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Abstract 

We present a novel approach to microwave circuit modeling, Space Derivative Mapping (SDM).

SDM assumes the existence of an empirical model of the structure under consideration.  It enables the

construction of a space mapping-based locally valid model exploiting, for the first time, both the

empirical simulations and the response sensitivity information.  Parameter extraction uniqueness is no

longer important.  The constructed model enjoys higher accuracy than that of linear response

approximation.  Statistical analysis of waveguide transformers and filters illustrates SDM.

SUMMARY

Introduction

Full-wave simulations of microwave structures are CPU intensive.  Developing fast and accurate

models for simulating microwave circuits that can be utilized for design purposes over wide ranges of the

parameter space is crucial.  Space Mapping (SM) was introduced [1, 2] to address this problem.

In this paper we present a novel technique for microwave circuit modeling based on SM.  SM

assumes the existence of “coarse” and “fine”  models for the circuit under consideration.  The coarse

model is fast but not necessarily very accurate (equivalent circuits, empirical formulas, etc.).  The fine

model is accurate but CPU intensive.  Aggressive Space Mapping (ASM) [2] optimization, for example,
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iteratively establishes a mapping between the spaces of the parameters of the two models.  After the

optimization is completed a matrix B represents a valid mapping in the vicinity of the optimal design.  On

the other hand, the originally proposed SM approach [1] establishes a mapping between both spaces by

individually extracting a set of coarse model points corresponding to a given set of fine model points as a

prerequisite to optimization.  The nonuniqueness of any of the extracted coarse model points is likely to

result in an inaccurate mapping between the two spaces.

The SDM Modeling (SDMM) technique proposed here creates a locally valid mapping-based

model in the vicinity of a point of interest in the fine model space.  The technique is based on a novel

lemma that estimates the mapping between the two spaces using only a single parameter extraction.  The

uniqueness of the extracted parameters is not a serious issue.  Sensitivity information in both spaces is

utilized in the construction of the mapping.  The SDMM technique exploits the constructed mapping and

coarse model simulations.

Brief Background

We refer to the vector of fine model parameters and the vector of coarse model parameters as

emx and xos , respectively.  The aim of SM optimization is to obtain the set of fine model parameters xem

whose fine model response matches the optimal coarse model response evaluated at x*
os , the optimal

coarse model design.  The ASM algorithm constructs the mapping iteratively, returning the final design

xem  and matrix B representing the mapping at xem .  A perturbation of x me∆  in the fine model space is

mapped to a perturbation of ∆ osx in the coarse model space by [2]

∆ ∆os emx B x=                                                                   (1)

such that the fine model point xx emem ∆+  and the coarse model point xx os
*
os ∆+  have matched

responses.  The mapping (1) together with the coarse model essentially builds a fast and accurate model

for the circuit under consideration in the vicinity of the final design xem .  It can be used in additional

analyses, e.g., statistical analysis.
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The New Technique

The SDMM technique is based on the following novel lemma.

Lemma  Assume that xos  corresponds to xem  through a parameter extraction process.  Then the

Jacobian Jem of the fine model responses at xem  and the Jacobian Jos  of the coarse model responses at

xos  are related by

BJJ osem =                                                                                                          (2)

where B is a valid mapping between the two spaces at xos  and xem .

The proof of this novel lemma is omitted here for the sake of brevity.

It follows from (2) that

( ) JJJJB em
T 

osos
T 
os

 - 1
=                                                          (3)

Relation (3) assumes that J so is a full rank matrix and m ≥ n, where n is the number of parameters and m

is the number of responses.  It shows that B can be obtained by multiplying the Jacobian of the fine model

responses with the pseudoinverse of J so .  A similar formula can be obtained using singular value

decomposition [3] if J so is not full rank.

Suppose it is required to obtain a fast and accurate approximation to the fine model response in

the vicinity of a particular point x*
em .  We denote by J*

em  the Jacobian of the fine model responses at x*
em .

The first step is to obtain the point xos corresponding to x*
em  through the parameter extraction problem













−= )()( * xRxR
x

x ososemem
os

os minarg                                               (4)

The Jacobian Jos  of the coarse model responses at xos  may be estimated by perturbation.  Both the

parameter extraction step (4) and the evaluation of the Jacobian of the coarse model responses should add

no significant overhead since the coarse model is assumed to be much faster than the fine model.  The

matrix B is then calculated by applying (3) as
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( ) JJJJB *
em

T 
osos

T 
os

  - 1
=                                                          (5)

Once B is available the SDM model is provided by the simple formula

))(()( *xxBxRxR ememososemem   −+≈                                               (6)

This model is expected to enjoy a wide region of validity as the two models are assumed to share the

same physical structure.  The similarity in the nonlinear behavior of the two models makes this model

superior to linear response approximation in the fine model space.

The uniqueness of the parameter extraction problem (4) should not affect the SDM model.  If a

different extracted point xos  is obtained, a different mapping B given by (5) will be a valid mapping at

the two points x*
em  and xos .  The SDM model given by (6) is still an accurate model.

Two-Section Waveguide Transformer

The SDMM technique is tested on the statistical analysis of a two-section waveguide transformer

[4] shown in Fig. 1.  The coarse model is an “ideal” analytical model which neglects the junction

discontinuity effects while the fine model is a more accurate “nonideal” analytical model which includes

the junction discontinuity effects [4].  The design constraints for this problem are

vswr ≤ 1.04  for 5.8 GHz ≤ f ≤ 6.6 GHz                                          (7)

Optimizable parameters are the height and the length of each waveguide section.

The fine model is optimized using the minimax optimizer available in OSA90/hope [5].  The

optimal fine model design is shown in the second column of Table I.

An estimate for the Jacobian of the fine model responses is obtained.  Parameter extraction is

applied to get xos .  See the third column of Table I.  Fig. 2. shows the optimal fine model response and

the coarse model response at xos .  The Jacobian Jos  is estimated using perturbation.  An estimate for B is

calculated using (5) as
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0092.00002.00196.04066.0

      
  

  
    

B                                       (8)

The designable parameters are assumed to be uniformly distributed with equal relative tolerances.

We apply SDMM to carry out space-mapped statistical analysis using (6) with 100 samples.  Tolerances

considered are 1%, 2% and 4%.  The corresponding yield estimates are given in the second column of

Table II.  We verified the accuracy of the estimates by carrying out a statistical analysis using fine model

simulations.  The corresponding yield estimates are given in the third column of Table II.  The SDM yield

estimates agree well with fine model yield estimates.  Corresponding responses are shown in Figs. 3, 4

and 5.

Three-section Rounded Edge Waveguide Transformer [6]

The designable parameters for this problem are the height and length of each waveguide section.

The specifications are S11≤ −30 dB for the range 9.5 GHz to 15 GHz.  The fine model of this circuit

exploits HP HFSS [7] through HP Empipe3D [6].  The coarse model exploits an ideal empirical model

that does not take into account the rounding of the corners.  One quadrant of the transformer is shown in

Fig. 6.  We exploit geometrical symmetry to reduce the required CPU time of HP HFSS.

The minimax optimizer available in HP Empipe3D is applied to the design of the transformer.

The optimal fine model design is shown in the second column of Table III.  The corresponding point xos ,

obtained through parameter extraction, is given in the third column of Table III.  The optimal fine model

response and the coarse model response at xos  are shown in Fig. 7.

An estimate for J*
em  is obtained by linear approximation [8] using the database already generated

during direct optimization of the transformer.  A simple MATLAB program [9] is coded to determine the

base points needed.  Microsoft Excel [10] processes the database and extracts the fine model responses at

the base points. Jos  is estimated using perturbation.  An estimate for B is calculated using (5) as



6



























−

−−−

−−−

−−−

−−

−−−

=

37047.029544.039093.016520.031207.068861.0
36326.099794.010135.009695.035376.001317.0
11676.088791.004667.047112.126734.239260.2

13550.019919.025799.011940.012923.037935.0
20849.027637.038383.062860.044277.084904.0
05510.019372.025696.095487.163084.060380.1

B                   (9)

Figs. 8-10 compare statistically generated responses obtained using 100 random points, uniformly

distributed with 0.5%, 2% and 4% relative tolerances.

Figs. 11-13 compare the accuracy of this SDM model with linear approximation in the fine model

space.  These figures show the absolute values of the errors between the fine model responses (the

reflection coefficients) and those predicted by SDM and linear approximation.  For small tolerances such

as 0.5% the two models are comparable.  For larger tolerances, the SDM model shows much higher

accuracy than that of linear approximation.

A Six-Section H-Plane Waveguide Filter [11, 12]

The design specifications are

|S11| ≤ 0.16  for   5.4 GHz ≤ f ≤ 9.0 GHz                                     (10)

|S11| ≥ 0.85  for f ≤ 5.2 GHz  and |S11| ≥ 0.5  for 9.5 GHz ≤ f                       (11)

A waveguide with a cross-section of 1.372 inches by 0.622 inches (3.485 cm by 1.58 cm) is used. ).  As

shown in Fig. 14, the six sections are separated by seven H-plane septa, which have a finite thickness of

0.02 inches (0.508 mm).

Optimizable parameters are the four septa widths W1, W2, W3 and W4 and the three resonator

lengths L1, L2 and L3.  The coarse model (Fig. 15) consists of lumped inductances and dispersive

transmission line sections simulated by OSA90/hope [5].  For the equivalent inductances of the H-plane

septa we utilize formulas by Marcuvitz [13].  The fine model exploits HP HFSS [7] through HP

Empipe3D [6].

The point x*
em  is given in the second column of Table IV.  The extracted xos  is given in the third

column of Table IV.  The corresponding responses are shown in Fig. 16.



7

An estimate of J*
em  is calculated similarly to the previous example. Jos  is estimated by

perturbation.  Using (5) the mapping is given by
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00263.101311.013667.002949.0048959.002554.000115.0
01766.098957.001267.003166.007685.007777.003040.0
09786.003594.016453.100021.002930.006505.003969.0
08671.000438.064212.094934.001416.001827.007231.0
11624.015445.060203.001096.085915.019867.000193.0

15620.027349.011069.101033.000161.090185.000783.0
00852.003473.082207.006367.001947.001442.097720.0

B

(12)

Figs. 17-19 compare statistically generated responses obtained using 100 random points,

uniformly distributed with 1%, 4% and 8% relative tolerances.

Figs. 20-22 compare the accuracy of this SDM model with linear approximation in the fine model

space.  For small tolerances such as 1% the two models are comparable.  For larger tolerances, the SDM

model shows much higher accuracy than that of linear approximation.

Conclusions

We present a novel technique for the fast and accurate modeling of microwave circuits.  The

technique exploits a Space Derivative Mapping (SDM) approach in the construction of a space-mapping

based model.  We introduce a novel lemma that enables the establishment of the mapping between the

designable input parameters to an electromagnetic optimizer and the parameters of a corresponding

empirical model with no additional overhead of electromagnetic simulations.  SDM modeling (SDMM)

alleviates the extraction uniqueness problem involved in prior SM algorithms and the necessity of

applying SM optimization in the ASM algorithm.  The SDM model is demonstrated to enjoy a wider

range of validity than that of linear response approximation.  Statistical analysis of microwave circuits

exemplifies our technique.
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TABLE I
THE OPTIMAL FINE MODEL DESIGN AND THE CORRESPONDING

EXTRACTED COARSE MODEL POINT FOR THE TWO-SECTION
WAVEGUIDE TRANSFORMER

Parameter x*em xos

b1 0.71737 0.71468
b2 1.39574 1.39092
L1 1.55077 1.64691
L2 1.50654 1.59799

all values are in cm

TABLE II
THE YIELD FOR THE TWO-SECTION WAVEGUIDE TRANSFORMER OBTAINED USING THE

SDM STATISTICAL ANALYSIS COMPARED WITH FINE MODEL YIELD

Tolerance Space-Mapped Yield Fine Model Yield

1.0% 59% 53%
2.0% 27% 19%
4.0% 8% 3%
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TABLE III
THE OPTIMAL FINE MODEL DESIGN AND THE CORRESPONDING
EXTRACTED COARSE MODEL POINT FOR THE THREE-SECTION

WAVEGUIDE TRANSFORMER WITH ROUNDED CORNERS

Parameter x*em xos

L1 0.32408 0.32507
L2 0.32492 0.32747
L3 0.33114 0.33223
h1 0.20750 0.21543
h2 0.26025 0.27415
h3 0.32815 0.33700

All values are in inches

TABLE IV
THE OPTIMAL FINE MODEL DESIGN AND THE CORRESPONDING

EXTRACTED COARSE MODEL POINT FOR THE SIX-SECTION
WAVEGUIDE FILTER

Parameter x*em xos

C1 0.51336 0.49956

C2 0.47293 0.45926
C3 0.45031 0.43709
C4 0.44575 0.43274

L1 0.63570 0.65468
L2 0.63910 0.65873
L3 0.65681 0.67579

All values are in inches
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Fig. 1.  The two-section waveguide transformer.

Fig. 2. The optimal fine model response (ο) and the response () at the corresponding coarse model
point for the two-section waveguide transformer.
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                     (a)                                                                                                          (b)

                               (a)                                                                                                  (b)
Fig. 3. Statistical analysis for the two-section waveguide transformer assuming uniform distribution with

relative tolerances of 1.0%, (a) using the SDMM, and (b) using fine model simulations.

                                 (a)                                                                                                  (b)

Fig. 4. Statistical analysis for the two-section waveguide transformer assuming uniform distribution with
relative tolerances of 2.0%, (a) using the SDMM, and (b) using fine model simulations.

                                 (a)                                                                                                     (b)

Fig. 5. Statistical analysis for the two-section waveguide transformer assuming uniform distribution with
relative tolerances of 4.0%, (a) using the SDMM, and (b) using fine model simulations.
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Fig. 6.  The simulated part of the three-section waveguide transformer with rounded corners [6].
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Fig. 7. The optimal fine model response (ο) and the response () at the corresponding coarse model
point for the three-section waveguide transformer with rounded corners.
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Fig. 8. Statistical analysis for the three-section waveguide transformer assuming uniform distribution
with relative tolerances of 0.5%, (a) using the SDMM, and (b) using fine model simulations.

Fig. 9. Statistical analysis for the three-section waveguide transformer assuming uniform distribution
with relative tolerances of 2%, (a) using the SDMM, and (b) using fine model simulations.

Fig. 10. Statistical analysis for the three-section waveguide transformer assuming uniform distribution
with relative tolerances of 4%, (a) using the SDMM, and (b) using fine model simulations.
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Fig. 11. Error in the statistical analysis for the three-section waveguide transformer assuming uniform
distribution with relative tolerances of 0.5%, (a) using SDMM, and (b) using linear
approximation.

Fig. 12. Error in the statistical analysis for the three-section waveguide transformer assuming uniform
distribution with relative tolerances of 2%, (a) using SDMM, and (b) using linear approximation.
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Fig. 13. Error in the statistical analysis for the three-section waveguide transformer assuming uniform
distribution with relative tolerances of 4%, (a) using SDMM, and (b) using linear approximation.

U S E R  D E F IN E D  V IE W

9 10 11 12 13 14 15
0

0.02

0.04

0.06

0.08

Er
ro

r

frequency (GHz)

USER DEFINED VIEW

0
9 10 11 12 13 14 15

0.02

0.04

0.06

0.08

Er
ro

r

0

frequency (GHz)
(a) (b)

9 10 11 12 13 14 15
0

0.01

0.02

0.03

0.04
Er

ro
r

frequency (GHz)

USER DEFINED VIEW

0
9 10 11 12 13 14 15

0

0.01

0.02

0.03

0.04

Er
ro

r

frequency (GHz)
(a) (b)



16

Fig. 14.  The fine model of the six-section waveguide filter [11, 12].

Fig. 15.  The coarse model of the six-section waveguide filter [13].
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Fig. 16. The fine model response (ο) and the response () at the extracted coarse model point for the six-
section waveguide filter.
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Fig. 17. Statistical analysis for the six-section waveguide filter assuming uniform distribution with
relative tolerances of 1%, (a) using the SDMM, and (b) using fine model simulations.

Fig. 18. Statistical analysis for the six-section waveguide filter assuming uniform distribution with
relative tolerances of 4%, (a) using the SDMM, and (b) using fine model simulations.
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Fig. 19. Statistical analysis for the six-section waveguide filter assuming uniform distribution with

relative tolerances of 8%, (a) using the SDMM, and (b) using fine model simulations.
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Fig. 20. Error in the statistical analysis for the six-section waveguide filter assuming uniform distribution
with relative tolerances of 1%, (a) using SDMM, and (b) using linear approximation.

Fig. 21. Error in the statistical analysis for the six-section waveguide filter assuming uniform distribution
with relative tolerances of 4%, (a) using SDMM, and (b) using linear approximation.

Fig. 22. Error in the statistical analysis for the six-section waveguide filter assuming uniform distribution
with relative tolerances of 8%, (a) using SDMM, and (b) using linear approximation.
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