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The Space Mapping Concept

(Bandler et al., 1994-)
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The Space Mapping Concept (continued)
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Frequency Space Mapping Concept

(Bandler et. al., 1995)
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Mathematical Formulation for GSM

the kth mapping is given by

in matrix form, assuming a linear mapping

the mapping parameters                                         can be evaluated 

by solving the optimization problem

where m is the number of base points selected in the fine model 

space and      is an error vector given by
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Starting Point and Learning Samples

we chose a unit mapping (xc » x f and wc » w) as the starting point for the optimization 

problem

2n+1 points are used for a microwave circuit with n design parameters
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Multiple Space Mapping (MSM) Concept

MSM for Device Responses (MSMDR)
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Multiple Space Mapping (MSM) Concept

MSM for Frequency Intervals (MSMFI)
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Microstrip Shaped T-Junction

the fine and coarse models
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Microstrip Shaped T-Junction

the region of interest

15 mil  H  25 mil

2 mil  X  10 mil

15 mil  Y  25 mil

8   10

the frequency range is 2 GHz to 20 GHz with a step of 2 GHz

the number of base points is 9, the number of test points is 50

the widths W of the input lines track H so that their 

characteristic impedance is 50 ohm

W1 = W/3

W2 is suitably constrained

rε
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Microstrip Shaped T-Junction

MSMFI is developed to enhance the accuracy of the coarse model

our algorithm determined two intervals: 2-16 GHz and 16-20 GHz

2 GHz to 16 GHz 16 GHz to 20 GHz
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Microstrip Shaped T-Junction

the responses at two test points in the region of interest by Sonnet’s em (•):

the coarse model (---), the enhanced coarse model (—)
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Microstrip Shaped T-Junction

the errors of the coarse model responses at the test points
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Microstrip Shaped T-Junction

the errors of the enhanced coarse model responses at the test points
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The Space Mapping Concept

(Bandler et al., 1994-)
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Neural Space Mapping

(Bandler et al., 1999)

using a three layer perceptron (3LP)
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Space Mapping Based Neuromodeling

(Bandler et. al., 1999)
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Neuromappings

Space Mapped neuromapping Frequency-Dependent Space

Mapped neuromapping                   
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Neuromappings (continued)

Frequency Mapped neuromapping Frequency Space

Mapped neuromapping                   
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Neuromappings (continued)

Frequency Partial-Space 

Mapped neuromapping
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it is not always necessary to 

map the whole set of design 

parameters

coarse model sensitivities can 

be used to select the mapped 

parameters
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r is the number of responses in the model

P is the neuromapping function and w contains the free parameters of the ANN

2n+1 is the number of training base points and Fp is the number of frequency points

Huber optimization is used to solve this problem

Training the SM-Based Neuromodel
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Starting Point and Learning Samples

we chose a unit mapping (xc » x f and wc » w) as the starting point for the optimization 

problem

2n+1 points are used for a microwave circuit with n design parameters
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Microstrip Right Angle Bend

region of interest

20mil  W  30mil

8mil  H  16mil

8  er  10

1GHz  w  41GHz

“coarse” model: equivalent circuit 

model (Gupta, Garg and Bahl, 1979)

“fine” model: Sonnet’s em

learning set: 7 base points with “star” 

distribution
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Microstrip Right Angle Bend Coarse Model Errors

comparison between em and coarse model at 50 random test points
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SM Neuromodel for the Right Angle Bend (3LP:3-6-3)
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SM Neuromodel Results for the Right Angle Bend

comparison between em and the SM neuromodel
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FDSM Neuromodel for the Right Angle Bend (3LP:4-7-3)
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FDSM Neuromodel Results for the Right Angle Bend

comparison between em and the FDSM neuromodel
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FSM Neuromodel for the Right Angle Bend (3LP:4-8-4)
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FSM Neuromodel Results for the Right Angle Bend

comparison between em and the FSM neuromodel
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter

(Westinghouse, 1993)

region of interest

175mil  L1  185mil

190mil  L2  210mil

175mil  L3  185mil

18mil  S1  22mil

75mil  S2  85mil

70mil  S3  90mil

3.901GHz  w  4.161GHz

L0 = 50mil

H = 20mil

W = 7mil

er = 23.425

loss tangent = 3´10-5
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HTS Microstrip Filter: Fine and Coarse Models

coarse model:

OSA90/hope built-in models of open 

circuits, microstrip lines and coupled 

microstrip lines

fine model: 

Sonnet’s em with high resolution 

grid
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HTS Filter Responses Before Neuromodeling

responses using em (·) and OSA90/hope (-) at three learning and three test points
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HTS Coarse Model Error w.r.t. em before any Neuromodeling
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learning set: 13 base points with “star” distribution

testing set: 7 random base points in the region of interest 

(not seen in the learning set)
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FM Neuromodel for the HTS Filter (3LP:7-5-1)
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FM Neuromodel for the HTS Filter (3LP:7-5-1)

responses using em (·) and FMN model (-) at the three learning and three testing points
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HTS FM Neuromodel Error w.r.t. em

in the learning set in the testing set
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FPSM Neuromodel for the HTS Filter (3LP:7-7-3)
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FPSM Neuromodel for the HTS Filter (3LP:7-7-3)

responses using em (·) and FPSMN model (-) at the three learning and three testing points

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
2

1
|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
2
1
|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
2

1
|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

|S
2
1
|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
2
1
|

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

|S
2

1
|

Simulation Optimization Systems Research Laboratory
McMaster University



HTS FPSM Neuromodel Error w.r.t. em

in the learning set in the testing set
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FPSM Neuromodel for the HTS Filter: Fine Frequency Sweep Results

comparison between em (·) and FPSMN model (-) at two learning and one testing points
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Other Applications of SM based Neuromodels

(Bandler et al., 2000, 2001)

Neural Space Mapping (NSM) Optimization

EM-based Statistical Analysis

EM-based Yield Optimization

Neural Inverse Space Mapping (NISM) Optimization
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Conclusions

we describe applications of Space Mapping technology 

to modeling

we review Generalized Space Mapping (GSM) as an engineering device 

modeling framework

SM based neuromodeling techniques are also reviewed

frequency-sensitive neuromappings expand the usefulness

of empirical quasi-static models

Space Mapping based models can be exploited for efficient EM 

optimization, statistical analysis and yield optimization
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