EM-Based Optimization Exploiting Adjoint Sensitivities

J.W. Bandler and A.S. Mohamed

Simulation Optimization Systems Research Laboratory McMaster University

Bandler Corporation, www.bandler.com john@bandler.com

presented at

2002 Micronet Annual Workshop, Aylmer, Québec, April 26, 2002

Outline

ASM for microwave circuit design

Gradient Parameter Extraction (GPE)

mapping update

proposed algorithm

examples

conclusions

Introduction

using full wave EM simulator (fine model) inside the optimization loop is prohibitive

Introduction

The Space Mapping Concept

(Bandler et al., 1994-)

Jacobian-Space Mapping Relationship (*Bakr et al., 1999*)

through PE we match the responses

$$\boldsymbol{R}_f(\boldsymbol{x}_f) \approx \boldsymbol{R}_c(\boldsymbol{P}(\boldsymbol{x}_f))$$

by differentiation

Jacobian-Space Mapping Relationship (*Bakr et al.*, 1999)

given coarse model Jacobian J_c and space mapping matrix B we estimate

$$\boldsymbol{J}_f(\boldsymbol{x}_f) \approx \boldsymbol{J}_c(\boldsymbol{x}_c)\boldsymbol{B}$$

given J_c and J_f we estimate (least squares)

$$\boldsymbol{B} \approx (\boldsymbol{J}_c^T \boldsymbol{J}_c)^{-1} \boldsymbol{J}_c^T \boldsymbol{J}_f$$

Gradient Parameter Extraction (GPE)

at the *j*th iteration

$$\boldsymbol{x}_{c}^{(j)} = \arg\min_{\boldsymbol{X}_{c}} \| [\boldsymbol{e}_{0}^{T} \quad \lambda \boldsymbol{e}_{1}^{T} \quad \cdots \quad \lambda \boldsymbol{e}_{n}^{T}]^{T} \|, \ \lambda \geq 0$$

where λ is a weighting factor and $\boldsymbol{E} = [\boldsymbol{e}_1 \, \boldsymbol{e}_2 \, \dots \, \boldsymbol{e}_n]$

$$\boldsymbol{e}_0 = \boldsymbol{R}_f(\boldsymbol{x}_f^{(j)}) - \boldsymbol{R}_c(\boldsymbol{x}_c)$$
$$\boldsymbol{E} = \boldsymbol{J}_f(\boldsymbol{x}_f^{(j)}) - \boldsymbol{J}_c(\boldsymbol{x}_c)\boldsymbol{B}$$

Mapping Update

Using Exact Derivatives

$$\boldsymbol{B}^{(j)} = (\boldsymbol{J}_c^{(j)T} \boldsymbol{J}_c^{(j)})^{-1} \boldsymbol{J}_c^{(j)T} \boldsymbol{J}_f^{(j)T}$$

Using Hybrid Approach

exact derivatives not available: use finite differences

$$\boldsymbol{B}^{(0)} = (\boldsymbol{J}_{c}^{(0)T} \boldsymbol{J}_{c}^{(0)})^{-1} \boldsymbol{J}_{c}^{(0)T} \boldsymbol{J}_{f}^{(0)}$$

then update using Brodyen formula

Constraining *B*

(*Bakr et al., 2000*) constrain the mapping matrix to be close to **I**

Proposed Algorithm

Step 1 set j = 1, $\boldsymbol{B} = \boldsymbol{I}$ for the PE process

Step 2 obtain the optimal coarse model design x_c^*

- Step 3 set $\boldsymbol{x}_{f}^{(1)} = \boldsymbol{x}_{c}^{*}$
- Step 4 if derivatives exist execute GPE otherwise, execute the traditional PE with $\lambda = 0$

Step 5 initialize the mapping matrix B

Step 6 stop if $\left\| \boldsymbol{f}^{(j)} \right\| < \varepsilon_1 \text{ or } \left\| \boldsymbol{R}_f^{(j)} - \boldsymbol{R}_c^* \right\| < \varepsilon_2$

Proposed Algorithm (continued)

Step 7 evaluate $h^{(j)}$ using

$$\boldsymbol{B}^{(j)}\boldsymbol{h}^{(j)} = -\boldsymbol{f}^{(j)}$$

- Step 8 find the next $x_f^{(j+1)}$
- *Step* 9 perform GPE or PE as in Step 4

Step 10 if derivatives exist obtain $B^{(j)}$ using

$$\boldsymbol{B}^{(j)} = (\boldsymbol{J}_c^{(j)T} \boldsymbol{J}_c^{(j)})^{-1} \boldsymbol{J}_c^{(j)T} \boldsymbol{J}_f^{(j)T}$$

otherwise update $B^{(j)}$ using a Broyden formula

Proposed Algorithm (continued)

Step 11 set j = j+1 and go to *Step* 6

the result is the solution \overline{x}_f and mapping matrix **B**

Bandstop Microstrip Filter with Quarter-Wave Open Stubs

Bandstop Microstrip Filter: Fine and Coarse Models

fine model:

coarse model:

Sonnet's em^{TM} with high resolution OSA90/hopeTM ideal transmission grid **SONNET** line sections and empirical formulas

Optimization of the Bandstop Filter

finite differences estimate the fine and coarse Jacobians

use hybrid approach to update mapping

the final mapping is

$$\boldsymbol{B} = \begin{bmatrix} 0.532 & -0.037 & 0.026 & 0.017 & -0.006 \\ -0.051 & 0.543 & 0.022 & -0.032 & 0.026 \\ 0.415 & 0.251 & 1.024 & 0.073 & 0.011 \\ 0.169 & -0.001 & -0.022 & 0.963 & 0.008 \\ -0.213 & -0.003 & -0.045 & -0.052 & 0.958 \end{bmatrix}$$

initial and final designs

Parameter	$x_{f}^{(0)}$	$x_{f}^{(5)}$
W_1	4.560	8.7464
W_2	9.351	19.623
L_0	107.80	97.206
L_1	111.03	116.13
L_2	108.75	113.99
All values are in mils		

initial coarse model response $OSA90^{TM}$ (-) initial fine model response em^{TM} (0)

initial coarse model response OSA90TM (–) final fine model response *em*TM (o) (fine sweep)

 $||\mathbf{x}_{c} - \mathbf{x}_{c}^{*}||_{\infty}$ versus iteration for the bandstop microstrip filter

Conclusions

Gradient Parameter Extraction (GPE) exploiting available Jacobian (exact or approximate)

consideration of mapping updates

available Jacobians can be used to build the mapping

Reference

J.W. Bandler, A.S. Mohamed, M.H. Bakr, K. Madsen and J. Søndergaard, "EM-based optimization exploiting partial space mapping and exact sensitivities," *IEEE MTT-S Int. Microwave Symp. Digest* (Seattle, WA), June 2002.