SPACE MAPPING SUPER MODEL CONCEPT

J.W. Bandler and M.A. Ismail

SOS-98-21-V

August 1998

© J.W. Bandler and M.A. Ismail 1998

No part of this document may be copied, translated, transcribed or entered in any form into any machine without written permission. Address inquiries in this regard to Dr. J.W. Bandler. Excerpts may be quoted for scholarly purposes with full acknowledgment of source. This document may not be lent or circulated without this title page and its original cover.

SPACE MAPPING SUPER MODEL CONCEPT

J.W. Bandler and M.A. Ismail

Simulation Optimization Systems Research Laboratory and Department of Electrical and Computer Engineering McMaster University, Hamilton, Canada L8S 4L7

presented at

SOS Research Laboratory Meeting, Hamilton, August 1998

Introduction

EM simulators versus analytical models

how can we improve the accuracy of empirical models?

Introduction

- \boldsymbol{x}_{f} : is a vector representing the fine model parameters (the physical parameters)
- \boldsymbol{x}_c : is a vector representing the coarse model parameters
- \boldsymbol{R}_{f} : the fine model (EM simulator) response
- R_c : the coarse model (empirical model) response

the mapping P is established over a region of parameters in the fine model space and in a predefined frequency range

Space Mapping Super Model (SMSM)

 $\boldsymbol{x}_c = \boldsymbol{P}(\boldsymbol{x}_f)$

such that

$$\left\|\boldsymbol{R}_{f}(\boldsymbol{x}_{f}) - \boldsymbol{R}_{c}(\boldsymbol{x}_{c})\right\| \leq \varepsilon$$

in a predefined frequency range $f_{\min} \leq f \leq f_{\max}$

the numerical values given by the mapping P can be obtained by solving the parameter extraction problem (*Bandler et al.*, 1994-1997)

$$\min_{\boldsymbol{x}_c} \left\| \boldsymbol{R}_f(\boldsymbol{x}_f) - \boldsymbol{R}_c(\boldsymbol{x}_c) \right\|$$

Space Mapping Super Model (SMSM)

the mapping **P** is assumed to be linear, that is

$$\boldsymbol{x}_c = \boldsymbol{P}(\boldsymbol{x}_f) = \boldsymbol{B} \ \boldsymbol{x}_f + \boldsymbol{C}$$

where

 \boldsymbol{x}_{f} : a vector of dimension n_{1}

- \boldsymbol{x}_c : a vector of dimension n_2
- \boldsymbol{B} : an $n_2 \mathbf{x} n_1$ matrix of constant coefficients
- C: a constant vector of dimension n_2

SMSM Algorithm

Example 1

Right Angle Bend

the capacitance C and the inductance L are computed from (*Gupta et al.*, 1979)

the range of the parameters W, H, and e_r are

Parameter	Minimum	Maximum
	value	value
W	20 mil	30 mil
Н	8 mil	16 mil
E _r	8	10

the mapping **P** is defined by

$$\boldsymbol{x}_c = \boldsymbol{P}(\boldsymbol{x}_f) = \boldsymbol{B} \ \boldsymbol{x}_f + \boldsymbol{C}$$

where

$$\boldsymbol{x}_{f} = \begin{bmatrix} W \\ H \\ \boldsymbol{\varepsilon}_{r} \end{bmatrix}, \quad \boldsymbol{x}_{c} = \begin{bmatrix} W_{1} \\ H_{1} \\ \boldsymbol{\varepsilon}_{r1} \end{bmatrix}$$

where W_1 , H_1 and ε_{r1} are the parameters to be used by the empirical model in order to match its response with that obtained by Sonnet *em* simulator

only 7 simulation sweeps at 7 points in the space were used

The mapping parameters B and C in the frequency range from 29 GHz to 33 GHz are

$$\boldsymbol{B} = \begin{bmatrix} 0.4600 & 1.6788 & 0.4442 \\ -0.1808 & 1.1474 & -0.1997 \\ 0.4484 & -1.0337 & 1.2115 \end{bmatrix}, \quad \boldsymbol{C} = \begin{bmatrix} -11.45 \\ 3.58 \\ 4.64 \end{bmatrix}$$

the SMSM was tested at 50 uniformly distributed random points in the region of the fine model parameters.

the difference in $|S_{11}|$ computed by Sonnet *em* simulator and by (*Gupta et al.*, 1979) empirical model before and after applying SMSM

the difference in $|S_{21}|$ computed by Sonnet *em* simulator and by (*Gupta et al.*, 1979) empirical model before and after applying SMSM

the results of applying SMSM in the frequency range 1 GHz to 41 Ghz

the difference in $|S_{11}|$ computed by Sonnet *em* simulator and by (*Gupta et al.*, 1979) empirical model before and after applying SMSM

Simulation Optimization Systems Research Laboratory McMaster University

Right Angle Bend

the difference in $|S_{21}|$ computed by Sonnet *em* simulator and by (*Gupta et al.*, 1979) empirical model before and after applying SMSM

Example 2

Microstrip Line with High Dielectric Constant

the fine model is the Sonnet em simulator with parameters given by

$$\boldsymbol{x}_{f} = [W \ L \ H \ \boldsymbol{\varepsilon}_{r}]^{T}$$

the coarse model is Jansen empirical model with parameters given by

$$\boldsymbol{x}_{c} = [W_{1} \ L_{1} \ H_{1} \ \boldsymbol{\varepsilon}_{r1}]^{T}$$

the frequency range

$$3.7 \,\mathrm{GHz} \le f \le 4.1 \,\mathrm{GHz}, \quad \Delta f = 0.05 \,\mathrm{GHz}$$

the region of parameters in the fine model space is defined in the following table

Parameter	Minimum	Maximum
	value	value
W	5 mil	9 mil
L	15 mil	25 mil
H	40 mil	60 mil
\mathbf{E}_{r}	20	25

the mapping \boldsymbol{P} is defined by

$$\boldsymbol{x}_{c} = \boldsymbol{P}(\boldsymbol{x}_{f}) = \boldsymbol{B} \ \boldsymbol{x}_{f} + \boldsymbol{C}$$

Microstrip Line with High Dielectric Constant

where

$$\boldsymbol{x}_{f} = \begin{bmatrix} W \\ L \\ H \\ \boldsymbol{\varepsilon}_{r} \end{bmatrix}, \quad \boldsymbol{x}_{c} = \begin{bmatrix} W_{1} \\ L_{1} \\ H_{1} \\ \boldsymbol{\varepsilon}_{r1} \end{bmatrix}$$

only 9 simulation sweeps at 9 points in the space were used

The matrix **B** and the vector **C** are given by

$$\boldsymbol{B} = \begin{bmatrix} 1.11322 - 0.00521 \ 0.05229 - 0.00088 \\ -0.13860 \ 0.89951 - 0.23090 - 0.01242 \\ -0.07667 \ 0.01254 \ 0.79066 \ 0.00074 \\ -0.02085 - 0.02777 \ 0.21448 \ 1.07136 \end{bmatrix},$$

$$\boldsymbol{C} = \begin{bmatrix} -0.96425 \\ 6.91249 \\ 2.47249 \\ -2.58961 \end{bmatrix}$$

the SMSM was tested at 100 uniformly distributed random points in the region of interest

Microstrip Line with High Dielectric Constant

the difference in $|S_{11}|$ computed by Sonnet *em* simulator and by Jansen empirical model before applying SMSM

the difference in $|S_{11}|$ computed by Sonnet *em* simulator and by Jansen empirical model after applying SMSM

Microstrip Line with High Dielectric Constant

the difference in the phase of S_{11} computed by Sonnet *em* simulator and by Jansen empirical model before applying SMSM

the difference in the phase of S_{11} computed by Sonnet *em* simulator and by Jansen empirical model after applying SMSM

