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Abstract
A powerful modelling technique which exploits the unique properties of the €1 norm is
presented. Self-consistent models for passive and active devices are achieved by an approach
that automatically checks the validity of model parameters obtained from optimization.
Practical use of an efficient €1 algorithm in complicated problems, for which gradient
evaluation may not be feasible, is discussed. Examples in modelling of multi-coupled cavity

filters and GaAs FET’s are presented.



SUMMARY

The problem of approximating a measured response by a network or system response
has been formulated as an optimization problem w.r.t. the equivalent circuit parameters of a
proposed model. The traditional approach in modelling is almost entirely directed at
achieving the best possible match between measured and calculated responses. This
approach has serious shortcomings in two frequently encountered cases. The first case is
when the equivalent circuit parameters are not unique w.r.t. the responses selected and the
second is when nonideal effects are not modelled adequately, the latter causing an imperfect
match, even if small measurement errors are allowed for. In both cases, a family of solutions
for circuit model parameters may exist which produce reasonable and similar match between
measured and calculated responses.

In this paper, we present a new formulation for modelling that automatically checks
the validity of the circuit parameters, with a simultaneous attempt in matching measured
and calculated responses. If successful, the method provides confidence in the validity of the
model parameters, otherwise it proves their incorrectness. The use of the £; norm, with its
unique properties, is an integral part of the approach. We discuss the use of an efficient €;
algorithm [1-3] both in problems for which response gradients can be evaluated, and in
complicated problems for which gradient evaluation is not feasible. The use of a gradient-
based ¢ algorithm and utilizing a variation of Broyden’s formula to update gradients
internally [3], makes it possible to employ a state-of-the-art optimization algorithm with any
simulation package capable simply of providing responses. Therefore, widely used microwave
design programs, e.g., SUPER-COMPACT [4] and TOUCHSTONE [5] which do not calculate
exact gradients, could employ such an algorithm with an appropriate interface. As a result, it
is conceivable that the modelling technique described could find its way to practicing
microwave engineers in a near future.

Two examples of practical interest, namely, modelling of a narrowband multi-coupled

cavity filter and a wideband GaAs FET follow the theoretical description of both the



traditional and the new approaches. In both examples, a large number of variables are

considered.

The Traditional Approach

The traditional approximation problem is stated as follows

minimize | F| (G))]
X

where a typical component of vector F, namely F; evaluated at the frequency point wj, is given
by

F, £ w, (-, i=1,2,...k. 2)
fim is a measured response at w; and fi¢ is the response of an appropriate network which

depends nonlinearly on a vector of model parameters x 8 [x; x9 .. x,]T and w; denotes a

nonnegative weighting factor.

It is usually assumed that the expected values of the components of F are zero.
However, this cannot be realized in practice due to the presence of measurement errors in
observing fim and more importantly, as a result of the imperfections and nonideal effects
which may not have been accounted for in the topology of the equivalent circuit. Since the
components of F cannot go to zero, different norms of F may give different results for x. The
use of the €1 norm, besides the advantages which will be described in the new modelling
technique, has the advantage over other norms that some isolated large errors in

measurement data, as reflected in large values of components of F, will be automatically

ignored.

New Approach Using Multiple Sets of Measurements

The model parameters x are generally controlled by some physical parameters
(0] 4 [d1 &2 ... $¢lT. For instance, in active device modelling intrinsic network parameters
are controlled by bias voltages or currents. Although the actual functional relationship

between ¢ and x may not be known, the correspondence betwen x and ¢ is usually known,



i.e., we know which element or elements of x are affected by an adjustment on an element of
¢. We exploit this knowledge to propose the following formulation.

Suppose that after taking measurements on a microwave device at a number of
frequency points, we make an easy-to-achieve adjustment on an element of ¢ such that one or
a few components of x are changed in a dominant fashion and the rest remain constant or

change slightly. Consider the following optimization problem

k
2 5t n
minimize > 2> | Fi| + 2 B | x - %] v
12 t=1 i=1 i=1
X
where
F A wiat e - | @

with superscript t identifying the original network model (t=1) or the model after adjustment
on ¢ (t=2). Bj represents an appropriate weighting factor and k¢ is an index whose value
depends on t, i.e., a different number of frequencies may be used for the original and the
perturbed model. x1.2 is a vector which contains circuit parameters of both the original and

perturbed networks, i.e.,

2= X (5)
X2
The above formulation has the following properties:
1) Considering only the first segment of the objective function, the formulation is

equivalent to performing two optimizations, i.e., matching the calculated repsonse of
the original circuit model with its corresponding measurements and repeating the
procedure for the perturbed circuit.

2) By adding the second segment to the objective function, we take advantage of the
knowledge that only one or a few components of x should change dominantly by

perturbing a component of ¢. Therefore, we penalize the objective function for any



change in x. However, by cleverly selecting the €; norm, we still allow for one or a few

large changes in x. This is completely consistent with the previous assumptions.

The confidence in the validity of the equivalent circuit parameters increases if a) an
optimization using the objective function of (3) results in a reasonable match between
calculated and measured responses for both circuits 1 and 2 (original and perturbed) and, b)
the examination of the solution vector x1.2 reveals changes from x! to x2 which are consistent
with the adjustment on @, i.e., only the expected components have changed significantly. We
can build upon our confidence even more by generalizing the technique to more adjustments

on ¢, i.e., formulating the optimization problem as

n k n
c t c n (6)
. e . t t 1 t
minimize F:| + XD —x,
. Z Z i Z ' BJ j j ’
x ,...,nc t=1 i=1 t=2 ]=1

where n, circuits and their corresponding sets of responses, measurements and parameters

are considered and the first circuit is the reference model before any adjustment on ¢.

Two common mistakes, which may not be detected easily by the traditional modelling
technique, are discovered by observing inconsistencies in changes of x with the actual change
in ¢. They are:

1) Neglecting nonideal effects which may not be evident by comparing selected
responses at the particular frequencies used, i.e., a reasonable match is observed,
although the parameters are incorrect.

2) Selecting an alternative set of parameters capable of producing the original circuit
responses, which are nonetheless invalid if different responses or different frequency

ranges are used.

Practical Application of the € 1 Algorithm

The €1 optimization problem is formulated in (6). The success of the new technique

described relies upon the use of an efficient and robust €; algorithm. Recently, a super-



linearly convergent algorithm for nonlinear £; optimization has been described [1]. The
algorithm, based on the original work of Hald and Madsen [2], is a combination of a first-order
method that approximates the solution by successive linear progamming and a quasi-Newton
method using approximate second-order information to solve the system of nonlinear
equations resulting from the first-order necessary conditions for an optimum.

The most efficient use of the € algorithm requires the user to supply function and
gradient values of the individual functions in (6), i.e., network responses as well as their
gradients are needed. Starting with the impedance or nodal admittance description of an
arbitrary network model, we have derived analytical formulas for evaluation of first-order
sensitivities of S-parameters at ports of interest w.r.t. any circuit parameter appearing in the
impedance or admittance matrix. Without using the concept of the adjoint network, the
computational effort involves solving four systems of linear equations: A x = eq, AT X = ey,
Ay = epand AT § = ep, where Apy, is the impedance or admittance matrix, e;=[1 0 ... 0]T
and e, = [0 ... 0 1]T, for the case of two-port S-parameters. Notice that one LU factorization
is sufficient. The approach can be extended to multi-ports at the expense of increasing
computational effort.

In many practical problems, e.g., in the presence of nonlinear devices or complicated
field problems, the evaluation of gradients is not feasible. In such cases, it is possible to
estimate the gradients using the numerical difference method. However, this is
computationally slow and consequently expensive. To take advantage of a fast gradient-
based algorithm, without supplying gradients or using the numerical difference method, the
original €; algorithm has been modified [3]. Different and flexible versions of the modified
algorithm exist. A typical version estimates the gradients using the numerical difference
method only once and updates the gradients with minimum extra effort by applying a
variation of Broyden’s formula as the optimization proceeds. All approximations are
performed internally, therefore, the optimization could be linked to any analysis program

which provides only the responses.



Examples

A. Modelling of Multi-Coupled Cavity Filters

A 6th order multi-coupled cavity filter centered at 11785.5 MHz with a 56.2 MHz
bandwidth is considered. Measurements on input and output return loss, insertion loss and
group delay of an optimally tuned filter and the same filter after a deliberate adjustment on
the screw which dominantly controls coupling Mjs, were provided by ComDev Ltd.,
Cambridge, Canada [6]. Although the pass-band return loss changes significantly, we
anticipate that such a physical adjustment affects only model parameters Mjg, Mj; and Mgyg
(the last two correspond to cavity resonant frequencies) in a dominant fashion, possibly with
slight changes in other parameters. Using the new technique described in this paper, we
simultaneously processed measurements on pass-band return loss (input reflection coefficient
with a weighting of 1), and stop-band insertion loss (with a weighting of 0.05) of both filters,
i.e., the original and perturbed models. The €; algorithm with exact gradients was used. The
evaluation of sensitivities is discussed in detail by Bandler et al. [7]. The model parameters
identified for two filters are summarized in Table I. Figs. 1 and 2 illustrate the measured and
modelled responses of the original filter. Fig. 3 shows the measured and modelled input
return loss for the filter after adjustment. An examination of results in Table I and Figs. 1-3
shows that not only an excellent match between measured and modelled responses has been
achieved, but also the changes in parameters are completely consistent with the actual
physical adjustment. Therefore, by means of only one optimization, we have built confidence
in the validity of equivalent circuit parameters. The problem involved 84 nonlinear functions
(42X 2 responses for original and perturbed filters) and 12 linear functions (change in
parameters of two circuit equivalents) and 24 variables. The solution was achieved in 72

seconds of CPU time on the VAX 11/780 system.



B. GaAs FET Modelling

Using S-parameter data for the device B1824-20C from 4 to 18 GHz, Curtice and
Camisa have achieved a very good model for the FET chip [8]. They have used the traditional
least squares optimization of responses utilizing SUPER-COMPACT. Their success is due to
the fact that they have reduced the number of possible variables from 16 to 8 by using dc and
zero-bias measurements. We used their equivalent circuit at normal operating bias
(including the carrier), as illustrated in Fig. 4, and created artificial measurements using
TOUCHSTONE. Two sets of S-parameter measurements were created; one set using the
parameters reported by Curtice and Camisa (operating bias Vgs = 8.0 V, Vyg= —2.0V and
I3s=128.0 mA) and the other by changing the values of Cy, C2, Ly and Lg to simulate the
effect of taking different reference planes for the carriers. Both sets of data are shown in Fig.
5, where the S-parameters of the two circuits are plotted on a Smith Chart. Using the
technique described in this paper, we processed the measurements on the two circuits
simultaneously by minimizing the function defined in (3). The objective of this experiment is
to show that even if the equivalent circuit parameters were not known, as is the case using
real measurements, the consistency of the results would be proved only if the intrinsic
parameters of the FET remain unchanged between the two circuits. This was indeed the case
for the experiment performed. Although the maximum number of possible variables, namely
32 (16 for each circuit), were allowed for in the optimization, the intrinsic parameters were
found to be the same between the two circuits and, as expected, Cy, Cg, Lg and Lg changed
from circuit 1 to 2. Table IT summarizes the parameter values obtained. The problem
involved 128 nonlinear functions (real and imaginary parts of 4 S-parameters, at 8
frequencies, for two circuits), 16 linear functions and 32 variables. The CPU time on the VAX

11/780 system was 79 seconds.
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TABLE I

RESULTS FOR THE 6TH ORDER FILTER EXAMPLE

Coupling Original Filter Perturbed Filter Change in Parameter
My, -0.0473 -0.1472 -0.0999*
Mg -0.0204 -0.0696 -0.0492*
Mgss -0.0305 -0.0230 0.0075
My4 0.0005 0.0066 0.0061
Mss -0.0026 0.0014 0.0040
Mgs 0.0177 -0.0047 -0.0224
Mjo 0.8489 0.7119 -0.1370*
Mas 0.6064 0.5969 -0.0095
M3y 0.5106 0.5101 -0.0005
Mys 0.7709 0.7709 0.0000
Ms56 0.7898 0.7806 -0.0092
Msg -0.2783 -0.2850 -0.0067

significant change in parameter value.
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TABLE II
RESULTS FOR THE GaAs FET EXAMPLE

Parameter Original Circuit Perturbed Circuit
C (pF) 0.0440 0.0200*
Co (pF) 0.0389 0.0200*
Cag (pF) 0.0416 0.0416
Cegs (pF) 0.6869 0.6869
Cas (pF) 0.1900 0.1900
Ci (pF) 0.0100 0.0100
Rg (Q) 0.5490 0.5490
Rg (Q) 1.3670 1.3670
Rg (Q) 1.0480 1.0480
R; (Q) 1.0842 1.0842
Gg-1 (k) 0.3761 0.3763
Lg (nH) 0.3158 0.1500%*
Lg (nH) 0.2515 0.1499*
Lg (nH) 0.0105 0.0105
gm S 0.0423 0.0423
T (ps) 7.4035 7.4035

significant change in parameter value




