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Abstract A physics based model for the GaAs MESFET is formulated. The physical/geometri-
cal/process parameters, such as device dimensions, material-related parameters, doping profile
and channel thickness, etc., are directly applied to the model. The model is embedded into a
circuit simulation program based on harmonic balance (HB) method for a computer-aided design
(CAD) tool for the analysis and optimization of nonlinear microwave MESFET circuits. It can
be used to device and circuit design optimization, statistical modeling, design centering and yield
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I. INTRODUCTION

Since Shockley provided the original FET model applicable to a long-gate-length device
operating in a nonsaturated velocity mode [1], modeling of the FET has been substantially
advanced. The models developed can be classified into two main categories.

The first category involves equivalent circuit models which rely on parameter extraction
for the equivalent circuit elements, such as resistors, capacitors, inductors and dependent sources,
etc., from measured DC and/or RF small-signal S parameters. The models of this type have
a high degree of computational efficiency. They can be easily implemented in circuit simulators
and are very popular among circuit designers. However, since none of the physical parameters
are considered in these models, they are not ideal for studying the effect of process-related FET
parameters on the overall performance of the circuits and are not suitable for statistical analysis
of the devices.

The second -category involves physics based models which attempt to solve the
fundamental device equations, such as Poisson’s equation and the current density equation, etc.,
with a minimal number of simplifying assumptions. The model parameters include
physical/geometrical/process parameters. Models of this type are quite suitable for design
optimization of the device before fabrication, statistical modeling, design centering and yield
optimization.

The formulation of a physics based model for GaAs MESFETs presented in this paper
is based on Khatibzadeh and Trew’s work [2]. Trew’s model is a large-signal analytic model
for the GaAs MESFET. The model describes the conduction and displacement currents of the
FET as a function of instantaneous terminal voltages and their time derivatives. It allows
arbitrary doping profiles in the channel, and is thus suitable for the optimization of ion-

implanted and buried-channel FETs.



II. FORMULATION OF THE MODEL

A. Basic Model Equations

The active or "intrinsic" region of a FET is shown in Fig. 1. This region consists of
the area of the channel directly under the gate electrode. The model is formulated under this
region. All other regions of the device are modeled phenomenologically using external or

"extrinsic" linear elements. The basic device equations are

v = - (a/e)IN(y) - n(x, )] (1)

J = - qov + gDVn 2

veJ = q(3n/3t) (3)
and

J, = J + &(3E/at) (4)
where

E=-v (5)

is the electric field, ¥ is the electrostatic potential, N is the arbitrary donor concentration in the
channel, n is the free-electron density, v is the electron velocity, D is the diffusion coefficient,
J is the conduction (drift + diffusion) current density, J, is the total (conduction + displacement)
current density, q is the electronic charge, and ¢ is the permittivity of GaAs. Equation (1) is
the Poisson equation. Equation (2) is the current density equation of which the first term
represents the drift current density and the second term accounts for the diffusion current
density. Equation (3) is the continuity equation. Equation (4) is the total current density
equation of which the second term results from displacement current. It is assumed that v and
E are codirectional, i.e.,
v=- uE)E (6)
where u(E) is the field-dependent mobility.
In our formulation, we allow the velocity-electric field (v-E) curve to vary w.r.t. the

parameters in the v-E equations. This is very useful for parameter extraction because the shape



of the v-E curve cannot be exactly measured. For most published methods, the v-E curves are
assumed to be piecewise linear or quadratic forms, as shown in Fig. 2. These methods neglect
the pick effect near the point of critical electric field E., resulting in some error in the
simulation. By allowing the change of the v-E curve, we can avoid this disadvantage and get
a better fit to the measured DC and S parameter data with parameter extraction. The v-E
equations we use in our formulation is based on

Y, 2E, E
v, = { ¥

BoE - [v/4EDIEZ  E < 2E,

IA

where v, is electronic saturation velocity, kg is the low field mobility and has the relation
Yg = l“OEc (8)
We add another term

v, (E/A)-C C

Ve = —B[ + ] ®)
C (E/A"+B B

into v, and form the v-E equation as
v = (1l - Hv; + Hv, (10)

where A, B, C, n and H are the parameters to be determined.

The main feature of (10) is that the overshoot effect of the v-E curve can be represented
by changing the parameters A, B, C, n and H. This makes the model more accurate. Fig. 3
shows some typical v-E curves calculated by (10). We can see the overshoot appearing near the
critical electric field point.

Based upon the magnitude of the electric field in the channel, specifically at the y = a

boundary ( E(x, a) ), the device can operate in one of three modes:

E(0, a) < E(L, a) < E, (Mode-A)
E(0, a) < E(L,, a) = E. < E(L, a) (Mode-B)
E. < E(0, a) < E(L, a) (Mode-C)

where E_ is the critical electric field. The plane x = L, indicated in Fig. 1 separates the



saturation and linear regions of the device. Mode-A has a free channel from source to drain,
Mode-B has a free channel only on the source side and Mode-C has no free channel. Fig. 4
shows schematically these three operation modes.

Since (1)-(3) are coupled together, a functional form for n(x, y) is assumed a priori in
order to solve for ¢ analytically. In our formulation the functional form proposed in [2] is
adopted. The representation of the function is

n(x, y) = [1 + 7(x - LPIT(d(x), y)N(y) (11)
where T(d(x), y) is referred to as the transition function and is defined as
1

T@X), y) = 1 - (12)
I + exp[(y - d(x))/A]

The term [1 + 4(x - L,)] in (11) is used to allow for charge accumulation or depletion in the
channel. For the region x < L, (i.e., the linear region), v = 0. The value of the parameter

A in (12) is of the order of the Debye length.

B. Solution for the Potential ¢
The solution for the potential ¥ can be represented by a linear superposition of two
components, i.e., ¥ = ¥, + ¥,, where 9, is the Laplacian potential due to the impressed voltages
on the electrodes and 4; is due to the space charge in the channel and satisfies Poisson’s
equation. Mathematically,
Vi = 0 (13)

with the boundary conditions

¢0(09 a) =0 (143)
Po(L, 2) = V, (14b)
3,
——x,a) =0 (14¢)
ay
Po(x, 0) = 0 (14d)



and
v?p; = - (q/e)(N - n) (15)

with boundary conditions

¥,(0, 2) = 0 (16a)
Pi(L, a) =V, (16b)
3P,
—(x,a) =0 (16¢)
dy
$i(x, 0) = Vi - Vyy (16d)

where V, is the built-in voltage of the gate Shottky contact, Vgs and Vg, = V; + V, are the
applied gate-source and drain-source voltages across the intrinsic FET, respectively.
The solution for ¢, with the boundary conditions can be approximated by
Vv

Yo(X, ¥) = - sinh[(7x)/(2a)] sin[(7y)/(2a)] (17)
sinh[(wL)/(2a)]

Assuming | 8%),/8y? | dominates | 3%,/8x? | and using definition (11) and (12), we can determine

¥;. The results are: for 0 < x < L,

q aa V1

Yi(x, y) = - [ 11 - T(d(x), y)N(y")dy”dy" + X (18)
e yYy L

and for L; < x < L (d(x) = d,),

q aa v,

$i(x, y) = - — [ [ [1 - T(d;, y)N(y")dy"dy” + X
e vy L
q aa

+ — q(x - L[ [ T(d;, y)N(y")dy"dy’ (19)

& vy

Applying (16d) to (18), we can solve for d(x). The result is an implicit solution of the form

q v,
- — F(d(x)) +
€ L

X=V _Vb-

gs i (20)

where



q aa
Fid)=-— [ [ [l - T, y)N(y")dy"dy’ (1)
yy

€
For uniform doping (N(y) = Ny), d(x) can be solved explicitly as
2¢ A\’

) ——x - Vg + Vipl'/? (22)
Ny L

d(x) = [(

In general, however, F,(d) depends on the arbitrary doping profile and cannot be calculated
analytically. Instead, for a given doping profile, F,(d) is tabulated numerically as a function
of d for 40 values of d on the interval [0, a]. Then, for any given values of Vgs and x, the
corresponding value of F,(d) is calculated from (20), and cubic spline interpolation is used to

get d(x).

C. Solution for the Electric Field E

The electric field is defined by (5) and has two components: one arising from ¥, and

one due to ¢,. Differentiating (17), (18) and (19) w.r.t. y, we have for the linear region (0 <

x < L))
a X Ty YV,
E (x, y) = - J 1 - Td(), y)N(y)dy" - ésinh(—)cos(—) (23)
ey 2a 2a L
where
(rL)/(2a)
sinh[(wL)/(2a)]
and for the saturation region (L; < x < L)
a X Ty VYV,
E/(x, y) = - J 11 - T(d;, y)N(y)dy" - gsinh(—)cos(—)
Y 2a 2a L
q a
+ — 2(x - L) [ T(d;, y)N(y)dy’ (24)
€ y

The x component of E in both linear and saturation regions (0 < x < L) can be



approximated by [4]

\A y TX 1y V,
E(x,y) = - —[1 - (— - 1)’] - gcosh(—)sin(—)— (25)
L a 2a 2a L

At the interface y = a, the magnitude of E becomes
v, X VY,

+ &cosh(—)— (26)
L 2a L

E(x, a) = |E(x, a)| =

From the definition of the plane x = L;, we have E(L;, a) = E_, combining this with (26) and

c?

solving for L,, we get

2a
L, = (— [y + (7? + )Y @27)
T
where
2a. EL -V, L
n=(—X )sinh(—) (28)
T V0 2a

Thus, -given V4, and V,;, we can explicitly solve for L,, and determine the operation

modes of the device.

D. Source and Drain Conduction Currents

The source and drain conduction currents are calculated by integrating the conduction
current density as given by (2) over the planes x = 0 and x = L, respectively. Here, we derive
the conduction current expressions by considering the Mode-B operation. The conduction
currents for the operations of Mode-A and Mode-C can be obtained by taking the limits L, —
0 and L, — L, respectively.

For Mode-B operation, the carrier concentration does not depend strongly on x in the
linear region, therefore only the drift component of J is considered. While in the saturation
region both drift and diffusion terms are included, since the carrier concentration varies with

X.



The x component of the conduction current density at the source (x = 0) is given by

J(0, y) = qu(E(0, y))n(0, y)E,(0, y)
Thus, the magnitude of the source conduction current becomes

a
I, =-qW _I(; HE(Q0, y))n(0, y)E,(0, y)dy

(29)

(30)

where W is the total gate width of the FET. Since E (0, y) and u(E(0, y)) are functions of V|,

I, depends on V, and thus on the bias voltages. For more computational efficiency we can

define an average mobility and rewrite I as
a
I, = - aWx, [ n(0, y)E (0, y)dy
0

where u_is a weighted mobility at the source (x = 0) and is defined as

M
i2=1wi”si

where

He = WE(D, y;)

i-1
Yi=( )a i=13 2a ...aM
M-1
The weights w; are defined by
i-1
w; = ( ) i=1,2, e, M
M-1

where a is an empirical input parameter of the model.
Similarly, the magnitude of the drain conduction current can be derived as

a a
Iy = - qW/Td(f) n(L, y)E(L, y)dy + qWD[ T(d,;, y)N(y)dy
0

(1)

(32)

(33)

(34)



The last term in (34) accounts for diffusion current. The average mobility at the drain (x = L),

Ly is defined as

- — (35)

where

Bg; = W(E(L, yy)

The coefficient « is calculated by

eV,
oo — (36)
qLFz(dl)
where
Fy(d) = - (e/a)(Vp, - Vi) - Fy(d) (37)

Here V, is the pinch-off voltage defined by

q

Voo = Vi - N(y")dy“dy’ (38)

’

< —p
< ®

€

E. Displacement Currents

The displacement current density is defined as
J4 = € (OE/31) (39)

Thus the drain, source and gate displacement currents can be evaluated by

a OJE,
0 ot
a JE,
iy =W [ e —]( 5dy (40b)
0 ot

10



L GE

. y
g =W [ e—]4qdy (40c)
0 ot
The final results are
€ 4 7L 2a 9V,
ig=- W[— a - &cosh( ) ]
L 3 2a T at
£ L 2a anS
+ Wécosh( ) (41a)
L 2a 7 at
I3 4 2a 9V, 2aeW¢ Vg,
= - —W—a-f— )— - (41b)
L 3 T at 7L at
€ L, Fzd) € 2a L v,
ig ={ \\ xdx - — £W [cosh( ) - 11} —
L 0 JdF,/ad L iy 2a at
L, Fs(d) IV s 2aetW L V4,
-eW [ dx + [cosh(—) - 1] — (41¢c)
0 OJF,/ad at 7L 2a at
where
a aT
Fg(d) = [ [1 - T(d(x), y)] — dy’
0 ad

In the HB simulation, the displacement currents are equivalently replaced by the
accumulation charges in the drain, source and gate contacts, i.e., Q4, Q, and Qg. The equations

for calculating Q4, Q, and Q, are

a

Qq = W j(‘) E (L, y)dy , (42a)
a

Q, = €W [ E,(0, y)dy (42b)
0

and

L

Qg = eW I E (x, 0)dx . (42¢)
0

11



F. The Total Currents

The total currents are the summation of conduction currents and displacement currents.

From (31), (34) and (41), we can, in general, write the total gate, drain and source currents

as
Iy = fig(® Vi, Vi Vo, 8V,/8t, 8V /3t, 8V 4,/80) (43a)
Iy = frae® V1o Vi Ve 8V1/8t, 8V, /8t, 8V4,/01) (43b)
Ly = f1(® Vi Vi Vo 3V/0t, 8V /8t, 8V4,/01) (43c)

where fi., f1qy and fp, are nonlinear functions, ¢ is a parameter vector including gate length,

gate width, channel thickness, doping density, etc.

III. DYNAMIC INTEGRATION OF THE PHYSICAL MODEL
WITH HARMONIC BALANCE SIMULATION

In the circuit simulation with physics based model described in Section II, the key
variable to be solved for is V,. In the original approach of [2, 3], the condition Iy = I, was
used to solve for V,, neglecting the current through the gate contact. However, this condition
is strictly valid for DC, and not for instantaneous currents under AC excitation. Also, a double
loop is required in HB simulation. The first loop is devoted to solving V, iteratively, then the
value of V, is substituted into the second loop for solving the HB equations.

In our formulation, V, is integrated directly into the HB equations. For example, the

HB equation for a nonlinear circuit with one FET can be written as

V.. I
FV)= YV | Ve |+& | T | +T,=0, (44)
Vl Ist

where a bar is used to denote the split real and imaginary parts of a complex quantity at DC,
fundamental frequency and all harmonics. For example, Vgs is a vector containing the real and

imaginary parts of intrinsic gate voltage at all harmonics. 1

at» Tg; and Ty, represents the sum

of conducting and displacement currents through the gate, source and drain, respectively. Y is

12



the admittance matrix of linear part. Matrix A is a simple incidence matrix containing 1’s and
0’s. Tss contains excitations. Equation (43) automatically ensures the current continuity at all
harmonics, i.e.,

T, +T,+T,=0 (45)
Therefore, our condition is valid not only for DC but also for small- or large-signal RF
operation. Only a single iterative loop, i.e., the loop for solving the HB equation is required.
This is generally much more efficient than the double loop approach. The algorithm for the

physics based model is shown in Fig. 5.

IV. ALGORITHM FOR THE PHYSICAL MODEL
The following algorithm for the physical model can be used to calculate the drain and
source conduction currents, I; and I, and accumulative charges in the gate, drain and source
electrodes, Qg, Q4 and Q,. The calculation is carried out in the time domain. The values of
the model variables V,, Vgs and V4, are assumed coming from the frequency domain analysis
with the HB method. The outputs of the model, i.e., Iy, L, Qg, Qg4 and Q,, are sent to the

frequency domain analysis by Fourier transform to solve the HB equation (44).

Step 1 Input the physical/geometrical/process parameters such as gate length L, gate width
W, channel thickness and doping profile, etc., model parameters such as « and ), and
parasitic parameters such as Rg, Ry R,, Lg, Ly and L, etc.

Step 2 Pre-calculations.

Step 2.1  Given N values of d;, i = 1, 2, «, N, calculate the corresponding values of F,(d))
using (21) to obtain a set of data (d,, F,(dy).

Step 2.2 Create the cubic spline coefficients for interpolation using the data (d;, Fy(dy)
obtained in Step 2.1.

Step 2.3  Calculate the pinch-off voltage Vpo using (38).

13



Step 3

Step 4

Step 4.1

Step 4.2
Step 4.3
Step 4.4

Step 5

From the values of V,, V_  and V4 given by the frequency domain analysis

gs
determine the operation mode of the MESFET. Compute L, using (27) and (28).
If L; > L, the operation mode is Mode-A and L, is set to be L. If L; < 0, the
operation mode is Mode-C and L, is set to be 0. Otherwise the operation mode is
Mode-B.

Calculate the source and drain conduction currents I, and I

Determine the depletion layer thickness at x = 0 and x = L,, ie., dy and d;. First
obtain F(dy) and F,(d,) using (20) and then get d, and d; by cubic spline
interpolation.

Calculate model parameter v using (36).

Compute the weighted average mobility u, and gy using (32), (33) and (35).
Evaluate the source and drain conduction currents I, and I; using (31) and (34).

Calculate the accumulative charges in the drain, source and gate electrodes Qg4 Q,

and Qg using (42a), (42b) and (42c).

V. CONCLUSIONS

The formulation of the physics based model for the GaAs MESFET has been discussed

in this paper. The model accepts, as input data, physical/geometrical/process parameters of

the device, such as gate length, channel thickness and doping profile, etc. It represents a

breakthrough over the conventional equivalent circuit approach. With this model the sensitivity

analysis can be carried out directly w.r.t. the physical parameters of the device. This is very

useful in both device and circuit design optimization and is quite suitable for statistic modeling,

design centering and yield optimization of FET circuits and MMICs.
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Fig. 1 Active region of the FET used in the model.
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Fig. 2 Two analytic formulations for the velocity as a function of the electric field.
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Fig. 3 Velocity-electric field curves determined by (10). E_ = 3.75kV/cm, v, = 1.5x10%cm/s,
Bo = 4000cm?/Vs, A =1,B=1,C =04 and n =
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Fig. 4 Operation modes of the FET. (a) Mode-A, (b) Mode-B and (c) Mode-C.
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Fig. 5 Algorithm for the physics based model.
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