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Introduction 

circuit optimization must take into account 

model/measurement/statistical errors, variations and 

uncertainties 

least-squares (~2) solutions are notoriously susceptible to the 

influence of gross errors: just a few "wild" data points can 

alter the results significantly 

the ~1 method is robust against gross errors; however, it 

inappropriately treats small variations in the data 

neither the ~ 1 nor ~2 alone is capable of providing solutions 

which are robust against large errors and flexible w.r.t. small 

variations in the data 

the Huber solution can provide a smooth model from data 

which contains many small variations and such a model is 

also robust against gross errors 

implemented in the CAD system OSA90/hope which was 

used to produce the examples in this presentation 
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The Huber Function 

if 1/1 ~ k 

k 1/1 - k'/2 if 1/1 > k 

f represents an error function 

k > 0 is a threshold separating "large" and "small" errors 

the definition of pk ensures a smooth transition at k 

The Huber Norm 

m 

a hybrid of the ~2 and the ~ 1 norms 
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Huber Function as a Hybrid of f 1 and f2 

the Huber, f1 and f2 objective functions in the one

dimensional case 

F 

• • 

• • 

. ........... -....... . k12 ......... . 

the large errors are treated in the f 1 sense and the small 

errors are measured in terms of least squares 

by selecting k we can control the proportion of errors treated 
in the f 1 or f2 sense 
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One-Sided Huber Function 

we extend the Huber concept by introducing a "one-sided" 

Huber function for design optimization with upper and/or 
lower specifications 

we define the "one-sided" Huber function as 

0 if f ~ 0 
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A 6th Order Multicavity Filter 
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the input reflection coefficient is used as simulated 

measurement 

two large errors are deliberately introduced into data 

the task is to identify the parameters from the contaminated 
data 
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Results of Parameter Identification for the Multicavity 

Filter - Case A 

the two large errors are the only errors contained in the data 

Couplings 

Actual Values 

Starting Point 
0.859956 
0.819006 

-11% 
0.05% 
0.02% 

0.526602 
0.511264 

7.3% 
-0.06% 
0.01% 

0.087293 
0.093863 

278% 
-0.01% 
-1.2% 

the f2 solution is hopelessly corrupted by the wild data points 
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Results of Parameter Identification for the Multicavity 

Filter - Case B 

the data is truncated to the first two significant digits to 
emulate the limited accuracy of measurement equipment 

Couplings 

Actual Values 
Starting Point 

0.859956 

0.819006 

0.51% 

0.15% 

0.526602 

0.511264 

-2.9% 

-0.01% 

0.087293 

0.093863 

-14% 

-8.3% 

f1 is more affected by small variations in the data 

Huber solution less affected by small variations in the data 
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Results of Parameter Identification for the Multicavity 

Filter - Case C 

small errors randomly generated from the uniform 

distribution [-0.01 0.01] are introduced into the data 

Couplings 

Actual Values 

Starting Point 

~1 

Huber 

0.859956 

0.819006 

1.8% 

0.41% 

0.526602 

0.511264 

-4.1% 

0.04% 

0.087293 

0.093863 

-43% 

-27% 

~1 is more affected by small variations in the data 

Huber solution less affected by small variations in the data 
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A Resistive Mesh Circuit 
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used to demonstrate the f 1 approach to analog fault location 

we present new results which take into account data 

truncation errors representing limited accuracy of 
measurement equipment 
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Analog Fault Location of the Resistive Mesh Circuit 

f 1 optimization attempts to suppress as many parameter 

deviations as possible to exactly zero 

this may lead to an incorrect solution 

two faults were assumed, namely G2 and G18 

simulated node voltage measurements were generated at the 

accessible nodes 

these voltages were truncated to the first two significant 

digits 
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Results of Fault Location of the Resistive Mesh Circuit 

Element Percentage Deviation 
Nominal Actual 

Value Value Actual Huber 

Gz 1.0 0.50 -50.0 -47.55 -54.40 

G3 1.0 1.05 5.0 -25.45 -3.68 

G16 1.0 0.95 -5.0 -20.24 -3.53 

G11 1.0 1.05 5.0 0.00 -0.81 

G1s 1.0 0.50 -50.0 -8.90 -49.97 

G19 1.0 0.95 -5.0 -25.32 -4.74 

Gzo 1.0 0.95 -5.0 -20.73 -5.98 

the nominal parameter values are used as the starting point 

for optimization 

f 1 optimization fails to isolate the faults 

Huber optimization successfully isolates the faults 
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Robustness Against "Bad" Starting Points in Optimization 

we show that the one-sided Huber function can be used in a 

"preprocessing" optimization to overcome bad starting points 

6th-order multicavity filter 

30 starting points generated using uniform distribution 

centered at a "good" starting point 

±30% spread of the parameter values 

the input return loss of the filter at the 30 starting points 

· ······r·················r·················r····@,j· · ~~~ 
. . 

. I i ~··············· .. .. .. ··. ·1 
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3970 3lil80 3990 4000 4010 4020 -4030 

frequency (MHz) 
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One-sided Huber Preprocessing of Arbitrary Starting Points 

from a "bad" starting point, a minimax optimizer can be 

trapped by the initial large errors 

we have exploited the potential of using one-sided Huber 

preprocessing to overcome bad starting points in large-scale 

multiplexer optimization 

here we expand our investigation by testing several starting 

points for optimization 

we compare minimax optimization with and without one

sided Huber preprocessing from these randomly generated 

starting points 

from each starting point, we perform: 

(1) direct minimax optimization 

(2) one-sided Huber optimization (preprocessing) 

followed by minimax optimization 
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Results of One-sided Huber Preprocessing 

without Huber preprocessing 

o='-5'' 

10 ...................... . 

i ..., 

j 20 ............... . 

i 
~ I 
40~~~~~-~~~--

3970 3ll80 3990 4000 "4010 40IO 4030 

frequency (MHz) 

with Huber preprocessing 

'4()~-~~~-~~~--
3870 3ll80 3990 4000 4010 40IO 4030 

frequency (MHz) 

one-sided Huber preprocessing produces more focused 

results 
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Statistical Device Modeling 

parameter extraction/statistical postprocessing 

first, we extract model parameters for individual devices 

from device measurements 

then the sample of model parameters is postprocessed 

to estimate the statistics 

for postprocessing we normally apply least-squares 

estimators 

wild points severely degrade the least-squares estimates; in 

our earlier work using the ~2 estimator the wild points had to 

be manually excluded 

the Huber function can be used as an automatic robust 

statistical estimator in place of least-squares estimators 

applying Huber estimators to the same data we obtained 

similar results but without excluding any points 



� Simulation Optimization Systems Research Laboratory 
� McMaster University 

Statistical Estimation 

the error functions to estimate mean values 

- -

fj ( <f>) = <f> - <f>l

the error functions to estimate standard deviations 

.
- 2fj (¾,) = ¼, - ( <f>l - <f>) 

where 

<1>1 the extracted value of a parameter of the jth device 
j 1, 2, ... , N
N the total number of devices 

¾, the estimated variance from which we can calculate

the standard deviation o cl>
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One-sided Huber Formulation for Yield Optimization 

we present a one-sided Huber approach to yield optimization 
of linear and nonlinear circuits 

we consider a number of statistical outcomes of circuit 
parameters denoted by 4,i

for each outcome we create a generalized � function v ( ♦i) 

we have formulated yield optimization as a one-sided �
1 

problem (Bandler and Chen, 1988)

here we formulate yield optimization as a one-sided Huber 
problem: the objective function is defined as 

U(ct,0) = L p;(«
i
v(cll)) 

i=l 

where 
+0 the nominal circuit parameters

«i a positive multiplier associated with the ith
outcome 

N the total number of outcomes



~ Simulation Optimization Systems Research Laboratory 
~ McMaster University 

Yield Optimization of an LC Filter 

one-sided f1 method needed 160 CPU seconds (11 iterations) 

one-sided Huber yield optimization with k=0.2 finished in 

123 CPU seconds (9 iterations) 

both optimizations produced 75% yield 

Sun SPARCstation 10 
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Yield Optimization of a Nonlinear Frequency Doubler 

-1.9V 

+ 

uniform distributions in the linear matching subcircuits; 

normal distributions for the intrinsic FET 

one-sided f1 centering finished in 17 iterations and 337 CPU 

seconds and increased yield from 28% to 76% 

one-sided Huber centering finished in 29 iterations and 57 4 

CPU seconds and increased yield from 28% to 77% 

Sun SPARCstation 10 
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Conclusions 

exciting applications of a novel Huber approach to 

parameter identification 

analog fault location 

preprocessing of arbitrary starting points 

statistical modeling 

statistical design centering 

the Huber approach demonstrates robustness and 

consistency in the presence of large and small errors, both 

deterministic and statistical 

it combines the advantages of f 
1 

and �
2 

techniques and 

overcomes their respective shortcomings 

the Huber concept is consistent with practical engineering 

intuition 

the Huber method will have a far-reaching and profound 

impact on modeling, design, design validation, fault diagnosis 

and statistical modeling and design 




