

A NOVEL OBJECT-ORIENTED OPTIMIZATION SYSTEM

SMX — A NOVEL OBJECT-ORIENTED OPTIMIZATION SYSTEM

M.H. Bakr, J.W. Bandler, Q.S. Cheng, M.A. Ismail and J.E. Rayas-Sánchez

Simulation Optimization Systems Research Laboratory McMaster University

Bandler Corporation, www.bandler.com john@bandler.com

presented at

2001 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, May 23, 2001

Outline

the SMSM algorithm (Bakr et al., 1998-2001)

SMX system decomposition

examples for the original algorithm

simplified Parameter Extraction procedure

design examples

Introduction

SMSM approach — an iteratively refined surrogate of the fine model is used to solve the design problem

Object-Oriented Design (OOD) abstracts the basic behavior of models and optimizers

SMX can support a number of commercial EM/circuit simulators as well as in-house simulators

SMX provides a user-friendly interface

The Surrogate Model

the surrogate model at the *i*th iteration is a convex combination of a mapped coarse model and a linearized fine model:

$$\boldsymbol{R}_{s}^{(i)}(\boldsymbol{x}_{f}) = \lambda^{(i)} \boldsymbol{R}_{m}^{(i)}(\boldsymbol{x}_{f}) + (1 - \lambda^{(i)}) (\boldsymbol{R}_{f}(\boldsymbol{x}_{f}^{(i)}) + \boldsymbol{J}_{f}^{(i)} \Delta \boldsymbol{x}_{f}), \ \lambda^{(i)} \in [0, 1]$$
$$\Delta \boldsymbol{x}_{f} = \boldsymbol{x}_{f} - \boldsymbol{x}_{f}^{(i)}$$

the mapped coarse model utilizes the frequency-sensitive mapping

$$\boldsymbol{R}_{m}^{(i)}(\boldsymbol{x}_{f},\omega) = \boldsymbol{R}_{c}(\boldsymbol{P}^{(i)}(\boldsymbol{x}_{f},\omega),\boldsymbol{P}_{\omega}^{(i)}(\boldsymbol{x}_{f},\omega))$$

where

$$\begin{bmatrix} \boldsymbol{P}^{(i)}(\boldsymbol{x}_{f}, \boldsymbol{\omega}) \\ \boldsymbol{P}^{(i)}_{\boldsymbol{\omega}}(\boldsymbol{x}_{f}, \boldsymbol{\omega}) \end{bmatrix} = \begin{bmatrix} \boldsymbol{B}^{(i)} & \boldsymbol{s}^{(i)} \\ \boldsymbol{t}^{(i)T} & \boldsymbol{\sigma}^{(i)} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{x}_{f} \\ \boldsymbol{\omega} \end{bmatrix} + \begin{bmatrix} \boldsymbol{c}^{(i)} \\ \boldsymbol{\gamma}^{(i)} \end{bmatrix}$$

the parameters $B^{(i)} \in \Re^{n \times n}$, $s^{(i)} \in \Re^{n \times 1}$, $t^{(i)} \in \Re^{n \times 1}$, $c^{(i)} \in \Re^{n \times 1}$, $\sigma^{(i)} \in \Re^{1 \times 1}$ and $\gamma^{(i)} \in \Re^{1 \times 1}$ are obtained such that the mapped coarse model approximates the fine model over a given set of fine model points $V^{(i)}$ and frequencies ω

The Surrogate Model (continued)

the mapping parameters are obtained through the optimization process (*Bakr et al., 1998-2001*)

$$[\boldsymbol{B}^{(i)}, \boldsymbol{s}^{(i)}, \boldsymbol{t}^{(i)}, \boldsymbol{\sigma}^{(i)}, \boldsymbol{c}^{(i)}, \boldsymbol{\gamma}^{(i)}] = \arg \begin{cases} \min_{\boldsymbol{B}, \boldsymbol{s}, \boldsymbol{t}, \boldsymbol{\sigma}, \boldsymbol{c}, \boldsymbol{\gamma}} \| [\boldsymbol{e}_{1}^{T} & \boldsymbol{e}_{2}^{T} & \cdots & \boldsymbol{e}_{N_{p}}^{T}]^{T} \| \end{cases}$$

where

$$e_k = R_m^{(i)}(x_f^{(k)}) - R_f(x_f^{(k)}) \qquad \forall x_f^{(k)} \in V^{(i)}$$

(multipoint parameter extraction)

The Algorithm Flowchart

SMX System Decomposition

Algorithm Core: **SMX** Engine

the SMX engine is represented as the SMX_Engine class

base classes for Space Mapping

Optimizer — optimization utilities

Simulator — simulation utilities

Model — fine, coarse and surrogate model

Optimizer Class

Simulator Class

Model and SurrogateModel Class

Two-Section 10:1 Capacitively-Loaded Impedance Transformer (*Bandler, 1969*)

"fine" model

"coarse" model

Two-Section Impedance Transformer

"fine" model: OSA90/hope

initial response

optimal response

HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

HTS Filter Design (Test Case)

"fine" model:

OSA90/hope built-in models of microstrip lines and coupled microstrip lines (open circuits are modeled by an empirical model for a microstrip open stub) "coarse" model:

OSA90/hope built-in models of microstrip lines and coupled microstrip lines (open circuits are ideally open)

HTS Filter Design (Test Case)

"fine" model: OSA90/hope

initial response

optimal response

HTS Filter Design

"fine" model: Momentum (Agilent EEsof EDA)

SMX optimization (4 iterations, 5 fine model simulations)

refined by Momentum optimization

Simplified Parameter Extraction Procedure

we have noticed that the vectors *s* and *t* are practically zero

the matrix \boldsymbol{B} is updated using Broyden update

extract only \boldsymbol{x}_c , σ and γ at a single point $\boldsymbol{x}_f^{(i)}$

$$\begin{bmatrix} \sigma^{(i)}, \boldsymbol{x}_{c}^{(i)}, \gamma^{(i)} \end{bmatrix} = \arg \begin{cases} \min_{\sigma, \boldsymbol{x}_{c}, \gamma} \| [\boldsymbol{e}_{1}^{T} \quad \boldsymbol{e}_{2}^{T} \quad \cdots \quad \boldsymbol{e}_{N_{f}}^{T}]^{T} \| \end{cases}$$

$$\boldsymbol{e}_k = \boldsymbol{R}_c(\boldsymbol{x}_c, \sigma \omega_k + \gamma) - \boldsymbol{R}_f(\boldsymbol{x}_f, \omega_k)$$

where N_f is the number of frequency points per frequency sweep

Algorithm Summary

Step 1 initialize

$$\boldsymbol{x}_{f}^{(1)} = \boldsymbol{x}_{c}^{*}, \ \lambda^{(1)} = 1, \ \boldsymbol{J}_{f}^{(1)} = \boldsymbol{J}_{c}^{*}, \ \delta^{(1)} = 1, \ \boldsymbol{B}^{(1)} = \boldsymbol{I}, \ \boldsymbol{s} = \boldsymbol{0}, \ \boldsymbol{t} = \boldsymbol{0}, \ \text{and} \ \boldsymbol{i} = 1$$

- Step 2 apply the simplified parameter extraction procedure
- Step 3 obtain the tentative step by solving

$$\boldsymbol{h}^{(i)} = \arg\left\{\min_{\boldsymbol{h}} U(\boldsymbol{R}_{s}(\boldsymbol{x}_{f}^{(i)} + \boldsymbol{h}))\right\}, \|\boldsymbol{h}\| \leq \delta^{(i)}$$

Step 4 check if step is successful

$$\boldsymbol{x}_{f}^{(i+1)} = \begin{cases} \boldsymbol{x}_{f}^{(i)} + \boldsymbol{h}^{(i)} & \text{if } U(\boldsymbol{R}_{f}(\boldsymbol{x}_{f}^{(i)} + \boldsymbol{h}^{(i)})) < U(\boldsymbol{R}_{f}(\boldsymbol{x}_{f}^{(i)})) \\ \boldsymbol{x}_{f}^{(i)} & \text{otherwise} \end{cases}$$

Algorithm Summary (continued)

Step 5 update **B** (Broyden, 1965)

$$\boldsymbol{B}^{(i+1)} = \boldsymbol{B}^{(i)} + \frac{\boldsymbol{x}_{c}^{(i+1)} - \boldsymbol{x}_{c}^{(i)} - \boldsymbol{B}^{(i)}\boldsymbol{h}^{(i)}}{\boldsymbol{h}^{(i)T}\boldsymbol{h}^{(i)}}\boldsymbol{h}^{(i)T}$$

$$\boldsymbol{h}^{(i)} = \boldsymbol{x}_f^{(i+1)} - \boldsymbol{x}_f^{(i)}$$

- Step 6 update J_f , δ , and λ
- Step 7 check the stopping criterion, if satisfied then stop
- Step 8 set i=i+1 and go to Step 2

Update Parameters

$$\boldsymbol{J}_{f}^{(i+1)} = \boldsymbol{J}_{f}^{(i)} + \frac{\boldsymbol{R}_{f}^{(i+1)} - \boldsymbol{R}_{f}^{(i)} - \boldsymbol{J}_{f}^{(i)} \boldsymbol{h}^{(i)}}{\boldsymbol{h}^{(i)T} \boldsymbol{h}^{(i)}} \boldsymbol{h}^{(i)T}$$

$$\boldsymbol{h}^{(i)} = \tilde{\boldsymbol{x}}_f^{(i+1)} - \boldsymbol{x}_f^{(i)}$$

$$\delta_{i+1} = \begin{cases} 2\delta_i & \text{if } r > 0.75 \\ \delta_i / 3 & \text{if } r < 0.1 \\ \delta_i & \text{otherwise} \end{cases}$$

$$r = \frac{U(\boldsymbol{R}_{f}(\boldsymbol{x}_{f}^{(i)})) - U(\boldsymbol{R}_{f}(\boldsymbol{x}_{f}^{(i)} + \boldsymbol{h}^{(i)}))}{U(\boldsymbol{R}_{s}(\boldsymbol{x}_{f}^{(i)})) - U(\boldsymbol{R}_{s}(\boldsymbol{x}_{f}^{(i)} + \boldsymbol{h}^{(i)}))}$$

Update Parameters (continued)

$$\lambda^{(i+1)} = \begin{cases} 1 & \| \boldsymbol{E}_{l}^{(i)} \| \\ \frac{\| \boldsymbol{E}_{l}^{(i)} \|}{\| \boldsymbol{E}_{l}^{(i)} \| + \| \boldsymbol{E}_{m}^{(i)} \|} & 0 \end{cases}$$

$$\left\|\boldsymbol{E}_{l}^{(i)}\right\| > 2\left\|\boldsymbol{E}_{m}^{(i)}\right\|$$

otherwise

$$E_m^{(i)} = R_m^{(i)} (x_f^{(i)} + h^{(i)}) - R_f (x_f^{(i)} + h^{(i)})$$
$$E_l^{(i)} = R_f (x_f^{(i)}) + J_f^{(i)} h^{(i)} - R_f (x_f^{(i)} + h^{(i)})$$

Stopping Criteria

maximum number of iterations reached

optimization parameters step length

$$\frac{\left\|\boldsymbol{x}_{f}^{(i+1)} - \boldsymbol{x}_{f}^{(i)}\right\|_{2}}{\left\|\boldsymbol{x}_{f}^{(i)}\right\|_{2}} < \varepsilon$$

Two-Section Impedance Transformer

"fine" and "coarse" model: OSA90/hope

initial response

optimal response

Two-Section Impedance Transformer Objective Function

5 iterations, 6 fine model simulations

HTS Filter Design

"fine" and "coarse" model: OSA90/hope

initial response

optimal response

(specification slightly different from previous design)

HTS Filter Design Objective Function

4 iterations, 5 fine model simulations

Conclusions

the SMX system design is formally presented for the first time

state-of-the-art optimization technology is utilized

object-oriented programming is used to construct the system

new optimization methods and new simulators can be plugged in

the SMX is a powerful tool for engineering optimization and algorithm research

the original SMX parameter extraction procedure is effectively simplified

Acknowledgements

Jacob Søndergaard and Ahmed S. Mohamed

References

J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny and R.H. Hemmers, "Space mapping technique for electromagnetic optimization," *IEEE Trans. Microwave Theory Tech.*, vol. 42, 1994, pp. 2536-2544.

M.H. Bakr, J.W. Bandler, K. Madsen, J.E. Rayas-Sánchez and J. Søndergaard, "Space mapping optimization of microwave circuits exploiting surrogate models," *IEEE MTT-S Int. Microwave Symp.* Dig. (Boston, MA), 2000, pp. 1785-1788.

A.J. Booker, J.E. Dennis, Jr., P.D. Frank, D. B. Serafini, V. Torczon and M.W. Trosset, "A rigorous framework for optimization of expensive functions by surrogates," *Structural Optimization*, vol. 17, 1999, pp. 1-13.

UML Training in Object Oriented Analysis and Design page at http://www.cragsystems.co.uk/uml_training_080.htm.

C. Petzold, Programming Windows, Microsoft Press, 1990.

OSA90/hopeTM Version 4.0, formerly Optimization Systems Associates Inc., P.O. Box 8083, Dundas, Ontario, Canada L9H 5E7, now Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799.

Advanced Design System Release 1.3, Agilent EEsof EDA, November 1999.

J.W. Bandler, R.M. Biernacki, S.H. Chen, W.J. Gestinger, P.A. Grobelny, C. Moskowitz and S.H. Talisa, "Electromagnetic design of high-temperature super-conducting filters," *Int. J. Microwave and Millimeter-Wave Computer-Aided Engineering*, vol. 5, 1995, pp. 331-343..

M.H. Bakr, J.W. Bandler, K. Madsen and J. Søndergaard, "Review of the space mapping approach to engineering optimization and modeling," *Optimization and Engineering*, vol. 1, 2000, pp. 241-276.

C.G. Broyden, "A class of methods for solving non-linear simultaneous equations," *Mathematics of Computation*, vol. 19, 1965, pp. 577-593.