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Artificial Neural Networks (ANN) in Microwave Design 

 

ANNs are suitable models for microwave circuit optimization 

and statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta 

et al., 1996, Burrascano and Mongiardo, 1998, 1999) 

 

once they are trained with reliable learning data, the neuromodel 

can be used for efficient and accurate optimization within the 

region of training 

 

the principal drawback of this ANN optimization approach is the 

cost of generating sufficient learning samples 

 

additionally, it is well known that the extrapolation ability of 

neuromodels is very poor, making unreliable any solution 

predicted outside the training region 

 

introducing knowledge can alleviate these limitations (Gupta et 

al., 1999) 

 
 



 

Simulation Optimization Systems Research Laboratory 
McMaster University  

 

 

00-15-3 

Conventional ANN Optimization Approach 
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many fine model simulations are usually needed  
 

solutions predicted outside the training region are unreliable
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Neural Space Mapping (NSM) Optimization 

 

exploits the SM-based neuromodeling techniques  

(Bandler et al., 1999) 

 

coarse models are used as source of knowledge that reduce the 

amount of learning data and improve the generalization and 

extrapolation performance 

 

NSM requires a reduced set of upfront learning base points 

 

the initial learning base points are selected through sensitivity 

analysis using the coarse model 

 

neuromappings are developed iteratively: their generalization 

performance is controlled by gradually increasing their 

complexity starting with a 3-layer perceptron with 0 hidden 

neurons 
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Neural Space Mapping (NSM) Optimization Concept 
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(2n + 1 learning base points for a microwave circuit with n 

design parameters) 
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Neural Space Mapping (NSM) Optimization Concept 

 

step 3 
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Neural Space Mapping (NSM) Optimization Algorithm 
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Neuromappings 

 

Space Mapped neuromapping 
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Frequency-Dependent Space Mapped neuromapping 
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Neuromappings (continued) 

 

Frequency Space Mapped neuromapping  
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Frequency Partial-Space Mapped neuromapping 
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we chose a unit mapping (xc = x f  and c = ) as the starting 

point for the optimization problem 
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Coarse Optimization Phase 

 

we want to find the optimal coarse model solution xc
* that 

generates the desired response over the frequency range of 

interest 

 

vector of coarse model responses Rc might contain r different 

responses of the circuit 
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where each individual response has been sampled at Fp 

frequency points 
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the problem of circuit design using the coarse model can be 

formulated as 
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where U is a suitable objective function 
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Training the SM-Based Neuromodel During NSM 

Optimization  

 

we solve the problem  
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P(i) is the input-output relationship of the ANN at the ith iteration 

 

w contains the free parameters of the current ANN 

 

2n+i is the number of training base points and Fp is the number 

of frequency points per frequency sweep 

 

the complexity of the ANN (the number of hidden neurons and 

the SM-based neuromodeling technique) is gradually increased 

according to the learning error, starting with a linear mapping 

(3-layer perceptron with 0 hidden neurons) 
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SM-Based Neuromodel Optimization 

 

we use an SM-based neuromodel as an improved coarse model, 

optimizing its parameters to generate the desired response 

 

RSMBN  is the SM-based neuromodel response: 
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the next iterate is obtained by solving 
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if an SMN neuromapping is used to implement )(i
P , the next 

iterate can be obtained in a simpler manner by solving 
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HTS Quarter-Wave Parallel Coupled-Line Microstrip Filter 

(Westinghouse, 1993) 
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NSM Optimization of the HTS Microstrip Filter 

 

specifications 

 

|S21|  0.95 in the passband and |S21|  0.05 in the stopband,  

 

where the stopband includes frequencies below 3.967 GHz 

and above 4.099 GHz, and the passband lies in the range 

[4.008GHz, 4.058GHz] 

 

“coarse” model: OSA90/hope empirical models 

 

“fine” model: Sonnet’s em with high resolution grid 

 

we take L0 = 50 mil, H = 20 mil, W = 7 mil, r = 23.425, loss 

tangent = 310−5; the metalization is considered lossless 

 

the design parameters are xf = [L1 L2 L3 S1 S2 S3] T 
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NSM Optimization of the HTS Filter (continued) 

 

coarse and fine model responses at the optimal coarse solution,  

 

xc
* = [188.33  197.98  188.58  21.97  99.12  111.67] T  (mils) 

 

OSA90/hope (−) and em (•) 
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NSM Optimization of the HTS Filter (continued) 

 

the initial 2n+1 points are chosen by performing sensitivity 

analysis on the coarse model: a 3% deviation from xc
* for L1, L2, 

and L3 is used, while a 20% is used for S1, S2, and S3 

 

coarse and fine model responses at base points:  
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NSM Optimization of the HTS Filter (continued) 

 

Learning errors at base points:  

 

before any neuromapping 
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NSM Optimization of the HTS Filter (continued) 

 

Learning errors at base points:  
 

mapping  and L1 with a 3LP:7-4-2 
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mapping , L1 and S1 with a 3LP:-7-5-3 
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NSM Optimization of the HTS Filter (continued) 

 

em (•) and FPSM 7-5-3 (−) model responses at the next point 

predicted after the first NSM iteration 

 

xf 
(14) = [185.37  195.01  184.24  21.04  86.36  91.39] T  (mils) 
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NSM Optimization of the HTS Filter (continued) 

 

em (•) and FPSM 7-5-3 (−) model responses at the NSM 

solution using a fine frequency sweep 
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NSM Optimization of the HTS Filter (continued) 

 

em (•) and FPSM 7-5-3 (−) model responses at the NSM 

solution in the passband using a fine frequency sweep 
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Bandstop Microstrip Filter with Quarter-Wave Open Stubs  
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we take H = 25 mil, W0 = 25 mil, r = 9.4 (alumina) 

 

the design parameters are xf = [W1 W2 L0 L1 L2] T
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NSM Optimization of the Bandstop Filter 

 

specifications 

 

|S21|  0.01 in the stopband and |S21|  0.9 in the passband, 

 

where the stopband lies between 9.3 GHz and 10.7 GHz, 

and the passband includes frequencies below 8 GHz and 

above 12 GHz 

 

“coarse” model: transmission line sections and empirical 

formulas 
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“fine” model: Sonnet’s em with high resolution grid 
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NSM Optimization of the Bandstop Filter (continued) 

 

coarse and fine model responses at the optimal coarse solution,  

 

xc
* = [6.00  9.01  106.45  110.15  108.81] T  (mils) 

 

coarse model (−) and em (•) 
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the initial 2n+1 points are chosen by performing sensitivity 

analysis on the coarse model: a 50% deviation from xc
* for W1, 

W2, and L0 is used, while a 15% is used for L1, and L2. 
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NSM Optimization of the Bandstop Filter (continued) 

 

FM (3LP:6-2-1,) neuromodel (−) and the fine model (•) 

responses at the optimal coarse solution 
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coarse (−) and fine model (•) responses at the next point 

predicted by the first NSM iteration 
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NSM Optimization of the Bandstop Filter (continued) 

 

FPSM (3LP:6-3-2,,W2) neuromodel (−) and the fine model (•) 

responses at the point predicted by the first NSM iteration 
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coarse (−) and fine model (•) responses at the next point 

predicted by the second NSM iteration 
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NSM Optimization of the Bandstop Filter (continued) 

 

fine model response (•) at the next point predicted by the second 

NSM iteration and optimal coarse response (−), using a fine 

frequency sweep 

 

xf 
(13) = [5.92  13.54  83.34  114.14  124.81] T  (mils) 
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Conclusions 

 

we present an innovative algorithm for EM optimization based 

on Space Mapping technology and Artificial Neural Networks 

 

Neural Space Mapping (NSM) optimization exploits our SM-

based neuromodeling techniques 

 

NFSM does not require parameter extraction to predict the next 

point 

 

an initial mapping is established by performing upfront fine 

model analysis at a reduced number of base points 

 

the coarse model sensitivity is exploited to select those base 

points 

 

Huber optimization is used to train simple SM-based 

neuromodels at each iteration 

 

the SM-based neuromodels are developed without using testing 

points: their generalization performance is controlled by 

gradually increasing their complexity starting with a 3-layer 

perceptron with 0 hidden neurons 

 

an HTS filter and a bandstop microstrip filter illustrate our 

optimization technique 


