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Abstract We propose, for the first time, Neural Space Mapping (NSM) optimization for EM-based

design.  NSM optimization exploits our Space Mapping-based neuromodeling techniques to efficiently

approximate the mapping.  A novel procedure that does not require troublesome parameter extraction to

predict the next point is proposed.  The initial mapping is established by performing upfront fine model

analyses at a reduced number of base points.  Coarse model sensitivities are exploited to select those base

points.  Huber optimization is used to train, without testing points, simple SM-based neuromodels at each

NSM iteration.  The technique is illustrated by a high-temperature superconducting (HTS) quarter-wave

parallel coupled-line microstrip filter and a bandstop microstrip filter with quarter-wave resonant open

stubs.

I.  INTRODUCTION

Artificial Neural Networks (ANNs) are suitable models for microwave circuit yield optimization

and statistical design [1, 2].  Neuromodels are computationally much more efficient than EM or physical
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models and can be more accurate than empirical, physics-based models.  Once they are trained with

reliable learning data, obtained by either EM simulation or by measurement, the neuromodel can be used

for efficient and accurate optimization within the region of training.  This has been the conventional

approach to optimization of microwave structures using ANNs [3].

The principal drawback of this ANN optimization approach is the cost of generating sufficient

learning samples, since the simulations/measurements must be performed for many combinations of

different values of geometrical, material, process and input signal parameters over a large region.

Additionally, it is well known that the extrapolation ability of neuromodels is poor, making unreliable any

solution predicted outside the training region.  Introducing knowledge, as in [4], can alleviate these

limitations.

A powerful new method for optimization of microwave circuits based on Space Mapping (SM)

technology and Artificial Neural Networks (ANN) is presented.  An innovative strategy is proposed to

exploit the SM-based neuromodeling techniques [5] in an efficient Neural Space Mapping  (NSM)

optimization algorithm, including frequency.  NSM requires a reduced set of upfront learning base points.

A “coarse” or empirical model is used not only as source of knowledge that reduces the amount of

learning data and improves the generalization performance of the SM-based neuromodel, but also as a

means to select the initial learning base points through sensitivity analysis.  A novel procedure that does

not require troublesome parameter extraction to predict the next point is presented.  Huber optimization is

used to train the SM-based neuromodels at each iteration.  The SM-based neuromodels are developed

without using testing points: their generalization performance is controlled by gradually increasing their

complexity starting with a 3-layer perceptron with 0 hidden neurons.  NSM optimization is illustrated by

a high-temperature superconducting (HTS) quarter-wave parallel coupled-line microstrip filter and a

bandstop microstrip filter with quarter-wave resonant open stubs.

II.  SPACE MAPPING CONCEPT INCLUDING FREQUENCY

Space Mapping (SM) is a powerful concept for circuit design and optimization that combines the
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computational efficiency of “coarse” models with the accuracy of “fine” models.  The coarse models are

typically equivalent circuit models, which are computationally very efficient but often have a limited

validity range for their parameters, beyond which the simulation results may become inaccurate.  On the

other hand, fine models can be provided by an electromagnetic (EM) simulator, or even by direct

measurements: they are very accurate but CPU intensive.  SM establishes a mathematical link between

the coarse and the fine models.  It directs the bulk of CPU intensive evaluations to the coarse model,

while preserving the accuracy and confidence offered by the fine model.  The SM technique was

originally developed by Bandler et al. [6].

In the Space Mapping technique with frequency dependence, the operating frequency  is also

included in the mapping function.  This allows us to simulate the coarse model at a different frequency

c.

Let the vectors xc and xf represent the design parameters of the coarse and fine models,

respectively, and Rc(xc ,ωc) and Rf (xf ,ω) the corresponding model responses (for example, Rc and Rf

might contain the real and imaginary parts of S21).  Rc is much faster to calculate but less accurate than Rf .

The aim of Space Mapping optimization, including frequency, is to find an appropriate mapping

P from the fine model input space to the coarse model input space
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x
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such that

),(),( ωω ffccc xRxR ≈ (2)

Once a mapping P valid in the region of interest is found, the coarse model can be used for fast

and accurate simulations in that region.
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III.  NEURAL SPACE MAPPING (NSM) OPTIMIZATION: AN OVERVIEW

Fig. 1 shows the flow diagram of NSM optimization.  Here we explain the overall operation of

NSM optimization; a detailed description of the main blocks is presented in the following sections.

We start by finding the optimal solution xc
* that yields the desired response using the coarse

model.  We select 2n additional points following an n-dimensional star distribution [5, 7] centered at xc
*,

as shown in Fig. 2, where n is the number of design parameters (xc, xf ∈ ℜn).  The percentage of deviation

from xc
* for each design parameter is determined according to the coarse model sensitivities.  The larger

the sensitivity of the coarse model response w.r.t. a certain parameter, the smaller the percentage of

variation of that parameter.  We assume that the coarse model sensitivities are similar to those of the fine

model.

The fine model response Rf  at the optimal coarse model solution xc
* is then calculated.  If Rf is

approximately equal to the desired response, the algorithm ends, otherwise we develop an SM-based

neuromodel over the 2n+1 fine model points.

Once an SM-based neuromodel with small learning errors is available, we use it as an improved

coarse model, optimizing its parameters to generate the desired response.  The solution to this

optimization problem becomes the next point in the fine model parameter space, and it is included in the

learning set.

We calculate the fine model response at the new point, and compare it with the desired response.

If it is still different, we re-train the SM-based neuromodel over the extended set of learning samples and

the algorithm continues.  If not, the algorithm terminates.

IV.  COARSE OPTIMIZATION

During the coarse optimization phase of NSM optimization, we want to find the optimal coarse

model solution xc
* that generates the desired response over the frequency range of interest.  The vector of

coarse model responses Rc might contain m different responses of the circuit,
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The desired response R* is expressed in terms of specifications.  The problem of circuit design

using the coarse model can be formulated as [8]

))((minarg*
cc

c
c U xR

x
x = (5)

where U is a suitable objective function.  For example, U could be a minimax objective function

expressed in terms of upper and lower specifications for each response and frequency sample.  A rich

collection of objective functions, for different design constraints, is formulated by Bandler et al. in [8].

V.  TRAINING THE SM-BASED NEUROMODEL DURING NSM OPTIMIZATION

At the ith iteration, we want to find the simplest neuromapping P(i) such that the coarse model

using that mapping approximates the fine model at all the learning points.  This is realized by solving the

optimization problem

TT
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where 2n + i is the number of training base points for the input design parameters and Fp is the number of
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frequency points per frequency sweep.  It is seen that the total number of learning samples at the ith

iteration is s = (2n + i) Fp.

(7b) is the input-output relationship of the ANN that implements the mapping at the ith iteration.

Vector w contains the internal parameters (weights, bias, etc.) of the ANN.  The paradigm chosen to

implement P is a 3-layer perceptron.

All the SM-based neuromodeling techniques proposed in  [5] can be exploited to efficiently solve

(6).  In the Space Mapped Neuromodeling (SMN) approach only the design parameters are mapped, as

illustrated in Fig. 3, and both models use the same frequency:
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In the Frequency-Dependent Space Mapped Neuromodeling (FDSMN) approach, illustrated in

Fig. 4, both coarse and fine models are simulated at the same frequency, but the mapping from the fine to

the coarse parameter space is dependent on the frequency:
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The Frequency Space Mapped Neuromodeling (FSMN) technique (see Fig. 5) establishes a

mapping not only for the design parameters but also for the frequency variable, such that the coarse model

is simulated at a different frequency to match the fine model response:
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For those cases where the shapes of the fine and coarse model responses are nearly identical but

shifted in frequency, the Frequency Mapped Neuromodeling technique (see Fig. 6) simulates the coarse

model with the same physical parameters used by the fine model, but at a different frequency to align

both responses:
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Finally, the Frequency Partial-Space Mapped Neuromodeling (FPSMN) technique maps only

some of the design parameters and the frequency (see Fig. 7), making an even more efficient use of the

implicit knowledge in the coarse model:
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Note that the “design” parameters of the coarse model do not change with frequency only in the

SMN and FM neuromappings.

The starting point for the first training process is a unit mapping, i.e., P (0) (xf
(l), ωj, wu) = [xf

(l)T

ωj]
T, for j = 1,…, Fp and l = 1,…, 2n+1, where wu contains the internal parameters of the ANN that give a

unit mapping.  The SM-based neuromodel is trained in the next iterations using the previous mapping as

the starting point.

The complexity of the ANN (the number of hidden neurons and the SM-based neuromodeling

technique) is gradually increased according to the learning error εL, starting with a linear mapping (3-

layer perceptron with 0 hidden neurons).  In other words, we use the simplest ANN that yields an

acceptable learning error εL, defined as

TT
sL ][ LL e=ε (13)

where es is obtained from (7) using the current optimal values for the ANN internal parameters w*.

In our implementation, the neuromapping for the first iteration is approximated using the FMN

technique, so that any possible severe misalignment in frequency between the coarse and the fine model

responses is first alleviated.  Then, the physical parameters are gradually mapped, following a FPSMN

technique.

Linear Adaptive Frequency-Space Mapping (LAFSM) is a special case of NSM optimization,
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corresponding to the situation when the number of hidden neurons of the ANN is zero at all iterations.

VI.  SM-BASED NEUROMODEL OPTIMIZATION

At the ith iteration of NSM optimization, we use an SM-based neuromodel with small learning

error as an improved coarse model, optimizing its parameters to generate the desired response.  We

denote the SM-based neuromodel response as RSMBN, defined as
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The solution to the following optimization problem becomes the next iterate:
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with U defined as in (5).  If an SMN neuromapping is used to implement )(iP  (see Fig. 3), the next iterate

can be obtained in a simpler manner by solving
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VII.  NSM ALGORITHM

Step 0. Find *
cx  by solving (5).

Step 1. Choose )1(
fx ,…, )2( n

fx  following a star distribution around *cx .

Step 2. Initialize 1=i , *)2(
c

in
f xx =+ .
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Step 5. Find w* by solving (6).

Step 6. Calculate εL using (13).

Step 7. If minεε >L , increase the complexity of )(iP  and go to Step 5.

Step 8. If an SM neuromapping is used to implement )(iP , solve (19),

otherwise solve (18).

Step 9. Set 1+= ii ; go to Step 3.

VIII.  HTS MICROSTRIP FILTER

We apply NSM optimization to a high-temperature superconducting (HTS) quarter-wave parallel

coupled-line microstrip filter [9], illustrated in Fig. 8.  L1, L2 and L3 are the lengths of the parallel coupled-

line sections and S1, S2 and S3 are the gaps between the sections.  The width W is the same for all the

sections as well as for the input and output microstrip lines, of length L0.  A lanthanum aluminate

substrate with thickness H and dielectric constant εr is used.

The specifications are |S21| ≥ 0.95 in the passband and |S21| ≤ 0.05 in the stopband, where the

stopband includes frequencies below 3.967 GHz and above 4.099 GHz, and the passband lies in the range

[4.008GHz, 4.058GHz].  The design parameters are xf = [L1 L2 L3 S1 S2 S3] 
T.  We take L0 = 50 mil, H = 20

mil, W = 7 mil, εr = 23.425, loss tangent = 3×10−5; the metalization is considered lossless.

Sonnet’s em [10] driven by Empipe [11] was employed as the fine model, using a high-

resolution grid with a 1mil×1mil cell size.  OSA90/hope [12] built-in linear elements MSL (microstrip

line), MSCL (two-conductor symmetrical coupled microstrip lines) and OPEN (open circuit) connected
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by circuit theory over the same MSUB (microstrip substrate definition) are taken as the “coarse” model.

The following optimal coarse model solution is found, as in [13]: xc
* = [188.33  197.98  188.58

21.97  99.12  111.67] T (in mils).  The coarse and fine model responses at the optimal coarse solution are

shown in Fig. 9.

The initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: a 3%

deviation from xc
* for L1, L2, and L3 is used, while a 20% is used for S1, S2, and S3.  The corresponding

fine and coarse model responses at these 13 star-distributed learning points are shown in Fig. 10.

Fig. 11 shows the evolution of the learning errors at the 2n+1 points as we increase the

complexity of the neuromapping during the first iteration.  It is seen that mapping the frequency has a

dramatic effect on the alignment of the responses, and a simple FPSM neuromapping is needed.  The final

mapping is implemented with a 3-layer perceptron with 7 inputs (6 design parameters and the frequency),

5 hidden neurons, and 3 output neurons (ω, L1, and S1).

As indicated in Step 8, we calculate the next point by optimizing the coarse model with the

mapping found.  The next point predicted is xf 
(14) = [185.37  195.01  184.24  21.04  86.36  91.39] T (in

mils), which matches the desired response with excellent accuracy, as seen in Fig. 12.  As a final test,

both the FPSMN model and the fine model are simulated at the NSM solution xf 
(14) using a very fine

frequency sweep, with a frequency step of 0.005GHz.  The NSM solution satisfies the specifications, as

shown in Fig. 13.  A detailed illustration of the passband using an even finer frequency sweep is shown in

Fig. 14.  The HTS filter is optimized in only one NSM iteration.

IX.  BANDSTOP MICROSTRIP FILTER WITH OPEN STUBS

NSM optimization is applied to a bandstop microstrip filter with quarter-wave resonant open

stubs, illustrated in Fig. 15.  L1, L2 are the open stub lengths and W1, W2 the corresponding widths.  An

alumina substrate with thickness H = 25 mil, width W0 = 25 mil and dielectric constant εr = 9.4 is used for

a 50 Ω feeding line.
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The specifications are |S21| ≤ 0.01 in the stopband and |S21| ≥ 0.9 in the passband, where the

stopband lies between 9.3 GHz and 10.7 GHz, and the passband includes frequencies below 8 GHz and

above 12 GHz.  The design parameters are xf = [W1 W2 L0 L1 L2] 
T.

Sonnet’s em [10] driven by Empipe [11] was employed as the fine model, using a high-

resolution grid with a 1mil×1mil cell size.  As coarse model, we use simple transmission lines for

modeling each microstrip section (see Fig. 16) and classical formulas [14] to calculate the characteristic

impedance and the effective dielectric constant of each transmission line.  It is seen that Lc2 = L2 + W0/2,

Lc1 = L1 + W0/2, and Lc0 = L0 + W1/2 + W2/2.  We use OSA90/hope [12] built-in transmission line

elements TRL.

The following optimal coarse model solution is found for L0, L1, and L2 of quarter-wave lengths at

10 GHz: xc
* = [6.00  9.01  106.45  110.15  108.81] T (in mils).  The coarse and fine model responses at the

optimal coarse solution are shown in Fig. 17.

The initial 2n+1 points are chosen by performing sensitivity analysis on the coarse model: a 50%

deviation from xc
* for W1, W2, and L0 is used, while a 15% is used for L1, and L2.  A simple FM

neuromapping (see Fig. 6) with 2 hidden neurons (3LP:6-2-1, ω) was used to match the responses at the

learning base points.  The FM neuromodel and the fine model responses at the optimal coarse solution are

shown in Fig. 18.  Optimizing the FM neuromodel to satisfy the specifications (Step 8 of the NSM

algorithm), the next iterate is xf 
(12) = [6.54  16.95  91.26  113.30  120.72] T (in mils).  The coarse and fine

model responses at this point are shown in Fig. 19.

We performed a second NSM iteration.  xf 
(12) is included in the learning base points.  Now a

FPSM neuromapping with 3 hidden neurons is needed to match the 2n+2 points: only ω and W2 are

mapped (3LP:6-3-2, ω, W2).  Fig. 20 shows the FPSM neuromodel and the fine model responses at xf 
(12).

Optimizing the FPSM neuromodel, the next iterate is xf 
(13) = [5.92  13.54  83.34  114.14  124.81] T (in

mils).  The coarse and fine model responses at xf 
(13) are shown in Fig. 21.  As  final test, using a fine

frequency sweep, we show in Fig. 22 the fine model response at xf 
(13) and the optimal coarse response.
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The bandstop microstrip filter is optimized in two NSM iterations.

X.  CONCLUSIONS

We present an innovative algorithm for EM optimization based on Space Mapping technology

and Artificial Neural Networks.  Neural Space Mapping (NSM) optimization exploits our SM-based

neuromodeling techniques to efficiently approximate the mapping from the fine to the coarse input space.

NSM does not require parameter extraction to predict the next point.  An initial mapping is established by

performing upfront fine model analysis at a reduced number of base points.  The coarse model

sensitivities are exploited to select those base points.  Huber optimization is used to train simple SM-

based neuromodels at each iteration.  The SM-based neuromodels are developed without using testing

points: their generalization performance is controlled by gradually increasing their complexity starting

with a 3-layer perceptron with 0 hidden neurons.  A high-temperature superconducting (HTS) quarter-

wave parallel coupled-line microstrip filter and a bandstop microstrip filter with quarter-wave resonant

open stubs illustrate our optimization technique.

REFERENCES

[1] A.H. Zaabab, Q.J. Zhang and M.S. Nakhla, “A neural network modeling approach to circuit
optimization and statistical design,” IEEE Trans. Microwave Theory Tech., vol. 43, 1995, pp.
1349-1358.

[2] P. Burrascano, M. Dionigi, C. Fancelli and M. Mongiardo, “A neural network model for CAD
and optimization of microwave filters,” IEEE MTT-S Int. Microwave Symp. Dig. (Baltimore,
MD), 1998, pp. 13-16.

[3] P.M. Watson and K.C. Gupta, “Design and optimization of CPW circuits using EM-ANN models
for CPW components,” IEEE Trans. Microwave Theory Tech., vol. 45, 1997, pp. 2515-2523.

[4] P.M. Watson, G.L. Creech and K.C. Gupta, “Knowledge based EM-ANN models for the design
of wide bandwidth CPW patch/slot antennas,” IEEE AP-S Int. Symp. Digest (Orlando, FL), July
1999, pp. 2588-2591.

[5] J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang, “Neuromodeling of microwave
circuits exploiting space mapping technology,” IEEE Trans. Microwave Theory Tech., vol. 47,
1999, pp. 2417-2427.

[6] J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny and R.H. Hemmers, “Space mapping
technique for electromagnetic optimization,” IEEE Trans. Microwave Theory Tech., vol. 42,



13

1994, pp. 2536-2544.

[7] R.M. Biernacki, J.W. Bandler, J. Song and Q.J. Zhang, “Efficient quadratic approximation for
statistical design,” IEEE Trans. Circuit Syst., vol. 36, 1989, pp. 1449-1454.

[8] J.W. Bandler and S.H. Chen, “Circuit optimization: the state of the art,” IEEE Trans. Microwave
Theory Tech., vol. 36, 1988, pp. 424-443.

[9] J.W. Bandler, R.M. Biernacki, S.H. Chen, W.J. Getsinger, P.A. Grobelny, C. Moskowitz and S.H.
Talisa, “Electromagnetic design of high-temperature superconducting microwave filters,” Int. J.
Microwave and Millimeter-Wave CAE, vol. 5, 1995, pp. 331-343.

[10] em Version 4.0b, Sonnet Software, Inc., 1020 Seventh North Street, Suite 210, Liverpool, NY
13088, 1997.

[11] Empipe Version 4.0, formerly Optimization Systems Associates Inc., P.O. Box 8083, Dundas,
Ontario, Canada L9H 5E7, 1997, now Agilent EEsof EDA, 1400 Fountaingrove Parkway Santa
Rosa, CA 95403-1799.

[12] OSA90/hope Version 4.0, formerly Optimization Systems Associates Inc., P.O. Box 8083,
Dundas, Ontario, Canada L9H 5E7, 1997, now Agilent EEsof EDA, 1400 Fountaingrove
Parkway, Santa Rosa, CA 95403-1799.

[13] M.H. Bakr, J.W. Bandler, R.M. Biernacki, S.H. Chen, and K. Madsen, “A trust region aggressive
space mapping algorithm for EM optimization,” IEEE Trans. Microwave Theory Tech., vol. 46,
1998, pp. 2412-2425.

[14] M. Pozar, Microwave Engineering. Amherst, MA: John Wiley and Sons, 1998, pp. 162.



14

Start

Calculate the fine response
Rf (xf )

SM BASED NEUROMODELING:
Find the simplest neuromapping P

such that

Rf (xf 
(l) , ωj) ≈  Rc(P (xf

(l) , ωj))

l = 1,..., Bp and j = 1,..., Fp

COARSE OPTIMIZATION: find the
optimal coarse model solution xc

* that
generates the desired response R*

Rc(xc
* )  =  R*

Form a learning set with Bp = 2n+1 base
points, by selecting 2n additional points
around xc

*, following a star distribution

Update xf

Choose the coarse optimal solution as
a starting point for the fine model

xf  =  xc
*

SMBNM OPTIMIZATION:
Find the optimal xf such that

RSMBN (xf ) = Rc(P (xf )) ≈  R*

Rf (xf ) ≈  R*

no

yes
End

Include the new xf  in
the learning set and
increase Bp by one

Fig. 1.  Neural Frequency Space Mapping (NFSM) Optimization.

xf 1

xf 2

xf 3

xc
*
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Fig. 9.  Coarse and fine model responses at the optimal coarse
  solution: OSA90/hope (−) and em (•)

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

S
21

 
in

 d
B

(a)

3.901 3.966 4.031 4.096 4.161
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

S
21

 
in

 d
B

(b)
Fig. 10.  Coarse and fine model responses at the initial 2n+1 base points around

   the optimal coarse solution: (a) OSA90/hope, (b) em.
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Fig. 11.  Learning errors at initial base points: (a) at the starting point, (b) mapping ω
            with a 3LP:7-3-1, (c) mapping ω and L1 with a 3LP:7-4-2, and

             (d) mapping ω, L1 and S1 with a 3LP:7-5-3.
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(b)
Fig. 12.  em (•) and FPSM 7-5-3 (−) model responses at the next point

  predicted after the first NSM iteration: (a) S21 in dB, (b) S21.
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(b)
Fig. 13.  em (•) and FPSMN 7-5-3 (−) model responses, using a fine frequency sweep,

         at the next point predicted after the first NSM iteration: (a) S21 in dB, (b) S21.
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Fig. 14.  em (•) and FPSMN 7-5-3 (−) model responses in the bandpass, using a fine
          frequency sweep, at the next point predicted after the first NSM iteration.
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Fig. 15.  Bandstop microstrip filter with quarter-wave resonant open stubs.
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Fig. 16.  Coarse model of the bandstop microstrip filter with open stubs.
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Fig. 17.  Coarse and fine model responses at the optimal coarse
   solution: OSA90/hope (−) and em (•).
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Fig. 18.  FM (3LP:6-2-1, ω) neuromodel (−) and the fine model (•)
responses at the optimal coarse solution.
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Fig. 19. Coarse (−) and fine (•) model responses at the next
point predicted by the first NSM iteration.
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Fig. 20.  FPSM (3LP:6-3-2, ω, W2) neuromodel (−) and the fine model (•)
        responses at the point predicted by the first NSM iteration.

5 7 9 11 13 15
frequency (GHz)

-50

-40

-30

-20

-10

0

 
S 2

1 
 in

 d
B

Fig. 21. Coarse (−) and fine model (•) responses at the next
    point predicted by the second NSM iteration.

5 7 9 11 13 15
frequency (GHz)

-50

-40

-30

-20

-10

0

 
S 2

1 
 in

 d
B

Fig. 22.  Fine model response (•) at the next point predicted by the second NSM
  iteration and optimal coarse response (−), using a fine frequency sweep.


