INTERNAL REPORTS IN

~ SIMULATION, OPTIMIZATION
| AND CONTROL

No. SOC-105
TOLOPT - A PROGRAM FOR OPTIMAL,
CONTINUOUS OR DISCRETE, DESIGN CENTERING
AND TOLERANCING
PART I - USER'S GUIDE
J.W. Bandler, J.H.K. Chen, P, Dalsgaard and P.C. Liu

September 1975

FACULTY OF ENGINEERING
McMASTER UNIVERSITY

HAMILTON, ONTARIO, CANADA







TOLOPT - A PROGRAM FOR OPTIMAL,
CONTINUOUS OR DISCRETE, DESIGN CENTERING
AND TOLERANCING

J.W. Bandler, J.H.K. Chen, P. Dalsgaard and P.C. Liu

Abstract This report describes the development, organization and implemen-
tation of a user-oriented computer program package_called TOLOPT (TOLerance
OPTimization), which can solve continuous and/or discrete worst-case
tolerance assigmment problems. Worst-case vertices can be automatically
selected and optimization will lead to the most favorable nominal design
simultaneously with the largest possible tolerances on specified toleranced
components. The program contains recent techniques and algorithms for
nonlinear programming: The optimization is carried out by subprograms
substantially the same as ones in the DISOPT package. The full Fbrtran IV
listing is included in this report as well as three circuit examples illus-

trating the use of and typical printouts from TOLOPT.

This work was supported by the National Research Council of Canada
under Grant A7239 and by the Danish Council for Scientific and Industrial
Research through support to P. Dalsgaard.

J.W. Bandler is with the Group on Simulation, Optimization and Control
and Department of Electrical Engineering, McMaster University, Hamilton,
Canada.

J.H.K. Chen is with Bell-Northern Research, Ottawa, Canada.

P. Dalsgaard is with the Institute of Electronic Systems, Aalborg University,
Aalborg, Denmark.

P.C. Liu is with Bell-Northern Research, Verdun, P.Q., Canada.






I. INTRODUCTION

TOLOPT is a package of subroutines which can solve continuous and
discrete worst-case tolerance assignment problems simultaneously with
the selection of the most favorable nominal design [1-3].  The package
is designed to handle the objective function, performance specifications,
and parameter constraints in a unified manner such that any of the nominal
values or tolerances (relative or absolute) can be fixed or varied auto-
matically at the user's discretion. Time-saving techniques for choosing
constraints (Verticés selection) are incorporated. The routine involved
also checks assumptions and performs worst-case analyses.

The continuous énd (optional) discrete optimization methods are pro-
grammed in such a way that they may be used as a separate unit. This
part, called DISOP2 and incorporating several optional features, is an
updated version of DISOPT, which has been successfully applied in many
different areas [3 - 6]. Dakin's tree search for discrete problems [7],
efficient gradient minimization of functions of many variables by a recent
quasi-Newton method [8] and recent developments in least pth approxima-
tion by Bandler and Charalambous [9 - 12] are employed. Extrapolation is
also featured [13]. (Another practical problem which is analogous to
the tolerance assignment problem is to determine the optimum component
values to a certain number of significant figures, which can be done with
DISOP2.)

The TOLOPT program is organized in such a way that future additions

and deletions of performance specifications and constraints, replacement

of cost functions and optimization methods are readily realized. Any of



the different vertices elimination schemes can be bypassed or replaced
by the user. It is felt that the program is particularly flexible in the
way that the user may enter at any stage of the problem's solution. The
user supplies the network analysis subroutines. With an arbitrary initial
acceptable or unacceptable design as a starting point, the program will
print out the set of nominal component parameters together with a set of
optimal tolerances satisfying all the specifications in the worst-case
sense. The user decides on a continuous solution and/or discrete solutions.
The package is written in Fortran IV. Several test examples are pre-
sented here to illustrate the approach. Typically, 64000 octal words of

memory are required on a CDC 6400 computer.

IT. FEATURES OF TOLOPT

The Overall Structure of TOLOPT

Fig. 1 displays a block diagram of the principal subprograms compris-
ing the tolerance optimization program. A brief description of these
subprograms is given in this section. A flow diagram is shown in Fig. 2.

TOLOPT (TOLerance OPTimization program) is the subroutine called by
the user. It organizes inﬁut data and coordinates other sﬁbprograms.
Subroutine DISOP2 is a general program for continuous and discrete non-
linear programming problems. Subroutine VERTST eliminates the inactive
vertices of the tolerance region. Subroutine CONSTR sets up the constraint
functions based on the response specifications, component bounds and other
constraints supplied in the user subroutine USERCN. Subroutine COSTFN
computes the cost function. The user has the option of supplying his own
subroutine to define other cost functions. The user supplied subroutine
NETWRK returns the network responses and the partial derivatives. In the

user supplied subroutine USERCN the user has to define whatever extra



constraints he needs and the corresponding partial derivatives. It should
be noted that the constraints given in USERCN are not checked against the
worst-case vertices. Table I is a summary of the features and options
currently incorporated in TOLOPT. Some tolerances and nominal parameter
values may be fixed and, hence, do not enter into the set of optimization
parameters. The user supplies the initial values of the tolerances (relative
or absolute) and the nominals with an appropriate vector to indicate whether
they are fixed or variable, relative or absolute. The program will assign
those variable components to the vector of optimization parameters. As
initial values of the tolerances (relative or absolute) we recommend using
small numbers, say 0.01 (relative) or whatever absolute values correspond to
this.

The Objective Function

The objective function we have investigated and implemented [1 - 3] is
the weighted summation of the inverses of the relative or the absolute
tolerances. The weighting factors may (as defaulf values) be taken as
one, but the user can, by using the default parameter ND2, specify his
own set of weighting factors.

Vertices Selection Schemes and Constraints

Various schemes have been developed to identify or to predict the most
critical vertices that are likely to give rise to active constraints. Our
proposed schemes will eliminate all but one vertex for each constraint
function in the most favourable conditions. When monotonicity assumptions
[2, 14]are not sufficient to describe the function behaviour, our scheme
will increase the number of ver;ices until, at worst, all the 2**KD vertices

are included.



4.

Two major schemes of increasing complexity are programmed in the sub-

0 b. .0
% - Ejgj and % = Q + Ejgj'

{1,2,...,k} is the index

routine VERTST. Scheme 2 involves vertices ga

ne>

Ej is the jth unit vector and j € I¢, where I¢
set for the network components. Scheme 3 involves all vertices. Also,

the special case (scheme 1) which occurs for Qa = %b

, has been programmed.
In this case only one vertex is considered for each sample point.

The user decides on which vertices selection scheme (parameter ISCEME)
he wants to use as well as the maximum number of allowable calls for the
scheme selected for the updating procedure (parameter ND1). He may, if
he wishes, bypass the whole subroutine (parameter IUPD) by supplying his
own vertices or set up his own strategy of vertices selection. Further-
more, the user decides on the maximum number of vertices allowable at €ach
sample point (parameter MAXVN). If more than the maximum allowable numbers
are detected, the subroutine selects the ones corresponding to the lowest
constraint value arranged in ascending order.

Printing out the detected vertices (parameter IWORST) and the
value of the corresponding constraints, the user has the possibility of
eliminating further vertices by considering the relative magnitude of the
constraints.

As an option, if the parameter IUPD is given any value other than
0,1 and 2, the TOLOPT program can be used for vertices detection only. The
program wiil print out the detected vertices and the value of the correspond-
ing constraints such that the user has the possibility manually to eliminate
vertices using his own judgement. The user has the possibility of supplying
his own set of active vertices in two different ways. This will be illustra-

ted in one of the examples.



The vertices selection schemes used are based on local information,{
therefore, the vertices should be updated at suitable intervals (see later).
The user supplies 3 sets of numbers, the elements of which correspond
to the controlling parameter wi’ the specification Si and the weighting
factor w. . wi is an independent parameter, e.g., frequency, or any number
to identify a particular function. wo is given by
+1 if S; is an upper specification

-1 if Si is a lower specification.

If both upper and lower specifications are assigned to one point, the user
can treat it as two points, one with an upper specification and the other
with a lower specification. The theory presented in [3] will apply in this
case under the monotonicity restrictions.

The vertices selection scheme will, for each i select a set of appropriate
K- Corresponding to each j, the values wi’ Si and w. are stored. This

information is used for forming the constraint functions.

The constraints associated with response specifications are of the

form
g=wlS-F) >0

with appropriate subscripts, where F is the circuit response function of ¢
and ¢, and w and S are as before.

The parameter constraints are

¢9 -e. -¢ . >0
J J 2] -
and 0
o . -9, - €. >0
uj J J -

where ¢u. and ¢2j’ j e I¢, are the user supplied upper and lower bounds.



Updating Procedure

Before using the automated vertex selection an initial feasibility
check is performed to check the feasibility of the nominal design. The
outcome from this feasibility check is used as a starting point in the
tolerance assignment problem. If a feasible nominal point is not attainable,
the user has to relax some specifications or change his design.

The different optimization methods [9 - 13] are summarized in Table II.
Once the constraints have been selected, optimization is started with a
small value of p and o (p = o = 10 as default values). See [3, 4] for de-
finitions of these parameters. The routine for updating constraints is
called whenever the o value is updated and/or each time new constraints
have been added. For updating the values, we add new values of K to the
existing ones without any eliminations. This may not be the most efficient
way but will be stable. When the maximum number of calls is exceeded or when
there is no change of values for consecutive calls the program goes to the
final optimization with the set of vertices chosen.

Using all the detected vertices could, depending on the problem under
investigation easily involve so many constraints that the optimization would
be very time consuming. This could, however, for some problems, be over-
come by specifying a sufficiently large but reasonable number MAXVN (the
maximum number of constraints involved would be MAXVN multiplied by the
number of sample points NSP). In such cases the updating and optimization
procedure will converge if the vertices, which are active at the solution,
are not discarded during updating. The same convergence will occur if
manual elimination by the user is performed without discarding vertices

which are active at the solution.



It should be pointed out that vertices which are detected at an early
stage of the updating procedure need not be active at the solution and vice-
versa. The final solution is worst-case only at the chosen sample points.

The solution procéss may provide valuable information:. to the user,
e.g., parameter or frequency symmetry, which could be useful in order to
reduce the number of active vertices.

Options and Default Values

Options and default values are used to enhance flexibility. Table I
summarizes the features and options. Table II summarizes the optimization
methods. Tables III and IV survey parameters used in TOLOPT.

Table III involves parameters which decide on vertices selection,
continuous and discrete optimization and default values. Table IV surveys
certain parameters, some of which have to be set on entry each time TOLOPT
is used. Others have to be set only when the indicated parts of TOLOPT

are used.

III. ARGUMENT LIST

The TOLOPT program is called by

SUBROUTINE TOLOPT (NR,KT,KR,KD,KP,NP,Z,I1,12,AZ,AX,MU,NV,SAMPT,GRAD,
PL,PU,Wl,Cw,IBl,SG,IS,I4,X,EPS,G,PS,XB,IX,Xl,XZ,W,H,XE,INDX,GF,IAA,IBB,A,
Tl,TlP,NSTEP,QSTEP,DISCR,XU,XL,ID,IB,ICHECK,IVAR,Pl,PZ,ESTD,AL,GPHI,PHI)
and two common statements (see Tables III and IV)

COMMON/TOL/IUPD,ISCEME,IWORST,IPRINT,IDATA,IOPTl,IOPTz,IOPTS,IOPT4,
IOPTS,IOPT6,IOPT7,ND2,NDS,ND4,ND5,MAX,MAXNOD,ICON,NDIM,NSP,MAXVN,NVSUM,
NEC,ND1,ND6

and



COMMON/DEFAULT/EST,EST1,A0,AI,XMAL, ZERO,ETA, INSOLN, BSOLN
of which the common statement /DEFAULT/ only has to be specified in the
user supplied main program, if the default values are not to be used.

The arguments are as follows.

NR number of independent optimization variables (NR > 2)
KT number of toleranced components

KR number of toleranced components of relative value

KD number of variables of discrete value

KP integer constant of value 2*KT

NP number of p-values used in the final optimization

'z vector of KP elements in which the user has to supply

initial relative tolerances and absolute tolerances
followed by corresponding nominal values. Z will on exit
contain the optimum solution.
11 integer vector of KP elements in which the user on
entry has to identify the elements of Z
The following indicators should be used
1: for discrete value
2: for continuous value

3: for fixed value

12 working vector of KP elements
AZ,AX working vectors of KT elements
MU array of KT by NVC elements in which the current

number of vertices at all frequency points are stored .
NVC is the number of vertices chosen at all sample points
and has to be foreseen by the user. Maximum is (2**KD)*NSP.

NV vector of 2*NSP elements in which the current number

of vertices is stored for each sample point



SAMPT

GRAD

PL,PU

Wl

CW,IB1

SG,13,14

EPS

array of 3 by NSP elements. The user has to supply the
following on entry for each sample point:
SAMPT(1,.) the controlling parameter wi
SAMPT(2,.) the specification Si
SAMPT(3,.) the weighting factor W,
wi is an independent parameter, e.g., frequency, or
any number to identify a particular function.
w, is given by
+1 for upper specifications Si

-1 for lower specifications Si

working vector of KT elements

vectors of KT elements to be set on entry.

PL denotes lower bounds on the toleranced components
PU denotes upper bounds on the toleranced components
working vector of KP elements

working vectors of KT elements. As default values

CWi is set to one. By using the default parameter
ND2 the user can on entry supply any other value
vectors of a number of elements to be set to the
anticipated number of vertices chosen at all sample
points (say NVC)

vector of KP elements. The current values of the
variables for the continuous optimization are stored in
the first NR elements of this vector

vector of NR elements to be set to the test quantities
used in the Fletcher program

vector of NR elements in which the gradient vector

corresponding to the optimization variables is



PS

XB, IX,X1,X2
W

H

XE

INDX, GF

IAA,IBB,A,T1,TI1P

NSTEP

QSTEP

DISCR

XU, XL

ID

IB

10.

currently stored

vector of NP elements to be set to the values of p

used in the final optimization

working vectors of NR elements

working vector of 4*NR elements

working vector of NR*(NR+1)/2 elements

a three suffix working array of NR by NP by NP elements
working vectors of NR elements

working vectors of NCONS+1 elements

In the case of the continuous problem the total number
of constraints NCONS is computed by the program as
NCONS=NVC + 2*NPC + NEC, where NPC is the number of non-
fixed elements of Z (computed in the program) and NVC is
the total number of detected vertices. In the discrete
problem the total number of constraints is computed from
the program DISOP2 as NCONS = (NVC + 2*NPC + NEC) + M,
where M is an updating number corresponding to the
number of extra constraints added at each node.

vector of KD elements to be set to the number of
discrete values available for each of the KD discrete
variables if IOPTS =1

vector of KD elements to be set to the quantization

step sizes for the KD discrete variables of IOPTS # 1
array of KD by NSTEP elements to be set to the discrete
values imposed upon each discrete variable if IOPTS = 1.
working vectors of KD elements

working vector of 2**KD elements

working array of KD by 2**KD elements



11.

ICHECK, IVAR,P1, working vectors of NCONS + 1 elements
P2,ESTD,AL

GPHI working array of KP by NCONS+1 elements
PHI working vector of NCONS + 1 elements

For the discrete problem each value is considered as a discrete number
if it falls within a tolerable error from the given values. The program

0,

takes this tolerable error as 1 % of the lowest discrete value given for
each discrete component. The tolerable errors are stored in vectors ERR
and ERRO for problems with discrete values and uniform quantization steps,
respectively. The program is limited to handle 25 discrete tolerable

errors. To increase this limit the common statement /TOL4/ in the sub-

routines DISTRF and DISOP2 should be modified.

IV. USER SUBROUTINES
The user must supply subroutines NETWRK and USERCN as follows.

SUBROUTINE NETWRK (Y,OM,RSP,GRAD, IG)

DIMENSION Y(1),GRAD(1)

RSP set to the actual response function of the physical
circuit components in the array Y and the controlling
parameter OM (=SAMPT(1,.))

IF (IG.EQ.0)* IG is an indicator which in TOLOPT is set to 1 whenever
the gradients are required.

* denotes either a RETURN or a GO TO statement for
jumping to the first executable statement following

computation of the gradients



12,

GRAD (1) partial derivative of the response function w.r.t.

the ith element of Y

RETURN
END
SUBROUTINE USERCN (Z,PHI,GPHI,NR,KP)

DIMENSION Z(1),PHI(1),GPHI(KP,1)

PHI(i) . the ith inequality constraint function of Z required
by the user
GPHI(i,j) partial derivative of the jth constraint function w.r.t.

the ith element of Z

RETURN
END
The user should supply the heading, dimensions, return and end state-

ments of USERCN even if he does not supply any extra constraints.



13.

V. SUBROUTINES CALLED BY TOLOPT

The following is a brief description of the subroutines called by TOLOPT.

-

UPDATE stores new vertices following previously detected ones

XZTRAN reorders the user supplied Z-vector in optimization
order

BDDB cohverts -1 and +1 digits to integer number and

vice-versa.
IMODE = 0 converts integer number to digits in
-1 and +1 states
IMODE = 1 converts -1 and +1 digits to integer number
SORT rearranges value of detected constraints in ascending
order. Rearranges also the corresponding vertices
DISTRF transforms the user supplied discrete values to
appropriate values for the discrete problem and
selects a tolerable error for discrete values
COSTEN defines the cost function and its derivatives
The following is a brief description of the subroutines called by
DISOP2, also called by TOLOPT.
DSPTA coordinates the input, the output and the minimization
DSPTB minimizes a function using the Fletchér unconstrained
minimization program
DSPTC formulates the artificial unconstrained objective

function and the necessary gradients

DSPTD supplies additional variable constraints for discrete
optimization
DSPTE returns the gradients of the additional variable

constraints



14,

DSPTH transforms a nonlinear programming problem into an
equivalent unconstrained objective function

DSPTI prints the input data

DSPTJ prints out the result of the feasibility check and/or
the optimum solution at each node

DSPTK prints out the best current discrete solution after
checking the vertices about the continuous solution
and the optimum discrete solution

DSPTL checks the gradient formulation by perturbation

DSPTM performs extrapolation when using algorithm 3

VI. EXAMPLES

Example 1: Design of a voltage divider [4,15]

A diagram of the voltage divider considered is shown in Fig. 3. The
“transfer function is ¢2/(¢1+¢2) and the input resistance ¢1+¢2. The design
specifications are 0.46 < ¢2/(¢1+¢2) < 0.53 and 1.85 < ¢1+¢2 < 2.15. In the
case of the discrete problem the set of obtainable discrete values for the

tolerances of ¢1 and ¢2 are

DISCR = {1,3,5,10,15} per cent.

A typical main program to supply the values and proper dimensioning
for the parameters in the argument list of subroutine TOLOPT and the common
statements /TOL/ and /DEFAULT/ is displayed in Fig. 4. Fig. 5 shows the
subroutine NETWRK and Fig. 6 illustrates USERCN for a constraint inactive
at the solution. Typical printouts of data and the gradient check are
shown in Figs. 7 and 8, respectively. Results of continuous and discrete
optimizations are shown in Fig. 9.

In this example all four known vertices are supplied and by setting

IUPD to zero, the TOLOPT program goes directly to the final optimization.



15.

To further specify the given vertices the parameter NVSUM is set to four and
" the vector NV set to [1 11 1]T to identify speéific vertices and sample
points. The MU-Matrix given is

w-[3 1]

An alternative and, for problems with several toleranced components and
many detected vertices, more practical way of specifying a set of vertices
is as follows.

1- supply in vector I3 a set of integer numbers corresponding to

the chosen vertices. (See below for a unique relationship between
a vertex and the integer number).
2- call subroutine BDDB using IMODE = 0 to convert each integer

number into -1 and +1 states corresponding to the vertex.

3- transfer the output IB1 from BDDB into the MU-matrix.

The following example will demonstrate the conversion of a chosen vertex to
the corresponding integer number. Each state -1 is substituted by 0(zero)

and the binary representation is converted to an integer number:

chosen vertex y = [1 -1 1 1]T => equiv. binary 1011 =>
integer number I3 = (1.20 + 0.21 + 1.22 + 1.23) +1=14.

In the case of the continuous problem it is seen that only two of the
four vertices are active at the solution. The parameter bounds have been
chosen such that these will not be active at the solution.

In the case of the discrete problem eight nodes have been searched to
identify the discrete solution. Generally, the number of nodes searched by

the program DISOP2 depends highly on the parameter ZERO,;the value of which

can be modified by the user using the default parameter NDS.



16.

Example 2: Design of an LC-lowpass filter [2-4]

This is the same problem as described in [3]. A circuit diagram is shown
in Fig. 10. Fig. 11 shows the results from the vertices selection procedure.
With the parameter IWORST set to 2 the figure shows data from vertices
selection scheme 2, where only those detected vertices associated with negatively
valued constraints are printed out. The print-out of the vector NV denotes
the number of vertices detected at each sample point. The columns contain-
ing -1 and +1 relate to specific detected vertices and are stored in the
MU matrix.

Generally the program will print out the MU-matrix in parts, each of
which contains a maximum of 25 columns.

Fig. 12 shows the results from the continuous and discrete optimizations.
In the case of the continuous problem it is seen that only 5 vertices
are active at the solution. Re-running the problem with these vertices only
will give the same solution. Furthermore, it may be noted that the conti-
nuous solution yields symmetrical results although symmetry is not assumed

in the formulation of the problem.

Example 3: 10/1 quarter-wave transformer [3]

This is the same problem as described in [3]. Fig. 13 shows results
from one of the updating procedures. Vertices selection scheme 1 has been
used. Fig. 14 shows the continuous solutions when relative tolerances have
been assumed. Fig. 15 shows results at certain nodes and which can be identi-
fied as discrete solutions, although the program does not recognize them as
such. This is probably due to the tolerables errors chosen and the termin-
ation criteria for optimization. The user should exercise discretion in

interpreting the results from a program as general as TOLOPT.



17.

VII. CONCLUSIONS

We have presented an efficient user-oriented program for worst-case
tolerance optimization, particularly suited to circuit design. It is
based on work carried out by Chen [4], Liu [2] and Bandler, Liu and Chen [3].
The user 1is well;advised to consult the appropriate references before
attempting to use the TOLOPT package.

The package has been under continuous development to make it sufficiently
user-oriented. This has been to some extent at the expense of the greater
efficiency which can be realized by a more specialized program. In particular,
the exploitation of symmetry [3] requires careful problem preparation and
possibly some changes to the program. Furthermore, running times of the
package can vary significantly according to the various termination and
error criteria used as data. This is particularly true in the generation of
the tree structure in a discrete optimization and the interpretation of the

solutions as being feasible, discrete, etc.

REFERENCES
[1] J.W. Bandler, "Optimization of design tolerances using nonlinear pro-

gramming", J. Optimization Theory and Applications, vol. 14, 1974,

pp. 99-114.

[2] P.C. Liu, "A theory of optimal worst-case design embodying centering,
tolerancing and tuning, with circuit applications", McMaster University,
Hamilton, Canada, Internal Report in Simulation, Optimization, and
Control, No. SOC-87, May 1975.

[3] J.W. Bandler, P.C. Liu and J.H.K. Chen, 'Worst case network tolerance

optimization', IEEE Trans. Microwave Theory Tech., vol. MIT-23, Aug.

1975, pp. 630-641.



18.

[4] J.W. Bandler and J.H.K. Chen, "DISOPT - a general program for continuous

and discrete nonlinear programming problems', Int. J. Systems Science,

vol. 6, 1975, pp. 665-680.

[5] J.H.K. Chen, "DISOPT- a general program for continuous and discrete non-
linear programming problems', McMaster University, Hamilton, Canada,
Internal Report in Simulation, Optimization and Control, No. SOC-29,
March 1974 (Revised June 1975).

[6] J.W. Bandler, B.L. Bardakjian and J.H.K. Chen, '"Design of recursive
digital filters with optimized word length coefficients', Computer

Aided Design, vol. 7, July 1975, pp. 151-156.

[7] R.J. Dakin, "A tree-search algorithm for mixed integer programming
problems', Computer J., vol. 8, 1966, pp. 250-255.

[8] R. Fletcher, '"FORTRAN subroutines for minimization by quasi-Newton
methodé", Atomic Energy Research Establishment, Harwell, Berkshire,
England, Report AERE-R7125, 1972.

[9] J.W. Bandler and C. Charalambous, 'Practical least pth optimization of

networks', IEEE Trans. Microwave Theory Tech., vol. MTT-20, Dec. 1972,

pp. 834-840.
[10] C. Charalambous and J.W. Bandler, '"New algorithms for network optimization',

IEEE Trans. Microwave Theory Tech., vol. MIT-21, Dec. 1973, pp. 815-818.

[11] J.W. Bandler and C. Charalambous, ''Nonlinear programming using minimax

techniques', J. Optimization Theory and Applications, vol. 13, June 1974,

pp. 607-619.

[12] C. Charalambous, "A unified review of optimization', IEEE Trans. Microwave

Theory Tech., vol. MIT-22, March 1974, pp. 289-300.
[13] W.Y. Chu, "Extrapblation in least pth approximation and nonlinear
programming', McMaster University, Hamilton, Canada, Internal Report in

Simulation, Optimization and Control, No. SOC-71, Dec. 1974.



19.

[14] J.W. Bandler and P.C. Liu, "Some implications of biquadratic functions

in the tolerance problem", IEEE Trans. Circuits and Systems, vol. CAS-22,

May 1975, pp. 385-390.
[15] B.J. Karafin, "The optimum assignment of component tolerances for

electrical networks", B.S.T.J., vol. 50, April 1971, pp. 1225-1242.



penuriuod aq 03

S | (NJ¥ESN) SOATIBATL
-op teraxed xtoyl pue suorjdungy

JUTBIISUOD 9Y3 SUTFSP 03 SUTINOIQNS

spunoq xamol pue Iaddn

(MUMLAN) SOATIBATISP
reraaed s3T pue osuodsax YIom3au oy3

‘o1dwexs I0J ‘93BINd[ED 03 AUTINOIqNS
suoT31edTyToadg
(L>uenbsxy ¢-8°9) siutod sydmes

peaxtnbox se Aueu sy

zamor xo/pue xaddn

S3UuTeIISUOD IBYI)

spunoq
x930wexed YIomiaN

siojowexed Jaomiau

JO suoTlouny
uo SuoT3edTIToads

S3IUTBIISUO)

SUTINOIGNS UOTIOOTSS SOITIISA dY3 3JO
STTES JO IoqUNU STqEMOT[E WNUWIXBW

A893®va3s

UOTID9ITP JUSTPBIH

LU0T30973S
S9OTIISA

soATIBATIOpP TeTided S3T pue uoTIdUNg
oAT399(qo0 8yl QUTIFSp 03 dUIINOIqNS

sxo03oey Sutr3ydtem

19430

S9OUBIDTO] 3N

-10sqe Io/pue dATIEI3X

3o redoxdidsy

150D

uorlouny
9AT393(q0

S9OUBRISTO
aInToOSqe 10 SATIeISI pue STEUTHOU
9[QqBTIIBA IO POXIF IO0F UOTIBITPU]

_ sonTeA Surlxeis

sxojourexed jo Ioqump

S92UBIdT03

9INTOSqe X0 SATIR[IY

POXTIJ I0 ITqBTIIBA

TBUTWON PUEB 92UBISIO]

szoyswexed udiseqg

mo:ausompsm\+maouoamumm

suot3dg

adAy

seanieaj

g9YINDIY SANILNOYENS ANV SYILAWVIVA ‘SNOILJO ‘STNIVAA 40 AYVIWAS

1 97149Vl



21.

‘passedL{q aq Aem pue T7Teuo13do aIe SIINIBAF ISIYL &

*po3sTI A[3TdTTdxe j0u 3xe Suor3do Y3 YITM POIBIDOSSE SIIISWEIR] 4

SOTQBIIBA 939IDSTP IO0F UOTIBITPU]
Sutuoritjlaed jJo xapip

92UBISTO3 ON[BA 933IOSTI(
SOTQEBTIBA 939IJSTP JO Ioquny
soz1s dojs uo sonyeA 939I9SI(

soz1s de3s uorjezrjuenb
WIOFTUNUOU IO WIOFTU()
uoil

-n1os 939xdstp ummrido
ordrarnm xo0 a18ursg

uoi3

-ouny 9AT3Id9(qo uo punoq
Iaddn [eT3TUT pOUTWISIAP
wex8oxd xo pariddns xosp

sopou Jo Ioqunu JTqIssTmIdad wnuWIXey L311RUOTS suorjezrurido

uoT3IdUNF 9ATIdA[qo0 uo punoq xoddn -usuwIp JO UOTIINPAY YoIeas-99131 uryeq 9319I0S1(
UOTJBUTWIS] IOF SaTITIuenb 3s9]
aAT3Id9(qo

y3d 3sea] uo punoq IS9MOT FO 93BWTIISH uorjeqanizad [edTISUNU poyaau

paMoTT® £q jurod Burjaeis UOTIBZTWIUTW

SUOTJEBNTBAS UOTIOUNJ JO IaqunN 38 Sur)oeyo juarTpely UOIMAN-TSEN) pauTBIISUODU(

wotqoxd
d 3o antep 9319IO0STpP puB SNONUIIUO) SH9Yd

90UBJISTO03 UOTJIBIOTA JUTBIJSUOD

wo1qoxd 93919s1IQ

yad 3seaq

£3111qTSBay UOTIN[OS

d jo anyep
uot3ouny
9AT399[q0 o 93ewrlse dr3stmridp

UOTJRUTWLIS) I0F SOTITIUENb 3s3]
d 3o (s)enyep
0 xojowesed Suryyoxjuo)

II °TqelL 99§
suyjtxodre
uotyeztutido yid 3sesa]

jutod-I0TI93Xq

~ XBWTUTW
snoqueeIBY)-ISTpuBg

Surmrex8oxd
IBOUTTUON

*[penut3uod] 1 FTAVL



TABLE II

THE OPTIONAL LEAST PTH ALGORITHMS t

22.

Algorithm Definition of Convergence Value(s) of Number of
e, feature P optimizations
1 e.+ f -.Ggi,1=1,2,..-,m Large 1
f, i = m+l
2 where Increment Increasing Implied by
a>0 of p the sequence
but superceded
3 Extrapolation Geometrically by the
increasing stopping
quantity
4 f -agi-gr,i=1,2,...,m Depend on
e.+ Updating of Finite the s?opping
i r quantity
£f-£8,i=ml er ‘
where
a>0
. 0
min[0,M" + y], r=1
T
£ « v
r-1
M +y, r>1
r indicates the optimization
‘number
Y is a small positive quantity
5

-85, 1=1,2,...,m Updating of
e, + r
f - tr, i=mel t

v

optimistic estimate of f, r = 1

r-1

t" "+ U , r>1

r is defined as in 4

tFor definitions of the parameters see [3].



TABLE III
PARAMETERS IN TOLOPT FOR
VERTICES SELECTION, OPTIMIZATION AND DEFAULT VALUES

23.

Verticeq
Select-
ion

Continuous and Discrete

Optimization

Default

Values

o v aH
mEZ2maOn -

= =0 O H
N= T OH
w3 YO -
H=HOOH
1= YO
aN=1"TOmH

N YO -
= o2

NO 2
w o2

E w4

o =2

oo Z

Vertices
Selection

Vertices selection only

<0’>2

User supplied MU-matrix
-final optimization

User supplied MU-matrix-
updating-optimization

Automated vertices
selection

One vertex selected at
nominal point

Number of vertices
selected

All vertices selected

Continuous and Discrete

Optimization

Dimensionality of discrete
problem reduced by 1

Gradients supplied in
user subroutines checked

Vertices about cont.sol.
checked in discr. problem

Feasibility checked-1 from
very beginning, 2 only in
discrete. problem

Finite set of discrete
values used

An integer set to I if

algorithm I is to be used
Dnly one discrete solution
is required

1,2

Default
Values Ysed

o U &
. v
NN

Maximum number of vertices
selections equals 5

Weighting factors in obj.
function equals 1

EST=0., EST1=0.

AO=10., AI=10., XMAL=1.E5

ZERO, ETA=1.E-4
INSOLN=0

pvalue used in updating
rocedure equals 10




24.

TABLE III

(Cont'd)

Minus sign in front of the ISCEME-indicator indicates a further
reduction based on magnitude considerations

The feasibility is checked according to these settings in the final
optimization (feasibility is always checked with respect to nominal
starting point)

Table I surveys the optimization methods. The - means that a suitable
number has to be set

EST A real number set to the estimated minimum value of the artificial
unconstrained objective function
EST1 A real number set to the initial estimated minimum value of the
actual objective function when using algorithm 5

AO A real number set to the initial value of o when using algorithms
1 to 4

AI Multiplication factor of o when using algorithms 1 to 4

XMAL Maximum allowable value of o when using algorithms 1 to 4

ZERO Set to 1% of the smallest/largest given specification if it is
positive/negative
ETA  Stopping test quantity when using algorithms 2, 4 or 5
INSOLN Set to 1 if an upper bound on the actual function value is
available
BSOLN Upper bound on the actual function value if INSOLN=1

To use other than default values supply alternatives
Note: ND1 will be used as maximum number



TABLE IV

OTHER PARAMETERS IN TOLOPT

25.

Parameters which [Parameters which | * Indicates that
have to be given [must be given proper value has
conditionally to be set
N NN I I MM(I NMII
S E DD P AAfW V A C To be set
P C I ARXXO S X O
M T I NN R UV N
A N 0] S M N
T D| T
Number of sample points * On entry
Number of extra contraints * On entry
given in USERCN
Number of anticipated columns * On entry
in matrix GPHI
Printing of input data 1 On entry
Output printing of optimi-
zation data. Printing for
every IPRINT iterations * On entry
Printing at each node 0 On entry
Printing of optimum conti- -1 On entry
nous and discrete solutions
only
Printing suppressed -2
Maximum permissible number * On entry
of function evaluations
per node
Maximum number of nodes to * On entry
be searched. MAXNOD = 0 if
only continuous sol. is required
1-Print all vertices and 1,2 If third vertices
corresp. constraint value selection scheme is
2-Print only vertices as- used
sociated with neg. constraints
Number of elements in user * If IUPD = 0 or
supplied MU-matrix upD =1
Maximum allowable number of * When second or third
vertices at each sample point vertices selection
Partitioni .. d scheme is used
ing is imposed on 1 If discrete optimi-

first discrete parameter first,

any other value will impose
partitioning en last discrete
parameter first

zation is performed




TOLOPT

Fig.

1

—= DISOP2 |———=4 COSTFN
———-h————-h .

CONSTR | USERCN

—= VERTST NETWRK

The overall structure of TOLOPT. The user is

responsible for NETWRK and USERCN.

26.



27.

( TOLOPT )

X
READ INPUT
DATA AND
DECIDE ON
DEFAULT
VALUES

!

CALL
XZTRAN
)
PRINT INPUT
DATA *
!
GRADIENT CHECK *

YES TupD = 0
PRINT WARNING
AND
1ES @ CALL EXIT
TSCEME==2
AND
FEASIBILITY NV (IF)>MAXVN
CHECKED
! YES ‘
| CALL - | PRINT WARNING |
VERTST

A
CALL EXIT fmE2 @ RETURN

[ CALL UPDATE |

YES

PDATE = 0

|

| cALL pIsop2 |

YES

I0P < MOP

:

*Optional feature
P

INITIALIZE
OPTIMIZATION
PARAMETERS

:

[ cALL p1sor2 | Fig. 2 Flow diagram of TOLOPT




28.

Fig. 3 The voltage divider example (Example 1)



- L)
n o
&N wd L)
L) . & L
- ™M M- ~ L
O bl =0 o [
L) [~ - I aZ L ~ L]
hd - Q O & - ] 'S
x o X -Z Z = [T -d
() -~ < [ = B el i » X
- n m NG O [ » b= o ®
L 4 N e b=t N N N aND
o~ - e e M ©a [ b "% 4
0N O O & ol J < o~
=X U - HO Z O e o Nl
a » a0 oZ . eied -4 MO
= o o 3p wx O en *» = N
o B NaJZ el (N et [\] Z3
O~ wel aen AT Z o [ w0
[ Kl - A O H O 0 Den
WX XMl X o ON in oo
W o & allwiw o<l < b » o L)
QAm WNemf ol) X = il ~N 3¢ o
L wNEND = o ) «O L) L4717
P QO el e L » ~Q. Y
S SR b T, PN . Ton [« TS § () ”m [(NICX.>S
b AT ANNZ o OO 'S * DA
D e aall o a0 ) e -y N o oI
Q.om e Gupn o P N NG ® [ N0,
ZE @OIN~~ND-Z S o - N e o~ AN =
i D el N Z L Z a @ - X o Z
HOO ~waAIX o & & O = o =» * D - IS o
NX wwwd-a00m O w M N N b= -0 Q.
W o 0 alv-HO X ol N N » XY o alilD
Aemen 80 = aZ o o & el L = NI o
P al) ANEMp & - OOU O 4 o ~ e e L
o o ot ED oy e QPN NIO L O ool N - N 0. i<t
sMNALUDOINN «a YO0 &« Z e LY o~ | MO =
0O aNLaAnOZZ0 XIF Ve - T =» L =]
Deoaadaw AT I ol ko O o) 1] * -~ Q. aagi
Ao oOvim~Olibem an XA 8 Z oluN " o~ X MO ~Nn
Pl Foli™ a=QedfN 8ON o2 o o« M D ~NND LY
DOl o Tl O i ol 4 Nwied o -~ e Na O oD e
OVUXINWAN aTXO nNNZ o) O wl « N W 2T Wl
o 2N QAUIHOW aaMmlld Z o » an )| ZD =0
e ZRNN o 80 ol BT XbeZN o © Lo N Erdi<t »
D ErADCT o (N O Z e onf(l a3 FOZ o " o e> ¥ ol
A~ obd A IO Frdpe ®MNNITOE «QD vl NN - e NZ [y 4.1+
ZNen nmLwQ N aQ TN M4 E O n OO A" ™ Me QO ean
A =m0 aO0D af o\ AN NN ODON) o~ o av W eallod
) D FOFNNQR-NZ MM ZoOOA | o0 N o™ H -l oved (DX
-t A S I D e L aOD St ¢ alliDed Nl & = o XX e
O OVUAG“EHU\Z.J A ZOZC N 0 aon B bd b= oo T adid
> FLi=NS ) e aDUPAODD <l o a0 NNw QA atbdm D0 »
bt LA AN A Z LW =D O D el 2 QN\\\IZ O~ Q.2ZX
(nwazvN W) JODU ab ol &0 Al AT 0 0 9 L I e (D
1] ¥ o~ OHXUJO!Z-(:ZZH LY 014\9-‘00-0.(0 NNI>MmA. .Jd ~)
o Z RZZOZNZI- IO ZHPF aD aO®™N SN WLH Yl wZHOoOQWT
QaOOLIOwONFIN XA AN aN e () WMot ) e (D

O TR e a =A00>00W WA _JD0NNN™i= o~ o a~O0) ™
<mdmwow<v)zQ.Q-Z¥HHZZZ<NNHLUO.Q.Q.ZGV¥MO—:4‘0—0—-43’: ”
KNZwZZMHZXZOO0 QZ »m
VW T auulux:Hzz<<<<<<<<<x<<<<<<<<Nozoox.1w::r~m.
OX XX T «XXI I e e s o e s e e e (e o e e o s e || A (Y <L <L (Y d (@ Jen]
b4 - <0 Odg (AL LI I AL LI LTILA OO =z
aQ 0o o 0o (@ Yom Yo Yom Tone Yom Yo Vom T Yoon Tm Yoia T oo Yo Yo T Yimn Y DV VI 0 S TR ) il
» *» » » % o + * % %

29.

Fig. 4 Main program for Example 1



AINY FUNCE{?NS
PT CAN BE USED

N_SUCH A

[ 40 L)

«0) RETURN

HO & NOO Ow e Hoe Yt
bl on O Z b X et Wi v Wi =<t
Dwmqﬁwx UM~ e HZ el HZ
OZ<A~wp ~ QATFULOIOani=Da~
QLU= X XKL Z = D bbb ] 4D ) N D

DE I NI N O o o e (1~ et o ()

DHOINIO >omuxmuwummuz

NOD> L L=l wmwwGMMwaMm
)]

(] [S1&16]S)

Fig. 5 Subroutine NETWRK for Example 1

W <€ 4 00 00
ZZ00) O v

b bl M 1) 16 00 00

o i P L vt s, oy oy
2ULIEN ™ e Z
QZ il o & ooy
KWV AN D
ME A v v o o ()
DI wOODOOWE
NI (DD DON

30.

Fig. 6 Subroutine USERCN for Example 1



31.

1 orduwexg IoJ ®IBp JO INOUTILd [ ‘314

JIOVINVA 313IYISIC 1SVT NO SINVIS ININOILIIL¥VA
NOILVZIWIIdO TVNI4 NI O03%033HD ALINIGISVIS
W31803d 313¥ISIC

NI ONNOS ¥3ddN IVILIINI Nv NIV180 OL NOILNI10S SNONNIINOD 1N08Y O3INI3IHI SIJILU3A

W37803d 313I¥0STIA NI Q3IWUO0JY3Id NOILVZIWILAO 3ITBVIVVA (T-N)

d 40 S3INTVA 31INIJ HLIM NOILVZIWILAO Hid 1SVY31 30 3IININD3S-03A0TdWI % WHITIX09V 4N

jo+300000009°

1
¢0-300000007°
c0+30000000T °
gg+30000000T7°
f£0+300000007°
°8

TR TRl TN

coon © oo
So00 © o0oe
ooon O S0oe
oo O Coeo
cooo O O0o®
ocooo © ooee
cone O oooe
uar B i e e e

®

[

R
Wl Wow

LI B B ]

eledeied D DLONOILD
-1 -1 ? Lod 4 1]

¢g+3000000sT °
20+300000087°

03SN SNOILdO 9NIMOIT04
=(F )Sdeececscecccseccccccncecccc ey ITH09TV dIN NI Q3ISN d 40 (S)INTVA
ZdNeeeesesasasetencssacasassssssessssessssscssssssesInTyYN d 40 WIAWAN
zyj3ecccecccecececccccg /n/2 WHITH09TY dIN NI 03SN 38 0L ALTINVAD 1S31
zIyececccececcececocccscescccoccceeanIyA YHATY NI ¥0L1IV4 ONIATIILINK
=IYHX eseeececosecesscoyldTy YILIHYUVA IHL 40 3INTVA 3IT8YMOTIV WNWIXVH
zQyeeecmeeecscccecccssccccs e o oylygdly YILINVAYD THL 40 3NTVA TVILINI
=1S3°°******°NOIL1ONNJ IAILO3r60 TVIDIJTI¥Y NO ONNOS H3IMOT 40 3LVWILS3

=(% )Sd3

=(g )Sd3

=(Z )Sd3

=(F )Sd3®°*®°°*°c°ceccceeqOHLIIN ¥YIHILIT4 NI 03SN 38 01 SITLITIINVND 1S3IL
" N .....'...'...'...'.......'.....Q.thH<Mhmzoo ZH wuzqmuJOk mommm
=(% )Zecccc e e SNONNTINOI *IYNIHWON

=(g uNoo-.u.-o.o-ow:o:Zszoo.szHzoz

=(2 )zZ°°°*°°°°°*°°°31383S10 3ONV¥3II0L

=(F )Z®*°°°°**°°°*°°31IYJSIA*IONVY3IT0L°*******SININOJIKOJ 03I7ddNS H3SN
c0+300000007° To+300000005° To+30000000¢° To+30000000T7° 2 )2

cg+300000080T° 10+300000005° T6+30000000£° 10+300000007° (T )2
S3ITEVINVA 3IHI ¥04 S3INTVA 3L13AISIC

-—en e ose o o> an e

viva 1NdNI



32.

[penutjuop] [ *3814

T0+300800T° T0+3000612° 10+43000T04%° \<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>