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Abstract  — We introduce the idea of Implicit Space Mapping and show how it relates to the well-

known (explicit) Space Mapping between coarse and fine device models.  Through comparison a 

General Space Mapping concept is abstracted.  A special, simple case of the novel ISM concept is 

implemented.  It is illustrated on a contrived “cheese cutting problem” and is applied to EM-based 

microwave modeling and design.  We propose to calibrate a suitable coarse model against a fine 

model (full wave EM simulation) by relaxing certain coarse model preassigned parameters.  Our 

algorithm updates these preassigned parameters through parameter extraction and reoptimizes the 

mapped coarse model to suggest a new EM design and terminates when relevant stopping criteria are 

satisfied.  We illustrate our approach through an HTS filter example. 

I. INTRODUCTION 

The Space Mapping (SM) concept of using “coarse” models (usually computationally fast 

circuit-based models) to align with “fine” models (typically CPU intensive full-wave EM 

simulations) has been exploited by several authors [1]-[8].  Several notable implementations and 
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applications of SM have been reported.  Pavio presented a companion approach [6].  Snel [7] derived 

models for RF components.  Swanson and Wenzel [8] used SM to optimize mechanical adjustments 

by iterating between a finite element simulator and circuit simulator.  Wu [9] applied SM to design 

LTCC circuits.  Choi et al. [10] applied it to magnetic systems, Redhe [11] in vehicle 

crashworthiness design. 

In [1]-[3], a calibration is performed through a mapping between optimizable parameters of 

the fine model and corresponding parameters of the coarse model such that their responses match.  

This mapping is iteratively updated.  In [4], the coarse model is calibrated against the fine model by 

adding circuit components to nonadjacent individual coarse model elements.  The component values 

are updated iteratively.  The ESMDF algorithm [5] calibrates the coarse model by extracting certain 

preassigned parameters such that corresponding responses match.  It establishes an explicit mapping 

from optimizable to preassigned parameters. 

Our new approach does not establish an explicit mapping: we suggest an indirect approach.  

In each iteration we extract selected preassigned parameters to match the coarse model with the fine 

model.  With these fixed, we reoptimize the calibrated coarse model.  Then we assign its optimized 

parameters to the fine model.  We repeat this process until the fine model response is sufficiently 

close to the target response.  The preassigned parameters, which are updated, calibrate the 

“mapping”.  It is a special case of a new concept we call Implicit Space Mapping (ISM). 

Examples of preassigned parameters are physical parameters such as dielectric constant in 

microstrip structures or geometrical parameters such as substrate height.  Typically, they are not 

optimized.  As in [5] we allow the preassigned parameters (of the coarse model) to change in some 

components and keep them intact in others.  We implement our technique in Agilent ADS [12]. 
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II. GENERAL SPACE MAPPING TECHNOLOGY 

We categorize Space Mapping into (1) the original or explicit SM and (2) Implicit Space 

Mapping.  Both share the concept of “coarse” and “fine” models.  Both use an iterative approach to 

update the mapping and predict the new design. 

Explicit Space Mapping 

In explicit space mapping, we should be able to draw a clear distinction between a physical 

coarse model and the mathematical mapping that links it to the fine model as shown in Fig. 1.  In 

each iteration, only the mapping is updated, while the physical coarse model is kept fixed.  If the 

inverse mapping is available at each iteration, then the solution (best current prediction of the fine 

model) can be evaluated directly.  Examples of this type are the original SM [1], Aggressive SM [13], 

Neural SM [2], etc. 

Implicit Space Mapping 

Sometimes identifying the mapping is not obvious, as if it is buried within the coarse model.  

If the “mapping” is integrated with the coarse model, the mapped coarse model becomes a calibrated 

model or enhanced surrogate as in Fig. 2 (the dashed box).  To obtain the next step, the mapped or 

enhanced coarse model is explicitly optimized.  In many cases, the optimal implicit coarse model 

parameters *
ix  may not be visible.  For example, in a circuit simulator such as ADS the electrical 

length and characteristic impedance are “invisible” parameters of its circuit component library 

microstrip line model.  The mapping may, in that case, not be readily extractable, and the mapped 

coarse model has to be (re)optimized in order to obtain an “inverse” mapped solution. 

These two types of SM are related.  Both types iteratively calibrate the mapped model when 

approaching the fine model solution.  If the implicit mapped model is not good enough after the 

calibration, we may add an explicit mapping between implicit mapped coarse model space and fine 
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model space to align the coarse model and fine model.  See Fig. 2.  Interestingly, the explicit 

mapping could be expressed in the form of ISM by using a simple mathematical substitution.  We 

discuss this in Section III. 

In general, the space mapping optimization steps can be abstracted as follows. 

General Space Mapping Optimization Steps 

Step 1 Select a mapping function (linear, nonlinear, neural). 

Step 2 Select an approach (implicit, explicit). 

Step 3 Optimize the coarse model with respect to design parameters. 

Step 4 Apply parameter extraction using Key Preassigned Parameters [5], neuron weights [2], 

coarse space parameters, etc. 

Step 5 If the inverse mapping is easy to obtain, evaluate it here to avoid explicit reoptimization.  If 

not reoptimize the “mapped coarse model” with respect to design parameters. 

Step 6 Assign the result of Step 5 to the fine model and simulate it. 

Step 7 Terminate if a stopping criterion (e.g., response meets specifications) is satisfied, or else go 

to Step 4. 

III. IMPLICIT SPACE MAPPING (ISM): THE CONCEPT 

We denote the fine model responses at a point xf by ( )f fR x .  The original design problem is 

* arg min ( ( ))f f f
f

U=x R x
x

 
(1)

where U  is the objective function and *
fx  is the optimal fine model design.  Solving (1) using direct 

optimization methods may be prohibitive. 
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We denote by xc a coarse model point (usually designable parameters), by x a set of other 

(auxiliary) parameters, for example, preassigned parameters and by xi a set of implicitly mapped 

parameters.  The corresponding coarse model response vector is ( , )c cR x x . 

As indicated in Fig. 3, ISM aims at establishing an implicit mapping Q between the spaces 

fx , cx  and x  

( , , )f c =Q x x x 0  (2)

If we include the implicit parameters ix  and simply set 

f c=x x  (3)

then the mapping can be expressed as 

( , )i c=x P x x  (4)

such that 

( ) ( , )f c c c≈R x R x x   (5)

over a region in the parameter space. 

As in Fig. 4, ISM utilizes the mapping to obtain the prediction by solving 

*( , , )f c =Q x x x 0  (6)

This can be expressed using implicit parameters xi as 

* 1 *( , )c i
−=x P x x  (7)

where *
cx  is the optimal coarse model solution for given preassigned parameters x , and 

*
f c=x x   (8)

This prediction is obtainable by mapped coarse model optimization, because the mapping is usually 

nonlinear and noninvertible. 



6 

In general, ISM optimization obtains a space-mapped design fx  whose response 

approximates an optimized cR  target.  fx  is a solution of the nonlinear system (2) which is enforced 

through a Parameter Extraction (PE) (modeling) w.r.t. x, and subsequent prediction (optimization) of 

the next fine model iterate by finding *
cx  for fixed x.  The first step in all SM-based algorithms 

obtains an optimal coarse model design *
cx  for given x.  The corresponding response is denoted by 

*
cR .  In ISM *

cx  depends on the current value of x and will change from iteration to iteration through 

reoptimization.   

For the explicit SM we start with the two models in Fig. 5.  The first step for any SM 

optimization approach is to obtain the optimal solution for the coarse model (Fig. 6).  We set the fine 

model design parameters equal to the optimal solution of the coarse model.  The fine model is then 

evaluated (Fig. 7).  Normally the first fine model evaluation does not give the desired response.  We 

adjust x in the given mapping such that the output of the mapping xc satisfies  

( )c c f≈R x R   (9)

This is the PE procedure (Fig. 8).  Now we aim at finding xf such that the output of the mapping is 

*
cx , the optimal solution for the coarse model.  Here we can obtain xf by evaluating the inverse 

mapping.  If the inverse mapping is unavailable, optimization is used to predict xf  (Fig. 9).  The 

response for the new xf  is evaluated as shown in Fig. 10 to check if it satisfies the stopping criteria.  

If not, the algorithm returns to the PE step. 

For implicit mapping, the mapping is embedded in the coarse model.  The mapping and the 

coarse model together (mapped coarse model) become the calibrated model or enhanced surrogate.  

We optimize this model to satisfy the original design specifications.  See Fig. 11.  We evaluate the 
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fine model at the optimal mapped coarse model point.  This is an initial guess (Fig. 12).  The 

preassigned parameters are optimized to perform Parameter Extraction such that the responses of the 

mapped coarse model match those of the fine model (Fig. 13).  We reoptimize (Fig. 14) the calibrated 

model or enhanced surrogate w.r.t. the coarse model parameters after PE such that they satisfy the 

original specifications.  The solution is a new prediction of the fine model solution.  We evaluate the 

fine model again to verify if it satisfies the specifications.  If not, we return to the PE step. 

An interesting point that relates the ISM to the explicit mapping is when we set the 

preassigned parameters 

c∆=x x   (10)

where c∆x  is the deviation of cx  from *
cx  in PE.  The ISM becomes the original SM with the 

difference shown in Fig. 15 that ISM extracts c∆x  rather than cx  in PE.  Also for the Neuro Space 

Mapping [2], if we set 

=x w   (11)

where w represents the weights of the neurons, then Neuro Space Mapping is representable by ISM. 

Cheese Cutting Illustration 

We developed a simple, intuitive physical example to demonstrate ISM.  Depicted in Fig. 16, 

we call it the Cheese Cutting Problem.  Our goal is to cut a certain length (designable parameter) of 

cheese to yield a certain weight (target “response”).  Assume that the density is uniformly unity.  We 

retain in mind (“coarse” model) a regular block (top block in Fig. 16).  We will deliver an irregular 

block (“fine” model) of desired weight.  The question is how to achieve this using the ISM concept. 

Experience suggests a cut corresponding to a regular block and results in the second item in 

Fig. 16.  Weighing it (fine model evaluation) shows that it is too light.  We shrink the width 

(preassigned parameter) of the model to match this weight.  This corresponds to Parameter 
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Extraction.  We reoptimize the length of the model to match our goal.  Then we assign the new length 

to the irregular block.  We continue in this manner until the irregular block is close enough to the 

desired weight (target). 

ISM, in this case, is an indirect approach.  A direct approach would extract length in the 

parameter extraction process. 

IV. AN ALGORITHM 

In Fig. 17 we represent a microwave circuit whose coarse model is decomposed.  We catalog 

the preassigned parameters into two sets as in [5]: Set A of “designated” components and Set B.  In 

Set A, we vary certain preassigned parameters x.  In Set B, we keep preassigned parameters 0
0

n∈ℜx  

fixed.  We can follow the sensitivity approach of [5] to formally select components for Set A and Set 

B. 

As implied in Fig. 17(b), in each iteration of PE 

( )i
c fx x=  (12)

Notice from Fig. 17(b) that we do not explicitly establish a mapping between the optimizable 

parameters and the preassigned parameters.  This contrasts with [5], where the mapping is explicit 

(see Fig. 17(c)).  Therefore, our proposed approach is easier to implement in commercial microwave 

simulators. 

Parameter Extraction w.r.t x results in ( )ix .  We obtain the next set of coarse model 

parameters *( )i
cx by optimization.  Then we set (prediction) 

*( )i
f cx x =  (13)

where 

*( ) ( )arg min ( ( , ))i i
c c c

c
U=x R x xx  (14)
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Summary of the Algorithm 

Step 1 Select candidate preassigned parameters x as in [5] or through experience. 

Step 2 Set i = 0 and initialize x(0). 

Step 3 Obtain the optimal coarse model parameters by solving (14).  

Step 4 Predict ( )i
fx  from (13). 

Step 5 Simulate the fine model at ( )i
fx . 

Step 6 Terminate if a stopping criterion (e.g., response meets specifications) is satisfied. 

Step 7 Calibrate the coarse model by extracting (PE step) the preassigned parameters x (noting (12)) 

( 1) ( ) ( )arg min ( ) ( , )i+ i i
f f c f= −x R x R x xx  (15)

Step 8 Increment i and go to Step 3. 

V. HTS FILTER EXAMPLE 

We consider the HTS bandpass filter in [14]. The physical structure is shown in Fig. 18(a).  

Design variables are the lengths of the coupled lines and the separation between them, namely, 

1 2 3 1 2 3[      ]T
f S S S L L L=x  

The substrate used is lanthanum aluminate with εr= 23.425, H= 20 mil and substrate 

dielectric loss tangent of 0.00003.  The length of the input and output lines is L0=50 mil and the lines 

are of width W= 7 mil.  We choose εr and H as the preassigned parameters of interest, thus x0=[20 mil 

23.425]T.  The design specifications are 

21 0.05 S ≤  for ω ≥ 4.099 GHz and for ω ≤ 3.967 GHz 

21 0.95 S ≥  for 4.008 GHz ≤ ω ≤ 4.058 GHz 

This corresponds to 1.25% bandwidth. 
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Our Agilent ADS [12] coarse model consists of empirical models for single and coupled 

microstrip transmission lines, with ideal open stubs.  See Fig. 18(b).  Set A (Fig. 17) consists of the 

three coupled microstrip lines.  Notice the symmetry in the HTS structure, i.e., coupled lines 5 

“CLin5” is identical to “CLin1” and “CLin4” is identical to “CLin2”.  Here, Set B (Fig. 17) is empty.  

The preassigned parameter vector is 

1 1 2 2 3 3[      ]T
r r rH H Hε ε ε=x  

The fine model is simulated by Agilent Momentum [15].  The relevant responses at the initial 

solution are shown in Fig. 19(a), where we notice severe misalignment.  The algorithm requires only 

3 iterations (3 fine model simulations).  The total time taken is 26 min (one fine model simulation 

takes approximately 9 min on an Athlon 1100 MHz).  Table I shows initial and final designs.  Table 

II shows the variation in the preassigned (coarse model) parameters.  Responses at the final iteration 

are shown in Fig. 19(b). 

The Parameter Extraction uses real and imaginary S parameters and the ADS quasi-Newton 

optimizer, while coarse model optima are obtained by the ADS minimax optimizer. 

VI. CONCLUSIONS 

Based on a general concept, we present an effective technique for microwave circuit modeling 

and design w.r.t. full-wave EM simulations.  We vary preassigned parameters in a coarse model to 

align it with the EM (fine) model.  Since explicit mapping is not involved this “Space Mapping” 

technique is more easily implemented than [5].  We believe it is the easiest SM technique to 

implement.  The HTS filter design is entirely done by Agilent ADS and Momentum, with no matrices 

to keep track of.  A general space mapping concept is presented which enables us to verify that our 

implementation is correct and that no redundant steps are used. 
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TABLE I 
OPTIMIZABLE PARAMETER VALUES OF THE HTS FILTER 

Parameter Initial solution (mil) Solution reached by the 
algorithm (mil) 

L1 189.65 187.10 
L2 196.03 191.30 
L3 189.50 186.97 
S1 23.02 22.79 
S2 95.53 93.56 
S3 104.95 104.86 

 
TABLE II 

THE INITIAL AND FINAL PREASSIGNED PARAMETERS OF THE 
CALIBRATED COARSE MODEL OF THE HTS FILTER 

Preassigned 
parameters  Original values Final iteration 

H1 20 mil 19.80 mil 
H2 20 mil 19.05 mil 
H3 20 mil 19.00 mil 
εr1 23.425 24.404 
εr2 23.425 24.245 
εr3 23.425 24.334 
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Fig. 1. Illustration of explicit SM.
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Fig. 2. Illustration of ISM. 
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Fig. 3. Illustration of Implicit Space Mapping (ISM)modeling. 
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Fig. 4. Illustration of Implicit Space Mapping (ISM)optimization. 
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Fig. 5. Explicit mappingfine and coarse model. 
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Fig. 6. Explicit mappingdirect optimization of the coarse model. 
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Fig. 7. Explicit mappingverification of the fine model. 
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Fig. 8. Explicit mappingParameter Extraction. 
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Fig. 9. Explicit mappingprediction. 
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Fig. 10. Explicit mappingverification of the fine model. 
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Fig. 11. Implicit mappingoptimization of the mapped coarse model. 
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Fig. 12. Implicit mappingverification of the fine model. 

 



19 

coarse
model

fine
model

Rf

Rc≈Rf

xf

space
mapping

x

xc xi

 
Fig. 13. Implicit mappingParameter Extraction w.r.t. preassigned parameters. 
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Fig. 14. Implicit mappingreoptimization (prediction). 
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Fig. 15. When we set the preassigned parameters c∆=x x , ISM relates to the explicit SM process. 

(a) The original SM.  (b) The ISM process interpreted in the same spaces. 
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Fig. 17. Calibrating (optimizing) the preassigned parameters x in Set A results in aligning the 

coarse model (b) or (c) with the fine model (a).  In (c) we illustrate the ESMDF approach
[5], where ( )⋅P  is a mapping from optimizable design parameters to preassigned
parameters. 
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Fig. 18. The HTS filter [14]: (a) the physical structure and (b) the coarse model as implemented in

Agilent ADS [12]. 
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Fig. 19. The Momentum fine (○) and optimal coarse ADS model () responses at the initial 
solution (a) and at the final iteration (b). 


