quasi-static analysis: they usually yield
good accuracy over a limited low range of frequencies.  We overcome this limitation through a
frequency-sensitive mapping, which is realized by considering frequency as an extra input variable
of the ANN.  As illustrated in Fig. 1(b), in the Frequency Dependent Space Mapped
Neuromodeling (FDSMN) approach both coarse and fine models are simulated at the same
frequency, but the mapping from the fine to the coarse parameter space is dependent on the
frequency.  With a more comprehensive domain, the Frequency Space Mapped Neuromodeling
(FSMN) technique in Fig. 1(c) establishes a mapping not only for the design parameters but also
for the frequency variable, such that the coarse model is simulated at a mapped frequency fc to
match the fine model response.

Illustration: A Microstrip Right Angle Bend

Consider a microstrip right angle bend, with the following input parameters: conductor
width W, substrate height H, substrate dielectric constant εr, and operating frequency freq.  Several
neuromodels exploiting SM technology have been developed for the following region of interest:
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20mil ≤ W ≤ 30mil, 8mil ≤ H ≤ 16mil, 8 ≤ εr ≤ 10, and  1GHz ≤ freq ≤ 41GHz.

Gupta’s model [8], consisting of a lumped LC circuit whose parameter values are given
by analytical functions of the physical quantities W, H and εr is taken as the “coarse” model and
implemented in OSA90/hope  [9].  Sonnet’s em  [10] is used as the fine model.

The coarse and fine models before any neuromodeling are compared in Fig. 2(a) using 50
random test points with uniform statistical distribution in the region of interest.  Gupta’s model, in
this region of physical parameters, yields acceptable results for frequencies less than 10 GHz.

Seven learning base points are used for the three SM neuromodels, and the corresponding
ANNs were implemented and trained within OSA90.  Huber optimization was employed as the
training algorithm, exploiting its robust characteristics for data fitting [11].

Fig. 2(b) shows typical results for the SMN model implemented with a three layer
perceptron with 3 input neurons, 6 hidden neurons, and 3 output neurons (3LP:3-6-3).  A FDSMN
model is developed using a 3LP:4-7-3, and the improved results are shown in Fig. 2(c).  In Fig.
2(d) the results for the FSMN model with a 3LP:4-8-4 are shown, that are even better (as
expected).  It is seen that the FSMN model yields excellent results for the whole frequency range
of interest, overcoming the frequency limitations of the empirical model by a factor of four.

Conclusions

We review fundamental advances in the microwave neuromodeling arena.  We describe
novel applications of Space Mapping technology and Artificial Neural Networks to the modeling
of microwave components. SM based neuromodels exploit the vast set of empirical models
already available, decrease the number of fine model evaluations needed for training, improve
generalization ability and reduce the complexity of the ANN topology w.r.t. the classical
neuromodeling approach.  Frequency-sensitive neuromapping is demonstrated to be a clever
strategy to expand the usefulness of empirical models that were developed using quasi-static
analysis.  As an original alternative to the classical backpropagation algorithm, Huber optimization
is employed to efficiently train the neuromapping.  Promising perspectives are open by the
application of frequency-space neuromapping to the solution of complex yield optimization and
statistical design problems.
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Fig. 1.  SM Neuromodeling techniques: (a) SMN, (b) FDSMN, (c) FSMN.
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Fig. 2.  Error in |S21| with respect to em results for a right angle bend of: (a) Gupta
             model, (b)  SMN model, (c) FDSMN model, (d) FSMN model.


