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The problem of designing recursive digital filters with optimized word length coefficients to meet arbitrary, prescribed
magnitude characteristics in the frequency domain is numerically investigated. The continuous nonlinear programming
problem is formulated as an unconstrained minimax problem using the Bandler—Charalambous approach, and Dakin’s

branch-and-bound technique is used in conjunction with Fletcher’s unconstrained minimization program to discretize

the continuous solution. The objective function to be minimiz

coefficients, which are also introduced as varizbles.+

ed is directly concerned with the word lengths of the
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INTRODUCTION

The problem of designing recursive digital filters with a
priori specified finite word length for the representation of
the coefficients, can be formulated as a nonlinear discrete
optimization problem. Many approaches using random search
optimization algorithms were proposed to solve this prob-
lem' ™3 Stérzbach? proposed a zero-one programming
approach. Recently, Charalambous and Best® proposed an
approach using a branch-and-bound technique in conjunc-
tion with an optimization algorithm for linearly constrained
problems. Another approach is to formulate the continuous
nonlinear programming problem as an unconstrained mini-
max problem®, and use Dakin’s branch-and-bound tech-
nique” in conjunction with Fletcher’s unconstrained mini-
mization program®, to discretize the solution. An example
using this approach is given. The main features reported
in®"® have been implemented in a general computer program
package called DISOPT?,

Because the cost of a digiral filter, if implemented as a
special-purpose computer, depends heavily on the word
length of the coefficients, it should be reduced as much as
possible’. On the other hand, when the coefficients of a
digital filter, initially specified with unlimited accuracy,
are quantized by rounding or truncation, then coefficient
quantization error occurs which affects the digital filrer’s
response’’. Therefore, it is desirable to incorporate the
word lengths as additional parameters of the approximation
problem in recursive digital filter design.

The problem of designing recursive digital filcers with
optimized word length coefficients to meet arbitrary, pre-
scribed magnitude characteristics in the frequency domain,
is formulated as a nonlinear integer programming problem,
where the parameter vector consists essentially of the word
lengths of the coefficients and the multipliers of the quanti-
zation step sizes. A function of the word lengths is mini-
mized, subject to the prescribed constraints on the magnitude

T This paper was presented ac the Eighth Annuai Princeton Con-
ference on Information Sciences and Systems, Princeton, N.J.,
March 28-29, 1974.

characteristics, while constraining all the constituents of the
parameter vector to be integers.

DESCRIPTION OF THE PROBLEM

Suppose that the magnitude characteristics of 2 recursive
digital filter, whose coefficients can be represented exactly
using finite word lengths, are specified to lie within given
upper and/or lower bounds at a prescribed discrete set of
frequencies £}, f,, . .. , fam» corresponding to a discrete set of
values of the variable z evaluated on the unit circle in the z
domain:

zi=eVim =12, . m (1)
where
2F.
«.p.:——é i=1,2,...,m (2)
"Of

and f; is the sampling frequency.

One approach to this problem is to specify the word
lengths required to represent the coefficients, and optimize
the magnitude characteristics of the filter. Another approach
is to optimize the word lengths required to represent the
coefficients subject to the constraints that the magnitude
characteristics lie within the specified upper and/or lower
bounds.

We consider the transfer function to be of the cascade
form with K second order sections, namely,

K -1, -2
Z 1+ayz + b2 (3)
H(z)=A a1 1+ ckz"1 +dkz‘2

If necessary, stability constraints may be dealt with cither
by the pole inversion approach™*? or by imposing the
appropriate set of linear inequalities on ¢, and d, 2°.



PROBLEM FORMULATION

We let a coefficient, which is to be represented exactly
using a finite word length, be

Tz'z_qi,i= 1, ce.yn,

where #, is an integer, g; is a non-negative integer, 2% is
the coefficient quantization step-size and q; + 1 is the word
length.

Case 1: a priori specified word lengths

Let

[~ a1 7]
by
1
d
az .
¢I: bz (4)
€2
d,

A

which contains the » coefficients of the recursive digital
filter. We want to find the coefficients given the coefficient
quantization step sizes, to minimize an appropriately chosen
objective function comprising the deviations of the response
from its prescribed upper and lower bounds S L¥) and
S{), respectively. Thus, the optimization of response is
subject to

$i127HEL  i=1,2,...,n (5)

where » = 4K + 1 and [ is the set of integers.

Case 2: optimum word lengths

Find an optimum = -dimensional grid having at least one
element which also belongs to a specified region in the n-
dimensional coefficient space, i.e., find

91
92

9n (6)
"1

(RSN
]

J. W. Bandler et al

to minimize the objective furnction

Uqy, 92,4,

subject to

S < H(g, WI<S () (7
and

g, n €L, i=1,2,...,n (8)

where #n, S (), 5(\) and [ are as in Case 1.

THE PROGRAM DISOPT

DISOPT is a user-oriented computer program in FORTRAN 4
for solving continuous or discrete, constrained or uncon-
strained general optimization problems. Many recently pro-
posed algorithms and techniques for nonlinear programming
which have been reported to be efficient have been incor-
porated. This allows the user to fully employ some of the
latest developments.

Two approaches are available in DISOPT to transform a
constrained problem into an equivalent unconstrained ob-
jective. The first approach is the minimax approach pro-
posed by Bandler and Charalambous®. This can be imple-
mented by the foliowing least pth approximation algorithms:

1. A least pth optimization with a large value of p !°.

2. A sequence of least pth optimizations with increasing
values of p 12,

3. A sequence of least pth optimizations with geometrically
increasing values of p in conjunction with an extrapola-
tion technique'®,

4. A sequence of least pth optimizations with finite values
of p 5.

The second approach or Algorithm 5 is a modification of an
existing nonparametric exterior-point method described by
Lootsma'®. The quasi-Newton algorithm due to Fletcher® is
then employed to perform the minimization.

The solution of a discrete problem follows the logic of
the Dakin tree-search algorithm”. The discrete variables are
forced to assume discrete values by automatically introduc-
ing additional variable constraints after the continuous solu-
tion is obtained.

Some of the options available in DISOPT to enhance the
efficiency of the program are:

L. In the search for the optimum discrete solution, the new
variable constraint added at each node always excludes
the preceding optimum point from the current solution
space. The constraint is therefore active if the function is
locally unimodal. Thus, the value of the variable under
the new constraint may be optionally fixed on the con-
straint boundary. Hence, a problem with one less para-
meter must be solved and the computational effort would
be reduced.

o

- Te obtain an initial upper bound on the objective func-
tion for a discrete problem in order to avoid the search-
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ing of some unlikely subtrees, DISOPT may be asked to
check the nearest set of discrete solutions about the con-
tinuous optimum and store the best feasible solution.

3. If the constraints, including an upper bound on the objec-
tive, cannot be satisfied at the optimum of the least pth
objective with any value of p greater than unity, then no
feasible solution is attainable for all permissible values of
p. Therefore, the user may request DISOPT to check
the existence of a feasible solution before doing the actual
minimization. This is particularly advantageous in the
case of a discrete problem where the additional variable
constraints may conflict with some of the original con-
straints on the continuous problem.

4. In case of multiple optimum discrete solutions, the user
has the option of requesting only one solution to reduce
the necessary computation time.

5. DISOPT may be optionally asked to check the derivatives
of the objective function and the constraint functions at
the starting point by numerical perturbation.

DISOPT can handle discrete problems of uniform as well
as non-uniform quantization step sizes. The amount of pro-
gramming effort required of a user has been reduced to a
minimum. The user is responsible only for supplying the
values and/or proper dimensioning of the parameters in the
argument list and writing two service subroutines to define
the objective function, the constraints and their respective
partial derivatives. A documented listing of DISOPT is
available from the first author at nominal charge®.

EXAMPLES
Example 1: low-pass 7-bit filter

We consider, with f; = 10 kHz, the following amplitude
specifications:

f=0,900 (100) S(H=1
f=1000 S( =112
f=1200 S(H=0
f=1500, 5000 (500) S(H=0

TABLE 1. Results for example 1

DISOPT
Suk and carly final

Parameters Mitra solution solution
ay -0.25 ~0.296875 —0.328125
by 1.3125 1.015625 1.015625
<y -1.4375 ~1.4375 —1.453125
dy 0.65625 0.640625 0.65625
A 0.09375 0.109375 0.109375
Objective function 0.31535 0.29138 0.29059
Maximum error 0.41345 - 0.36685
Number of function 139 306 574
evaluations {terminated

at 1030)

Magnitude response
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FIGURE 1. Passband response for example 1
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FIGURE 2. Stopband response for example 1

Using one section and the starting point of Suk and
Mitra3, namely, {01 —1 0.5 0.1] 7 with the Case 1 formula-
tion taking

20
Ugh = 3 (', Yl - s(yp)? (9

i=1

DISOPT gave the results shown in Table 1 and Figures 1
and 2 in less than 60 s on the CDC 6400 computer, using
Algorithm 1 with p = 107 and options 1-5. Good solu-
tions are obtained relatively soon in the optimization pro-
cess as the table shows.

Example 2

Find an optimum grid having at least one element which
also belongs to

RE {0}, 2,0.2 <x; <0.4,0.2 <x,<08].
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FIGURE 3. A representation of example 2
TABLE 2. Results for example 2
Node Objective  Solution
number function {91, 92, 71, 2} Description
0 0 IO, 0, 0.2, 0.781I continuous
1 - - nonfeasible
2 1.322 }1.322,0,1,0.358} feasible
3 - - nonfeasible
4 2 12,0, 1.201,0.51} feasible
5 2 12,0, 1,051} feasible
6 - - nonfeasible
7 2.322 }2,0.322, 1, 1} feasible
8 - - nonfeasible
9 3 {2,1,1,1.554} feasible
10 3 12,1,1, 1} discrete
11 23 - abandoned
12 2.322 }2.322,0,2,0.28) feasible
13 - - nonfeasible
14 =3 - abandoned

See Figure 3 for an illustration.

Let
xy= r12‘q1
x2 = 1’22-42

Starting with [1 1 1 1] 7 using the Case 2 formulation taking

U(?) =4y tq,

DISOPT produced the results shown in Table 2 and Figure 4
in approximately 20 s on the CDC 6400, using Algorithm 3
with a third order extrapolation, initial value of p = 4, multi-
plying factor for p of 4 and options 2—5. In Figure 5 we
have plotted contours of the minimax function® as incor-
porated into DISOPT for 7, = g, = 1. The objective function
value of 3 noted in Table 2, corresponding to r; = 1 and

gy = 2, 1s clearly seen.

J. W. Bandler et al

FIGURE 4. Tree structure for example 2

Example 3:
low-pass optimized word length filter

Consider the following amplitude specifications:

¥ =0,0.18 (0.02), S,(¥,) =13, S,(¥,) =0.7,
i=1,2,....10

=024, S,(4)=03, i=11

U=03,1(01), S(y)=03, i=12,13,...,19.
Using one section and the starting point
] TTt3 7, rs}T= (102-210.2]T

with the Case 2 formulation, where

qlzqzz_._=q5=q=U,
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FIGURE 5. Contours of the unconstrained minimax objec-
tive function for example 2, with ry = g, = 1

Magnitude response

1 L3 1

ol 1 i N
0-02 0-06 014 o8

Normalized frequency

1

FIGURE 6. Passband response for example 3

DISOPT gave the solutions [2 —6 5 —6 3 1} 7,
[2—43—-631]1Tand [2 54 —6 3 1] T using Algorithm 2
with the sequence of p values }2, 10, 102, 103, 104} and
options 2, 3 and 5. The corresponding coefficient sets are
}-1.5,1.25,-1.5,0.75,0.25{, }-1,0.75, —1.5, 0.75, 0.25}
and {—1.25, 1, —1.5, 0.75, 0.25{, respectively. Figures 6
and 7 show the response for the last set. About 3 min com-
putation time was required.
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'FIGURE 7. Stopband response for example 3

Example 4:
low-pass optimized word length filter

This is the same as the last example except that all ¢,’s can
vary and

U@)=q1+92+93+ 94+ 95

Starting with [qlqzq%‘q“qs r17ar37475) T =
(2012201 —220.4]", DISOPT gave a solution
[20122-51-331]7, which corresponds to the last
coefficient set in Example 3 using the same algorithm and
options as in Example 2. The solution was found in about
1 min but the program terminated after about 5 min.

CONCLUSIONS

The present approach to recursive digital filter design may
be summarized as follows. First, a continuous feasible solu-
tion should be sought to determine the minimum necessary
order of the filter. If the word lengths are specified, the
best corresponding response would be sought using the Case
1 formulation. If the word lengths are to be optimized the
Case 2 formulation may be used. Initially, a uniform, vari-
able word length may be optimized. All feasible discrete
solutions can be generated (the optimum word lengths solu-
tion being an element of this set), or we can stop after one
discrete solution is found, allow the word lengths to differ
and minimize a suitable function of these word lengths.
Finally, if desired, the response corresponding to the opti-
mum word lengths solution could be optimized using the
Case 1 formulation.
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