EM-Based Optimization Exploiting Partial Space Mapping and Exact Sensitivities

J.W. Bandler, A.S. Mohamed, M.H. Bakr, K. Madsen and J. Søndergaard

Simulation Optimization Systems Research Laboratory McMaster University

Bandler Corporation, www.bandler.com john@bandler.com

presented at

2002 IEEE MTT-S International Microwave Symposium, Seattle, WA, June 02, 2002

Outline

ASM for microwave circuit design

Gradient Parameter Extraction (GPE)

Partial Space Mapping (PSM)

mapping update

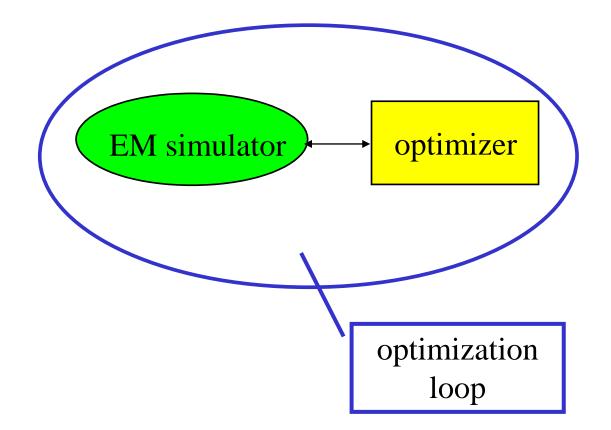
proposed algorithm

examples

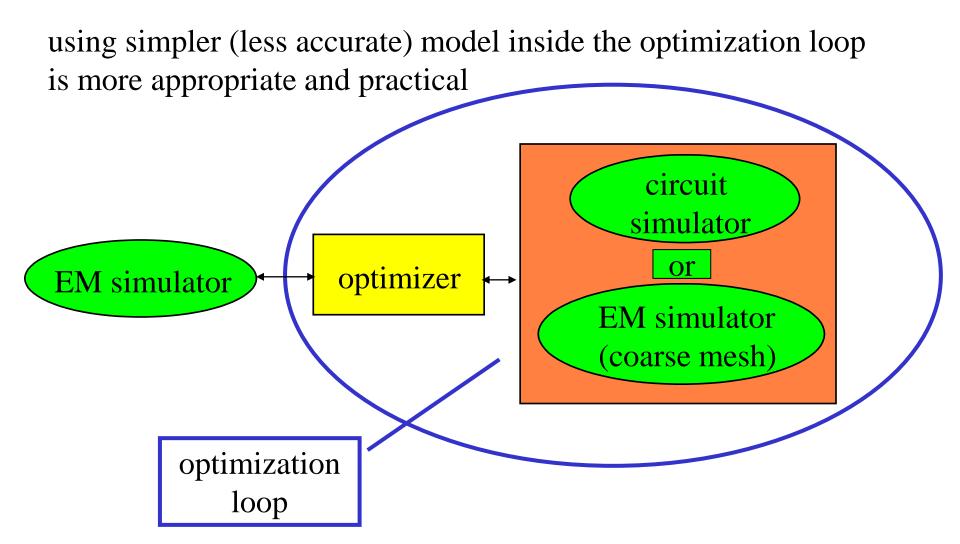
conclusions

Introduction

using full wave EM simulator (fine model) inside the optimization loop is prohibitive

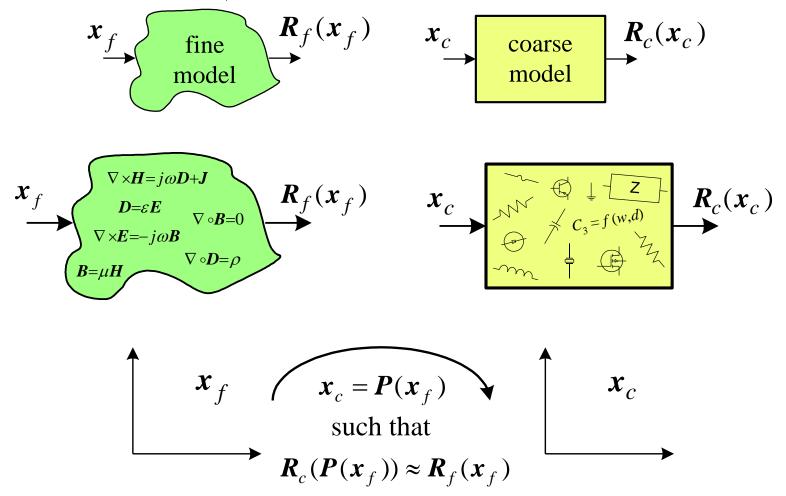


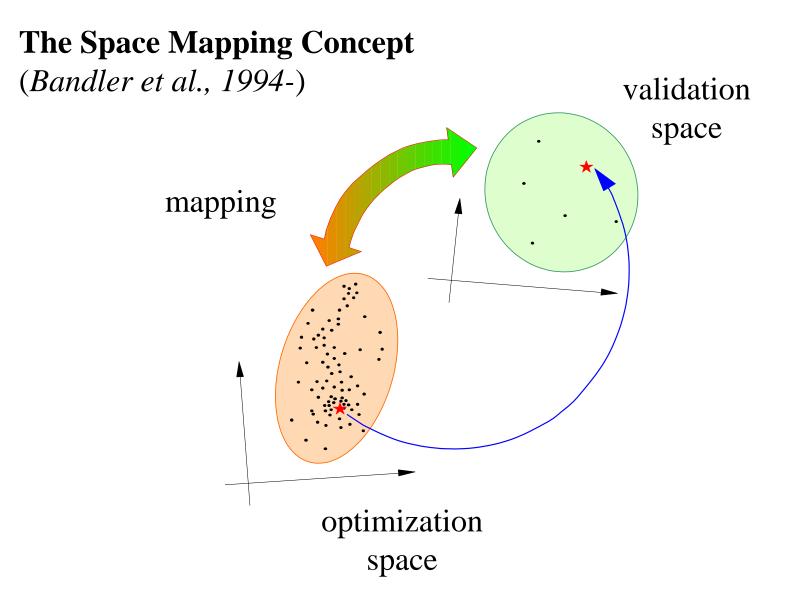
Introduction



The Space Mapping Concept

(Bandler et al., 1994-)







Jacobian-Space Mapping Relationship (*Bakr et al., 1999*)

through PE we match the responses

$$\boldsymbol{R}_f(\boldsymbol{x}_f) \approx \boldsymbol{R}_c(\boldsymbol{P}(\boldsymbol{x}_f))$$

by differentiation

$$\left(\frac{\partial \boldsymbol{R}_{f}^{T}}{\partial \boldsymbol{x}_{f}}\right)^{T} \approx \left(\frac{\partial \boldsymbol{R}_{c}^{T}}{\partial \boldsymbol{x}_{c}}\right)^{T} \cdot \left(\frac{\partial \boldsymbol{x}_{c}^{T}}{\partial \boldsymbol{x}_{f}}\right)^{T}$$

Jacobian-Space Mapping Relationship (*Bakr et al., 1999*)

given coarse model Jacobian J_c and space mapping matrix B we estimate

$$\boldsymbol{J}_f(\boldsymbol{x}_f) \approx \boldsymbol{J}_c(\boldsymbol{x}_c)\boldsymbol{B}$$

given J_c and J_f we estimate (least squares)

$$\boldsymbol{B} \approx (\boldsymbol{J}_c^T \boldsymbol{J}_c)^{-1} \boldsymbol{J}_c^T \boldsymbol{J}_f$$

Gradient Parameter Extraction (GPE)

at the *j*th iteration

$$\boldsymbol{x}_{c}^{(j)} = \arg\min_{\boldsymbol{X}_{c}} \| [\boldsymbol{e}_{0}^{T} \quad \lambda \boldsymbol{e}_{1}^{T} \quad \cdots \quad \lambda \boldsymbol{e}_{n}^{T}]^{T} \|, \ \lambda \geq 0$$

where λ is a weighting factor and $\boldsymbol{E} = [\boldsymbol{e}_1 \, \boldsymbol{e}_2 \, \dots \, \boldsymbol{e}_n]$

$$\boldsymbol{e}_0 = \boldsymbol{R}_f(\boldsymbol{x}_f^{(j)}) - \boldsymbol{R}_c(\boldsymbol{x}_c)$$
$$\boldsymbol{E} = \boldsymbol{J}_f(\boldsymbol{x}_f^{(j)}) - \boldsymbol{J}_c(\boldsymbol{x}_c)\boldsymbol{B}$$

Partial Space Mapping (PSM)

- a few coarse parameters may be sufficient
- elapsed optimization time is reduced
- reflects the idea of postproduction tuning

Partial Space Mapping (PSM)

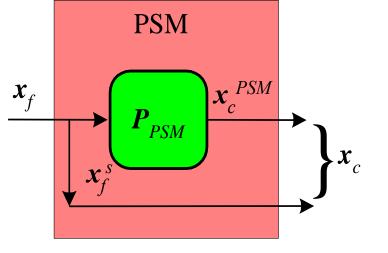
$$\boldsymbol{x}_{c} = \begin{bmatrix} \boldsymbol{x}_{c}^{PSM} \\ \boldsymbol{x}_{f}^{s} \end{bmatrix} = \begin{bmatrix} \boldsymbol{P}_{PSM}(\boldsymbol{x}_{f}) \\ \boldsymbol{x}_{f}^{s} \end{bmatrix}$$

the Jacobian-PSM relationship

$$\boldsymbol{J}_{f} \approx \boldsymbol{J}_{c}^{PSM} \boldsymbol{B}^{PSM}$$

the minimum norm solution for a quasi-Newton step h

$$\boldsymbol{h}_{\min norm}^{(j)} = \boldsymbol{B}^{PSM(j)T} (\boldsymbol{B}^{PSM(j)} \boldsymbol{B}^{PSM(j)T})^{-1} (-\boldsymbol{f}^{(j)})$$



Mapping Update Using Exact Derivatives

$$\boldsymbol{B}^{PSM(j)} = (\boldsymbol{J}_{c}^{PSM(j)T} \boldsymbol{J}_{c}^{PSM(j)})^{-1} \boldsymbol{J}_{c}^{PSM(j)T} \boldsymbol{J}_{f}^{(j)}$$

Mapping Update Using Hybrid Approach

finite difference initialization used

$$\boldsymbol{B}^{PSM(0)} = (\boldsymbol{J}_{c}^{PSM(0)T} \boldsymbol{J}_{c}^{PSM(0)})^{-1} \boldsymbol{J}_{c}^{PSM(0)T} \boldsymbol{J}_{f}^{(0)}$$

then update using Broyden formula

Mapping Update By Constraining *B* (*Bakr et al., 2000*)

$$\boldsymbol{B} = (\boldsymbol{J}_c^T \boldsymbol{J}_c + \eta^2 \boldsymbol{I})^{-1} (\boldsymbol{J}_c^T \boldsymbol{J}_f + \eta^2 \boldsymbol{I})$$

Proposed PSM/GPE Algorithm

- Step 1 set j = 1, $\boldsymbol{B} = \boldsymbol{I}$ for the PE process
- Step 2 obtain the optimal coarse model design x_c^*
- Step 3 set $\boldsymbol{x}_{f}^{(1)} = \boldsymbol{x}_{c}^{*}$
- Step 4 if derivatives exist execute GPE otherwise, execute the traditional PE with $\lambda = 0$
- Step 5 initialize the mapping matrix B^{PSM}
- *Step* 6 stop if

$$\left\| \boldsymbol{f}^{(j)} \right\| < \varepsilon_1 \text{ or } \left\| \boldsymbol{R}_f^{(j)} - \boldsymbol{R}_c^* \right\| < \varepsilon_2$$

Proposed PSM/GPE Algorithm (continued)

Step 7 evaluate $h^{(j)}$ using

$$\boldsymbol{h}_{\min norm}^{(j)} = \boldsymbol{B}^{PSM(j)T} (\boldsymbol{B}^{PSM(j)} \boldsymbol{B}^{PSM(j)T})^{-1} (-\boldsymbol{f}^{(j)})$$

- Step 8 find the next $\mathbf{x}_{f}^{(j+1)}$
- *Step* 9 perform GPE or PE as in Step 4

Step 10 if derivatives exist obtain $B^{PSM(j)}$ using

$$\boldsymbol{B}^{PSM(j)} = (\boldsymbol{J}_{c}^{PSM(j)T} \boldsymbol{J}_{c}^{PSM(j)})^{-1} \boldsymbol{J}_{c}^{PSM(j)T} \boldsymbol{J}_{f}^{(j)}$$

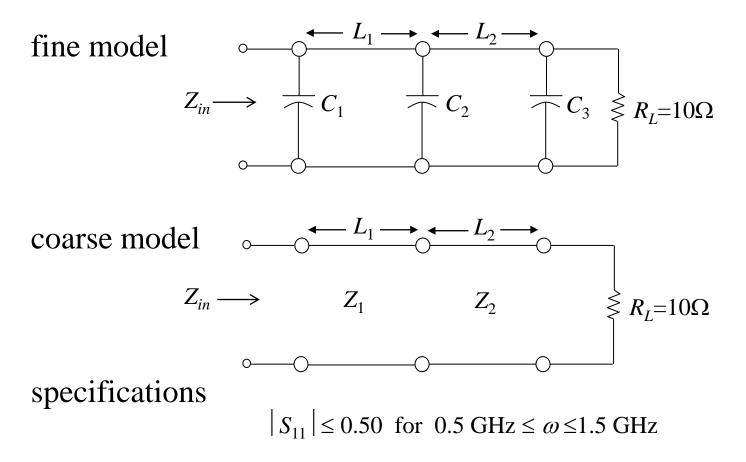
otherwise update $B^{PSM(j)}$ using a Broyden formula

Proposed PSM/GPE Algorithm (continued)

Step 11 set j = j+1 and go to *Step* 6

the result is the solution \overline{x}_{f} and mapping matrix B^{PSM}

A Two-section 10:1 Capacitively-loaded Impedance Transformer (*Bakr et al. 2000*)



Optimization of the Impedance Transformer

consider $\mathbf{x}_c^{PSM} = [L_1 L_2]^T$ while $\mathbf{x}_f^s = [Z_1 Z_2]^T$ kept fixed at the optimal solution during the PE

exact adjoint sensitivity analysis gives J_c and J_f

exact derivatives to update mapping

the final mapping is

$$\boldsymbol{B}^{PSM} = \begin{bmatrix} 1.044 & -0.017 & 0.009 & 0.002 \\ -0.011 & 1.079 & -0.011 & 0.006 \end{bmatrix}$$

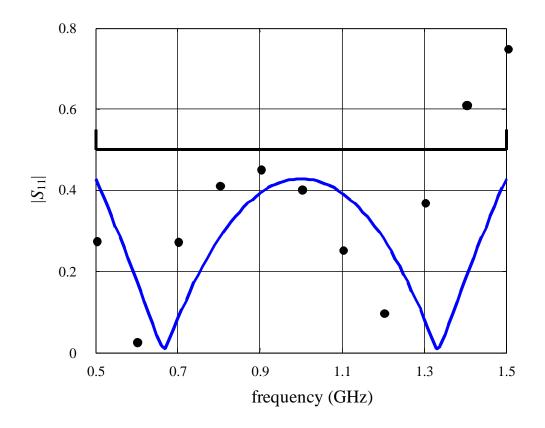
Optimization of the Impedance Transformer (continued)

initial and final designs

parameter	$\chi_f^{(0)}$	$x_f^{(1)}$			
L_1	1.0	0.9111			
L_2	1.0	0.8082			
Z_1	2.2362	2.2371			
Z_2	4.4723	4.4708			
L_1 and L_2 are normalized lengths					
Z_1 and Z_2 are in ohm					

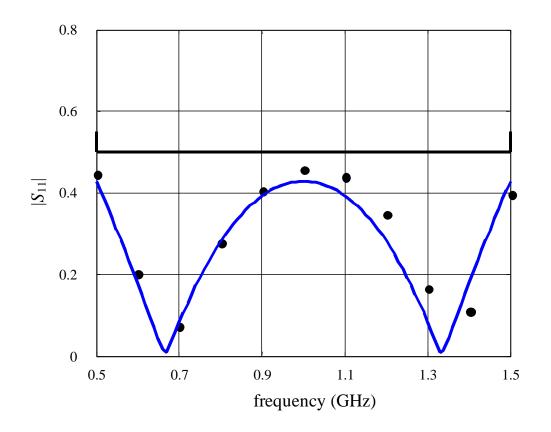
Optimization of the Impedance Transformer (continued)

initial coarse model (target) response(-) initial fine model response (•)



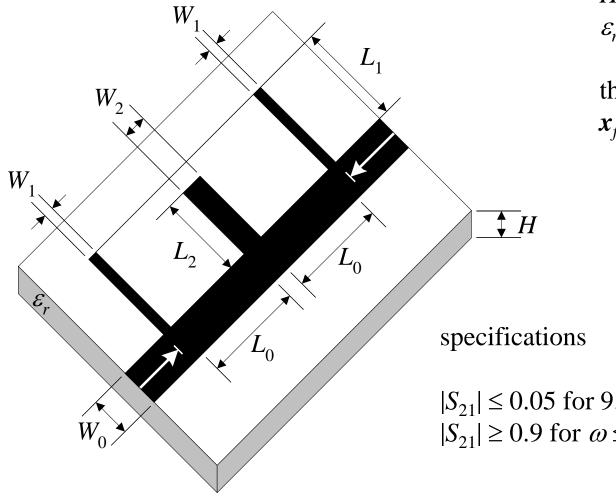
Optimization of the Impedance Transformer (continued)

initial coarse model (target) response (-) final fine model response (•)



Bandstop Microstrip Filter with Quarter-Wave Open Stubs

(*Bakr et al., 2000*)



 $H = 25 \text{ mil}, W_0 = 25 \text{ mil},$ $\varepsilon_r = 9.4 \text{ (alumina)}$

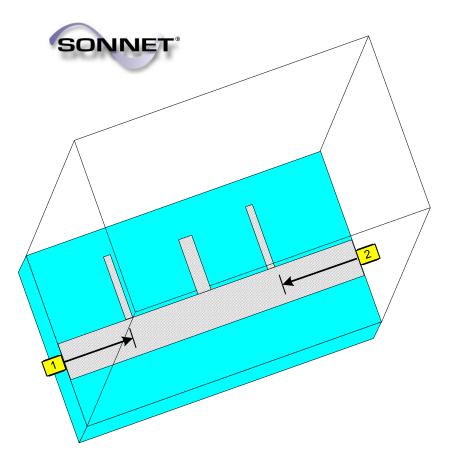
the design parameters are $\mathbf{x}_f = [W_1 \ W_2 \ L_0 \ L_1 \ L_2]^T$

$$\begin{split} |S_{21}| &\leq 0.05 \text{ for } 9.3 \text{ GHz} \leq \omega \leq 10.7 \text{ GHz} \\ |S_{21}| &\geq 0.9 \text{ for } \omega \leq 8 \text{ GHz and } \omega \geq 12 \text{ GHz} \end{split}$$

Bandstop Microstrip Filter: Fine and Coarse Models

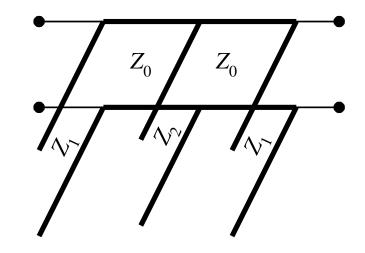
fine model:

Sonnet's em^{TM} with high resolution grid



coarse model:

OSA90/hope[™] ideal transmission line sections and empirical formulas



Optimization of the Bandstop Filter

during PE we consider $\mathbf{x}_c^{PSM} = [L_1 L_2]^T$ while $\mathbf{x}_f^s = [W_1 W_2 L_0]^T$ are held fixed

finite differences estimate the fine and coarse Jacobians

use hybrid approach to update mapping

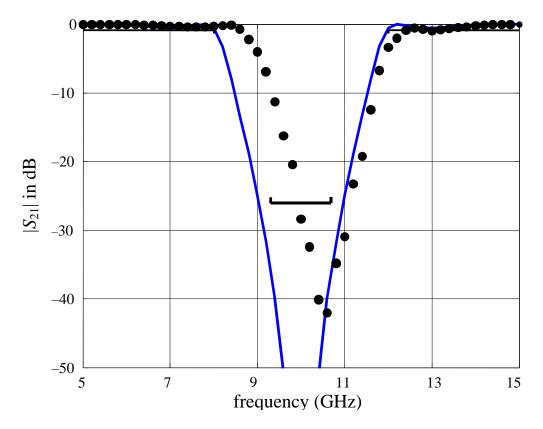
the final mapping is

$$\boldsymbol{B}^{PSM} = \begin{bmatrix} 0.570 & 0.168 & 0.209 & 0.911 & 0.214 \\ -0.029 & 0.154 & 0.126 & -0.024 & 0.470 \end{bmatrix}$$

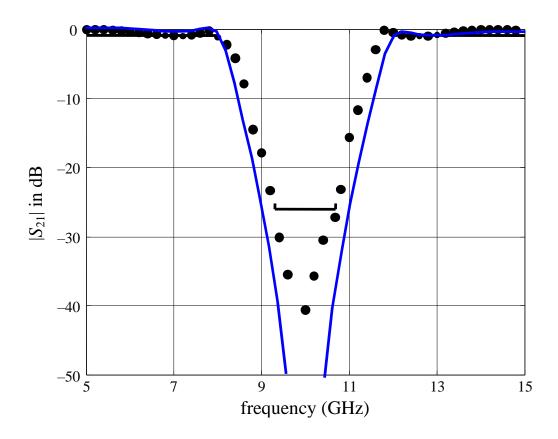
initial and final designs

parameter	$oldsymbol{x}_{f}^{(0)}$	$x_{f}^{(5)}$		
W_1	4.560	7.329		
W_2	9.351	10.672		
L_0	107.80	109.24		
L_1	111.03	115.53		
L_2	108.75	111.28		
all values are in mils				

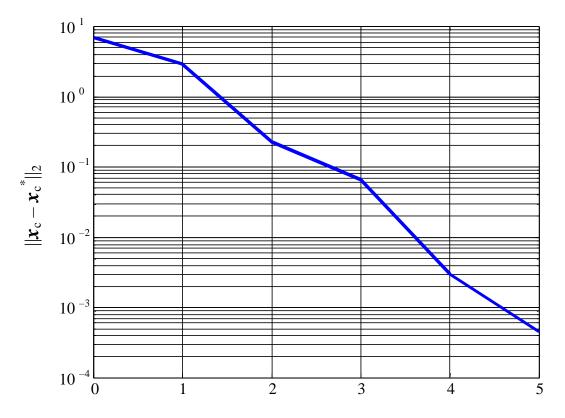
initial coarse model OSA90TM response (–) initial fine response em^{TM} (•)




```
initial coarse model OSA90<sup>TM</sup> response (–) final fine response em^{TM} (•)
```



$||\mathbf{x}_{c} - \mathbf{x}_{c}^{*}||_{2}$ versus iteration for the bandstop microstrip filter



iteration

Original Rosenbrock Function (Coarse Model)

$$R_{c}(\boldsymbol{x}_{c}) = 100(x_{2} - x_{1}^{2})^{2} + (1 - x_{1})^{2}$$

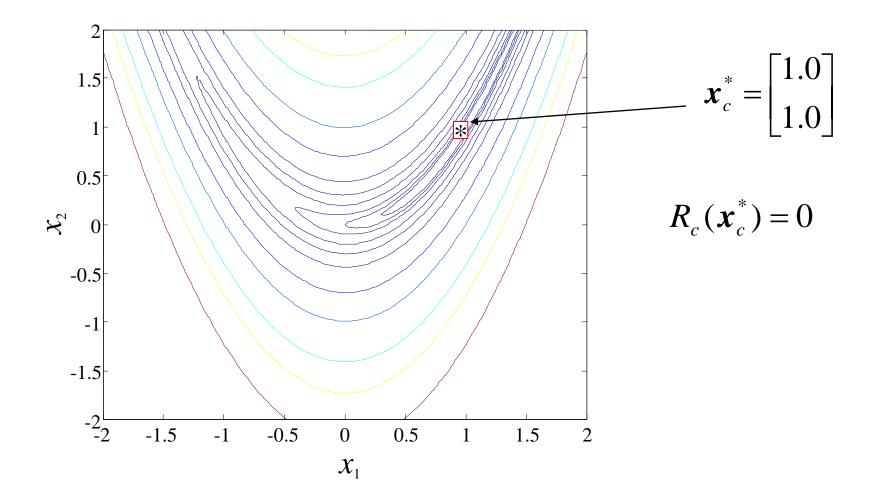
where $\boldsymbol{x}_{c} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$ and $\boldsymbol{x}_{c}^{*} = \begin{bmatrix} 1.0 \\ 1.0 \end{bmatrix}$

Shifted Rosenbrock Function (Fine Model)

$$R_{f}(\boldsymbol{x}_{f}) = 100((x_{2} + \alpha_{2}) - (x_{1} + \alpha_{1})^{2})^{2} + (1 - (x_{1} + \alpha_{1}))^{2}$$

where $\boldsymbol{x}_{f} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}, \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} -0.2 \\ 0.2 \end{bmatrix}$ hence $\boldsymbol{x}_{f}^{*} = \begin{bmatrix} 1.2 \\ 0.8 \end{bmatrix}$

Original Rosenbrock Function (Coarse Model Contour Plot)



Shifted Rosenbrock Function Results

iteration	$\boldsymbol{x}_{c}^{(j)}$	$oldsymbol{f}^{(j)}$	$oldsymbol{B}^{(j)}$	$oldsymbol{h}^{(j)}$	$oldsymbol{x}_{f}^{(j)}$	R_{f}
0	$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$				$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$	31.4
1	$\begin{bmatrix} 0.8\\ 1.2 \end{bmatrix}$	$\begin{bmatrix} -0.2\\ 0.2 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{bmatrix}$	$\begin{bmatrix} 0.2 \\ -0.2 \end{bmatrix}$	$\begin{bmatrix} 1.2\\ 0.8 \end{bmatrix}$	0
	$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0\end{bmatrix}$				

Transformed Rosenbrock Function (Fine Model)

linear transformation of the original Rosenbrock function

$$R_{f}(\boldsymbol{x}_{f}) = 100(u_{2} - u_{1}^{2})^{2} + (1 - u_{1})^{2}$$
where $\boldsymbol{u} = \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} = \begin{bmatrix} 1.1 & -0.2 \\ 0.2 & 0.9 \end{bmatrix} \boldsymbol{x}_{f} + \begin{bmatrix} -0.3 \\ 0.3 \end{bmatrix}$

$$\boldsymbol{x}_{f}^{*} = \begin{bmatrix} 1.2718447 \\ 0.4951456 \end{bmatrix}$$

Transformed Rosenbrock Function Final Results

iteration	$oldsymbol{x}_{c}^{(j)}$	$oldsymbol{f}^{(j)}$	${oldsymbol{B}}^{(j)}$	$oldsymbol{h}^{(j)}$	$oldsymbol{x}_{f}^{(j)}$	R_{f}
0	$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$				$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$	108.3
1	$\begin{bmatrix} 0.526\\ 1.384 \end{bmatrix}$	$\begin{bmatrix} -0.474\\ 0.384 \end{bmatrix}$	$\begin{bmatrix} 1.01 & -0.05 \\ 0.01 & 1.01 \end{bmatrix}$	$\begin{bmatrix} 0.447\\ -0.385 \end{bmatrix}$	$\begin{bmatrix} 1.447\\ 0.615 \end{bmatrix}$	5.119
2	$\begin{bmatrix} 1.185\\ 1.178 \end{bmatrix}$	$\begin{bmatrix} 0.185\\ 0.178 \end{bmatrix}$	$\begin{bmatrix} 0.96 & -0.12 \\ -0.096 & 1.06 \end{bmatrix}$	$\begin{bmatrix} -0.218\\ -0.187 \end{bmatrix}$	$\begin{bmatrix} 1.23\\ 0.427 \end{bmatrix}$	4.4E–3
3	$\begin{bmatrix} 0.967\\ 0.929 \end{bmatrix}$	$\begin{bmatrix} -0.033\\ -0.071 \end{bmatrix}$	$\begin{bmatrix} 1.09 & -0.19 \\ 0.168 & 0.92 \end{bmatrix}$	$\begin{bmatrix} 0.0429\\ 0.0697 \end{bmatrix}$	$\begin{bmatrix} 1.273\\ 0.4970 \end{bmatrix}$	1.8E–6
4	$\begin{bmatrix} 1.001\\ 1.001 \end{bmatrix}$	$\begin{bmatrix} 0.001\\ 0.001 \end{bmatrix}$	$\begin{bmatrix} 1.10001 & -0.1999 \\ 0.1999 & 0.9001 \end{bmatrix}$	$\begin{bmatrix} -0.001\\ -0.002 \end{bmatrix}$	$\begin{bmatrix} 1.2719\\ 0.4952 \end{bmatrix}$	5E–10

Transformed Rosenbrock Function Final Results (continued)

iteration	$oldsymbol{x}_{c}^{(j)}$	$oldsymbol{f}^{(j)}$	$oldsymbol{B}^{(j)}$	$\boldsymbol{h}^{(j)}$	$oldsymbol{x}_{f}^{(j)}$	R_{f}
5	$\begin{bmatrix} 1.00002\\ 1.00004 \end{bmatrix}$	$1E - 4 * \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}$	$\begin{bmatrix} 1.1 & -0.2 \\ 0.2 & 0.9 \end{bmatrix}$	$1E - 4 * \begin{bmatrix} 0.3 \\ 0.5 \end{bmatrix}$	$\begin{bmatrix} 1.2718\\ 0.4951 \end{bmatrix}$	3E–17
6	$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$	$1E - 8 * \begin{bmatrix} 0.1 \\ 0.3 \end{bmatrix}$	$\begin{bmatrix} 1.1 & -0.2 \\ 0.2 & 0.9 \end{bmatrix}$	$1E-8*\begin{bmatrix}0.2\\0.3\end{bmatrix}$	$oldsymbol{x}_{f}^{*}$	9E–29

$$\boldsymbol{x}_{f}^{*} = \begin{bmatrix} 1.27184466 \\ 0.49514563 \end{bmatrix}$$

Conclusions

new Aggressive Space Mapping techniques

Gradient Parameter Extraction (GPE) exploiting available Jacobian (exact or approximate)

Partial Space Mapping (PSM) with reduced set of optimization variables in the PE phase

consideration of mapping updates

available Jacobians can be used to build the mapping

Mapping Update By Constraining B

(Bakr et al., 2000)

to constrain the mapping matrix to be close to \boldsymbol{I}

$$\boldsymbol{B} = \arg\min_{\boldsymbol{B}} \| [\boldsymbol{e}_1^T \cdots \boldsymbol{e}_n^T \eta \Delta \boldsymbol{b}_1^T \cdots \eta \Delta \boldsymbol{b}_n^T]^T \|_2^2$$

where η is a weighting factor, e_i and Δb_i are the *i*th columns of E and ΔB

$$E = J_f - J_c B$$
$$\Delta B = B - I$$

analytical solution is

$$\boldsymbol{B} = (\boldsymbol{J}_c^T \boldsymbol{J}_c + \eta^2 \boldsymbol{I})^{-1} (\boldsymbol{J}_c^T \boldsymbol{J}_f + \eta^2 \boldsymbol{I})$$