#### A GENERALIZED SPACE MAPPING TABLEAU APPROACH TO MICROWAVE DEVICE MODELING

M.A. Ismail

SOS-98-43-V

December 1998

#### © M.A. Ismail 1998

No part of this document may be copied, translated, transcribed or entered in any form into any machine without written permission. Address inquiries in this regard to Dr. J.W. Bandler. Excerpts may be quoted for scholarly purposes with full acknowledgement of source. This document may not be lent or circulated without this title page and its original cover.

## A GENERALIZED SPACE MAPPING APPROACH TO MICROWAVE CIRCUITS AND DEVICE MODELING

M.A. Ismail

Simulation Optimization Systems Research Laboratory and Department of Electrical and Computer Engineering McMaster University, Hamilton, Canada L8S 4L7



presented at

SOS Research Laboratory Meeting, Hamilton, December, 1998



#### **Basic Concepts**

Space Mapping (SM) is a powerful tool for circuit design and optimization

two model types are usually defined in the SM: a "coarse" model, typically an empirical model, and a "fine" model, typically a full wave electromagnetic simulator





## **Generalized Space Mapping (GSM)**

GSM is a comprehensive framework to engineering device modeling

GSM exploits the Space Mapping (SM), the Frequency Space Mapping (FSM) and the Multiple Space Mapping (MSM) concepts to build a new engineering device modeling framework

two cases are considered: the basic Space Mapping Super Model (SMSM) concept and the Frequency-Space Mapping Super Model (FSMSM) concept



# **Space Mapping Super Model (SMSM)**



**Frequency-Space Mapping Super Model (FSMSM)** 



## Multiple Space Mapping (MSM) Concept

MSM for different responses



## Simulation Optimization Systems Research Laboratory McMaster University

## **Multiple Space Mapping (MSM) Concept**

MSM for different frequency ranges



# Simulation Optimization Systems Research Laboratory McMaster University

## Mathematical Formulation for GSM

the kth mapping targeting the sub-response  $R_k$  or the response R in the kth frequency sub-range is given by

$$(\boldsymbol{x}_{ck}, \boldsymbol{W}_{ck}) = \boldsymbol{P}_k(\boldsymbol{x}_f, \boldsymbol{W})$$

or, in matrix form, assuming a linear mapping,

$$\begin{bmatrix} \boldsymbol{x}_{ck} \\ \boldsymbol{w}_{ck} \end{bmatrix} = \begin{bmatrix} \boldsymbol{c}_{k} \\ \boldsymbol{d}_{k} \end{bmatrix} + \begin{bmatrix} \boldsymbol{B}_{k} & \boldsymbol{s}_{k} \\ \boldsymbol{t}_{k}^{T} & \boldsymbol{s}_{k} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{f} \\ \boldsymbol{w} \end{bmatrix}$$

the mapping parameters { $c_k$ ,  $B_k$ ,  $s_k$ ,  $t_k$ ,  $s_k$ ,  $d_k$ } can be evaluated, directly or indirectly, by solving the optimization problem

$$\min_{\boldsymbol{c}_{k}, \boldsymbol{B}_{k}, \boldsymbol{s}_{k}, \boldsymbol{t}_{k}, \boldsymbol{s}_{k}, \boldsymbol{d}_{k}} \| [\boldsymbol{e}_{k1}^{T} \boldsymbol{e}_{k2}^{T} \cdots \boldsymbol{e}_{km}^{T}]^{T} \|$$

where *m* is the number of base points selected in the fine model space and  $e_{ki}$  is an error vector given by

$$e_{kj} = R_f(x_f^{(j)}, w) - R_c(x_{ck}^{(j)}, w_{ck}), \quad j = 1, 2, ..., m$$

an important variation of the mapping is to use the inverse of the frequency variable (which is proportional to the wavelength) instead of the frequency itself



#### An Implementation of SMSM and FSMSM

the SMSM for the *k*th mapping can be evaluated through the following steps

choose a set of *m* base points  $\{x_{f}^{(j)}, j = 1, 2, ..., m\}$  in the fine model space



for each base point  $x_f^{(j)}$  the corresponding point  $x_c^{(j)}$  in the coarse model space can be obtained by solving a parameter extraction problem

the *k*th mapping parameters  $\boldsymbol{c}_k$ ,  $\boldsymbol{B}_k$  can then be evaluated by least-squares

in FSMSM we evaluate  $c_k$ ,  $B_k$  as in SMSM and then obtain  $s_k$ ,  $d_k$  by solving

$$\min_{\substack{s_k, t_k, s_k, d_k \\ \text{considering } \boldsymbol{c}_k, \boldsymbol{B}_k \text{ fixed}} \left\| \begin{bmatrix} \boldsymbol{e}_{k1}^T & \boldsymbol{e}_{k2}^T & \cdots & \boldsymbol{e}_{km}^T \end{bmatrix}^T \right\|$$



## FSMSM for Microstrip Right Angle Bend



| Parameter          | Minimum | Maximum |  |  |
|--------------------|---------|---------|--|--|
| W                  | 20 mil  | 30 mil  |  |  |
| Н                  | 8 mil   | 16 mil  |  |  |
| $\boldsymbol{e}_r$ | 8       | 10      |  |  |

the fine model is analyzed by Sonnet's *em* and the "coarse" model is Jansen empirical model

the fine model parameters are given by

$$\boldsymbol{x}_f = [W \ H \ \boldsymbol{e}_r]^T$$

the coarse model parameters are given by

$$\boldsymbol{x}_c = [W_1 \ H_1 \ \boldsymbol{e}_{r1}]^T$$



# FSMSM for the Right Angle Bend





# **MSM-FSMSM** for the Right Angle Bend

| Frequency range  | $\boldsymbol{B}_k$                                                                                                        | $oldsymbol{c}_k$           | $\boldsymbol{S}_k$ | d       |
|------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|---------|
| 1 GHz to 11 GHz  | 1                                                                                                                         | 0                          | 1                  | 0       |
| 11 GHz to 21 GHz | $\begin{bmatrix} 1.81627 & 0.81981 & 0.91555 \\ 0.44352 & 0.30230 & 0.02315 \\ 0.10138 - 0.27993 & 0.33187 \end{bmatrix}$ | - 22.7   - 3.822   1.87    | 1.297              | -4.765  |
| 21 GHz to 31 GHz | $\begin{bmatrix} 2.33221 & 1.98365 & 2.17360 \\ 0.53802 & 0.54226 & 0.45435 \\ 0.09298 - 0.29729 & 0.28768 \end{bmatrix}$ | - 49.41   - 9.324   2.49   | 1.452              | -10.964 |
| 31 GHz to 35 GHz | 2.77533   3.06006   2.92395     0.69924   0.81860   0.59300     0.11844   - 0.31135   0.26187                             | -71.5   -15.2   2.19       | 1.446              | -15.765 |
| 35 GHz to 41 GHz | 3.94219   4.61833   4.95400     1.12763   1.33404   1.46545     0.11454   - 0.30212   0.26215                             | - 125.4<br>- 36.13<br>1.87 | 1.977              | -36.335 |

# Simulation Optimization Systems Research Laboratory McMaster University

## **MSM-FSMSM** for the Right Angle Bend

the error in  $|S_{11}|$  and  $|S_{21}|$  before applying MSM-FSMSM



the error in  $|S_{11}|$  and  $|S_{21}|$  after applying MSM-FSMSM





## Conclusions

we introduce a comprehensive framework called Generalized Space Mapping (GSM) to engineering device modeling

In GSM we utilize a few relevant full-wave EM simulations to match the responses of the fine model and the coarse model over a designable region of parameters and frequency

GSM generalizes the Space Mapping (SM), the Frequency Space Mapping (FSM) and the Multiple Space Mapping (MSM) concepts to build a new engineering device modeling framework

two fundamental concepts are presented: one is a basic Space Mapping Super Model (SMSM) and the other is a basic Frequency-Space Mapping Super Model (FSMSM)

MSM can be combined with SMSM and FSMSM to provide a powerful and reliable modeling tool for microwave devices

more research is being carried out to efficiently evaluate the mappings defined in GSM and to apply the generic GSM concept to enhance the accuracy of microwave circuits