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Abstract

This paper deals with the multiport method for multiple-fault
location in linear analog circuits. A hybrid multiport description of
the linear network has been used in the presentation, which generalizes
and explains propcsals made by Biernacki and Bandler. The problem bf
consistency of the chosen set of equations useq for fault identification
is discussed. The restrictions of the method are explained on the basis

of network topology.
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I. INTRODUCTION

Multiple-fault location is an important problem in testing analog
circuits, particUlafly when the number of measurements is too small to
evaluate all of the network elements. Various researchers have
discussed and elaborated upon the problem of fault location [1-7] under
the assumption that the network elements assume their nominal values (or
are close to them) and only a few elements are faulty.

In a recent paper by Biernacki and Bandler [3], the multiport
approach to fault location was discussed and some necessary conditions
on the set of equations used for fault identification were formulated.
The "concept of block dependency of these equations is of special
importance in the identification problem and is discussed in particular
in this péper for a general hybrid description of the multiport used to
relate ports of fault to ports of ﬁeasurement. Certain conjectures made

by Biernacki and Bandler are addressed in a rigorous manner.

II. HYBRID REPRESENTATION FOR MULTIPORT APPROACH TO FAULT LOCATION

Assume for simplicity that the linear network under investigation
contains one-port elements and controlled sources only. Assume also
that the network has n+1 nodes, e elements with f of them faulty. To
identify all the faults we measure m voltages in the network, m > f.

Changes in element values w.r.t. the nominal can be represented by
current sources in parallel with elements (for one-ports and controlled
current sources) or by voltage sources in series with elements (for one-

ports and controlled voltage sources). See Fig. 1. Changes w.r.t.



nominal values, i.e., the faults can be represented as loads of the

(m+f)-port network consisting of all the elements of the original

network which are at their nominal values.

the hybrid matrix H of the (m+f)-port exists
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are currents flowing through fault ports.

Equation (1) can be represented in the simpler form
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are source and response vectors at fault ports.

faults in the network we obtain the nominal response vector

we obtain the relation
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Hence, the voltage change vector AEM & v - XMO can be expressed as

INAIES W (8)

Assuming that z&F is of full column rank, the necessary condition for
the set F of network elements to contain all the faults, is given by the

relation

G - D A =0, (9)

where
1 .T

B 2 B Be)” B (10)
EMF is called the test matrix. Equation (9) allows us to check whether
the assumed set F contains all faults existing in the network on the
basis of the measured voltage change vector AXM.

The test matrix BMF -can be designed using the adjoint network

analysis. For the adjoint network with EF = 0 we obtain (ef. [8])
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Having' calculated voltages and currents in all adjoint network

Angs

elements with different current excitations, lMl, Wwe can obtain the test
matrix khF corresponding to any set F of faulty elements. Thus the
adjoint network analysis does not have to be repeated if the set of

predicted faulty elements is changed.
ITI. THE BLOCK DEPENDENCY PROBLEM

Fulfilling the relation (9) is a necessary but not sufficient
condition on the set F to éontain all the faults in the network. One of
the important .reasons is the concept of block dependency of two
overdetermined systems of equations. In this section we will
specifically address this problem.

Systems

A42¢ =k and A5 %, =D (15)

are block dependent if for any b both are consistent or both are

inconsistent. It was shown [3] that two systems are block dependent if

and only if
where
s ™" an (17

The reasons for block dependency are very often connected with the

particular form of the test matrix IMF' We will discuss them first.



Lemma 1
Let us assume that we have the overdetermined system of equations

Ax = b, (18)

~r

where A = [a, ... a.] is an (mxf) matrix, f < m, and rank A = f.
Every overdetermined system of equations

5252 :B, (19

where B = [91 -+« bgl, rank B = f and b;j» 1= 1, ..., f are linear

combinations of ,gi € A, 1is block dependent to the system (18), so

~

according to [3] we can write A ~ B.

Proof
Assume that Bi =250 1 =»1, eesy £=1, and Bf =3, + § kjEj’ where
kj are scalars. We prove first the following equivalence:
é ’éf = Af" (20)
where
 Bp = lkgay kpgy ... Keacd (21)
and A is as in (18). We have E A =4, so
A éf = é[k1g1 0 ... 0] +Afl0 k232 0 ... 01+ ...
+ AlO ... 'Q keael
= k1[ 1 0 ... 01 «+ k2[0 a, 0 ... 0]
+ kf[g * e 0 9 gf\] = éf.
Now we can easily check that
AB=AA+A) =A+4A =B (22)

We can extend the proof to the case when every column of B is a
linear combination of columns of the A matrix when rank B = f.

Now we can formulate the following important result.



Result 1
If the set of faulty elements contains a subset consisting of

either

(a) a circuit formed by one-ports, controlled voltage sources or
voltages that control faulty voltage or current sources:

(b) a cutset formed by one-ports, controlled current sources or
currents that control faulty voltage or current sources;

then the test matrix th of (8) contains linearly dependent columns.

Proof

The proof of Result 1 is connected with the adjoint network
interpretation of the test matrix as described in (11). The jth column
of the th matrix (j < f1) corresponds to voltages on the element e‘j
calculated for all independent current excitations and nominal values of
elements. So if faulty elements (and/or controlled voltages) form a
circuit then the voltages are dependent. The same dependency holds for
all excitations and we find columns of jﬁﬁ. linearly dependent. A
similar argument can be used for the cutset formed by faulty elements.
The jth column of the i*F matrix (j > f1) corresponds to currents
flowing through the element ej calculated for all independent
excitations. Thus, if faulty elements (and/or controlled currents) form
a cutset then currents are dependent. This leads to the 1linear
dependency of columns of EHF'

A corollary follows immediately from Result 1.

Corollary 1

If the set of faulty elements contains any subset defined in Result 1



then the multiport method cannot be used for fault location.

Although the Corollary 1 is of a negative nature it provides
precise information about the topological restriction on the multiport
method, thus being a constructive extension of Theorem 2 given by
Biernacki and Bandler [2].

From Lemma 1 and the proof of Result 1 it is clear that even if one
of the elements from subsets defined in Result 1 (i.e., from a circuit
or a cutset) is not faulty the multiport method will not provide unique
results. Assume that the set of faulty elements in the network F = {e1,
€5y ees ef}, and that elements €041 Sg4r ceeo er together with e
form a circuit or cutset (ef+1 may be a controlled variable as well as

an element). Under this assumption we can prove the following lemma.

Lemma 2
If IRF denotes the test matrix constructed for the set Fi of
i

predicted faulty elements then

khF ~Br ~ e EMF (23)
1 2

f-0+1"
where
F1 = {e1, cees ef}, F2 = {e1, ceey o s ef+1}, (1)
Ff._z_’_= {91, ceey ef,’ e2+20 sy ef+1}'
Proof

The column of the £*F (i > 1) matrix which corresponds to the
i
element e, 1 is a linear combination of columns which correspond to the

elements €ge1r cevr ©p (compare with the proof of Result 1). So,

according to Lemma 1, we have the relation (23).J-This case occurred in
3 Z23

’ and
X’ ~mx

. 1
Example 2 of Biernacki and Bandler [3], where the matrices gm
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Z were block dependent.

Not only does 1linear dependency of columns influence the
possibility of multiple fault location, but linear dependency of rows
does as well. It is evident that the number of independent voltage
measurements should at least be equal to the number of columns of the .
test matrix to obtain full column rank. The following lemma is helpful

to a better understanding of the influence of row dependency on the

solvability of the fault location problem.

Lemma 3
If the number of independent adjoint current excitations is less
than or equal to the number of columns of the test matrix we cannot

locate the faults using the multiport approach.

Proof
Assume for simplicity that we have the overdetermined system of

equations

& oM, (25)

H
NWN ~

where E&F is an (f+1)xf matrix with rank E&F f. Then khF can be

presented in the form

T n
~1
T
EMF = 2r . (26)
f
I k. g?

Condition (9) is then equivalent to



- 10 -

f
Ao kA, 27)
f+1 J J
J=1
where
—
Ay h
1
at = : (28)
°M
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But relation (27) is always fulfilled if the current excitations are
linearly dependent, because each row of the 2&F matrix corresponds to
voltages or currents on elements e1, cees ef calculated for one adjoint
current excitation and nominal values of elements (cf (14)). So if the
current in, say, the (f+1)th excitation is a linear combination of the
first f excitations then the (f+1)th row of the E&F matrix is the same
combination of the first f rows. According to the structure of EMF we
can see that the same combination of measurement voltages will appear in
the (f+1)th measurement, because excitations in the adjoint network are
imposed at the same ports as measurements in the faulty network (see

(12) and (8)). Thus, condition (27) is fulfilled independently from eq,

82, ce ey ef.

Corollary 2

The maximum number of faults which can be located by the multiport
method is equal to the number of nodes in the network minus two.
This corollary is the simple result of Lemma 3 because the maximum

number of independent excitations is equal to number of nodes minus one.
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IV. CONCLUSIONS

The hybrid multiport approach to fault location has been presented
together with a detailed and rigorous discussion of the implications of
block dependency. Topological restrictions on the method have been
derived from the analysis. The theory is applicable to multiple fault
location in 1linear networks due to current excitations at a single
frequency. We feéel that the present paper permits a deeper
understanding of the limitations of using the multiport method for fault
location. The infliuence of tolerances can, in practice, be handled for
this approach in a similar manner to the treatment of Biernacki and

Bandler [3].
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FIGURE CAPTIONS
Fig. 1 Representation for changes in element values
(a) D1 denotes a one-port or controlled current source,
(b) D2 denotes a one-port or controlled voltage source,

Vv denotes the controlling voltage or current.

Fig. 2 Network with faults represented as controlled sources.
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