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ABSTRACT: We present a new computer-aided modeling methodology to develop physics-based 

models for passive components.  We coherently integrate full-wave EM simulators, artificial neural 

networks, multivariable rational functions, dimensional analysis and frequency mapping to establish 

broadband models.  We consider both frequency-independent and frequency-dependent empirical models.  

Frequency mapping is used to develop the frequency-dependent empirical models.  Useful properties of 

the frequency mapping are also presented and utilized in the modeling process.  We also consider the 

transformation from frequency-dependent models into frequency-independent ones.  The passivity of the 

frequency-dependent empirical model is also considered.  We illustrate the modeling process through 

various examples, including a microstrip right angle bend, a microstrip via, a microstrip double-step (to 

be used as a basic element of constructing a model for nonuniform or tapered microstrip transmission 

lines) and a CPW step junction. 
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I.  INTRODUCTION 

 We present a new computer-aided modeling methodology to develop physics-based empirical 

models for microwave passive components.  We integrate in a coherent way EM simulators, artificial 

neural networks [1,2], multivariable rational functions [3], dimensional analysis [4,5] and frequency 

mapping [6,7] to establish models valid over broad frequency ranges.  We consider frequency-

independent empirical models (FIEM) and frequency-dependent empirical models (FDEM).  In the 

FDEM we use the frequency mapping approach [6,7] which implicitly introduces frequency dependency 

into the model elements.  We also exploit the odd property of the frequency mapping, that is the 
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transformed frequency must be an odd function of the original frequency.  Artificial neural networks or 

rational functions are used to approximate these elements as well as the frequency mapping.  Rational 

functions enable us to transform a simple FDEM to an equivalent FIEM.  This transformation can be 

expedited by impedance synthesis [8] as we will see in the examples.  The passivity of the FDEMs is also 

considered.  Dimensional analysis [4,5] determines the functionality of the model elements and the 

frequency mapping on the components’ geometrical and physical parameters.  It also reduces the amount 

of training data required in the approximation process.  The data required to develop the empirical models 

is obtained by accurate but time intensive full-wave EM simulators (referred to in the space mapping 

literature as “fine” models [6]).  We illustrate the process through various examples, including a 

microstrip right angle bend, a microstrip via, a microstrip double-step (to be used as a basic element of 

constructing a model for nonuniform or tapered microstrip transmission lines) and a CPW step junction. 

Equivalent circuits can be obtained from the literature or can be visualized by microwave 

engineers through their understanding and expertise of microwave components.  We believe that, though 

simple, they have advantages over black-box modeling of microwave components since they embody 

physical characteristics (at least at low frequencies) of the actual components.  A shortcoming is that 

those equivalent circuits may fail to give good accuracy at high frequencies due to dispersion.  We 

address dispersive effects by introducing the frequency dependency into the elements of the equivalent 

circuits. 

II.  FREQUENCY INDEPENDENT EMPIRICAL MODELS (FIEM) 

 Consider a microwave component modeled by a fine model (typically a full-wave EM simulator) 

and a circuit model (empirical model).  We assume that the topology of the equivalent circuit is known 

but the empirical formulas of their elements are to be determined.  This concept is shown in Fig. 1.  The 

vector fx  is an n-dimensional vector representing the parameters of the microwave component and  is 

the frequency.  The vectors Rf and Rc represent the fine and circuit model responses, respectively.  The 

development of the FIEM is shown in Fig. 2.  The vector y is an l-dimensional vector representing the 
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empirical formulas of the elements of the circuit model.  Applying dimensional analysis [4,5] the vector y 

becomes a function of an nr-dimensional vector xr (nr < n), which we call the reduced input parameter 

vector (we will show in the examples how to construct this vector).  We approximate y through artificial 

neural network [1, 2] or multivariable rational functions [3] in a certain region of parameters and 

frequency as 

),( wxQy r  (1) 

where w is a set of unknown parameters.  The set w is evaluated by solving the optimization problem 
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where  is a suitable norm, N is the total number of training points, M is the number of frequency points 

per frequency sweep and ije  is an error vector given by 

)),,((),( jircjiffij ωω wxQRxRe −=  (3) 

The optimization problem in (2) is solved by the Huber optimizer implemented in OSA90 [13].  The 

training points are selected according to the Central Composite Design [9] and more training points are 

added if necessary. 

III.  FREQUENCY DEPENDENT EMPIRICAL MODELS (FDEM) 

 Two approaches can be used to introduce frequency dependency to the elements of the FDEM.  

One approach is to introduce the frequency dependency directly to the vector y (Fig. 3).  The second 

approach exploits the frequency mapping (transformation) concept [6,7], where we simulate the circuit 

model at a different frequency from the fine model.  We call this frequency the circuit model frequency 

c.  Frequency mappings (transformations) have roots in classical filter design, for example, low-pass to 

band-pass or high-pass transformations [10].  The development of the FDEM using this approach is 

shown in Fig. 4.  The dependency of c on  as well as the physical parameters is determined by applying 

dimensional analysis.  Artificial neural networks or multivariable rational functions are used to 

approximate y and c 
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where w1 and w2 are unknown parameters.  These parameters are evaluated by solving the optimization 

problem in (2) with the error vector ije  given by 

)),(),,((),( 21 wxwxQRxRe jirircjiffij ω,Ωω −=  (5) 

Properties of the Frequency Mapping 

 Simulating the circuit model at a different frequency from that of the fine model is an implicit 

way of introducing frequency dependency to the elements of the circuit model.  For example, if the device 

is lossless the circuit model contains only lossless lumped-elements (inductors and capacitors).  In this 

case, a FDEM simulated at c and with a circuit element vector y is equivalent to a FDEM simulated at  

and with a circuit elements vector y1 given by  

yy )/(1 ωωc=  (6) 

This can be proved as follows.  For any inductor L and capacitor C (simulated at frequency c) in y we 

have 

)/( ωLωωjZ cL =  (7a) 

)/( ωCωωjY cc =  (7b) 

Therefore, the circuit elements vector y1 (simulated at frequency ) is related to the vector y by (6).  

Furthermore, the frequency c should be an odd function of .  This results from the even and odd 

properties [10] of an arbitrary frequency-dependent impedance Z(), where the real (imaginary) part 

should be an even (odd) function of frequency.  For example, if an inductor L is simulated at frequency c 

the equivalent impedance ZL = jc L is purely imaginary, hence ZL and consequently c should be odd 

function of .  The odd property is also preserved when using the frequency mapping to transform a low-

pass filter into a high- or a band-pass filter [10].  We use this property in conjunction with dimensional 

analysis to further reduce the number of parameters of the artificial neural network or the multivariable 

rational function approximating c. 
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Transformation of FDEMs into FIEMs 

 The advantage of using a multivariable rational function to approximate the frequency mapping is 

that we can transform the FDEM into an equivalent FIEM.  This transformation involves one-port 

impedance synthesis, which states that the impedance we want to realize should be a positive real rational 

function [8].  For example, the impedances associated with an inductor L and a capacitor C (simulated at 

c) in the circuit elements vector y are ZL = jc L and ZC = 1/jc C, respectively.  Those impedances can 

be realized using any of the one-port impedance synthesis techniques such as the first Foster realization or 

second Foster realization or ladder realization [8].  In the examples presented here, we notice that the 

frequency c takes the form 
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where f1, f2, f3, f4 are functions of the device physical parameters.  Therefore, the impedances associated 

with an inductor L and a capacitor C in the circuit elements vector y are given by 
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We believe that (8) may be useful for other devices such as microstrip mitered bends, microstrip step 

junctions, etc. 

Passivity of the FDEMs 

 The FDEM of a microwave component is passive if the equivalent impedance of each element 

(inductor or capacitor) of the circuit model is realizable.  That is, the equivalent impedances given by (9a) 

and (9b) are realizable.  An impedance Z(s), where s = j, is realizable if and only if it is a positive real 

function of s, i.e, Z(s) is a real rational function of s and Re(Z(s))  0 if Re(s)  0 [8].  For an LC 

impedance this implies that all poles of Z(s) are simple and lie on the j axis and have positive real 

residues.  Applying these conditions on the impedance in (9a) and (9b) and performing some algebraic 

manipulations we get the passivity conditions of the FDEMs (see Appendix A).  A FDEM is passive if the 
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circuit elements (inductors and capacitors) are positive and the parameters of the frequency mapping in 

(8) satisfy 

4...1,0 = ifi  (10a) 
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Therefore in order to insure the passivity of the FDEMs (10a) and (10b) should be included as constraints 

to the optimization problem in (2). 

IV.  MULTIVARIABLE RATIONAL FUNCTIONS 

 Multivariable rational functions (MRFs) [3] are used in most of the modeling examples 

developed here.  A multivariable rational function is the quotient of two polynomials, 
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where T
nxxx ][ 21 �=x  is the input vector and a, b are two vectors containing the unknown a’s and b’s 

respectively.  The polynomials in the numerator and the denominator are of finite order p and q, 

respectively.  The rational function in (11) is fully characterized by the number of input variables n, the 

numerator order p and the denominator order q, hence we refer to it as MRFn,p,q.  The number of unknown 

parameters in a and b can be reduced if some of the input variables are restricted to a certain order less 

than p or q.  For example, a MRF2,3,2 with the order of the input variable x1 restricted to 1 is given by 
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which has 11 unknown parameters.  On the other hand, the full MRF2,3,2 has 15 unknown parameters.  

The unknown parameters in a and b can be computed by two methods.  First, if the values of the function 

f in (11) are explicitly available we can evaluate a and b by solving a system of linear equations.  This is 

done by applying cross-multiplication to both sides of (11) and rearranging the terms to get a system of 

linear equations in the elements of a and b.  This system of linear equations can be solved by the method 
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of least-squares or recursive least-squares algorithm [3].  Second, if values of f are not directly available 

we evaluate a and b by solving a suitable optimization problem (in our case the optimization problem in 

(2)).  The second method is adopted in this work since we evaluate the elements of the empirical model 

(inductors, capacitors, the frequency c) and the only available information are the scattering parameters 

supplied by the EM simulators. 

V.  MODELING EXAMPLES 

 To display the results in a compact way we define the error in the scattering parameter Sij as the 

modulus of the difference between the scattering parameter f
ijS  computed by the fine model and the 

scattering parameter c
ijS  computed by the circuit model 
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where i = 1, 2,..., P and j = 1, 2,..., P (P is the number of ports of the microwave device).  We also define 

the percentage error in Sij by 
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We will use percentage error in Sij to display the results whenever f
ijS is not zero. 

Microstrip Right Angle Bend 

 Here, we develop a frequency-independent and frequency-dependent empirical model for the 

microstrip right angle bend in Fig. 5(a).  The fine model is analyzed by Sonnet’s em [11] and the circuit 

model is the LC circuit [12] in Fig. 5(b).  The vector of input parameters T
rfx ][ = HW  and the vector 

of the circuit elements is Ty ]//[ HCHL= .  Applying dimensional analysis [4,5], we can show that y is 

related to fx  by 

)(/ 0 W/HfμHL =  (15a) 

),(/ 0 rεW/HfεHC =  (15b) 
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Therefore, y is a function of Tx ][ rr εW/H= .  We first develop a FIEM in the frequency range [1, 11] 

GHz.  The region of interest is 0.2 <W/H< 6 and 2 <r< 11.  The substrate height H is chosen in the range 

[5, 30] mil.  We use a three-layer perceptron ANN (with hyperbolic-tangent as nonlinear activation 

function) to approximate y.  Two hidden neurons were used for L/H and three hidden neurons for C/H.  

The training points are chosen according to the Central Composite Design [9] in addition to 4 more points 

as shown in Fig. 6 (total 13 training points) where 1x̂  and 2x̂  are the scaled input variables corresponding 

to W/H and r , respectively.  The vector y is also approximated by multivariable rational functions.  The 

inductance per unit length L/H is approximated by a rational function MRF2,2,2 and the capacitance per 

unit length C/H is approximated by a rational function MRF2,3,0 with the order of W/H restricted to one 

(this gives better generalization performance than if we did not restrict the order of W/H).  The parameters 

of the ANNs and the MRFs are obtained by the Huber optimizer in OSA90/hope [13].  Figs. 7(a) and (b) 

show the error in the scattering parameter S11 at 16 test points in the region of interest for the FIEM 

developed by ANN and MRF, respectively.  Fig. 7(c) shows the corresponding error due to the Jansen 

model [14] at the same test points.  We see that the three models are comparable. 

 The results obtained by the FIEM (developed by either ANNs or MRFs) and by the Jansen 

empirical model [14] over broad frequency range are shown in Figs. 8 (a), (b) and (c), respectively.  It is 

clear that neither the FIEM nor the empirical model in [14] are accurate at high frequencies.  Therefore, 

we develop a FDEM (see Fig. 4), where c is a function of  and the other parameters.  Applying 

dimensional analysis (see Appendix B) and using the odd property of c we get 

))(,( 2ωH/cωω rc x=  (16) 

where c is the speed of light and  is an unknown function to be approximated.  We use multivariable 

rational functions to approximate y as well as c.  A MRF3,2,2 with the order of (H/c)2 restricted to one is 

used to approximate c.  The number of training points used to develop the FDEM is the same as that 

used to develop the FIEM.  Figs. 9 (a) and (b) show the errors in the scattering parameters S11 and S21 at 
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16 test points in the region of interest for the FDEM.  Fig. 10 compares the results obtained by the FDEM 

and those from Sonnet’s em [11].  The empirical expressions for y and c are given in Table I. 

 We transform the FDEM into an equivalent FIEM as follows.  The frequency c is given by (8) 

and, hence the impedances associated with L and C are given by (9a) and (9b), respectively.  These 

impedances are realized by the first Foster realization [8].  The equivalent FIEM is shown in Fig. 11(b), 

where all elements are frequency independent and functions only of the device parameters. 

Microstrip Via 

 Here, we consider modeling the microstrip via of Fig. 12(a).  The circuit model is an inductor L to 

ground (Fig. 12(b)).  The fine model is analyzed by Sonnet’s em [11].  The reference plane is at the 

junction of the microstrip line and the square pad.  The vector T
fx ][ 0 DWHW= , where H is the 

substrate height (GaAs, r=12.9).  Here, y = [L/H], which is given by 

),/,(/ 00 D/WWWW/HfμHL =  (17) 

hence, Tx ][ 0 D/W/WWW/Hr = .  A FIEM was developed in the range [2, 10] GHz. The region of 

interest is 1 <W/H< 2.2, 0.2 <W0/W < 1 and 0.2 <D/W< 0.8.  We use a MRF3,2,2 to approximate L/H.  The 

training points are chosen according to the Central Composite Design [9] in addition to 8 more points 

(total 23 training points).  The parameters of the MRF are obtained by the Huber optimizer in 

OSA90/hope [13].  The percentage errors in the inductance L and in S11 at 30 test points are shown in Fig. 

13.  Fig. 14 compares the results obtained by the FIEM and those from Sonnet’s em [11]. 

 The results of the FIEM in the range [2, 22] GHz are shown in Fig. 15.  We notice large errors at 

high frequencies.  This is because the simple inductor to ground does not take into account the effect of 

the pad surrounding the via hole and the step junction [15] (see Fig. 12).  To overcome this deficiency we 

develop a FDEM in the range [2, 22] GHz.  The circuit model frequency (applying dimensional analysis 

and using the odd property of the frequency mapping) takes the same form as in (16).  We use 

multivariable rational functions to approximate y as well as c.  The number of training points used is 23.  

The percentage errors in L and in S11 at 30 test points are shown in Figs. 16 (a) and (b), respectively.  The 
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transformation of the FDEM into an equivalent FIEM follows the microstrip right angle bend example.  

The frequency c is given by (8).  The equivalent impedance of L is of the form of (9a).  The resulting 

FIEM is shown in Fig. 17. 

 Microstrip Double-Step 

Here, we consider broadband modeling of the microstrip double-step element in Fig. 18(a).  It can 

be used to model microstrip tapered lines or nonuniform (in width) microstrip lines.  The circuit model 

consists of two shunt capacitances and one series inductance (see Fig. 18(b)).  The fine model is analyzed 

by Sonnet’s em [11].  The vector of fine model parameters T
fx ][ 321 WWW= .  The substrate height 

H=25 mil, the relative dielectric constant 7.9=rε  and the length l (see Fig. 18(a)) is 5 mil.  The circuit 

elements vector Ty ][ 211 /HC/HC/HL= .  The elements of y are given by 
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hence, Tx ][ 23122 /WW/WW/HWr = .  The circuit model frequency (applying dimensional analysis and 

using the odd property of the frequency mapping) takes the same form as in (16).  A FDEM of the 

double-step element is developed in the frequency range [1, 41] GHz.  The region of interest is 

0.1<W2/H<1, 0.5 <W2/W1 < 0.9 and 0.5 <W3/W2< 0.9.  We use a MRF3,2,2 to approximate each element of 

the vector y and a MRF4,2,2 to approximate c with the order of (H/c)2 restricted to 1.  The number of 

training points is 23.  The parameters of the MRFs are obtained by the Huber optimizer in OSA90/hope 

[13].  The errors in S11 and S21 of the FDEM with respect to Sonnet’s em [11] at 27 testing points in the 

region of interest are shown in Figs. 19 (a) and (b), respectively.  To evaluate the FDEM of the double-

step we consider an alternative model for the double-step element.  This model is composed of a 

microstrip transmission line and 2 step junctions as shown in Fig. 20.  The empirical models for the 

microstrip line and the 2 step junctions are taken from OSA90/hope.  Figs. 21(a) and (b) show the errors 
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in S11 and S21 of this model with respect to Sonnet’s em [11] at 27 testing points in the region of interest.  

It is clear from Figs. 19 and 21 that the FDEM outperforms the double-step model in Fig. 20. 

 The FDEM of the double-step element is used to model the linear tapered microstrip line in Fig. 

22.  The parameters of the tapered line are L= 150 mil, Win=18 mil, Wout=2 mil, H= 25 mil and 7.9=rε .  

The input microstrip line has a characteristic impedance of 50 ohm and the output line has a characteristic 

impedance of 100 ohm.  The linear tapered microstrip line can be modeled by cascading 30 double-step 

elements (each of length l= 5 mil).  The ABCD matrix of the tapered line is related to the ABCD matrices 

of the double-step elements by 
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We analyzed the tapered line by three methods: by Sonnet’s em [11] (the fine model), by cascading 30 

double-step elements, where the FDEM is used to model each element and by cascading 30 elements 

where the alternative model of the double-step element in Fig. 20 is used.  Fig. 23 compares the results 

obtained by the three methods. 

CPW Step Junction 

 Here, we develop a FIEM for the CPW step junction in Fig. 24(a).  The fine model is analyzed by 

Sonnet’s em [11] and the circuit is the LC circuit [12] in Fig. 5(b).  The vector of input parameters 

T
fx ][ 21 GWW=  and the vector of the circuit elements is Ty ]///[ 21 HCHLHL= , where  

),/,(/ 1121101 G/WWW/HWfμHL =  (20a) 

),/,(/ 1121202 G/WWW/HWfμHL =  (20b) 

),/,(/ 112130 G/WWW/HWfεHC =  (20c) 

Therefore, y is a function of Tx ][ 1121 G/W/WW/HWr = .  The region of interest is 40 m <W1 < 120 m, 

0.2 <W2/W1<0.8 and 0.2<G/W1<1 and the frequency range is [5, 50] GHz.  The substrate height H is 635 

m and the relative dielectric constant is 9.12=rε (GaAs). The number of training points is 23.  Each 

element of the vector y is approximated by a rational function MRF3,2,2.  The parameters of the MRFs are 
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obtained by the Huber optimizer in OSA90/hope [13].  Figs. 25 (a) and (b) compares between the results 

obtained by em [11] and those by the CPW step junction FIEM at 27 test points in the region of interest.  

We notice that the CPW step junction FIEM gives good results in broad frequency range 5 GHz to 50 

GHz.  Therefore, we do not need to develop a FDEM for the CPW step junction.  This means that the 

elements of the CPW step junction empirical model are frequency independent.  Fig. 26 compares 

between the capacitance C extracted from the Z-parameters obtained by em [11] and that predicted by the 

FIEM at 6 test points in the region of interest. 

VI.  CONCLUSIONS 

We present a unified computer-aided modeling methodology for developing broadband models of 

microwave passive components.  Our approach integrates in a coherent way full-wave EM simulations, 

artificial neural networks, multivariable rational functions, dimensional analysis and frequency mapping.  

Two types of models are considered: frequency-independent and frequency-dependent empirical models.  

The latter can be transformed to the former if we use a rational function to approximate the frequency 

mapping.  This is important since the frequency-independent empirical models are readily implementable 

in conventional circuit simulators.  We also discussed the passivity condition of the frequency-dependent 

empirical models. We applied our modeling methodology to develop broadband models for several 

microwave components, including a microstrip right angle bend, a microstrip via, a microstrip double-

step and a CPW step junction. 

Appendix A 

 The passivity conditions for the FDEM can be proven as follows.  The impedance in (9a) is 

written in terms of s = j as 

4
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Since the poles of an LC impedance lie on the j axis and have positive residues, we get the following 
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conditions 

0
4
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f
fL  (A3)

 

0/ 43 ff  (A4) 

0// 4321 − ffff  (A5) 

The inductance L must be positive, hence, f1, f2, f3, f4 must have the same sign.  If we assume that f1, f2, f3, 

f4 are positive, the conditions in (A3-A5) are equivalent to 

4...1,0 = ifi  (A6) 

03241 − ffff  (A7) 

Those conditions can be also obtained by applying the same procedure on the impedance in (9b). 

Appendix B 

 We apply dimensional analysis to determine the dependency of the circuit model frequency c (in 

the microstrip right angle bend example) on the fine model frequency  and the other parameters.  The 

method of dimensional analysis is based on Buckingham’s theorem [4].  This theorem states that “If an 

equation is dimensionally homogeneous it can be reduced to a relationship among a complete set of 

dimensionless products of the system variables”.  The dimensionless products are called Pi () terms 

[4,5].  For our case we assume that c depends on , the device parameters W, H, , the free space 

permittivity 0 and the speed of light c (we can replace c with the free space permeability 0).  A 

dimensional product  takes the form 

7654321 )()( 0
x

c
xxxxxx ωωεεcWH=  (B1) 

where the x’s are evaluated by solving the system of homogeneous equations 

0=xC  (B2) 

The elements of the coefficient matrix C in (B2) can be obtained by constructing the table [4] 
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where Kg, M, S and A are the units of the SI system.  Therefore, C is given by 
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The number of independent solutions of (B2) (the same as the number of independent -terms) equals the 

number of elements of x minus the rank of the matrix C.  In our case the number of elements of x is 7 and 

the rank of the matrix C is 3, hence we have 4 independent solutions of (B2) or 4 -terms.  These 

independent solutions are given in the table 

x1 x2 x3 x4 x5 x6 x7 
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Substituting the value of x’s in (B1) we get the following -terms 

ωωπεεεπcωWπcωHπ r /,/,/,/ 40321 c=====  (B4) 

from 1  and 2  we can get HWπππ // 122 == .  Applying Buckingham’s theorem [4,5] the relation 

between the independent  -terms can take the form 

),,( 3214 πππφπ =  (B5) 

Therefore, 
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),,( ωH/cεW/Hφωω rc =  (B6) 

But since c is an odd function of  (see Section III) we get 

))(,,( 2ωH/cεW/Hfωω rc =  (B7) 
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TABLE I 
EXPRESSIONS OF THE ELEMENTS OF THE FDEM 

OF THE MICROSTRIP RIGHT ANGLE BEND 
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Fig. 1.  The fine model (a) and the circuit model (b). 
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Fig. 2. The development of the frequency-independent empirical models. 
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Fig. 3.  The development of the frequency-dependent empirical models  
with circuit model elements explicitly function of frequency. 
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Fig. 4.  The development of the frequency-dependent empirical models with the circuit 
model elements implicitly function of frequency through frequency mapping. 
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Fig. 5.  The microstrip right angle bend: (a) the fine model, (b) the circuit model. 
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Fig. 6.  The training points for the microstrip right angle bend. 
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Fig. 7.  The error in S11 of the microstrip right angle bend with respect to emTM at the test points: (a) the 
FIEM developed by ANNs, (b) the FIEM developed by MRFs, (c) by the empirical model in [14]. 
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Fig. 8.  The error in S11 of the microstrip right angle bend with respect to emTM over a broad frequency 
range: (a) the FIEM developed by ANNs, (b) the FIEM developed by MRFs, (c) the empirical 
model in [14]. 
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Fig. 9.  The error of the FDEM of the microstrip right angle bend (developed by MRFs)  
with respect to emTM at the test points: (a) in S11, (b) in S21. 
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Fig. 10.  Comparison between the responses obtained by the FDEM of the microstrip right angle bend and 
those obtained by emTM at the test points: (a) magnitude of S11, (b) phase of S11 in degrees. 
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Fig. 11.  The FDEM of the microstrip right angle bend (a) and the equivalent FIEM (b). 
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Fig. 12.  The microstrip via: (a) the physical structure, (b) the circuit model. 
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Fig. 13.  Percentage error of the FIEM of the microstrip via with respect to emTM at the test points: 
(a) in S11, (b) in L. 
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Fig. 14.  Comparison between the responses obtained by the FIEM of the microstrip via and those 

obtained by emTM at the test points in the frequency range [2, 10] GHz: (a) phase of S11, (b) 
the inductance L. 
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Fig. 15.  Comparison of the FIEM of the microstrip via with respect to emTM over a broad frequency 

range at the test points: (a) % error in S11, (b) % error in L. 
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Fig. 16.  Comparison of the FDEM of the microstrip via with respect to emTM over a broad frequency 
 range at the test points: (a) % error in S11, (b) % error in L. 
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Fig. 17.  The FDEM of the microstrip via (a) and the corresponding FIEM (b). 
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Fig. 18.  The microstrip double-step: (a) the physical structure where T1 and T2 are the reference planes, 

(b) the circuit model. 
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Fig. 19.  Comparison between the FDEM of the double-step element and emTM at the test points in the 

region of interest: (a) error in S11, (b) error in S21. 
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Fig. 20.  An alternative model for the microstrip double-step element. 
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Fig. 21.  Comparison between the double-step model in Fig.20 and emTM at the test points in the region of 

interest: (a) error in S11, (b) error in S21. 
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Fig. 22.  Linear tapered microstrip line. 
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Fig. 23.  The response of the linear tapered microstrip line by emTM (•  •), by the FDEM of the double-
step element (⎯), by the model in Fig.20 of the double-step element (----). 
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Fig. 24.  The CPW step junction: (a) the physical structure, (b) the circuit model. 
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Fig. 25.  Comparison between the results obtained by emTM and by the FIEM of the CPW step junction:  

(a)S11 by emTM versus that of the FIEM, (b) the error in S21. 
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Fig. 26.  The capacitance of the CPW step junction: (a) extracted from the fine model (• •), 
(b) predicted by the FIEM of the CPW step junction (⎯). 


