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Artificial Neural Networks (ANN) in Microwave Design

ANNs are suitable models for microwave circuit optimization 

and statistical design (Zaabab, Zhang and Nakhla, 1995, 

Gupta et al., 1996, Burrascano and Mongiardo, 1998, 1999)

once trained, neuromodels can be used for 

optimization in the training region

the principal drawback of this ANN optimization approach 

is the cost of generating sufficient learning samples

the extrapolation ability of neuromodels is poor, making 

unreliable any solution predicted outside the training region

introducing knowledge can alleviate these limitations

(Gupta et al., 1999)
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Conventional ANN Optimization Approach

step 1 step 2

many fine model simulations are usually needed

solutions predicted outside the training region are unreliable 
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Hybrid “S” EM-ANN Neuromodeling Concept

(Gupta et al., 1996)
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PKI Neuromodeling Concept

(Gupta et al., 1996)
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KBNN Neuromodeling Concept

(Zhang et al., 1997)
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Exploiting Space Mapping for Neuromodeling

(Bandler et. al., 1999)
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Space Mapping Based Neuromodeling

(Bandler et. al., 1999)
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EM-based Yield Optimization Via SM-Based Neuromodels

(Bandler et. al., 2001)

the SM-based neuromodel responses are given by

with

where the mapping function P is implemented by a 

neuromapping variation (SM, FDSM, FSM, FM or FPSM)
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Yield Optimization Via SM-Based Neuromodels (continued)

for all xf and ω in the training region

we can show that

Jf  r´n Jacobian of the fine model responses w.r.t. the fine model parameters

Jc  r´(n+1) Jacobian of the coarse model responses w.r.t. the coarse model 

parameters and mapped frequency

JP  (n+1)´n Jacobian of the mapping function w.r.t. the fine model parameters

),(),( ww fSMBNff xRxR »

Pcf JJJ »
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Yield Optimization Via SM-Based Neuromodels (continued)

if the mapping is implemented with a 3-layer perceptron with h hidden neurons

,                                                                     ,

Wo  (n+1)´h matrix of output weighting factors

bo n+1 vector of output bias elements

  h vector of hidden signals

s  h vector of activation potentials

W h  h´(n+1) matrix of hidden weighting factors

bh h vector of hidden bias elements

() nonlinear activation functions 

the Jacobian JP is given by JP = Wo J Wh , where J  h´h is a diagonal 

matrix given by J = diag( ' (sj)), with  j = 1… h

if the mapping employs a 2-layer perceptron, JP = Wo
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

we take L0 = 50 mil, H = 20 mil, 

W = 7 mil, er = 23.425, loss 

tangent = 3´10-5; the 

metalization is considered 

lossless 

the design parameters are 

xf = [L1 L2 L3 S1 S2 S3] 
T

specifications

|S21|  0.95 for 4.008 GHz  w  4.058 GHz

|S21|  0.05 for w  3.967 GHz and w  4.099 GHz 
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HTS Microstrip Filter: Fine and Coarse Models

coarse model:

OSA90/hope built-in models of open 

circuits, microstrip lines and coupled 

microstrip lines

fine model: 

Sonnet’s em with high resolution 

grid

1

2
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SM-based Neuromodel of the HTS Filter for Yield Optimization
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Coarse Optimization of the HTS Filter

coarse and fine model responses at the optimal coarse solution 

OSA90/hope (-) and em (•)
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Nominal Optimization of the HTS Filter

fine model response and SM-based neuromodel response 

at the optimal nominal solution xSMBN

OSA90/hope (-) and em (•)
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Yield Analysis of the HTS Filter

at the nominal solution xSMBN (starting point): yield = 18.4%
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Yield Optimization of the HTS Filter

at the optimal yield solution xSMBN
Y* : yield = 66%
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Yield Optimization of the HTS Filter (continued)

fine model response and SM-based neuromodel response 

at the optimal yield solution xSMBN
Y*

OSA90/hope (-) and em (•)
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HTS Filter Considering Asymmetry
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SM-based Neuromodel for the Asymmetric HTS Filter
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Yield Analysis of the Asymmetric HTS Filter

at the nominal solution xSMBN (starting point): yield = 14%
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Yield Analysis of the Asymmetric HTS Filter (continued)

at the optimal yield solution xSMBN
Y* : yield = 68.8%
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Conclusions

we propose EM-based statistical analysis and yield optimization using SM-

based neuromodels

we relate the fine model sensitivities to the coarse model sensitivities through 

the Jacobian of the neuromapping

we consider a high-temperature superconducting (HTS) microstrip filter

we reuse the symmetrically derived neuromapping for asymmetric tolerance 

variations in the physical parameters

the HTS filter yield is increased from 14% to 69%

we find excellent agreement between EM and SM-based neuromodel 

responses at both the optimal nominal solution and the optimal yield solution
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