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Summary

This paper presents a new and highly efficient algorithm for nonlinear ¢,
optimization. The algorithm is similar to a minimax algorithm originated by Hald and
Madsen [1]. It is a combination ofé first-order method that approximates the solution by
successive linear programming and a quasi-Newton method using approximate second-order
information to solve the system of nonlinear equations resulting from the first-order
necessary conditions for optimum. The new ¢, algorithm is particularly useful in fault
location methods using the ¢, norm. The performance of the algorithm is illustrated by a
resistive mesh network. Another important application of the algorithm is the parameter
identification problem in multi-coupled cavity narrow band-pass filters. 6th order and 10th

order filter problems are solved to show the excellent performance of the algorithm.

* Institute for Numerical Analysis, The Technical University of Denmark, Building

303, DK 2800 Lyngby, Denmark.



Let
f}(x) = fj(xl,xz,...,xn), j=1,...,m, (1)
be a set of m nonlinear, continuously differentiable functions. The vector x a [x1 Xg .- xn]T is
a set of n parameters to be optimized. We consider the following optimization problem,
.. . m
minimize (2)

F(x) = z lfj(x)l )
i=1

This is called the unconstrained €, optimization problem.

We present an iterative algorithm for solving (2) which requires the user to supply
function and gradient values of the nonlinear functions fJ The algorithm also uses some
second-order information, i.e., some information about the second- order derivatives of the
functions. This is approximated from the user supplied gradients.

The algorithm is similar to that of Hald and Madsen in [1]. It has been reported by
Hald in [2], which describes and lists a Fortran subroutine implementing a version of the
algorithm. Hald and Madsen [3] have demonstrated that the algorithm has sure convergence
properties.

The algorithm is a two stage algorithm. [t always starts in Stage 1, which is a first-
order trust region method similar to that of Madsen [4]. Often this method has quadratic final
convergence but in some cases (called singular, see Madsen and Schjaer-Jacobsen [5]) the
final convergence is slow. Therefore, Stage 2 is introduced. Here a quasi-Newton method is
used to solve a set of nonlinear equations that necessarily hold at a local solution of (2). If the
Stage 2 iteration is unsuccessful, then a switch is made back to Stage 1. Several switches
between the two stages-are allowed. The switching criteria ensure that the global
convergence properties of the Stage 1 iteration are not wasted by the Stage 2 iteration.
Experiments show that usually very few switches are performéd.

The summary presented here considers, for simplicity, only the unconstrained €,
optimization problem. The full description and actual implementation takes full advantage of

linear equality and inequality constraints.



The Stage 1 Iteration

At the kth stage of the iteration we have an approximation x, of the solution and a
local bound A,. We wish to use the gradient information at x, to find a better approximation

X, .- Therefore, we find the increment h, as a solution of the linearized ¢, problem

m

TN Fix, b= S [ 0c) + £ (x)Th| 3)
i=1
subject to
Ihil, = A,
where f' is the gradient of f; w.r.t. x. The subproblem is solved using linear programming.
The next iterate is found by the formula
x, +h ifFx +h)< F(x,) @)
et X, otherwise

Finally, the local bound, which is intended to be a measure of the goodness of the linear
approximations, is updated using comparisons of the decrease D, (h) = F(x,) - F(x, +h) and
the predicted decrease PDk(h) = F(xk) - F‘(xk,h), |
27, 'Lka (h, ) =0.75 PDk (h,)
A =( 05A, ika(hk) =0.25 PD, (h)

k+1

Ak otherwise .

Thé Stage 2 [teration

At a local solution x of (2) the following equations hold (see, e.g., Charalambous [6]),
with ]8j| <1,

E sign(fj.(x)) fj'(x) + i BJ. fj'(x) =0,
itz i€z (6)

fx =0, €7 .

The set Z=7(x), called the active set at x, corresponds to those functions that are 0 at x.



The Stage 2 iteration is a quasi-Newton method for solving (6) with Z being replaced

Z, = {ilIf(x) <e}. @

Conditions for Switching to Stage 2

The Stage 2 iteration is started when it seems reasonable to assume that the estimate
(7) corresponds to a solution x. Therefore, we require that the active set as defined in (7) has

stabilized before we start a Stage 2 iteration. [t is required that

- - = (8)
L=l ==l

i.e., the active set must have been constant for (v+ 1) consecutive Stage 1 iterates. Secondly,
we require that the first-order multiplier estimates are in the prescribed ranges:

-15(8k)jsl, j€Z, . 9)

Causes for Switching Back to Stage 1

The rules of this section are set up in order to ensure that if a Stage 2 iteration is
started with an improper active set then a switch back to Stage 1 will take place. The rules
for continuing in Stage 2 are the following.

[t is required that the active set Z, remains constant and that no inactive function
changes sign. It is required that the sign restrictions (9) hold on every iteration. Finally it is
required that the residuals r(x,8) corresponding to equation (6) decrease in every iteration in
the sense

lr(x, 1,8, , Dl < 0.99 v(x,, 8], (10)

[t has been shown in [3] that the method can only converge to stationary points.
Further, it has been shown that the final rate of convergence is either quadratic or super
linear, depending on whether the solution is regular or not. When a solution x is regular, n
functions (at least) are 0 at x. Finally, it has been shown that when the active set is correctly

chosen the Stage 2 iteration generates the same sequence of points as would be obtained if



Powell’s sequential quadratic programming method [7] were applied to a nonlinear
programming formulation of (2).

Several numerical examples, with n ranging between 2 and 8 and m ranging between
3 and 60, have been solved. In all cases a local minimum was found to more than 10 digits and

the number of function evaluations ranged between 5 and 27.

Fault Isolation in Analog Circuits Using the 81 Norm

This application of the new ¢, optimization algorithm deals with fault isolation in
linear analog circuits under an insufficient number of independent voltage measurements.
The ¢, norm is used to isolate the most likely faulty elements. Practically, the faulty
components are very few and the relative change in their values is significantly larger than in
the nonfaulty ones [8].

The method presented here is a modification of the method utilizing multiple test
vectors to obtain the measurements [9].

For k different excitations applied to the faulty network we consider the following

optimization problem.

n
Minimize > [|Ax /x| (11a)
X i=1
subject to
vVie-vit=o,
(11b)
VkC_ Vkln — 0 ,

A 0
where x 2 [x| X, ... x_

1T is a vector of network parameters, x° represents the nominal

parameter values, Ax, 2 X; - xio ,1 =1, 2, ..., n, represent the deviations in network

parameters from nominal values, V. is a p-dimensional vector of voltage measurements



performed at the accessible nodes for the kth excitation and V. ° is a p-dimensional vector of
voltages at accessible nodes calculated using the vector x as parameter values.
The corresponding nonlinear €, problem can be formulated based on an exact penalty

function [6] as follows.

n+kxp N
Minimize > |f(x)| (12)
X ji=1 ’
where
fl(X) é AXi/XiO, 1: 1’2,.”, n’ (13)
A .
£, ix 2 B(ve-v.m, i=1,2,.. kxp, (14)

and B, ,i=1,2, ..., kxp, are appropriate multipliers (satisfying certain conditions stated in [6]).
i p p

Mesh Network Example [9]

Consider the resistive network shown in Fig. 1 with the nominal values of elements G,
= 1.0 and tolerances g = + 0.05,i =1, 2, ..., 20. All outside nodes are assumed to be
accessible with node 12 taken as the reference node. Nodes 4, 5, 8 and 9 are assumed internal,
where no measurements can be performed.

Two faults are assumed in the network in elements Gy and Gg. For Case 1 we applied
the new ¢, algorithm to optimization problem (12) with a single excitatic-m at node 1. For Case
2 we considered two excitations applied at nodes 3 and 6 sequentially. The results of both
optimization problems are summarized in Table [. The nominal component values have been
used as a starting point since just a few elements change significantly from nomimal.

[n both cases the actual faulty elements have been identified, but in Case 2, the
estimated changes in the faulty elements are closer to their true values. Also some of the

changes in the nonfaulty components approach better their true values in Case 2.



The estimated changes in the faulty elements are much closer to the actual changes as
compared to the results reported in[9].

Parameter Identification Using the €1 Norm

In this application we deal with multi-coupled cavity narrow band-pass filters used in
microwave communication systems.

A narrow-band lumped model of an unterminated multi-cavity filter has been given
by Atia and Williams [10] as

Z1=V, (15)
where
Z=jsl1+ M), (16)
g_io_(ﬁ E)
T Aele, o/’

(1n

0
l denotes an nxn identity matrix and M an nxn coupling matrix whose (i, j) element

represents the normalized coupling between the ith and jth cavities.

In practice it is often desired to determine the actual filter couplings based on

response (return loss or insertion loss) measurements. The problem can be formulated as an

optimization problem with the ¢, objective function.

In this example we have used reflection coefficient as the filter response. The
formulation is as follows.

m
Minimize > [f(x, )|, (18)
X i=1

where

f(x,mj) 4 w(coj) (F€(x, ooj) -F™w.)),

(19
X is the vector of filter couplings to be identified, F° is the response calculated using the

current parameter values and F'™ is the measured response.



The filter response and its sensitivities are calculated using the formulas given in
[11].

A 6th order filter centered at 12000 MHz with 40 MHz bandwidth is considered.
Optimally designed filter parameters have been perturbed and the filter has been simulated.
Reflection coefficient at 23 frequency points is used as the specification (measured response).
The optimization problem (18) has been solved using optimal filter couplings as starting
values. The results of parameter identification are summarized in Table II.

An optimally designed 10th order filter in the 12 GHz region with parameters
perturbed from O};timal is considered as a second example of parameter identification. Using
reflection coefficient at 38 frequency points as the specifications all filter couplings have been
identified with accuracy sufficient to produce the same response as the perturbed system. The

results of parameter identification are shown in Figs. 2 and 3.
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TABLE I

RESULTS FOR THE MESH NETWORK EXAMPLE

Percentage Deviation

Element Nominal Actual
Value Value Actual Casel Case 2

Gl 1.0 0.98 -2.0 0.00 0.13
G2 1.0 0.50 -50.0* -48.78 -49.44
G3 1.0 1.04 4.0 0.00 3.60
G4 1.0 0.97 -3.0 0.00 0.00
G5 1.0 0.95 -5.0 -2.26 -1.71
G6 1.0 0.99 -1.0 0.00 0.00
G7 1.0 1.02 2.0 0.00 0.00
G8 1.0 1.05 5.0 0.00 0.00
Gy 1.0 1.02 2.0 2.80 0.97
GIO 1.0 0.98 -2.0 0.00 0.00
Gy, 1.0 1.04 4.0 0.00 0.00
Gy, 1.0 1.01 1.0 3.45 2.08
G13 1.0 0.99 -1.0 0.00 -0.44
Gy 1.0 0.98 -2.0 0.00 0.00
Gy 1.0 1.02 2.0 0.00 1.55
G16 1.0 0.96 -4.0 -2.42 -5.71
Gy, 1.0 1.02 2.0 0.00 2.67
Gyg 1.0 0.50 -50.0* -52.16 -48.94
G19 1.0 0.98 -2.0 0.00 -1.95
Gy 1.0 0.96 -4.0 -3.67 -4.88

Number of Function 8 8

Evaluations

Execution Time (secs)

on Cyber 170/815 3.0 3.9

* Faults
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TABLE II

RESULTS FOR THE 6TH ORDER FILTER EXAMPLE

Percentage Deviation

Coupling Actual Identified
M, 2.0 2.0
My, -1.0 -1.0
My, 5.0 5.0
M, 5.0 50
M, —4.0 -4.0
Mg -1.0 -1.0
Y 2.0 2.0
Number of Function 24
Evaluations
Execution Time (secs) 6.2

on Cyber 170/815




S12-

Fig. 1 The resistive mesh network.
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