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Abstract 
In this work, an efficient procedure to realize electromagnetics-based yield optimization and statistical 
analysis of microwave structures using space mapping-based neuromodels is proposed. Our technique is 
illustrated by the EM-based statistical analysis and yield optimization of an HTS microstrip filter.  In our 
paper we demonstrate the use of neuromappings for both symmetric and asymmetric tolerance variations. 
 

Introduction 
With the increasing availability of commercial EM simulators, it is very desirable to include them in 
statistical analysis and yield-driven design of microwave circuits.  Given the high cost in computational 
effort imposed by the EM simulators, creative procedures must be searched to efficiently use them for 
statistical analysis and design. 
 

For the first time, we propose the use of space mapping-based neuromodels for efficient and accurate EM-
based statistical analysis and yield optimization of microwave structures. In the full paper, we briefly review 
the use of neural networks for the design by optimization of microwave circuits and we mathematically 
formulate the yield optimization problem using SM-based neuromodels.  Here, a general equation to express 
the relationship between the fine and coarse model sensitivities through a nonlinear, frequency-sensitive 
neuromapping is presented.  We illustrate our technique by the yield analysis and optimization of a high-
temperature superconducting (HTS) quarter-wave parallel coupled-line microstrip filter. 
 

Yield Analysis and Optimization via Space Mapping Based Neuromodels 
Let the vectors xc, xf ∈ ℜn represent the design parameters of the coarse and fine models, respectively.  The 
operating frequency ω, used by the fine model, can be different to that used by the coarse model ωc.  Let 
Rc(xc,ωc), Rf (xf,ω) ∈ ℜr represent the coarse and fine model responses at ωc and ω, respectively.  We denote 
the corresponding SM-based neuromodel responses at frequency ω as RSMBN (xf,ω), given by 
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where the mapping function P is implemented by a neural network following any of the 5 neuromapping 
variations (SM, FDSM, FSM, FM or FPSM) described in [1].  We assume that a suitable mapping function P 
has already been found (i.e., a neural network with suitable complexity has already been trained). 
 

If the SM-based neuromodel is properly developed, 
),(),( ωω fSMBNff xRxR ≈  (3)

for all xf and ω in the training region. 
 

Let the Jacobian of the fine model responses w.r.t. the fine model parameters be Jf ∈ ℜr×n; let the Jacobian of 
the coarse model responses w.r.t. the coarse model parameters and mapped frequency be Jc ∈ ℜr×(n+1) and let 
the Jacobian of the mapping w.r.t. the fine model parameters be JP ∈ ℜ(n+1)×n.  Then the sensitivities of the 
fine model responses can be approximated using 

Pcf JJJ ≈  (4)
The accuracy of the approximation of Jf using (4) will depend on how well the SM-based neuromodel 
reproduces the behavior of the fine model in the training region. 
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If the mapping is implemented with a 3-layer perceptron with h hidden neurons, (2) is given by 
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where W o ∈ ℜ(n+1)×h is the matrix of output weighting factors, bo∈ ℜn+1 is the vector of output bias elements, 
ΦΦΦΦ ∈ ℜh is the vector of hidden signals, s ∈ ℜh is the vector of activation potentials, W h ∈ ℜh×(n+1) is the 
matrix of hidden weighting factors, bh∈ ℜh is the vector of hidden bias elements and h is the number of 
hidden neurons.  A typical choice for the nonlinear activation functions is hyperbolic tangents, i.e., ϕ(⋅) = 
tanh(⋅).  All the internal parameters of the neural network, bo, bh, W o and  W h are constant since the SM-
based neuromodel has been already developed. 
 

The Jacobian JP is obtained from (5-7) as 
ho

P WJWJ Φ=  (8)

where JΦ ∈ ℜh×h is a diagonal matrix given by JΦ = diag(ϕ ' (sj)), with j = 1… h.  If the SM-based neuromo-
del uses a 2-layer perceptron, the Jacobian JP is simply 

o
P WJ =  (9)

which corresponds to the case of a frequency-sensitive linear mapping.  Notice that by substituting (9) in (4) 
and assuming a frequency-insensitive neuromapping we obtain the lemma found in [2], since in the case of a 
2-layer perceptron with no frequency dependance, W o ∈ ℜn×n. 
 

Yield Optimization of an HTS Filter (Symmetric Case) 
Consider a high-temperature superconducting (HTS) parallel coupled-line microstrip filter [1, 3] (Fig. 1).  
OSA90/hope built-in linear elements connected by circuit theory form the “coarse” model.  Sonnet’s em 
driven by Empipe forms the fine model, using a high-resolution grid.  The SM-based neuromodel of the 
HTS filter of [3] is used.  The corresponding SM-based neuromodel is illustrated in Fig. 2, which implements 
a frequency partial-space mapped neuromapping with 7 hidden neurons, mapping only L1, S1 and the 
frequency (3LP:7-7-3).  Applying direct minimax optimization to the coarse model, we obtain the optimal 
coarse solution xc

*.  We apply direct minimax optimization to the SM-based neuromodel, starting at xc
*, to 

obtain the optimal SM-based neuromodel nominal solution xSMBN
*. 

 

For yield analysis, we consider 0.2% of variation for the dielectric constant and for the loss tangent, as well 
as 75 micron of variation for the physical dimensions, with uniform statistical distributions.  We perform 
Monte Carlo yield analysis of the SM-based neuromodel around xSMBN

* with 500 outcomes.  This takes a few 
tens of seconds on a PC (AMD 640MHz, 256M RAM, Windows NT 4.0). A single outcome calculation for 
the same circuit using an EM simulation takes about 5 hours.  The responses for 50 outcomes are shown in 
Fig. 3.  The yield calculation is shown in Fig. 4.  A yield of only 18.4% is obtained at xSMBN

*.  We then apply 
yield optimization to the SM-based neuromodel with 500 outcomes using the Yield-Huber optimizer 
available in OSA90/hope, obtaining the optimal yield solution: xSMBN

Y*.  The corresponding responses for 
50 outcomes are shown in Fig. 5.  The yield is increased from 18.4% to 66%, as shown in Fig. 6. 
 

Conclusions 
An efficient procedure to realize EM-based statistical analysis and yield optimization of microwave 
structures using space mapping-based neuromodels is proposed.  A general equation to express the 
relationship between the fine and coarse model sensitivities through a nonlinear, frequency-sensitive 
neuromapping is presented.  In the full paper we show a creative procedure to avoid the need of extra EM 
simulations when asymmetric variations in the physical parameters due to tolerances are considered, by re-
using the available neuromappings on asymmetric coarse models. 
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Fig. 1.  HTS quarter-wave parallel coupled-line microstrip 
filter. 

Fig. 2.  SM-based neuromodel of the HTS filter for yield 
analysis assuming symmetry (L1c and S1c correspond to L1 
and S1 as used by the coarse model). 
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Fig. 3.  Monte Carlo yield analysis of the SM-based 
neuromodel responses around the optimal nominal solution 
xSMBN* with 50 outcomes. 
 

Fig. 4.  Histogram of the yield analysis of the SM-based 
neuromodel around the optimal nominal solution  xSMBN* 
with 500 outcomes. 
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Fig. 5.  Monte Carlo yield analysis of the SM-based 
neuromodel responses around the optimal yield solution 
xSMBN Y* with 50 outcomes. 

Fig. 6.  Histogram of the yield analysis of the SM-based 
neuromodel around the optimal yield solution xSMBNY* with 
500 outcomes (considering symmetry). 
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