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Abstract  —  We present a family of robust techniques for exploiting sensitivities in EM-based circuit 

optimization through Space Mapping (SM) technology.  We utilize derivative information for 

parameter extractions and mapping updates.  We exploit a Partial Space Mapping (PSM) concept 

where a reduced set of parameters is sufficient for parameter extraction optimization.  It reflects the 

idea of tuning and execution time is reduced.  Upfront gradients of both EM (fine) model and coarse 

surrogates can initialize possible mapping approximations.  We introduce several effective 

approaches for updating the mapping during the optimization iterations.  Examples include the 

classical Rosenbrock function, modified to illustrate the approach, a two-section transmission-line 

10:1 impedance transformer and a microstrip bandstop filter with open stubs. 

I. INTRODUCTION 

Using an EM simulator (“fine” model) inside an optimization loop for the design process of 

microwave circuits can be prohibitive.  Designers can overcome this problem by simplifying the 
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circuit through circuit theory or by using the EM simulator with a coarser mesh.  The Space Mapping 

(SM) approach [1-2] involves a suitable calibration of a fine model by a physically-based “coarse” 

surrogate.  The fine model may be time intensive, field theoretic and accurate, while the surrogate is 

a faster, circuit based but less accurate representation.  SM introduces an efficient way to describe the 

relationship between the fine model and its surrogate.  It makes effective use of the fast computation 

ability of the surrogate on the one hand and the accuracy of the fine model on the other. 

Surrogates in the context of filter design have been exemplified by Snel [3].  Practical 

benefits of empirical surrogates have also been demonstrated by Swanson and Wenzel [4].  They 

achieved optimal mechanical adjustments by iterating between a finite element simulator and circuit 

simulator. 

SM optimization involves the following steps.  The “surrogate” is optimized to satisfy design 

specifications [5], thus providing the target response.  A mapping is proposed between the parameter 

spaces of the fine model and its surrogate using a Parameter Extraction (PE) process.  Then, an 

inverse mapping estimates the fine model parameters corresponding to the (target) optimal surrogate 

parameters. 

We present, for the first time, new techniques to exploit exact sensitivities in EM-based 

circuit design in the context of SM technology.  If the EM simulator is capable of providing gradient 

information, these gradients can be exploited to enhance a coarse surrogate.  New approaches for 

utilizing derivatives in the parameter extraction process and mapping update are presented. 

We introduce also a new SM approach exploiting the concept of Partial Space Mapping 

(PSM).  Partial mappings were previously suggested in the context of Neural Space Mapping [6].  

Here, an efficient procedure exploiting a PSM concept is proposed.  Several approaches for utilizing 

response sensitivities and PSM are suggested. 
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Exact sensitivities have been developed for nonlinear, harmonic balance analyses [7] as well 

as implementable approximations such as the Feasible Adjoint Sensitivity Technique [8].  In the 90s 

Alessandri et al. spurred the recent application of the adjoint network method using a mode matching 

orientation [9].  Currently, we are developing the adjoint technique within a method of moments 

environment [10-11].  These techniques facilitate powerful gradient-based optimizers.  Our new work 

complements these efforts at gradient estimation for design optimization using EM simulations. 

II. AGGRESSIVE SPACE MAPPING 

A. Original Design Problem 

The original design problem is 

))((min arg*
ff

f
f U xrxx =  (1)

Here, the fine model response vector is denoted by rf ∈ℜm×1, e.g., |S11| at selected frequency points, 

where m is the number of sample points.  The fine model point is denoted xf∈ℜn×1, where n is the 

number of design parameters.  U is a suitable objective function.  For example, U could be the 

minimax objective function with upper and lower specifications.  xf
* is the optimal design to be 

determined. 

B. Parameter Extraction (PE) 

PE is a crucial step in any SM algorithm.  In the PE an optimization step is performed to 

extract a coarse model point xc corresponding to the fine model point xf that yields the best match 

between the fine model and its surrogate.  The information stored in the design response rf may not 

be sufficient to describe the system under consideration properly.  Thus, using only the design 

response in the PE may lead to nonuniqueness problems.  Therefore, we need to obtain more 

information about the system and exploit it to extract the “best” coarse point and avoid 
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nonuniqueness.  For example, we may use responses such as real and imaginary parts of S-parameters 

in the PE even though we need only the magnitude of S11 to satisfy a certain design criterion.  Now, 

we can assemble all the responses needed in the PE into one vector and define a new term, called a 

complete set of basic responses.  The complete set of basic responses is designated by R(x)∈ℜM×1, 

where M = m Nr, m is the number of simulation frequency points and Nr is the number of basic 

responses.  In this context, the fine and its surrogate (coarse) responses are denoted by Rf and Rc, 

respectively.  The traditional PE is described by the optimization problem 

)()(minarg )()(
cc

j
ff

c

j
c xRxR

x
x −=  (2)

C. Aggressive Space Mapping Approach 

Aggressive SM solves the nonlinear system 

0

0

=−=

=−=
*
cc

*
cf

xx

xxPf )(

 
(3)

for xf, where P is a mapping defined between the two model spaces and xc∈ℜn×1 is the corresponding 

point in the coarse space.  First-order Taylor approximations are given by 

))(()()( )()()( j
ff

j
fP

j
ff xxxJxPxP −+≈  (4)

This can be described as 

 PEThrough

)()()( ))(( j
ff

j
fP

j
cc xxxJxx −+≈  (5)

where the Jacobian of P at the jth iteration is expressed by 

T

j
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Equation (5) illustrates the nonlinearity of the mapping, where xc
(j) is related to xf

(j) through the PE 

process which is a nonlinear optimization problem.  Recalling (4) and (5) we state a useful definition 

of the mapping Jacobian at the jth iteration 

PE

)(
)( )(

T

f

Tj
cj

P ∂
∂

=
∆

x
x

J  (7)

We designate an approximation to this Jacobian by the square matrix B∈ℜn×n, i.e., B ≈ Jp(xf ). 

From (3) and (5) we can formulate the system 

0=−+− + )()( )()1()(*)( j
f

j
f

j
c

j
c xxBxx  (8)

which can be rewritten in the useful form 

)()()( jjj fhB −=  (9)

Solving (9) for h(j), the quasi-Newton step in the fine space, provides the next tentative iterate xf
(j+1) 

)()()1( jj
f

j
f hxx +=+  (10)

III.  PROPOSED ALGORITHMS 

A. PE Exploiting Sensitivity 

We exploit the availability of the gradients of the fine model and surrogate responses to 

enhance the PE process.  The Jacobian of the fine model basic responses Jf at xf and the 

corresponding Jacobian of the surrogate responses Jc at xc can be obtained.  Adjoint sensitivity 

analysis could be used to provide the exact derivatives, while finite differences are employed to 

estimate the derivatives if the exact derivatives are not available.  Here, we present a new technique 

to formulate the PE to take into account not only the responses of the fine and its surrogate, but the 

corresponding gradients as well. 
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Through the traditional PE process as in (2) we can obtain the point xc that corresponds to xf 

such that 

cf RR ≈  (11)

Differentiating both sides of (11) w.r.t. xf , we obtain 
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  (12)

Using (7) the relation (12) can be simplified to [12] 

BJJ cf ≈  (13)

where Jf  and Jc ∈ℜM×n. Relation (13) assumes that Jc is full rank and M ≥ n, where M is the 

dimensionality of both Rf and Rc.  Solving (13) for B yields a least squares solution [12] 

f
T
cc

T
c JJJJB 1)( −=  (14)

At the jth iteration we obtain xc
(j) through a Gradient Parameter Extraction (GPE) process.  In 

GPE, we match not only the responses but also the derivatives of both models through the 

optimization problem 

0  , ][minarg 10
)( ≥= λλλ TT

n
TTj

c
c

eeexx L  (15)

where λ is a weighting factor, E = [e1 e2 … en] and 

BxJxJE

xRxRe

)()(

)()(
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0

cc
j

ff

cc
j

ff

−=

−=
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The nonuniqueness in the PE may lead to divergence or oscillatory behavior.  Exploiting 

available gradient information enhances the uniqueness of the PE process.  It also reflects the idea of 
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Multi-Point Extraction (MPE) [13-14] in which simultaneously matching of a number of points of 

both spaces is taken place. 

B. Partial Space Mapping (PSM) 

Utilizing a reduced set of the physical parameters of the coarse space might be sufficient to 

obtain an adequate surrogate for the fine model.  A selected set of the design parameters are mapped 

onto the coarse space and the rest of them, xs
f ⊂ xf, are directly passed.  The mapped coarse 

parameters are denoted by xc
PSM ∈ ℜk×1, k≤n, where n is the number of design parameters.  PSM is 

illustrated in Fig. 1.  It can be represented in the matrix form by 

== s
f

fPSM
s
f

PSM
c

c x
xP

x
x

x
)(

 (17)

In this context (13) becomes 

PSMPSM
cf BJJ ≈  (18)

where BPSM∈ℜk×n and Jc
PSM ∈ℜM×k is the Jacobian of the coarse model at xc

PSM.  Solving (18) for 

BPSM yields the least squares solution at the jth iteration 

)()(1)()()( )( j
f

TjPSM
c

jPSM
c

TjPSM
c

jPSM JJJJB −=  (19)

Relation (9) becomes underdetermined since BPSM is a fat rectangular matrix, i.e., the number of 

columns is greater than the number of rows.  The minimum norm solution for h(j) is given by 

)()( )(1)()()()(
norm min

jTjPSMjPSMTjPSMj fBBBh −= −  (20)

The coarse model parameters xc
PSM used in the PE can be determined by the sensitivity 

analysis proposed by Bandler et al. [15].  It chooses the parameters that the coarse model response is 

sensitive to. 
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C. Mapping Update Alternatives 

If we have exact derivatives of both the fine and coarse model, we can use them to obtain B at 

each iteration using a least squares solution as in (14).  Note that this matrix can be iteratively fed 

back into the GPE process and refined before making a step in the fine model space.  We can also use 

(19) to update BPSM(j). 

If we do not have exact derivatives, various approaches to initializing or constraining B and 

BPSM can be devised, for example, we can use finite differences (perturbations).  Either matrix may be 

updated using a Broyden update [16].  Hybrid schemes can be formally developed following the 

integrated gradient approximation approach to optimization by Bandler et al. [17].  One hybrid 

approach incorporates the use of perturbations and Broyden formula.  Utilizing this approach reduces 

the effort of calculating exact derivatives.  Perturbations are used to obtain an initial good 

approximation to B and BPSM at the starting point.  Then, the Broyden formula is used to update both 

matrices in the subsequent iterations. 

On the assumption that the fine and coarse models share the same physical background, Bakr 

et al. [18] suggested that B could be better conditioned, in the PE process, if it is constrained to be 

close to the identity matrix I by 

2

211 ][minarg TT
n

TT
n

T bbeeB
B

∆∆= ηη LL  (21)

where η is a weighting factor, ei and ∆bi are the ith columns of E and ∆B, respectively, defined as 

IBB

BJJE

−=∆

−=   cf  (22)

The analytical solution of (21) is given by 
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)()( 212 IJJIJJB ηη ++= −
f

T
cc

T
c  (23)

D. Proposed Algorithms 

Algorithm 1 Full Mapping/GPE/Broyden update 

Step 1  Set j = 1.  Initialize B = I for the PE process.  Obtain the optimal coarse model design 

xc
* and use it as the initial fine model point 

))((minarg*)1(
cc

c

cf U xr
x

xx ==  (24)

Comment Minimax optimization is used to obtain the optimal coarse solution. 

Step 2   Execute a preliminary GPE step as in (15). 

Comment We match the responses and the corresponding gradients.  

Step 3   Stop if 

2
*)(

1
)( or  εε <−< c

j
f

j RRf  (25)

Comment Loop until the stopping conditions are satisfied. 

Step 4   Solve (9) for h(j). 

Step 5   Find the next xf
(j+1) using (10). 

Step 6   Perform GPE as in (15). 

Step 7   Update B(j) using a Broyden formula. 

Step 8  Set j =j+1 and go to Step 3. 

Algorithm 2 Partial SM/GPE 

Step 1  Set j = 1.  Initialize B = I for the PE process. Obtain the optimal coarse model design 

xc
* and use it as the initial fine model point as in (24). 

Step 2   Execute a preliminary GPE step as in (15). 
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Step 3   Initialize the mapping matrix BPSM using (19). 

Comment A least squares solution is used to initialize a rectangular matrix BPSM. 

Step 4   Stop if (25) holds. 

Comment Loop until the stopping conditions are satisfied. 

Step 5   Evaluate h(j) using (20). 

Comment This a minimum norm solution for a quasi-Newton step h(j) in the fine space. 

Step 6   Find the next xf
(j+1) using (10). 

Step 7   Perform GPE as in (15). 

Step 8   Use (19) to obtain BPSM(j). 

Comment A least squares solution is used to update BPSM at each iteration. 

Step 9   Set j =j+1 and go to Step 4. 

Algorithm 3 Partial SM/PE/Hybrid approach for mapping update 

Step 1  Set j = 1.  Initialize B = I for the PE process. Obtain the optimal coarse model design 

xc
* and use it as the initial fine model point as in (24). 

Step 2   Execute a preliminary traditional PE step as in (2). 

Step 3   Initialize the mapping matrix BPSM using (19). 

Comment A least squares solution is used to initialize a rectangular matrix BPSM. 

Step 4   Stop if (25) holds. 

Comment Loop until the stopping conditions are satisfied. 

Step 5   Evaluate h(j) using (20). 

Step 6   Find the next xf
(j+1) using (10). 

Step 7   Perform traditional PE as in (2). 
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Step 8   Update BPSM(j) using a Broyden formula. 

Comment A hybrid approach is used to update BPSM at each iteration. 

Step 9  Set j =j+1 and go to Step 4. 

The output of the algorithms is the fine space mapped optimal design fx and the mapping 

matrix B (Algorithm 1) or BPSM (Algorithms 2 and 3). 

IV. EXAMPLES  

A. Rosenbrock Banana Problem [12], [19] 

Test problems based on the classical Rosenbrock banana function are studied.  We let the 

original Rosenbrock function 

2
1

22
12 )1()(100 xxxRc −+−=  (26)

be a “coarse” model.  The optimal solution is xc
* = [1.0  1.0]T.  A contour plot is shown in Fig. 2. 

Case 1 Shifted Rosenbrock Problem 

We propose a “fine” model as a shifted Rosenbrock function 

( ) ( )2
11

22
1122 )(1)()(100 ααα +−++−+= xxxRf  (27)

where 

−
==

2.0
2.0

2

1

α
α

α  (28)

The optimal fine model solution is xf
* = xc

* – α = [1.2  0.8]T.  See Fig. 3 for a contour plot. 

We apply Algorithm 1.  Exact “Jacobians” Jf and Jc are used in the GPE process.  The 

algorithm converges in one iteration to the exact solution.  See Table I. 

Case 2 Transformed Rosenbrock Problem 

A “fine” model is described by the transformed Rosenbrock function 
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2
1

22
12 )1()(100 uuuRf −+−=  (29)

where 

−
+

−
=

3.0
3.0

9.02.0
2.01.1

xu  (30)

The exact solution evaluated by the inverse transformation is xf
* =  [1.2718447  0.4851456]T to seven 

decimals.  A contour plot is shown in Fig. 4.  Applying Algorithm 1 we get the exact solution, to high 

accuracy, in six iterations.  Typically, for 0.1% accuracy, three iterations are enough. See Table II for 

details. 

B. Capacitively Loaded 10:1 Impedance Transformer [20] 

We apply Algorithm 2 to a two-section transmission-line 10:1 impedance transformer.  We 

consider a “coarse” model as an ideal two-section transmission line (TL), where the “fine” model is a 

capacitively loaded TL with capacitors C1 = C2 = C3 = 10 pF.  The fine and coarse models are shown 

in Fig. 5 and Fig. 6, respectively.  Design parameters are normalized lengths L1 and L2, with respect 

to the quarter-wave length Lq at the center frequency 1 GHz, and characteristic impedances Z1 and Z2.  

Normalization makes the problem well posed.  Thus, xf = [L1 L2 Z1 Z2]T.  Design specifications are 

GHz 5.1GHz 5.0for ,5.011 ≤≤≤ ωS  

with eleven points per frequency sweep.  We utilize the real and imaginary parts of S11 in the GPE 

(15).  The fine and surrogate responses can be easily computed as a function of the design parameters 

using circuit theory [21].  We solve (15) using the Levenberg-Marquardt algorithm for nonlinear least 

squares optimization available in the Matlab  Optimization Toolbox [22]. 

Case 1  Based on a sensitivity analysis [15] for the design parameters of the coarse model shown in 

Table III we note that the normalized lengths [L1 L2] are the key parameters.  Thus, we consider xc
PSM 
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= [L1 L2]T while xf
s = [Z1 Z2]T are kept fixed at the optimal values, i.e., Z1 = 2.23615 Ω and Z2 = 

4.47230 Ω.  We employ adjoint sensitivity analysis techniques [23] to obtain the exact Jacobians of 

the fine and coarse models.  We initialize BPSM by using the Jacobian information of both models at 

the starting point as in (19).  The algorithm converges in a single iteration (2 fine model evaluations).  

The corresponding responses are illustrated in Figs. 7 and 8, respectively.  The final mapping is 

−−
−

=
0.006101.01.079101.0
0.002009.0017.0044.1PSMB  

 

This result confirms the sensitivity analysis presented in Table III.  It supports our decision of 

taking into account only [L1 L2], represented by the first and the second columns in BPSM, as design 

parameters.  As is well-known, the effect of the capacitance in the fine model can only be 

substantially compensated by a change of the length of a TL.  Therefore, changes of [Z1 Z2] hardly 

affect the final response. 

The reduction of ||xc – xc
*||2 versus iteration is shown in Fig. 9.  The reduction of the objective 

function U in Fig. 10 also illustrates convergence (two iterations). 

Case 2. We apply Algorithm 2 for xc
PSM = [L1].  The result is similar to Fig. 10.  Convergence is in a 

single iteration (2 fine model evaluations).  The final mapping is 

[ ]00297.00092.0685.0133.1=PSMB   

As we see changes in [L1], represented by the first element in BPSM, are significant.  However, 

the second parameter [L2] is affected also.  This arises from the fact that [L1 L2] have the same 

physical effect, namely, that of length in a TL. 

Case 3  We apply Algorithm 2 for xc
PSM = [L2].  The result is similar to Fig. 10 and it converges in a 

single iteration (2 fine model evaluations).  The final mapping is 
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[ ]0092.00027.0186.1067.1 −=PSMB   

As in case 2, changes in one parameter, [L2] in this case, have the dominant role.  This affects 

[L1], the parameter which shares the same physical nature. 

The initial and final designs for all three cases are shown in Table IV.  We realize that the 

algorithm aims to rescale the TL lengths to match the responses in the PE process (see Fig. 7).  In all 

cases both [L1 L2] are reduced by similar overall amounts, as expected. 

By carefully choosing a reduced set of design parameters we can affect other “redundant” 

parameters and the overall circuit response as well, which implies the idea of tuning.  Nevertheless, 

the use of the entire set of design parameters should give the best result. 

C. Bandstop Microstrip Filter with Open Stubs [Error! Bookmark not defined.] 

Algorithm 3 is applied to a symmetrical bandstop microstrip filter with three open stubs.  The 

open stub lengths are L1, L2, L1 and W1, W2, W1 are the corresponding stub widths.  An alumina 

substrate with thickness H = 25 mil, width W0 = 25 mil, dielectric constant εr = 9.4 and loss tangent = 

0.001 is used for a 50 Ω feeding line.  The design parameters are xf = [W1 W2 L0 L1 L2]T.  The design 

specifications are 

GHz 8 and GHz 12for   9.0

and,  GHz 7.10GHz 3.9for 05.0

21

21

≤≤≥

≤≤≤

ωω

ω

S

S
 

Sonnet’s em  [24] driven by Empipe  [25] is employed as the fine model, using a high-

resolution grid with a 1mil×1mil cell size.  As a coarse model we use simple transmission lines for 

modeling each microstrip section and classical formulas [21] to calculate the characteristic 

impedance and the effective dielectric constant of each transmission line.  It is seen that Lc2 = L2 + 

W0/2, Lc1 = L1 + W0/2, and Lc0 = L0 + W1/2 + W2/2.  We use OSA90/hope  [25] built-in transmission 
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line elements TRL.  The fine model and its surrogate coarse model are illustrated in Figs. 11 and 12, 

respectively. 

Using OSA90/hope  we can get the optimal coarse solution at 10 GHz as xc
* = [4.560 9.351 

107.80 111.03 108.75]T (in mils).  We use 21 points per frequency sweep.  The coarse and fine model 

responses at the optimal coarse solution are shown in Fig. 13 (fine sweep is used only for 

illustration).  We utilize the real and imaginary parts of S11 and S21 in the traditional PE.  Sensitivity 

analysis for the coarse model is given in Table V.  During the PE we consider xc
PSM = [L1 L2]T while 

xf
s = [W1 W2 L0]T are held fixed at the optimal coarse solution.  Finite differences estimate the fine 

and coarse Jacobians used to initialize BPSM as in (19).  A hybrid approach is used to update BPSM at 

each iteration. 

Algorithm 3 converges in 5 iterations.  The PE execution time for the whole process is 59 min 

on an IBM-IntelliStation (AMD Athlon 400MHz) machine.  The optimal coarse model response and 

the final design fine response are depicted in Fig. 14.  The convergence of the algorithm is depicted 

in Fig. 15, where the reduction of ||xc – xc
*||2 versus iteration is illustrated.  The initial and final 

design values are shown in Table VI.  The final mapping is given by 

−−
=

470.0024.0126.0154.0029.0
214.0911.0209.0168.0570.0PSMB  

 

We notice that [L1 L2], represented by the last two columns, are dominant parameters. 

We run Algorithm 3 using all design parameters in the PE and in calculating the quasi-

Newton step in the fine space, i.e., we use a full mapping.  The algorithm converges in 5 iterations, 

however, the PE process takes 75 min on an IBM-IntelliStation (AMD Athlon 400MHz) machine.  

The initial and final designs are given in Table VII.  The final mapping is 
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−−−−
−−

−−
−−

=

958.0052.0045.0003.0213.0
008.0963.0022.0001.0169.0
011.0073.0024.1251.0415.0
026.0032.0022.0543.0051.0
006.0017.0026.0037.0532.0

B  

 

The reduction of ||xc – xc
*||2 versus iteration is shown in Fig. 16. 

The notion of tuning is evident in this example also, where the various lengths and widths 

which constitute the designable parameters (see Fig. 11) have obvious physical interrelations. 

V. CONCLUSIONS 

We present a family of robust techniques for exploiting sensitivities in EM-based circuit 

optimization through SM.  We exploit a Partial Space Mapping (PSM) concept where a reduced set of 

parameters is sufficient in the Parameter Extraction (PE) process.  Available gradients can initialize 

mapping approximations.  Exact or approximate Jacobians of responses can be utilized.  For 

flexibility, we propose different possible “mapping matrices” for the PE processes and SM iterations.  

Finite differences may be used to initialize the mapping.  A hybrid approach incorporating the 

Broyden formula can be used for mapping updates.  Our approaches have been tested on several 

examples. 

Final mappings are useful in statistical analysis and yield optimization.  Furthermore, the 

notion of exploiting reduced sets of physical parameters reflects the important idea of postproduction 

tuning. 
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TABLE I 
“SHIFTED” ROSENBROCK BANANA PROBLEM 

 

Iteration )( j
cx  )( jf  )( jB  )( jh  )( j

fx  )( j
fR  

0 0.1
0.1

 --- --- --- 
0.1
0.1

 
31.4 

1 2.1
8.0

 
−

2.0
2.0

 0.10.0
0.00.1

 
− 2.0

2.0
 8.0

2.1
 0 

 
0.1
0.1

 0
0

 
    

 
 
 
 
 

TABLE II 
“TRANSFORMED” ROSENBROCK BANANA PROBLEM 

 

Iteration )( j
cx  )( jf  )( jB  )( jh  )( j

fx  )( j
fR  

0 0.1
0.1

 --- --- --- 0.1
0.1

 108.3 

1 384.1
526.0

 
−

384.0
474.0

 
−

01.101.0
05.001.1

 
− 385.0

447.0
 615.0

447.1
 5.119 

2 178.1
185.1

 178.0
185.0

 −
−

06.1096.0
12.096.0

 
−
−

187.0
218.0

 427.0
23.1

 4.4E–3 

3 929.0
967.0

 −
−

071.0
033.0

 
−

92.0168.0
19.009.1

 
0697.0
0429.0

 497.0
273.1

 1.8E–6 

4 001.1
001.1

 001.0
001.0

 
−

9001.01999.0
1999.010001.1

−
−

002.0
001.0

 4952.0
2719.1

 5E–10 

5 00004.1
00002.1

 −
−

4E4.0
4E2.0

 
−

9.02.0
2.01.1

 −
−

4E5.0
4E3.0

 4951.0
2718.1

 3E–17 

6 0.1
0.1

 −
−

8E3.0
8E1.0

 
−

9.02.0
2.01.1

 −
−

8E3.0
8E2.0

 xf
* 9E–29 
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TABLE III 
COARSE MODEL SENSITIVITIES WITH RESPECT TO THE DESIGN PARAMETERS  

FOR THE CAPACITIVELY LOADED IMPEDANCE TRANSFORMER 
 

Parameter iŜ  

L1 0.98 

L2 1.00 

Z1 0.048 

Z2 0.048 
 

TABLE IV 
INITIAL AND FINAL DESIGNS FOR  

THE CAPACITIVELY LOADED IMPEDANCE TRANSFORMER 
 

Parameter xf
(0) xf

(1) 

(L1 and L2) 

xf
(1) 

(L1) 

xf
(1) 

(L2) 

L1 1.0 0.9105 0.8363 0.8644 

L2 1.0 0.8089 0.9007 0.8488 

Z1 2.23615 2.2371 2.2347 2.2364 

Z2 4.47230 4.4708 4.4716 4.4709 

L1 and L2 are normalized lengths 

Z1 and Z2 are in ohm 

 
TABLE V 

COARSE MODEL SENSITIVITIES WITH RESPECT TO DESIGN PARAMETERS  
FOR THE BANDSTOP MICROSTRIP FILTER 

 

Parameter iŜ  

W1 0.065 

W2 0.077 

L0 0.677 

L1 1.000 

L2 0.873 
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TABLE VI 
INITIAL AND FINAL DESIGNS FOR 

THE BANDSTOP MICROSTRIP FILTER USING L1 AND L2 
 

Parameter xf
(0) xf

(5) 

W1 4.560 7.329 

W2 9.351 10.672 

L0 107.80 109.24 

L1 111.03 115.53 

L2 108.75 111.28 

All values are in mils 

 
 

TABLE VII 
INITIAL AND FINAL DESIGNS FOR 

THE BANDSTOP MICROSTRIP FILTER USING A FULL MAPPING 
 

Parameter xf
(0) xf

(5) 

W1 4.560 8.7464 

W2 9.351 19.623 

L0 107.80 97.206 

L1 111.03 116.13 

L2 108.75 113.99 

All values are in mils 
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Fig. 1.  Partial Space Mapping (PSM). 
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Fig. 2.  Contour plot of the “coarse” original Rosenbrock banana function. 
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Fig. 3.  Contour plot of the “fine” shifted Rosenbrock banana function. 
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Fig. 4.  Contour plot of the “fine” transformed Rosenbrock banana function. 
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Fig. 5.  Two-section impedance transformer: “fine” model. 
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Fig. 6.  Two-section impedance transformer: “coarse” model. 
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Fig. 7.  Optimal coarse model target response (—), the fine model response at the starting point 
(•) for the capacitively loaded 10:1 transformer with L1 and L2 as the PSM coarse model 
parameters. 
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Fig. 8.  Optimal coarse model target response (—), the fine model response at the final design (•) 
for the capacitively loaded 10:1 transformer with L1 and L2 as the PSM coarse model parameters. 
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Fig. 9.  ||xc – xc
*||2 versus iteration for the capacitively loaded 10:1 transformer with L1 and L2 as 

the PSM coarse model parameters. 
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Fig. 10.  U versus iteration for the capacitively loaded 10:1 transformer with L1 and L2 as the 
PSM coarse model parameters. 
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Fig. 11.  “Fine” model for the bandstop microstrip filter with open stubs. 
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Fig. 12.  “Coarse” model for the bandstop microstrip filter with open stubs. 
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Fig. 13.  Optimal OSA90/hope coarse target response (—) and em fine model response at the 
starting point (•) for the bandstop microstrip filter using a fine frequency sweep (51 points) with 
L1 and L2 as the PSM coarse model parameters. 
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Fig. 14.  Optimal OSA90/hope coarse target response (—) and em fine model response at the 
final design (•) for the bandstop microstrip filter using a fine frequency sweep (51 points) with 
L1 and L2 as the PSM coarse model parameters. 
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Fig. 15.  ||xc – xc
*||2 versus iteration for the bandstop microstrip filter using L1 and L2 as the PSM 

coarse model parameters. 
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Fig. 16.  ||xc – xc
*||2 versus iteration for the bandstop microstrip filter using a full mapping. 
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