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Conventional ANN-Based Optimization of Microwave Circuits

(Zaabab, Zhang and Nakhla, 1995, Gupta et al., 1997, Burrascano and Mongiardo, 1998)

step 1
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ANN-Based Microwave Optimization Exploiting Available Knowledge

EM-ANN approach

(Gupta et al., 1999)
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neural space mapping approach

(Bandler et al., 2000)

neuro-

mapping

fine

model

w

R
fx

f

R
c
 »  R

f

w

coarse

model
x

c

w
c

NSM optimization requires 2n+1 

upfront fine simulations

coarse

model

ANN

fine

model

w R
f

R
c

DR

» DR

x
f

w



Objectives

develop an aggressive ANN-based space mapping optimization

avoid multipoint parameter extraction and frequency mappings
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Neural Inverse Space Mapping Optimization
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Statistical Parameter Extraction
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Inverse Neuromapping
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Nature of the NISM Step 

xf 
(i+1) = N(xc

*)

evaluates the current ANN at the optimal coarse solution

is equivalent to a quasi-Newton step

departs from a quasi-Newton step as the nonlinearity needed in the inverse 

mapping increases

does not use classical updating formulas to approximate the Jacobian 

inverse
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Termination Condition for NISM Optimization
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)
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HTS Microstrip Filter: Fine and Coarse Models

fine model: 

Sonnet’s em with high resolution 

grid
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coarse model:

OSA90/hope built-in models of open 

circuits, microstrip lines and coupled 

microstrip lines



NISM Optimization of the HTS Filter

responses using em (o) and OSA90/hope (-) 

at the starting point
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NISM Optimization of the HTS Filter (continued)

responses using OSA90/hope (-) at xc
* and em (o) at the NISM solution

(after 3 NISM iterations)
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NISM vs. NSM Optimization

HTS filter optimal responses in the passband

after NISM (3 fine simulations)
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after NSM (14 fine simulations)

(Bandler et al., 2000)
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NISM vs. Trust Region Aggressive Space Mapping (TRASM) Exploiting Surrogates

fine model minimax objective function

after NISM (3 fine simulations)
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after TRASM Exploiting Surrogates 

(8 fine simulations) (Bakr et al., 2000)
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Conclusions

we propose Neural Inverse Space Mapping (NISM) optimization

up-front EM simulations, multipoint parameter extraction or frequency mapping are not 

required

a statistical procedure overcomes poor local minima during parameter extraction

an ANN approximates the inverse of the mapping

the next iterate is obtained from evaluating the ANN at the optimal coarse solution

this is a quasi-Newton step

NISM optimization exhibits superior performance to NSM optimization and Trust Region 

Aggressive Space Mapping Exploiting Surrogates
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