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Abstract - A formulation of the generation
expansion planning problem in the form of a tolerance
assignment problem is presented. The general features
of the approach are discussed. The principle of a
combined tolerance/generation cost problem is stated.
The inclusion of other aspects to achieve generality of
the formulation is discussed. A new package called
FLOPT5 is used to produce the numerical results.

INTRODUCTION

An important factor in the comparison of a number
of alternative expansion plans is their respective
capabilities in handling system uncertainties, unit
outages, maintenance schedules, etc. When dealing with
the generation system expansion plans, the designed
values of the generating powers from the proposed
stations are often subjected to uncertainties. The
cost of reserve capacity and stand-by units as well as
the required level of inspection and repair can be
effectively reduced if the designed values of the
nominal generations are well centered inside the region
which defines the possible values of such generations
so that no violations of the practical and natural
restrictions take place. If the designed values of
these generations are well centered inside this
feasible region, this will be equivalent to having
designed values of power generations subjected to
larger associated allowable tolerances, which in turn
indicates both higher reserve capacity (e.g., if the
generated power from a particular station is required
to be increased to cover some lack of overall
generation during any contingency conditions) and lower
cost of maintenance and associated inspections (e.g.,
allowing some unit outages while continuing to operate
feasibly).

In practice, only lower bounds on the tolerances
are required and other objectives have to be minimized.
One of these objectives is obviously the generation
cost. An overall generation cost figure for each
station is used in formulating the corresponding cost
criterion. ’

The simulation approaches have mainly been used in
expansion planning [1,2]. In these approaches, a
comparison between a large number of feasible expansion
strategies is carried out with high computational
effort involved in evaluating proposed alternatives.

Optimization techniques are also used in such
problems. Quadratic programming [3], linear
programming [4], and linear mixed integer programming
[5] have been employed. A combination of both
probabilistic simulation methods and dynamic
programming has been presented [6].

In this paper, an approach for handling the

combined problem is presented. A simplified system is
first considered to clarify the analytical concepts.
Then the solution of the pure tolerance assignment
problem is presented, applicable to a simple 2-bus
system where two possible objective functions are
considered. The effect of weighting factors associated
with the different tolerances is discussed. A special
case arises in which it is possible to reach a
nonunique optimum solution for the tolerance assignment
problem (first problem); this may then be followed by
the generation cost optimization (second problem).
Finally, the general case of the combined problem is
discussed and applied to a sample power system.

MAIN CONCEPTS

Consider the system in Fig. 1 which contains the
2-bus subsystem under consideration connected to the
remaining system through the 1link W. Suppose first
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Fig. 1 Example of a 2-bus subsystem connected to the

remaining system through link W.

that our goal is only to optimize the tolerances [7-12]
aBsociat?)d with the designed nominal generated powers
P1 and P_,. In this case, our problem may be stated as
fgllows: it is required to design the nominal powers
P1 and P, and the associated tolerances, €, and €,
which min%mize certain objective functions. 'ﬂjpically,
the objective function may be in one of the following

two forms:

C = ;.l + ;2' (1)
1 2
or
PO Pg
C=w1e1+w2§, (2)
where w, and w_, are weighting factors. The effect of

the weighting Tfactors is to emphasize the relative
importance of each tolerance associated with the
corresponding power.

- The above minimization problem has to be performed
subject to a set of constraints, for example,

g, =€1_}_0, g2=€220, g3=P120, gu=P22_0,



which ensure the nonnegativity of the actual fed powers
and their respective tolerances, and

1 1

which ensure that the fed powers are within the
.corresponding station predetermined maximum capability
(constraints g. and g.). The predetermined station
capability represents practical limitations on the
generating station layout and local conditions, the
transmission part connecting this particular station
with the remaining system taking into consideration the
limited demand at this particular station-bus, etc.
Constraint g, ensures sufficient generated power for
the designed-area loads. In the above relations, Lt is
the total load.

Additional constraints may be added according to
system conditions.

In the previous formulas:

B =Py - P 20, 8 =P, - Py 20, g5 = Pr#PyLly 20,

0 0
P1 = P1 + e1u1, P2 = P2 + 92u2.
In general, when, dealing with k designed generated
nominal powers, E , and their associated tolerances, ¢,
we have [7-12]

PRy 3
where
- r.o
€1 ] H
€ H
A 2 A 2
E~ = ’ u o= B (L)
L sk J C ‘5(4

u o€ R is a random vector distributed according to a
certaig probability distribution. Considering the case
of independent design parameters, we may define

«e.y k}, (5)

A .
Ru = {E | =1 < ui <1, 1i=1,2,

in which case the tolerance region, Re, is a convex
regular polytope of k dimensions given by

A 0

Rc = {g ] P =P

+E y peRJ. (6)

The extreme points of R_ (which is centered at Po) are
its vertices. The number of these vertices is 2 .
They can be enumerated as follows. The rth vertex

gr = 20 +E Er , ug e {-1, 1}
has
kL) iy
r=1+ I | 2 7
: 2
i=1

The region of feasible points (the
region) is

constraint

4

RS (2 | g(R) 20, (8)

where g(P) is the vector of constraints.

In worst-case design active vertices are
important. Actually, only a few vertices are usually
active at the solution, and those vertices, and at most
a few additional ones, are usually predicted at the
beginning so that the number of constraints actually

used is much smaller than the maximum number possible.
This number is basically at least equal to the product
of the orig&nal number of constraints by the number of
vertices (27).

Fig. 2 shows the solgtioq\of our simple example

for particular values of P1, P2 and Lt' The active
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Fig. 2 Optimal solution of the 2-bus example for

certain parameter values using objective (1)
with uniform weighting of the tolerances.

constraints at the solution are g., g, and g,. In
this case, the solution is obtained with LA PY for
the absolute tolerance objective (1). . ~

Taking all possible values of P1, P, and L
leading to the active constraints of Fig. 2 %t can be
shown that the solution for each formulation is as
follows.

Absolute Tolerance Formulation '(1):
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where

Relative Tolerance Formulation (2):
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We notice that the effect of increasing the
weighting factor associated with a certain tolerance is
to increase the value of that tolerance, i.e., the
tolerance region tends to be elongated in the
corresponding parameter direction. |

Also, we notice that P, and P, appearing in the
relative tolerance formulation of the objective
function act essentially as weighting factors for the
respective tolerances.

For extreme values of w,/w (or alternatively,
extreme values of P1/P2) we obtain the situation shown
in Fig. 3.

Pz

o>

Ly

4
L N

A
Pl

Fig. 3 Optimal solution of the 2-bus example using
objective (1) with extreme nonuniform weighting

w1 > w2.

GENERAL PROBLEM DESCRIPTION

We have considered basic concepts of the pure
tolerance problem applied to a simplified example. 1In

practice, however, the subsystem under planning
expansion requires additional considerations.
Nonlinear constraints are included as functions of

generating powers involving, for example, environmental
conditions (air pollution) [13,14], automatic
generation control [15], and security [16].

In general, we must consider uncertainties in the
generated powers and the deterministic criterion
involving the generation economy, system losses, etc.,
combined together into one optimization problem. So,
it is necessary to reformulate our problem stating our
objective and describing constraints. We shall call

‘the subsystem containing the design parameters "the
working system" and the remaining system "the slack
area".

The following points have to be considered.

Demand

The estimated load curve of the overall working
system demand is fixed in the sense that both the
maximum and the minimum load points can be regarded as
fixed points. The constraints involving load
limitations are formulated accordingly. For example,
the aforementioned constraint g, involves the maximum
load point. U

Alternatively, the estimated demand of the working
system as well as its generation schemes are subjected
to cyclic conditions, e.g., availability (or lack) of
some generations at certain periods of the load curve
which arise from some practical and local limitations.
In this case, the estimated load curve of the overall
working system demand is discretized into corresponding
intervals during each of which the demand is considered
constant and the optimization problem is solved based
on a particular demand. The result of the successive
solutions of the optimization problem corresponding to
the different loads (different intervals of the load
curve) is the optimum settings (schedule) of the
designed generating powers. In this respect, another
formulation may be obtained if the nominal powers in
the ith interval of the load curve associated with the
jth generating station are fixed. In this case, fixed
nominal values have to be designed over the whole load
curve period. However, the associated tolerances, are
still dependent on the load curve leading, for example,
to the objective functions

c(eh, i), ie I

or

i Oc R
C(e™, P, 1), 1€ Iﬂc’

where gl rigfesents the tolerance vector in the  ith
interval, P is the common nominal power vector and
I,, is an “index set corresponding to the load curve
in%ervals.

From now on we omit the superscript i as it is

understood that our optimization problem is to be
solved in this paper for a specified 1load
configuration.
Transmission Losses

The losses of the transmission system are

neglected. This is a reasonable assumption at this
stage of planning rather than, for example, under
operating conditions when the minimum loss problem is
of equal interest to the economic dispatch problem. If
the transmission system of the new expanded subsystem
is at least roughly of known parameters, the losses as
a function of the generating powers can be taken into
consideration through any of the well-known formulas
(e.g., the B-coefficient approach).
Reacti Power Compensation

Reactive power compensation is assumed to be
completely available so that no problems due to bus
voltage fluctuations or excessive VAr of generating
units will arise. In fact, reactive power planning
problems [17,18] attempt to cope with such situations.

Slack Area Loads

The slack area generators have a connected
capacity which deals with the slack area loads and the
initial load sharing with the working system. The
excess generating power of the working system has to be
allowed to share in supplying the slack area loads
without redundancy. This represents an additional
constraint which ensures the capability of the expanded
generating stations to cover the estimated loads in the
working system without causing additional burden on the
slack area and at the same time allows the possibility
of serving the operating economic dispateh and
contingency conditions in the slack area. In the 2-bus
example the corresponding additional constraint is

>0,

gg = - (P1 + P2) + LS + Lt >



where LS is the total slack area load.

Dispatching Cost at Planning Stage

Economic dispatch considerations are to some
extent different from those under operating conditions
in the sense that under operating conditions the
operator usually deals with existing dispatch curves of
the different generating stations. On the other hand,
the planner deals only with rough figures of the
suitable or inevitable kinds of units at a particular
location. The overall dispatch curve of a particular
generating station is used as a part of the generation
cost at this stage. The designed powers subjected to
the corresponding tolerances are preferably biased
towards regions of lower dispatching costs.

COST REDUCTION VIA OPTIMAL POWER CENTERING

The previous discussion may clarify the priority

of optimizing tolerances which deal with the
probabilistic situations arising in practical
operations. Actually, only lower bounds on the

tolerances are needed. This will create a feasible
region for the second optimization problem in which we
aim at minimizing the total generation cost. In this
case we can directly deal with one optimization problem
in the form

min C, (¢%) (9)
PO

subject to
EO € Rf, (10)

where

R4 {P0|gi(P0,e) 20,e28,820,1ieI}, (11

is the vector of tolerances as described
before,

is a prescribed lower bound on the
tolerances ¢ and

I is the index set defining the constraints of
the problem.

M

lon

Different values of the specified lower bounds on the
different generation tolerances reflect the relative
importance of such tolerances.

A SPECIAL OPTIMIZATION PROBLEM

Generally, we consider the case of a k-bus working
system with special attention to the 2-bus example
(Appendix). Specifically, we consider that the k-bus
working system contains k generating buses. However,
for a working system which contains load buses, the
symbol k will refer to the number of generating buses
in the system.

Consider first the tolerance assignment problem.
The absolute tolerance formulation is considered with
objective function in the form

k wi
C= I - . (12)
i=1 fi
Let w, = 1, i = 1, 2, ..., k. The effect of

weighting factors will be considered later. The main

constraints for the k-bus working system are

g. =€, 2 =P, >0

i 1200 By i 2% By TR TN

and

3041 = P, -L_2>0, ()

P, +L_ + 1L
s

i > 0. (15)

K
B3ge2 * 7 I t

i=1

These constraints are simply the general form of
the 2-bus case previously described. Additional
constraints arising from the practical limitations and
local conditions may be formulated and appended.

Note that the constraints g 7 and g K42 are
parallel, as illustrated in Fig. 4 ¥t the 2-b§s Case.

Py

extreme polytope A
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~
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Fig. 4 Illustration of nonuniqueness of the optimal
tolerance solution of the 2-bus example using
uniform weighting.

Thus for the general k-bus case, and with these
constraints active, it can be shown that the solution
is given by

€, = ts (16)
i 2k
and
)1: PO = L +£§' 1
121 i t 2

We observe, as verified in Fig. 4, that the
solution is not unique. In the general case (17) is a
k-dimensional hyperplane and the essential feasible
region for the second optimization problem is

P0=L =

4
= i Thp o

0
I

'
Rf .
1

{P

~

K L
z R CR}, (18)

1
where R and R_ are given by (6) and (8), respectively.
Now, we consider the second optimization problem.

Suppose that the rough cost formulas of the different
bus generations based on nominal powers are given by

0,2 0 X
CFi = Ai (Pi) + Bi Pi + Ci’ i=1,2, ..., k, (19)
where A,, B., and C, are cost coefficients. Then the
i
total cOst given by

k

= I
Cq g Cp (20)



is required to be minimized subject to

fo € RL.

F (21)

Effect of Weighting Factors

Considering the general formula of the absolute
tolerance objective (12), it can be shown that for the
same previous constraints considered to be active the
solution of the tolerance assignment problem is given
by

k
e.=L Ju. /72 M), i=1,2, ...,k (22)
g8 izt
and
k 0 Ei
z = .
- Pi Lt + > (23)

i=1

Note that (23) is independent of the weighting
factors and is hence identical to (17). The second
optimization problem can therefore be carried out
exactly as described before. However, the boundaries
of the problem are altered. In the simple case of
2-bus system, the coordinates of the extreme points A
and B are dependent on the ratio w1/w2. Fig. 5 shows a
typical case in which LA > LPY

g
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Fig. 5 Nonunique solutions of the 2-bus example for

LA > w,. The coordinates of gO and EO are,
respecgively, (L, +L_ - P, - €, P, - €) and
(L, + €1, 8), wﬁere 581 and 262 are given in

the figure.

3-BUS EXAMPLE

Our approach is applied to a sample power system
containing a 3-bus working system and the slack area.
The sample system is shown in Fig. 6. Table I
represents the maximum powers and the loads expected
for the expansion planning. An additional constraint
is formed to ensure the possibility of supplying the
loads of the working subsystem which contains buses 1
and 2 from its own generations.

The pure tolerance problem is first considered.
The objective function of (12) is minimized subject to
(13), (14) and (15) with the additional constraint

P, + P

1 > 1.6 > 0.

The minimizaticn was performed using a new package
called FLOPT5 [19] on a CDC 6400 digital computer. The

Fig. 6 Three-bus working area with 2-bus subsystem
connected to the slack area.

Table I
Data of the Sample Power System

Bus Code Max. Generation (pu) Load (pu)
i P,
i
1 1.7 0.7
2 1.2 0.9
3 1.4 0.85
Total load 2.45

package uses a recent highly efficient and robust least
pth method due to Charalambous [20]. (It may be
remarked that this paper is the first to present
numerical results with FLOPT5, which supercedes all
previous versions of the well-known FLOPT series
available to the authors.) It gave the results shown
in Table II for a number of different weighting
factors. The effect of the relative size of the slack
area is shown by considering two values of L_.

The generation cost (9) is next minimiZzed subject
to specified lower bounds on the generation tolerances
as given by (10). The additional constraint is
considered again. Two generation cost formulas are
used, the coefficients of which are shown in Table III.
The data of Table I is also used with L_ = 1 pu.

Minimization was again performé% using FLOPTS
giving the results shown in Table IV for different
values of specified lower bounds on the tolerances. We
note that all these bounds are exactly active.

CONCLUSIONS

An approach for solving the design problem in
power system generation expansion planning in the form
of a combined probabilistic (tolerance assignment) and
generation cost problem was presented. Minimization of
the tolerance objective leads to increasing the
effective reserve capacity of the respective stations
and to reducing the required level of maintenance and



Table

II

Results for Tolerance Optimization
Parameters Solution
0 0
w1 w2 w3 LS P1 P2 P3 e1 92 e3
1 1 1 1 1.3213 0.8229 0.8058 0.1667 0.1667 0.1667
1 1 1 10 1.3917 0.8917 1.0917 0.3083 0.3083 0.3083
2 1 1 1 1.4756 0.9020 0.5724 0.2071 0. 1464 0.1464
3 2 1 1 1.4593 0.9336 0.5571 0.2089 0.1705 0.1206
Table III
Coefficients of Generation Cost Formulas
Case i A, B. C.
i i i
1 1 100 400 25
2 130 150 50
3 240 110 20
2 1 10 170 60
2 20 200 75
3 25 150 55
Table IV
Results for Generation Cost Reduction
Parameters Solution
Case
0 0 0
61 62 63 P1 P2 P3 Cost
1 0.05 0.05 0.05 0.5978 1.1500 0.8522 982.3
0.10 0.10 0.10 0.7395 1.1000 0.9105 1066.9
0.14 0.12 0.10 0.7979 1.0800 0.9321 1102.5
0.15 0.15 0.15 0.8814 1.0500 0.9687 1157.8
2 0.05 0.05 0.05 1.6242 0.0758 0.9000 663.0
0.10 0.10 0.10 1.6000 0.2000 0.9500 693.5
0.14 0.12 0.10 1.5600 0.3000 0.9500 706.4
0.15 0.15 0.15 1.5500 0.3500 1.0000 725.0
repair. The concept of dividing the whole inter- APPENDIX

connected power system into a working system and a
slack area was utilized. Under certain conditions we
showed that the nonunique optimal solution of the pure
tolerance problem permitted subsequent optimization of
generation cost with fixed load sharing between the
working system and the slack area, without degradation
of the tolerance solution.

Consider the 2-bus example. To solve this problem
analytically, we take the region Rp as the infinite set
of discrete points p(i), i = 1, 2, 3, ., where

-1 < u, (1)
-1 < uz(i)

’

1,

InIA



The optimality conditions for objective function (1)
lead to

0
W
_l - r ) r b
> u17 u (1) 0
€
1
W,
-—% u, 0 uz(i)
£ = + % ou,(i) + I u,(i) +
2 i 3 i )
0 1 0
0 Lo ) L o J L 1
|- -
-u, (1) [ o Hy (1)
0 -uz(i) uz(i)
z u5(i) + I u6(i) + I u7(i) +
i -1 i 0 i 1
0 | -1 1
-u1(i)
-u (i)
+ Z us(i) 2
i -1
L -1
and

Ui, = U8y = u3(1)g3(i) = ... = u8(i)g8(i) = 0,
i=1,2, ...
where u.,, u,, u3(i), ceey 0 are the
multipliers.

As shown in Fig. 4, based on the active vertices
indicated, we have

u8(i) >

u1 = u2 = u3(i) = uu(i) = Us(i) = uﬁ(i) = 07
i=1,2, ...

and the minimization of the constraints g7(i) and 83(1)
w.r.t. p(i) lead to

u7(1) 0, u1(1) = -1, u2(1) = =1
u7(j) =0, j=2, 3, ...
also
u8(2) £0, u1(2) = 1, and u2(2) =1
us(j) =0, j=1, 3,4, ...
Finally we get a set of equations the solution of
which is shown in Fig. 4.

Suppose that the cost formulas for the two
generating stations based on nominal powers are

C. =A (PO)2 + B, P 4 C, for the first station, and
F1 1 1 171 1
c. =4, #9248, P+ C, for the second station

F2 2 2 2 2 2 .

The total cost given by

is required to be minimized subject to the constraints
which define the feasible portion AB of Fig. 4, that is

the equality constraint

0 0 0 0 s _
h(Py, P)) = Py + Py =Ly -5 =0

>

0
and the ieequality cOQFtraints, nam&ly, either P1 2
P1A’ and P, < P ., or P1 5_P2 , and P2 2 P2 .

The solution of this optimization problem can be

easily obtained as follows. Substituting

L
0 _s 0 _ 0
P2 = Lt +5 - P1 = a - P1,
where
Ls
o = Lt + >
we get
0,2 0
CF = a (P1) +b P1 + C,
where
a = A1 + A2,
b = B1 - 2aA2 - B2,
2
c = C1 + A2a + B2a + C2,

to be minimized subject to the first set of inequality
constraints. Normally, both a and c are positive.
Depending on the state of b we have the following two
cases.

Case of b 2> 0

Here, the optimal solution is at point A and is
given by

0 t 2 4 7s
Pac® !
5 1
P -l
and
ts
61 = €2 = i .
Case of b <0
Here, we have three possible cases for ﬁg = - b/2a.
50

Case of P1A < P1 5,?15

The optimal solution is
[B1-2aA2-B2]
2[A1+A2]

LS [B1-2aA2-B2]
2[A1+A2]

and

-0
Case of P1A pa P1

The solution corresponds to the case of b > 0.



Case of P0

12 P

The optimal solution is at point B and is given by

1B

Ls
Ly + 0
0
EB= ’
L
_s
4
and
Ly
€ = € -
17 28
ACKNOWLEDGMENT
The authors would like to thank N.M. Sine,
Coordinator, Word Processing Centre, Faculty of

Engineering, McMaster University, Hamilton, Canada, for
patiently assisting in the timely preparation of this
manuscript.

This work was supported by the Natural Sciences

and Engineering Research Council of Canada under Grant
A7239.

(1]

(2]

(31

(4]

(5]

(6]

(71

REFERENCES

F.F. Wu and G. Gross, "Probabilistic simulation
of power system operation for production cost and

reliability evaluation", Proc. IEEE Int. Symp.
Circuits and Systems (Phoenix, AZ, 1977), pp.
877~899.

R.R. Booth, "Power system simulation model based
on probability analysis", IEEE Trans. Power

Apparatus and Systems, vol. PAS-91, 1972, pp.
62-69.

G.F. Reid and L. Hasdorff, "Economic dispatch
using quadratic programming", IEEE Trans. Power
Apparatus and Systems, vol. PAS-92, 1973, pp.
2015-2023.

J.T. Day, "Forecasting minimum production costs

with linear programming", IEEE Trans. Power

Apparatus and Systems, vol. PAS-90, 1971, pp.
814-823.
R.M. Sawey and C.D. Zinn, "A mathematical model

for long range expansion planning of generation
and transmission in electric utility systems",

IEEE Trans. Power Apparatus and Systems, vol.
PAS-96, 1977, pp. 657-666.

R.R. Booth, "Optimal generation planning
considering uncertainty", IEEE Trans. Power
Apparatus and Systems, vol. PAS-91, 1972, pp.
T70-7T7.

J.W. Bandler, "Optimization of design tolerances
using nonlinear programming", J. imization
Theory and Applications, vol. 14, 1974, pp.

99-11L.

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

(191

[20]

J.W. Bandler and P.C. Liu, "Automated network
design with optimal tolerances", IEEE Trans.
Circuits and Systems, vol. CAS-21, 1974, pp.

219-222.

J.W. Bandler and P.C. Liu, "The tolerance-tuning
problem: a nonlinear programming approach",

Proc. 12th Allerton Conf. on Circuit and System
Theory (Urbana, IL, 1974), pp. 922-931.

J.W. Bandler, P.C. Liu and J.H.K. Chen, "Worst
case network tolerance optimization", IEEE T
Microwave Theory Tech., wvol. MIT-23, 1975, pp.
630-641.

J.W. Bandler, P.C. Liu and H. Tromp, "A nonlinear
programming approach to optimal design centering,
tolerancing and tuning", IEEE Trans. Circuits and
Systems, vol. CAS-23, 1976, pp. 155-165.

J.W. Bandler, P.C. Liu and H. Tromp,
approach to microwave design",
Mi T Tech., vol. MTT-24,
584-591.

"Integrated
IEEE Tr .
1976, pp.

M.R. Gent and J.W. Lamonf, "Minimum emission

dispatch", IEEE Trans. Power Apparatus and
Systems, vol. PAS-90, 1971, pp. 2650-2660.

J.W. Lamont and M.R. Gent, "Environmentally-
oriented dispatching techniques", Proc. PICA
Conf. (Minneapolis, MN, 1973), pp. 421-427.

T.E. Bechert and N. Chen, "Area automatic
generation control by multi-pass dynamic
programming", IEEE Trans. Power Apparatus and
Systems, vol. PAS-96, 1977, pp. 1460-1469.

M. Enns, "Security, control and economic
functions in power system control centers", Proc.

14th Allerton Conf. on Circuit and System Theory
(Urbana, IL, 1976), pp. 289-298.

S.S. Sachdeva and R. Billinton, "Optimum network
VAr planning using real and reactive power
decomposition nonlinear analysis", P 8th PICA
Conf. (Minneapolis, MN, 1973), pp. 339-347.

C. Serna, J. Duran and A. Gamargo, "A model for
expansion planning of transmission systems - a

practical application example", IEEE T . P r
A tus and Systems, vol. PAS-97, 1978, pp.
610-615.

J.W. Bandler and D. Sinha, "FLOPT5 - a program

for least pth optimization using the accelerated
least pth algorithm", Faculty of Engineering,
McMaster University, Hamilton, Canada, Report
soc-218, 1978.

C. Charalambous, "Acceleration of the least pth
algorithm for minimax optimization", Dept. of
Systems Design, University of Waterloo, Waterloo,
Canada, Report 28-0-280677, 1977.



S0C-219

‘OPTIMAL ASSIGNMENT OF GENERATION TOLERANCES AND COST REDUCTION IN POWER
SYSTEM EXPANSION PLANNING

J.W. Bandler and M.A. El-Kady

December 1978, No. of Pages: 8

Revised:

Key Words: Power system planning, tolerance assignment, economic
dispatch, design centering, optimization methods

Abstract: A formulation of the generation expansion planning problem in
the form of a tolerance assignment problem is presented. The general
features of the approach are discussed. The principle of a combined
tolerance/generation cost problem is stated. The inclusion of other
aspects to achieve generality of the formulation is discussed. A new
package called FLOPT5 is used to produce the numerical results.

Description:
Related Work: soc-87, S0C-183, S0C-218.

Price: $ 3.00.







