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Artificial Neural Networks (ANN) in Modeling 

 

Artificial Neural Networks are suitable in modeling high-

dimensional and highly nonlinear problems 

 

ANN models are computationally efficient and can be more 

accurate than empirical models 

 

multilayer feedforward networks can approximate any 

measurable function to any desired level of accuracy, provided a 

deterministic relationship between input and target exists 

(White et al., 1992) 

 

ANNs that are too small cannot approximate the desired input-

output relationship 

 

ANNs with too many internal parameters perform correctly in 

the learning set, but give poor generalization ability 

 

ANNs are suitable models for microwave circuit optimization 

and statistical design (Zaabab, Zhang and Nakhla, 1995, Gupta 

et al., 1996, Burrascano and Mongiardo, 1998, 1999) 

 

Space Mapping-based neuromodeling techniques significantly 

decrease the number of EM simulations needed for training 

(Bandler et al., 1999) 
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Conventional Neuromodeling of Microwave Components 
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many learning samples are usually needed to ensure model 

accuracy  

 

the number of learning samples needed to approximate a 

function grows exponentially with the ratio of the 

dimensionality to the function’s degree of smoothness  

(Stone, 1982) 

 

even with sufficient training data, the reliability of MLPs for 

extrapolation may be very poor 
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The Aim of Space Mapping 

(Bandler et al., 1994-) 
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Neural Space Mapping 
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using a three layer perceptron (3LP) 
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Space Mapped Neuromodeling (SMN) Concept 
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once the ANN is trained 
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Frequency-Dependent Space Mapped Neuromodeling 

(FDSMN) Concept 
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once the ANN is trained 
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Frequency Space Mapped Neuromodeling (FSMN) Concept 
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once the ANN is trained 
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Frequency Mapped Neuromodeling (FMN) Concept 
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once the ANN is trained 
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Frequency Partial-Space Mapped Neuromodeling 

(FPSMN) Concept 
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once the ANN is trained 
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Training the ANN 

 

the neuromapping can be found by solving the optimization 

problem 

 
TT

l
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w contains the internal parameters of the ANN (weights, bias, 

etc.) selected as optimization variables 

 

l is the total number of learning samples 

 

ek is the error vector given by 

 

for SMN 
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Training the ANN (continued) 

 

),( jif
c

c
freq

f
xP

x
=








 

 

for FMN 
),(),( cifcjiffk ffreq xRxRe −=  

 
),( jifc freqPf x=  

 

for FPSMN 

),,(),( c
s
ci

s
fcjiffk ffreq xxRxRe −=  

 

),( jif

c

s
c freq

f
xP

x
=








 

 

with 
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Starting Point and Learning Samples 

 

we chose a unit mapping (xc  x f and fc  freq) as the starting 

point for the optimization problem  

 

to keep a reduced set of learning data samples, we consider an n-

dimensional star distribution for the learning base points 

(Bandler et al., 1989) 

 

the number of learning base points for a microwave circuit with 

n design parameters is Bp = 2n + 1 
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Microstrip Right Angle Bend 
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region of interest 

20mil  W  30mil 

8mil  H  16mil 

8  r  10 

1GHz  freq  41GHz 

 

“coarse” model: Gupta model (Gupta, Garg and Bahl, 1979) 

 

“fine” model: Sonnet’s em 

 

learning set: 7 base points with “star” distribution 

 

testing set: 50 random base points in the region of interest  
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Microstrip Right Angle Bend Response Errors 

 

comparison before neuromodeling between em and Gupta 

model at 50 random test points 
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FSMN Model for the Right Angle Bend (3LP:4-8-4) 

 

strategy implemented in NeuroModeler 

 

 

cx

fc RR 
ANN

fx fR
Sonnet's

em

freq

lumped

circuit

Gupta's model

formulas
L,C

f
c

 
 

 

 



 

Simulation Optimization Systems Research Laboratory 
McMaster University  

 

 

00-05-17 

FSMN Model for the Right Angle Bend (3LP:4-8-4) 

 

implementation in NeuroModeler Version 1.2b (1999) 
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Implementation in NeuroModeler 

 

layer one, in green, has the input parameters of the 

neuromapping (W, H, r, and freq) scaled to 1 

 

layer two corresponds to the hidden layer of the ANN 

implementing the mapping (8 hidden neurons with sigmoid non-

linearities) 

 

layer three is linear and contains the coarse design parameters xc 

and the mapped frequency fc before de-scaling 

 

layer four de-scales the parameters 

 

Gupta’s formulas to calculate L and C are programmed as the 

internal analytical functions of the fifth hidden layer, using the 

built-in MultiSymbolicFixed function 

 

the output layer, in blue, contains a simple internal circuit 

simulator that computes the real and imaginary parts of S11 and 

S21 for the lumped LC equivalent circuit (this layer uses the 

built-in CktSimulatorPS function) 
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FSMN Model Results for the Right Angle Bend 

 

errors in the learning set after training (w.r.t. em)  
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FSMN Model Results for the Right Angle Bend 

 

errors in the testing set after training (w.r.t. em)  
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FSMN Model Results for the Right Angle Bend 

 

comparison between em and the FSMN model 
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Conclusions 

 

we present novel realizations of Space Mapping based 

neuromodels of practical passive microwave components using 

available software 

 

five powerful SM based neuromodeling techniques are 

described  

 

these techniques 

exploit the vast set of empirical models already available 

decrease the fine model evaluations needed for training 

improve generalization ability 

reduce complexity of the ANN topology 

w.r.t. the classical neuromodeling approach 

 

frequency-sensitive neuromappings expand the usefulness of 

empirical quasi-static models 

 

an SM based neuromodel of a microstrip right angle bend is 

implemented using NeuroModeler Version 1.2b (1999) 

 

this model can be entered into Agilent ADS Version 1.1 (1999) 

as a library component through an ADS plugin module 
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