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Matrix A
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This mxn matrix has m rows and n columns.

Transpose of A
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This nxm matrix has n rows and m columns.

Symmetric Matrix A

A square matrix A is said to be symmetric if
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Vector a
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This n-dimensional vector has n rows and 1 column.

Transpose of a

This n-dimensional vector has 1 row and n columns.



Vector a’
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This m-dimensional vector has m rows and 1 column.

Transpose of a’

This m-dimensional vector has 1 row and m columns.



Forms of A and AT

Partitioned forms of A and AT can be written as
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A= =[a’ a’ a']:AT
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Here, a1, a9, ..., a, are n-dimensional, whereas a;’, a9, ..., 4, are m-dimensional.



Rowsof A
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Columns of A

A= [a1 a, an]
This mxn matrix has columns
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Unit Vector u;
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This vector is considered as having m elements, all of which are 0 except the ith, which is 1.



Unit Vector u

=
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<« jth row

This vector is considered as having n elements, all of which are 0 except the jth, which is 1.



The Identity Matrix

Let
0
A A
u1= , u2_
L 0
Then
1 =1[u

is called the identity matrix.
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Scalar Product

Let
[ a, 7 [ b, ]
a9 by
at , b#
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Then

The result is a scalar.



Element Selection from Vectors

The result is the scalar element a;.

The result is the scalar element a;’.
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Row Selection from Matrices
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Column Selection from Matrices

This result is the column vector corresponding to the jth column of A. In transposed form, we

have
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Element Selection from Matrices

uT(Au.) =ula =a._
i j 1] ]

(uT A)u.
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This result is the scalar element corresponding to the coefficient of A obtained from the

intersection of row i and column j.
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Element Representation
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where uj,i = 1, ..., mis m-dimensional.
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Assembly of an Element into a Column Vector

To place the paramter ¢ into the ith row of a column vector we write

ud = ) «ith row

. 0

This results in a column vector containing zeros everywhere except in the ith row,

which contains .
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Assembly of an Element into a Row Vector

To place the parameter ¢ into the jth column of a row vector we write

q>ujT=[0 . d ... 0]

T
jtheol

This results in a row vector containing zeros everywhere except in the jth column,

which contains .
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Assembly of a Vector into a Row of a Matrix

To place the n-dimensional vector a into the ith row of a matrix we write

0 o 0 ]
0 0 0
u, al = a, a, ... a «ith row
0 0 0
8 0 0 0 ]

This results in a matrix containing zeros everywhere except in the ith row, which contains aT.
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Assembly of a Vector into a Column of a Matrix

To place the m-dimensional vector a' into the jth column of a matrix we write

0 .... O a'1 0 .... 0"
0 0 a, 0 0
a'ul =
]
L0 0 a_ 0 0
)
jth ol

This results in a matrix containing zeros everywhere except in the jth column, which contains

’

a.
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Assembly of an Element into a Matrix

To place the paramter ¢ into the intersection of row i and column j we write

udu = | ..... ¢ ... ith row

jth col

This results in a matrix containing zeros everywhere except in the i,j location, which contains
.

Two other forms are convenient to represent. The first one is

u. (¢ u;r) =

i) u;r «ith row

The other form is

(uizb)ujT:[O 0 ... ud ... 0]
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Assembly of a Matrix

To assemble A we may write

>
I
. /]B
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Assembly of the ith Row of a Matrix

To assemble the ith row of A we write
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Assembly of the jth Column of a Matrix

To assemble the jth column of A we write



Dyadic Product of aand b
Let
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This result is the n by m matrix containing all possible products aj b, i = 1,2, ..., n; ]
2,..,m.
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Definitions of Derivative Operators
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Derivatives of Scalar Products
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Jacobian Matrix [b = a]
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Jacobian Matrix [b = a]

Ja

where,
n
a= Z au
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Jacobian Matrix[b = A a]

— = = AT
Ja Ja
Jacobian Matrix[b = ATa]
b’ aalA)
—_— = = A
Ja Ja
Jacobian Matrix[b = cT A a]
db
— =ATe
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Jacobian Matrix[b = aT A ¢]
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Jacobian Matrix [b = aT A a]

b
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Derivative of an Element of a Matrix w.r.t. A

= § ..... | ith row

jth col

The result is a matrix with zeros everywhere except at the intersection of row i and column j,

which hasa 1.
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Derivative of A w.r.t. a;;
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Derivative of A-1 wherem = n

We have, by definition

A'A =1
from which
oA~! oA
- _ -1 2" A—l
ad ap

Derivative of A-! wr.t. a;

oA~ !

da..
ij
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where p; and q; are solutions to
Ap, =y,
AT q. = u
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Derivatives of the Solutionof Ax = b

Let Abenxn, x and b be n-dimensional. Then,

ax AA~!b)

.. da..
ij i

_ -1 T -1 _
= - A uiu‘iA b-——pixj

Derivative of an Element of the Solutionof Ax = b

Let
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where X is the solution of
A
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Derivative of a Linear Combination of the Elements of the Solutionof Ax = b

Letx = uTx

Then
ox a(uT x) T Ty
—_ = = —u p.
da.. da.. P4
ij ij
=—w'p)b'q)

The result comes from the appropriate linear combinations of p; and g;.

Alternatively,

g = —~ uni u x
ij
= - q;x
where q is the solution of
ATq =u
Hence
Also,
_<_3_x__ T ax
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Hence
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Special Case 1

Let

A T T
5‘(; =uu —uu
Then
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_ T
= (ui - uj) (ui - uj)

1
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ith col
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« ith row

«—jthrow
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Special Case 2

Let

= (u, — “e)(“k - ue)T

&5

Then

X T -1 T -1
— = —-u A (“k—“e)(“k‘“e)A b

== (g, —q)&x = x)

where q is the solution to

ATq:u

and u is the vector leading to X = uT x.



Placing Elements Arbitrarily

Let

and denote
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hence

For example,

Uss16 1

Then if
U= Uasie
we have
uTuzc’ard{B,4,5,l,6}=5
and
T 1 0 -1 -1 -1 1 | 1
0 O 0 0 0 0 2
-1 0 1 1 1 -1 3
T _
uu =
-1 0 1 1 1 -1 4
-1 0 1 1 1 -1 5
1 0 -1 -1 -1 1 6
L .4
1 2 3 4 5 6

_ T
=(uz+u,+ us"“x““s)(“3+“4+ us—ul—-u6)



7
L. H—.v--a“-‘- S T

.I-."'_‘

LT

e |
SR e
A

=i
bl &

.
o

: ¥
i) =
.

fivy

o el
' ||'| lewr- L
AT
_-..-,“1“"1"_' ‘
A

| At

S~ i i

o BT Rla e g
b -u-‘ "

"5;4 -ua-‘g',., !
)'_ \“ﬂ u:. : : A
e

[IIH‘IIJ

Lk

i .\‘u. Rin=

Hw. 5 mhl {0







