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| CHAPTER 1
INTRODUCTION

| Physicél sygtemslére designed to perfbrm‘pertain__'ﬁ
defined functions.. Td-detérmine whether a syStem.is_ )
péf%orming properly, its sfate must-bé known. In‘navigaffon,
‘the state consists of positidn“hnd Veiocity of the craft in
_question;\in an AC‘eleétric pdwer system,;the sfatg mayiﬁe |
", taken as voltages gnd phase angles gt nétwo?k nodes. In;ordeﬁ
“toideterminé,Fhe state, observationslhf'the system must be
"takeq. The observations are gene;allyfcont;minafe&‘with

noise caused by various independent sources in the observation

-,

-

process. - - - . l . C.

The problem of determining‘the?statq of ﬁ;system'fro@
noisy observations is called 6i£te£ing or state es Limation,
It is of:central impértance in engiﬁeering; since state-
estimates are required in the monitoring, and for the coftrol’
of\éystems. : . :. .

Studies were first made by Eoimogorov (19) and .Wiener-

(34) on the problem of optimum Linear 5L£téuing.. Later Kalman |
- (15), and Kalman and Budy (16):réformu1ated ‘the problem in the

state space, thus deriving the-Kaﬁmdn §iften, which has as the
.output the optiﬁnmlestimgtes of the state of the system. The

Kalman filter, amenable in computational aspects, is still

]

1 | -



adifficuitJioiimplemeE% in praCtice S requires ther O
o & pniont knowledge of the system noise statistics to computer |
’the Kalman ga&n matrix which in turn determines the
behaviour 6f the filter. / _ _ - ]
The problem ot identifying Ehe\iglman éain matrix
‘without a pnrom& knowledge of the system noise statistics,
otherwise known as adapttuc Aiaie cét&matton, is the mein
concern of the treatise. N

>;)//' o : The thesis is divided into two main parts. Chapter 2

is mainly tutorial in nature whereas the main results of

,

the thesis appear 'in Chapters 3 and 4,
In Chapter 2, the work of Kolmogorov (19), Wiener (34), .
Kalman (15), and Kalman and Bucy (16) are summarized.

o Ghapter 3 gives a brigi description of the Carew—
Belanger algorithm for the identification of the Kalman gain
matrix in white observation noise. Also discussed are the _
Robbins.and Monro‘type of stochastic approximation algorithms
and the‘assumptions which are.required for convergence in the

mean-squane. Since the algorithm of Carew and Bélanger emoloys

'the"canne£at£on technique to compute the Kalman gain, a large
amount of date'must be processed to ohtain~resu1ts which are
accurate. A method is presented which reduces the data
requirement: The prOposed scheme uses a small quantity of
observation data to give an initiel estimate of the‘Kalmanf
gain, after which a Robbins and Monro type of stochastic

epproximation algorithm 1s used to track and improve the
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estimetefof the Kalman gain'matrix. Simulation results for

N

an inertial naviéetion system are given. ‘The results indicate

that the proposed ctobed -Loop scheme does improve the open—

Zoop method of Carew and Bélanger. Theoretical analySis ﬂw;//

-
given in Appendix A confirms that the stochastic approximation

R

algorithm used will converge to the optimum Kalman gain matrix

in the mean-square sense
The problem of adaptive state estimation in'

coLouaed'Obéenuazlon noise‘is dealt with in Chepter 4, The 43

-

classical results on state estimation in coloured observation‘,.

noise were developed by’Brysonand Henrikson (4) which are
briefly reviewed. The problem of adaptive estimation in
coloured noise is still an untouched problem}”recently'Loh
and Hauser: 020) have attempted to solve it using the Carew-

Bélanger algorithm However, they assumed that the nOLAE

Aransition matrix of the coloured observation process is

Known. ln‘Chapter 4, a time series model called the mixed-

auloregressive moving auemage model is derived for the systent

with coloured observation noise. This time series model
enables the use of a recent result of Wilson (35) to estimate
the noise transition matrix - Following Bryson and Henrikson

the noise transition matrix is used to transform the

_observation.process contaminated with coloured noise into

one:wit hifYe noise. Also, the optimality,of the'innovetions
process is Shown to be invarient under both'white and

coloured observatiow noise., A simulation'forﬂthe éystem of

‘ | - .
Chapter 3 with coloured observation noise is performed. It

P



invelves first the estimation of the‘neise transition.matrix
"and transforming the observaxion process,'and then usrng the
proposed scheme of Chapter 3 to identify and. track the
Kalman gain matrix The , accuracy of the estimation indicates
the appropriateness of this. novel appfpach to adaptive state
| estimation with coloured observation noise.
Cogclusions and suggestions for future ipvestigation”-
in the problem of‘eeaptife Spate estimation are discuésed
'in Chapter 5. The algqgithm of Wilson for:multivariafe'time
series estima%ionjf;outlined in Appendix . -B. A complete
. program 1isting‘of the sﬁbrbutineS'psed in implementing the '
Carew-Bélanger algorithm can be found in Appendix C. |

3 The numerical results wére obtained using a CDC 6400.
computer. Parts of this work have been published and appear

in references (32 33)

<)
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_CHAPTER 2
OBTIMUM .LINEAR FILTERING

!.

* 2.1 Introduction

‘A problem which arises in a. wide variety of
i

engineering disciplines is the so -—called filtering problem

QQ%\The-filtering probleln was first formdlated in the now famous

Py

studi of Kolmogorov (19) in U.S.S.R. and Wiener (34)'in

U.S.A, W%r ing independently, the two almost simultaneously

solved the lindaxr ‘filtering problem in_which'the criterion'
of optimality_requires that the estimate of‘the siénal be Ee

Linean tianéﬁqnﬁatéon of the observaﬁibn that|minimizes the

mean-square estimation error. 'Withinjthe ffemework of the

Kolmogoiov-Wiener’theory, all random precesees {random

functions of time f) are characterized ey co¥relation functionms.
The optimum linear filter whose outﬁut is the‘desired estimate,

when the input 1§ thecbservation, is specified in>terms,of the

.known correlation functions by an integral equatioq ealled.the

Wienen- Hopﬁ equation. - ' S |
| In 1961 Kalman and Bucy (16) presented a new approach
to the linear filtering problem. The novelty of their
formulation was the representation of all random processes by
differential (difference) or state equations rather.than

.correlatipn functions. By restricting their. attention to
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GauAArManhov_pnocebéeA in particular,ithey derived a set
of differential (difference) equations for the estimate.

‘These equatiOnsfcan be used to construct & linear proeessor

that is identibal to the one specified by the Wiener-Hopf
equation. There 13 a- definite practical advantage, however,
To a set of differential (difference) equations for the‘

as ™

estimate, instead of an integral equation for the processor

' To be more explicit, it 4s much easier to solve a §et of

differenfial (difference) eqqatiohs by analog (digital)
techniques than to solve an integral equation and thensperform

a convgolution.

2.2 ZXolmogorov-Wiener Filter

The optimum’linear filtering and prediction problem,
first solved by Kolmogorov (19) and Wiener (34) may be | .

stated as follows Given the scelar random process
K - wWt) = x(t) + n(t) (2.1)

where x(t) 1s the useful sighel imbedded in the noise n(t),

'and both areApssumed to be random procesSes, determine a

filter such that its output £(t) will be the best approximation
: . 2

to x(t) in,éhe mean~square sense. That is, minimize E [e (t)],

with J |

\ o
e(t) = x(t) - &(t), - (2.2)



=5

and E [ -] is the expectation operator.
A hUsing vafigtional arguments, Wiener showed that the -
impulse response h(t) of the optimum linear filter satisfies

the following Wiener-Hopf integral equation,

ny( ) - _]'Ry(t - cj‘h(c) do = O_f ‘(2?3)

where ny is the crosscorrelaticon funection between x(t)‘and
j(t), andey is the autocorrelation of y(t), defined ‘S-

h

.

Elx(t) yet - ) (2.4a)

tie=

. Ry (1)

1t >

RY(I) , _(2-4b)

Efy(t) y(t -\1)]
The determination of the optimum filter transfef
function requires the knowledge of the c relgtion_fuBCtions

(or the corresponding spectral densities) as well as performing

‘spectralrfactorization (2). Clearly the formulation is”

cumbersome to implement with the présqnt day cogputer technidues.

2.3 Kalman Filter

_Kalman.(lS) and_Kalﬁan and Bucy (16) reformulated the
 optimum filtering problem to remove some of the difficulties
of the Kolmogorov-Wiener filter. The novelty of the Kalman

filter consisted of céﬁbining two welilknown ideaé:

(i) the state transition method of describing”

MR LA TR S
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~ dynamical systems (36),- and
(1ii) 1iﬁe£r filyé;ing regﬁrded as orthogona1
projection in Hilbert space (24).
~ Consider the diécnetgizime—iﬁuania‘i sysiem shown
in Figufe 2.1. The ma$bagh-ganenating process is mOdéled by
the vector Gauss-Markov eqUatioﬁ
Xioq = FX, + Gu, ., (2.5)
. - . © A ' .
- and the observation is modeled by the lineagid}gebrgic
relationship
' N
yg = Hxy + v, > (2:46)
with : ‘ X = the n dimensional state vector;
y = them dimensional.observation .
vector, -
-u = the p dimensional message -

generating noise vector, .

v = the m dimeﬁsionallobservation-
noise wvector.

The message—éenerating and obsefvation nq}se are
assumed to be zero%mean, iﬁdepéndent white gaussian nqise

(WGN) with covariance matrices Q and R respectively,; in qther

words .

Eﬁﬁyjﬂ =0, Eful 5o E [vd =0,
E [uiuj']_= Qéij , E Evivj' = RG{S , (2.7)

¥

T ) ' , ) : 3
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figure 2.1

en

'

Block diag:am of sgstem repregsented in state .space. form,

;4:3
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where Gij 1s the: Kronecker delta function, and t

' denotes matrix transpose

It-is required.to obtain the best estima

10

he prime

te of the

.

'state, xi, given the fixed triple {F G H} and the observation

| set Yi = {yk, 0<k<i}

At & first glance, it might Seem that the state

~estimation problem is quite different from the f

problem mentioned earlier However, ‘as’ pointed

-

iltering

out by Kalman,

any signal with a rational spectral density can be obtained

. by applying WGN to a linear system. Thus the Op

can also be_regérded as the signal 'to be_obtaine

Yy, and the specification of the system dynamics

1 S~ .
ent to specifying the autocogrelation function o
As shown by Kalman and Bucy (186), “the op

-

estimate xi+1[i‘ of the state vector. x +1, given

-

timum estimate
d by filtering
is equival-

f the.sié;al.
timal

the subspace |

Yy spanned by the random varisbles {yk, 0<k< i} may be

&
interpreted geometrically as the projection of X

Algebraically, the estimates are given by
_ . N Y
Rie1]1 Proj {x

A}

i+1|yi

. ' ®
G 1|1 Lt Kisi

v g -

1+1 onto Vi.

(2.8)

where g5 the innovations process (14); is defined as

- . A

€y =¥y -~ B30 0

(2.9)



andlii,

following set of matrix equations

e

i i

Kalman and Bucy (16) have also shown that if the

‘system (2;E)/Lnd (2. 6) satisfies the following conditions,'

c- 2.1
*c-2.2
C- 2.3
C - 2.4

uniformly compﬂateﬂy obbenuabﬂe ;

[~
_uniformly compﬂeiety controllable ;

coa1<) Q) [ < a2, ea <] IRI | <ow

- JIF] 2 as

Ki'é. FPiHiWi“l , ) k(g,
W é"_'__.E [?i'fi_;
= Hgig'+ﬁ-. , ﬁz.
E[(ki;; = Xy |1y - %i+1|i)';
: FP;F':— Fp H'W, " i caG" (2.

the Kalman gain matrix, is found recursively by the
1&)

.11)

12)

. Then the Kalman filter is identical to the Kolmqgorov-Wiener:

filter and that
(1)

!

f stable,

(11)

starting at a symmetﬁic,

Py converges to P as 1 + =,

non-negative matrix

the Kalman filter is uniformly asympfbtically

~

¥

every'solutioh bf the variance equation (2.i2)
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'would.require prior knowledge of the'méssage-generating and -

13
Therefore, the steady-state value of the Kzlman
~ filter parameters are given by
k% 1img, = Fom w7l (2.13)
op 1 o0 i 77 ’ .
A
¥ S lim ¥, = HPH' + R , (2.14)
1ae )
1 - . .
s A _ oy -
P = 1im P, = F¥PF' - FPE' W * HPF' + GQG'. (2.15)
Ry i,' A ' o - (2

-

The filter described by the matrix equatiéns (2.8),
~

(2.9), &nd (2.13) - (2.15) is termed a stationary Kalman

filter.(from ﬁere on, the fsrm-Kalman filter will imply the
stationary Kalman ‘filter). To implement,ths Kaihan filter .
observation noise covariance matrices Q and R respectively
In practice, such extensive a pn&on& information is seldom
available, with the'result that the dptimum.Kalman gain
matrik Kop csnsst be calculated; On the othe; hand, if
1qcorrect assumptiqns are made about these/gatricss, the

resulting estimates of:the states are suboptimum. A more

.straightforward method to solve'the optimum filtering problem

" is to determine the Kalman gain matrix directly by using only

the observations in some adaptive schemes instead of equations

(2.13) - (2.15). In the next chapter, the problem of Kalman

Fy

filtering without-prior knowledge of noise statistics is dealt
with. ' -



Ay

‘filter to -adopt the Kalman gain matrix,

CHAPTER 3

ADAPTIVE KALMAN' FILTERING

‘3.1 Introduction _
The problem‘g% optimum filtering, formulated by

Kalman and Bucy (16), assumes complete a priori knowledge’

of the message-generating and observation noise covariance

ma%rices. These statistics in most practical gituations are

‘ either unknown or known only approximately, “in such cases’,

the system performance is at best suboptimum (11) The

purpose of an adaptive filter is to reduce or bound the

‘estimation errors by modifying or adapting the Kalman filter

to the real data.

A number of approaches (12, 30) have been presented
with varyiné degrees of success for the estimation of the
unknown covarlance matrices,.a good summary can be found in

thé paper by Mehra (22). The use of the'innovations sequence

‘{ei} in~the estimation of the unknomn covariances as a

criterion of optimality was introduced by Mehra (21). Carew
and Belanger (6), using the same argument as Mehra, proposed
an algorithm for estimating,the Kalman gain matrix directly.

Other authors (10, 29, 315 have suggested the use of stochastic

'approximation techniques based on properties of the optimal

: ) 14
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. In this chapter. the CarewTBelanger algorithm and
stochastic approximation algorithé are briefly examined
Also a scheme is proposed to identify and track the Kalman
'gain matrix: combining the advantageous properties of the

above algorithms

3.2 TheiCarew—Bélaager Algorithm (6)

.The algorithm of Careu and Bélanger is‘based‘oa the
correlation technique (22) .- Starting witﬁ an arbitrary.gaiu_'
matrix K 52 which may be calculated from equations (2. 13)-—

. CZ 15) by using some assumed values of Q and R, the sub-

&
optimum filter is given by
XKiFaga T FXM o PRy - Ry Ii_1) ’ (3.1)

Where‘xi*liélndenotes the suboptimum estimates of the state Xy
given yill' The steady-state error covariance of the

suboptimum filter, related to the‘optimum,’is defined by

"

A - ]
Px = E &xili 17 % ¥ ) (% 1]1-1+ X3 *1i-1"1 -
' | (3.2)
Using equations (2.6), (2.8) and (3.1), it can be easily

shown tHat _ %

P*' = (F-gH). PX(F-gkH)' + (Ks-kop)'VGKsﬁfop)"' (3.3)

where Kpp is_theﬁoptimum-Kaiman gain.

L
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Following Mehra (21), the autocbrrelation functions"

for the suboptimum innovations sequence in the steady-state

are given by. - L ' - °
| Ao - | |
¢y = Elejreyxy] : | £

B(F-KH)I™ [(FE P~ (Ko W] 3 # 0
HP*H' + W . : J =0

: (3.4)
where ei*; the'suboptimuﬁ innovations sequence, defined by

-

A L . : :
coeg* =y - Hxi*li—l , | .(3-5)
" is the innovations of the suboptimum filter. For the >
‘optimum fiiteIﬁKs = Kop and P* = 0 ; hence from (3.4),
Cj = 0 for 3 # 0.
Define, _ -
. A Q. ) i ) :

B=[HIFE |... [(F)?" 1 E] (3.6)

i

which may be recognized as the nrxn system obsenvability matrix.
From (3.4) and (3.6), define A as

A _ ) -

= *H' +°
A B(FP*H' +'K_ W)

e —
, C1 + HKSCO‘ |
R R f‘Hﬁscl + HFK_C, . (3.7
: -1
. %+H&%4+)”+Hﬁ.%%J
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‘ Since the system 1s completely observabiq, matrix B
. is of full rank therefore its pseudoinverse B+ defined as_
S _;/ . N | : 5
' B! g _(B'B)‘le', S  (3.8)

<
exists -and the matrix eqﬁation (3.7) may be selved to
determine (FP*H' + KOPW) from the q;perimentally'estimated

autocorrelation functions Cy (j=0, 1,...n). The solution is

.given by -
: ‘ ) f‘\? .
_(Fe*E' + E_W)=BTA . S (8.9)
S~ op N | ;
; From equations (3.3), (3:5) and (3.9), these
simultaneous matrix equatione for W,'Kop and}P*:are establiehed‘
as below: g .-
Ly WeEtCp - HPH' T, ’ ' o . (3.10a)
Ko, = BTA - may v, ) (3.10b)
- _ - “ o
* = - _K t, - K -
P (F KsH) P*(? SH) * (Ks K ) w( s "op) . (8.10c)
Rewritting (3.10a) - (3.10c¢) in recursive form ]
o 'I (
W (Xk) = C, - HXH' , .. L (3.11a)
- _ + » * N
Kop(K) = (B'A - kaH') W (xk) ; | ~ (3.11b)
B & L .
41 ° (F-K H)Yk(F-K H)' + (K -K, (Xk))W(Xk) (KS-Kop(Xk) ),

(3.11¢)
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where Xke Rnxn is positive semidefinite Carew and Bélangef.
: have proved that the algorithm represented by (3 llas -
(3.11c) will converge nni uely to Kop by shqwing that these
equations represent a contraction’mspping. A summary of. the
scheme of Carew and Belanger is ginen by the foliowing_steps:
(1) For ah arbitraty.gain matrix K_, based on
| ‘ assumed"values'of‘Q and R, generate the

subgptimum innovations sequence {eI}, and hence

estimate the autocorrelation functions Cj.from

n-j

~ —.1 . . _ oo ) .
o L € = § .l e+3 €F . 3=0,1,...,m (3.12)

i=1

P
Iy
- .

where N is the’ size of the innovations sequence.

The estimatesgiven by (3. 12) ‘are biased for

finite N, but asfmptotically they are unbiased

and consistent ;H

(11) Using K, and cJ (3 =0,...n), estimates of P* W,

| and Kop are obtained iteratively from equations
(3.11a) - (3.11lc) with Xo_e v = X:X positive
semidefinite, X g P*+P}.

The iterative scheme (3.11la) - (3.1lc) converges

uniquely to the optimum Kalman gain K0p if the autocorfelationh.

fuﬁétions, J (3 = .,n1) are Known accurately. However,
due to the finite size of the innovations sequence, and other
e;perimental errors, the_wccuracy with which K canﬂbe

| op
determined is limited.

A



19

3.3 VStochastic Approximation

3.3.1. Stochastic Approximation A;gorithms:
Stochastic approximation methods may be considered
as recursive estimation methods, updated by an appropriately
welghted, arbitrarily chosen error corrective term with the‘
‘only requirement that, in the 1limit, it converges to the
“true paraméter sought; Applications of.stochgstic appfoxihation
slgorithms have been proposed in.adaptive and loarning_systemsu
(23), svstems identification (26), adaptive commuﬁicatioh‘(273.
Historicaily, stochastic approximation was first |
treated bleobbins and Monro (25) and kiefer'and'Wolfowitz
C17)5 who‘ﬁere concerned with solution to.two specific
Jproblems;. fioding the root of a regression function, and
finding the value that minimizes a'reg;ession function given
only pertinent random observations It was Dvoretzky (8) who.
generalized stochastic approx1mation to any sort gf iterative
\solution algOritpm,'which is convergent, when direct obser- .
vations_of a'regfession function can be adoptéd s*gcessfully.
Excellent surveys of'stochastic approximation can be found
in papers by Sakrison (27) and Saridis CZB).
. In ganerai, stochastic approximation algoiithms of
the Robbins and Monro type are used in’ adaptive filtering.

They .are of the form

Kb =K+ vy [f(yi,Ki) -m 3, (3.12)
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iterations. _ R

7 )
where'{Yi} is a sequence of suitably chosen smoothiﬁg valuéé,

and‘{f(yi,K'i) - mo}-is an error correction sequence generated

at every time instant i by measuring the.deviﬁtion from an

aﬁpropriafe goal. The iterative scheme §3.12) approaches the

optimal parameter value, K

op’ where E [ f(yi,Ko

D

. ’ j] = o, in .
the mean-square sense provided the.following assumptions are

satisfied (see Saridis (28) ):

A -3.1 3 a,B , ~®<a<B<0  , such that

- 2 : ‘ 2
a Hr;-Kop{[ < <K—K0p,E[f(yi,Ki)]- m> <8 | IK—_Kop[_|
where <-,.> denotes the matrix inner product operator:

-

A - 3.2 The Ti's are positive monotone decreasing;

and

2
Y; <o

Y = :
1 i

48
s g

i 1

\

Heuristicelly, A - 3.1 requires that the regression'
function f(yqu) - mo‘be bounded on all sides of a true
solution by a‘:ectangular set in the Solutibn space such'
that it'iSKnot possible to overshoot the solutiog, Kop’
which cannot be corrected by a Yi satiéfying A-3.2.
Assumption A - 3.2 provides, smoothing effect on the regres-

sioq function, unlimiteéd correction effort, and mutual

cancellation of individual errors for a large number of

20
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. 3,3.2 Adaptive Kalman Filterink by Stochastic Approximation
The successful application of stochastic approx-

imation to search for the optimum gain matrix, K requires

op’
some suitable method for testing if the value presently being
used is optimum. Hampton and Schultz (10) have proposed a¢

Robbins and Monro type algorithm whibh'uSes the orthogonal |

condition

L

E.[{xi -‘iili-l} yj'].= 0 ; ¥ j<i  63.13)ﬁ.
o )

for this test. Since the actual x, is not known,’ equation

(3.13) can oﬁly be épproxiéated in a rather involved manner.

More recently, Sinha and Muhkerjee. (31) havéﬂalso'ﬁroposéd

a Robbins and Monfo typeialgori@hm which makes use of t?g

: propertylthdt the innovat%dns'procesa is\white'(14)ﬂ- éhey

used, for the test of optimality

~

E[eiej‘J =0 , i+#3 .  {3.14)
. o : ~

- Although their idea is gonceg;ﬂallx more direbt and works
‘qulte well for the scalar-ca5£3 it is unsuitahlegfor thé
multivariaté case sin¢e thd er;or correcti;n'term is
restrictéd fo a_sﬁbspace of the_solgtion éet‘in most instances.
An algorithm which is more suitable would bg‘that proposed ’
by Scharf and Alspach (29), who utilized the o:thogonﬁlity_

4

Betﬁéen the innovations process and the estimated state,
£



L ]
L

EExi|i__1 e;'7=0" o -, (3.15)

_Note that the product xl[i 1€ i is contained in the same

space as that of the Kalman gain, making it applicable for

Amultivariate problems. 'The stochastic approximation algorithm

[
F

thus can be written =as - fo
ﬁ e ' ¢
. *1]1-1%4 :
Kie1 Ki +evy e ”x || : (3.186)
| 1|1 154

where Yi is choosen so as te satisfy‘asghmption A—S.Z;

Scharft and Alspaen (29) have shown,-in-the scalar case of
(3. 16) that the regression fumction, Ai]i 1.1‘, satisfies
assumption A—B 1, thereby showing that (3 16) converges in
the mean-square to K __. The prooi,of mean-square convergence

op
of (3.16) in the multivariate case is shown in Appendix A.

L

3.4 Combined Carew-Bélanger and Stochastic Approximation

Alggrithm‘

.. The algorithms discussed in the preVious two sections

-

have their advantages and disadvantages listed in Table 3.1.
It would appear logical to combine the two methods in such a

manner as to retain their relative advantages, while_disposing

-

with their bas{g drawbacks.
‘ - : '



ADVANTAGES I _ DISADVANTAGES

‘CAREW-BELANGER

T

(1) fast .
convergence

<7
(1i)minimum a prioni
“information,

accurate results.

STQCHASTIC CAREW-BELANGER . . - STOCHASTIC
APPROXIMATION ' APPROXIMATION
"""""""""""""""""""""""""""""" | .
(1) minimum (1) opened-lcop | (i)_.yery slow
computation . gcheme ] . convergence
(i1) closed-loop (ii)complex  ‘ (;i)-réquired "good"
adaptivity . computation starting values
- /
(i1ii)large computer-
, gtorage .
\5 " required for ’

TABLE 3.1

Advantages and disadvantages of- the Carew—éélanger‘

aﬂd stochastic approximation-algorithms

it

&

g2
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‘Basicélly tpe Ggrew-Béianger algorithm.is an'oéen—
1oop eétimatof. Iplgzthefs a.sampiz/jf\the observafions

: énd.procESsesfit. Should the ﬁoi statistic be I'slowly-
varying*,.howeve:, then the'estimated gain‘willgin‘all .
1ikelihood be suboptimal and the estimates of the state might

even diverge after some time.
: A

More appropriﬁte.would'ﬁe,a'controller which ménitors

. the observations and the estimates, and be able to determihe

whether the filter is optimum or not. If the filter is - A‘T;Ega _

: suboptimum{ the saild coptroller shoﬁld be able to adjust the
filter again to bring the filter back fowérds the optimum
state. ., Such arcbntrolier can be implemented by us;ng the
stochaétic approximati&n algorithm (3.16) discussed in
Secti&n 3.3.7 |

| By the above arguments, it is proposed to implement

. it}
the Carew-Belanger algorithm to arrive at a one-shot estimate

of the Kalman gain, folloﬁéd by using stochastic épproximétion
to track any change in the gain matrix which may bring

further improvement in the estimates. As fﬁe éystem noise

is slowly varying, these changes will usualiy be smali,
~ therefore a slight improvément wduld résult-ag compared with
the open-loop estimation of the gain matrix using only thel
method of Carew and Bélanger. o

The‘steps of the proposed schéme can be stated as

follows:
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)
[

. (i) Using the algorithm of Carew and Bélanger
~ described in section 3.2 and a finite

observation sample, calculate K, the estimate

- “ - . .
= (i) Usin%TK = Ky, track the Kalman gain with -
o equation (3.15)Q

of Kop;

a : -

‘3.5 Simulation Results T : . : T

To test the proposed scheme, it was applied to the
' same system fromr inertial navigation as was used by Mehra
(21)- as well as Carew and'Bélanger_(S). _For this case, the -

° ~

~ system matrices are

0.75 -1.74 ~0.3 | 0.0 -0.15 . il -
0.09- 0.31  -0,0015 0.0 ~0.008 L
F = [*0.0 0.0 0‘.95'- 0.0 _ 0.0 ,
| 0.0 0.0 0.0 0.55 rﬁrp
0.0 0.0 0.0 0.0 quc’f'fiaos
0.0 . 0.0 0.0
, 0.0 - 0.0 0.0
G = 24.64 0.0 0.0 : '
| 0.0 - 0.83 0.0
0.0 0.0 1.83




1.00 0.0 0.0 0.0 1.0
»{ 6.0 10 0.0 1.0 - 0.0

3

'TEQ noise sequence {u } and {v } were generated on

\

the computer, and-their actual covariances, obtained from

2000 samples are - C E . . ‘

Q = diag (0.941, 1.050, 0.980),
R = diag 1. 040, 1.024)
The optimdl Kalman gain matrix for this system found .
by, solving (2.13) -.(2. 15), 4s. L . '

-

. — .-

\ 1.563 . 0.557 '
v | o0.092 0.387
Kp = ~2.718 ) -1.416 . . (3.17)
v 0.0 0.137
. 0.029 ——  -0.'702
e =

The -first 1000 values of {Yi} were used with the Carew:
”Bélangqr.algorithm'to‘estimate the Kalman gain, and deter-

mined to be

[ 1430 1.070 ]
o 0.130  0.306
K = -2.767 2,083 | . (3.18)
B ~0.034 0.197 a
° | 0.139 S— -0.79%, -



The next 1000 values.o;'{yi}lﬁere-fil red by
o tﬁreé methods';. | o . B
(1)‘ using the optimum gain matrix (3.17),
(2) usipg'the estimatéd:ga}h m#trix‘(3:285 found
| by -the Carew~§élanger algorithm, o
(3) stafting witﬁ the,Carew—Bélangér gain matrix,
 angd uéing the stochastic algorithm (3.16), with
1 “y

~

The performance af the three filters, are sﬁm@arized
in Table 3.2; The trace of the error covariance matrix P
‘was plotted for each.of“thqthree methods, aga;ﬁst iterations‘f
iﬁ Figure 311. 21t was peréeived that initially,.theSé valﬁes.
were very close, but moved apart considerably'as'mére.time

elaéped. . ‘ : . - &

1 o ‘
- TABLE 3.2

COMPARISON OF FILTER PERFORMANCE (WHITE NOISE)

trace P.

 Method P,y Prp’ Paz-  Pas  Pss
‘1) - . 75.893 1.012  1251.941 0.897 11.725 1341.468
2) ©  81.850 1.260 1253.537 1.031.17.185 1354.863
3) \go.z%z 1.174 1252.451 1.022 15.600 1350.479
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.

3.6 Discussion

In-théexamole coosideted, the performance ot the
Carew-Bélanger algorithm for estimating the éalman gain
-matrix is adequete Due to computer storage llmitations and
the possibility of non—stationarity of the noise in the
system, howéver, a closed:-loop scheme employing stcchastic
approximation is used. This scheme, which rbquires mlnimal‘
‘storage of past data and computation once it is initiated
" is very suitable for on-line tracking of the Kalman gain.

As can be seen from Figure 3. 1, the use of stochastic
; approximation method in conjunction with that of Carew and
.Bélanger gives a slight imorovement‘in'the:estimétes. From
Teble 3.2, the improvement is approximately 48%-mith respect.
to the optimum gain after 1000 iterations of stochastic |
agproximation. Furthermore, this improvement becomes more
marked ih time even 1f the noise statistics are ststionary.

If the noise statistics should deviate slowly, the closed-loop
nsture of the proposed scheme would adjust to these changes.
Thus, the proposed scheme is wvery suitable for on-line

[

adaptive Kalman filtering.

o

“° -

T
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CHAPTER 4
ADAPTIVE STATE ESTIMATION IN COLOURED

i

OBSERVATION NOISE

4.1 Introduction

In the previous two chapters, discussion of‘stat;
) estimntion‘tia Kalman filtering was restricted to systemS‘
eith white.noise. More general is the problem of state
estimation in coloured noise. By coloured noise, it.isl .
implied that the autocorrelation function of the noise
is nonzero for nonzero time lags. ° ‘ o ; ‘
| Coloured input or messagergeneniting noise nctually
gf“f presents no problem since it can be simply taken into account
<<i N by regarding it as the output of a 1inear system with white
noise as input and augmenting the state_vector accordingly.

H%ence,tthe nesic problem of interest is coloured observation
.Cﬁpise. | .

/o The problem of state eétimation in diScrete—time with
| ~ .coloured observation noise is essentially the same as for the

white noise case - to‘find a filter which will minimize the

state estimation error in the menn—SQuare sense. Thg problem

© has been studied by Cox (7) in 1963 and later by several
others. However, at the present time, perhaps the best known
.results on such problems"are those of Bryson-and.Henriksonj(4)§

_— : , . k!
Motivated by the solution of the corresponding continuous time

i
L .
-



p;oblem.(s),foyson_and-Henriksoh'trahsforﬁed fhe qbserﬁation
process into one with white noise dieturbances-and theﬁ-éolving'
- for a filter Qf the Kgiman type for estimating the state.k

<\ Though their solution is elegant Bryson and Henrikson s
results require the prior knowledge of the statlstics~and -l
behaviour of the system ﬁoise; In practical situations, such- -

‘-'a priond knbwledge if often not at hand. Hence, some tyd% .
of learning filter must be used to adaptively estimate the,
. stgtes without ‘requiring such a priori informatlon

In this chapter, a brief look at Bryson and Henrikson's

results ie‘taken. Also, fheinnovations process of theJOptimum
filter "for coloured observation n01se is shoWn to be white,

- thus optimality is gpown\to be,invariant for both Fhe yhite
aﬁd oqloured obéervafion noise.— An approaéh”isipreﬁented in
‘which ihé staﬁe space model is rewritten as anﬂéut@yegressive
moving average (ARMA)_model, ellowing for preIimindry dnﬁleis
of a class of coloured noise.to be made. _Tﬁe COmbiqed results

\\“§h6§e are used in conjunction with fhe’methods of Chapter 3 to

identify and track the optimum Kalman  gain matrix.

- Ped

4.2 -Some Results of Brysoo and Henrikson (4)
- N

7 Consider the sysﬁeﬁ'és described bygthe state e;uations
(2.5) and (2.6). It is assumed that the message-generating
diéturbanbe {ui} is a white gaussiaﬁ noise”sequehce witﬁ
statistics given by (2.%). The obgéryation.noiSe {v,} is 2

coloured noise which will be assﬁmed to be bf the Gauss-Markov

]
o

4
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type, modeled by the following eqqationﬁ

-vi+1"‘,c.: i Lo (4.1)

The noise transitlon matrix A, is assumed to be diagonal;’

and {w } is a white gaussian noise sequence of dimension m

independent of {ui}. The statistics of {wi} are 4
E [wi] _’o, E[wiwj T =R 834 - (4.2)

. o . e A -
. - The problem is to determiné the best estimate (in. the

mean-square’sense) of the state vector, xi,‘from the record

of the noisy input data sequence V = '{yk, 0 xk <i 1.

Following the track of the correspOnding continuous

time problem (5), Bryson and Henrikson began by employing

meaAunemeni-dAééqnenQLng procedure on the observation prgcess.

Thus they define

W

e -

» vy Vi1 Ayi (4. 3a
= HX +VS o, " (4.3b)
’where
H, A ge - oam (4.4)
. A
vy = HGuy .+ Bw, . | (4.5)
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.Clear1y°EV§} is a ﬁhite_gaussian.proéesS{ thu§ the transfgrmed
observation process'{yg} now has a white disturbance noise
iﬁstea@ of a sequentially correlated one. Looking closely

at (4.5) will show that this white disturbance is now
correlated with the message-generatiﬁg noisé {ui}, agﬁ is

given by

E[uiv:c;' = QG'H'G.’LJ . ) ] (4'6)

L

Hence, modifying the originsl Kalman equations (2.8), (2.9)
and (2.13) - (2.15), a Kalman type filter can be applied to
the transformed system. The equitions éoverning such a

filter are

’ I ™~
N ~ A ~ c _c
X131 = Ty Y Ko, €y (4.7)
C é 2 |
€y = y{ - Hc, q .(4.8)
where the Kalman gain, 505 , is given by '. .
g S 2 (FP H.' + GQG'H') W1 (; 9)
op ce R - T o

As can be seen, to solve for the Kalman gain requires the .
knowledge of Pc and Wc which are the covariance matrices of

the state estimatipon error and innovations process respectively.

B

“n
Bl

. , i ) /\1
They can be found by solving simultaneously the following

i

gﬁ : _ | N 7 o . a1

L
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matrix equations:

A - - ‘ ) .
Pc = ‘E[xi+1 xi+1] . .o
. . . : - 1 V .
= T ! typt 1 . 1
FP_F (FPH. + GQG'H') W_(FPH_' + GRG'H')'*+ GQG' ,
' (4.10)
- g c _c, '
Wc = E Csi Ei ] | 3
) = ' t Eo. tt - . . L ‘
- HCPCHC + HGQG H' + R, : . (4,l11
where : - ' . 5 . N
~ A ~
Xy xi - Xy (4.12)

is the state estimation error. | | .
Als$ of interest is the behaviour of the auto-
correlation functions of the innovations process {E:} With‘
res?ect to the filter géin K.
Using (4.3b), (4.8), and (4.12), the innovations
process can be reexpressed in the following form:
c é. | e

oy Cc
ey 7 Hexy f Yy

- (4.13)
Thus, the autocorrelation functions of {Ei} are given by

A ' o
C, = E[efei;j'] : -

J .
o =Ry E e+ BELS D G

-
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The expectation values of_(4t14)'can be-easily shown to be

E_[ii'ii_jrj = @-m)lr,, (4.15a)
.and" E EQi-v:lj] = (F f KHC)J‘lbeG{H'- K(HGQG'H' + R)] :

(4.15b) 

Therefore combining (4.11), (4.14), (4.15a) and (4.15bX the
autocorrelation functigns of the innovations éxpressed in
terms of the filter gain are

-~

R ., = Jj-1 n - -1 1
Cy = H, (F~KH,) [FPCHC + GQG'H' - KW 1, J# 0.

Substituting the value of K - from (4.9) for K in (4.16), it

is obvioﬁs that

c, = o . %3 #.0. (4.17)

Thsreforeh as in the caselconéidered in Chapter 3, the optimﬁm
Kalman gain matrix for the c5toured noise‘cgse.ﬁill result in
a Kalman filter whiph produces a\whité innovations procesé.
Thus, thé'optimality‘of the innovations for the coloured
‘ ébservation néise system, is the same as that of the white
noise sysfem. ‘ |

The solution pf-the Kalman gain in co@pured noise

requlres thée values Q, R amd A. 1In the next section, a'mqgel
. . e

1s devéioped for estimating A, the noisé t#ansition matrix.

’

(4.16)_.
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4.3 .Represeﬂtation'of‘Sgstéms-Q& ARMA Models

| The geﬁefal'system éé'fepresented by equations (2.5),
(2.6)'and (4.1) can‘be rewritfen'as a mixed autoregféssiﬁe
moving average (ARMA) model (3)

Equations (2.5) and (4. 1) -are both Gauss- Markov type -

Y

- equations, and can be expressed in terms of the backward¢$
shift operator 21 as below

-1 -1, ’ )
X = (I, - F87 )7 T6uy , o (4.18)

Vi = (I - 487 fwi E (4.19)

where { is an nxn identity matrix.

Substituting the above equations into (2.6), the

observation process becomes

= - Hx

Vi+1 141 * Vie1

D m - -
H(In -_Fa

1 ) L ag=1y-1
)"tGu, + (I - AZTT)

Wy .(4.20)

- %

'Premu¥tiplying both sides of the equation by (I_ - AZ™1)’

results in

| \ TR
. _1 v —1 — -
(I - A27)yy,q = (I, -a2™h) B (1, - 7Y 1Gui + W, (4:2D)

«
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Fd

=

O

The annoying fact about (4.21) is the matrix inverse -

(I, - anlj—l_ This can be removed by employing Fadeeva's

-

scheme (9), .
: =1 -n ;
ABE T Ll AR ‘ .
Lap-Fht - 0, (g.22) -
: 1+ M8 7+ A3
- 9
whgre Ay I, .
Ay = - trace F,
M =FA 1+ 3 40, k=2,...,n
A, = = 1 .
k " trace FAk . K= 2,...,n

Thus from (4.21)and (4.22), the system model‘ié

_1 - . __1 . _1 ' -n . ~;

(I, - A8™") &, = (I_-AZ"") H (Alg_ bt AETT) Guy
+ (1 + A8t PO g%y g (4.23)

1 g .- e n i 3 - .

. 1 _ _ |

where AP C U ¥ ST Wb IR (4.24)
- ' s
and tﬂk, k=1,...,n} ¢ gEX .

. . i
The right hand side of (4.23) m&y‘be recognized as
the sum of two moving average terms. Box and Jenkins (3)
havé shown that tﬁe sum can be expressed as a single moving
average term in theAfolloﬁing‘manner | | ) .

- < -

-
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P -1, -1 S ~n ! a1 . ten
(I = A270) B (A7 +oo o A BT Guy #(1 + 34870 404 870w
. -1 -Qc . .
(Ip ~ 887" ~...- 0 & eiey o (4.25)
where {ek, k=1,...,q9} ¢ R,

* From (4.23) and (4.25), the system, rewritten in.

. N - - ﬁ
terms of the backward shift operator becomes
oz lye, . = e s , (a4 ée)
1+1 1+1 7 o :
with o ' '
S N N T (4.27)
@}j"% - m . LA
_ A . _ : .
oz™ly = (1 -9zt .. .- gz, (4.28)

m 1 . q

which may be recognized as an ARMA mbdellof order (1, Q)
where q < n is to be defermiﬂed;

‘ Thelestimation of the ARMA paraméte}'matrides,
ﬁ 3 {4, ek, k=1,...,q} is accomplished by a non-iinear‘
least—squarés estimation technique pfoposed récently'by
Wilson {(35) (seé appendix B for outline of algorithm). The
value- 0f 4 is the minimum number of moving average terms to
. obtain a residual sequence {ai} which is white, 1 e, |

1

E Eaigj'] = 'Caijﬂ . o | ' _ ' ; -
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4, 4 Pr0posed Scheme

.In a recent paper 20), Loh and Hauser have
a.considered the use of the Carew-Belanger algorithm for message-
generating and observation noise which are correlated They

.have shown that the-convergence prope;ty of the Carew and
Bélanger ‘algorithm is‘not affected by such correlation. A

L)System vith coloured nSise wWas simulatédrand the.estimation

"of the Kalman gpin was made. Although the results were very

good, an a padlord knowledge oflthe noise tranéition matrix

was assumed.rl |

. ‘ ;: The ﬁroposéé scheme relaxes the above restricéibn.
The approach therefofe, is'to use the derived ARMA model of
the previéus sectidn anq a finite observation'sampie iyi} to
éstimate the noise transition matrix A Qy the algorithm of

"~ Wilsan (395). From the-est}mgted-vélue of the.matrik A, the
transformation (4.3a) can be performed on the oSservation
procéss.- Since the optimality of the innovations process is
invariant, the scheme of Carew and Bélapger can be .applied
“to the transformed system (2.5) and (4. 3b) to obtain an
initial estimate of the Kalman gain K p " A stochastic
approximation algorithm is1hen used, as proposed in Chapter .
3, for tracking the filter gain matrix in a closed loop |

.tashion, v

4.5 Sigplation Results

To. test the proposed scheme, it was applied‘to the

same system uéed in Section 3.5. The white nolse sequence
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. < - : _ _
Auy} and  {w;} were generated on the computer. Their .

covariances, calculated from 2000 samples are

-€0.999 ;}3'986 Y ,1.'.013)_\\.1
. . . ‘ R : . - . .
(0.245 , 0.040 ) .- _ . o

'

1

diag Q°

. diag R

The coloured obsereation noise {Vi } was calculated

from‘{wi} using (4.1) and a noise'transitio;\matrix'given by
diag A = (0.5, 0.2)

The .optimum Kalman gain derived from-equations (4.97) -
(4.11) is S . oo |

0.963  1.294
!0.002 . 0.476
kS = | -2.943 -2.102 .o (4-29)
-0.002  0.490 ' "

0.035 -1.279

;. ’ :
From the first 1000 samples of {yi},.250 were used
to obtain an estimate of Ax., A\::lue OfA(/= 3 was found
.to be the minimum moving average der/to result in a

white residual sequence. Using the estimated A, the 1000

iAcknowledgement to M A. Lauzon is extended ‘here for the use
of his program to implement Wilson' s -algorithm.
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samples of {y,} were transformed by (4.3a) to give 999
values for°{y5 . Applying the scheme of Carew and Bélanger

to {Yi} an initial estimate of the gain matrix is found

to be _ ' ' - A

0.897  1.360
0.053  0.553 v

RO
1l

-2.909  -3.620 r (4.30)
~0.095  0.157.
0.146 -1.058

7 The remaining 1000 samples of the transformed
observations {Yi} were then filtered by three methods as
described in Sec&ion 3.5.
The trace of the error covariance matrix P is
. plotted for each of the three methods against the number of
i iterations, and is shown in Figure 4.1. It was found that
the behaviour of the error covariance matrix in coloured
;noise aas essentially the same as the white noise case in
Chapterrs Tbatis better resuits were obtained when the
stochastic approximation algorithm was used to track the

filter gain, The final values for the three methods (see

Section 3:5)}are given below in Table 4.1,

’

-



TRACE OF EARDR COVARLANCE

13B.30%

Thea2ts -

rITesze - :

73130 -

713047 -

TI2.T3E o

TREL 4G4 ]

FTOG. 178

£33.001

.ty :

—————  QOptima! Galb - -

; : Comtised CAREW-BELANGER B ‘Stocncsic Aosroaimericn

. === CAREW-BELANGER ' ’
"\ . ) ~ - )
] \f‘“\ ~ ™~ *

- g L] -
180000 12 O00 310,000 R £ 2] 262.30C A0C0.000

NIMBER OF ITERATIONS

-

.

Variation of the trace of -error covariance matrix

for different methods ( colgufed noise 5(

.

Z¥



43

fov.

TABLE 4.1

COMPARISON OF FILTER PERFORMANCE (COLOURED NOISE) .

I+

Method Peig 2922 Poqg P°44. Pogs. traCe_Paﬂff/
. (1) . 10.10 0.54  681.14 0.55° 9.65 702,02

2) i4.04 0.89  695.52 1.51 = 15.10 727.44

(3) 11.82 1.26  697.74 1.80  11.12  723.78
4.6 Discussions. N _ >

The’method'proposedhin Chapter 3 of cémbining
stochasticiapproximation ﬁith the algbrithm'of Carew and
Bélanger has been extended to the case of coloured observation
" noise. The scﬁeme¢proposed in this chapter relax: e
conditions fof adaptive state éstimation in coloured
obsgrvqtioﬁ nois; (cf.(20)). The scheme makes use of two
results derived in the Chapter: -
| (1) The development of the ARMA model for the

system which alidWS3the algorithm of Wilson
to be used to estimate the noise transition
mﬁtri; A:

(2)-'The iﬁﬁariance of the optimum innovagioﬁs process
which alloﬁs the;use of the methods described
in Chaptér 3 cto be used,’ that is thé_Carew-
Béianger'algorithm and the sgbchastic

- aﬁprdximation,&lgorithm. _ 0



The resylts shown .in Table 4.1 indicate that the

scheme used to estimate the noise transition matrix A is

valid because filter 2 (the Carew-Bélangér gain using the
estimated A), is different frém filter 1 (the optimum gain
using the true value of A) by only 3.6%(‘;

As can be seen, when the stochastic approximation

'algofithm (3.16) is used to track the filter gain (filter.S),

+J

an 1mprovemeﬁt of 17% was achieved over that of filter 2.

‘Once again, the scheme of cbé%ed—loob tracking is ‘shown to

be more advaﬂfageous without mﬁch burden on the computation

and data storage in the. computer.

g
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CHAPTER 5 _ .
- ' CONCLUSIONS .

The .problem of adaptive st&te‘eeﬁimatien which

involves the identification of the Kalman gain matrix

without @ prioni information on the noise statistics have
been considered in thie'thesisL
For systems with white observation noise, two methods

for solving the adaptive state estimation problem have been

examined: \ o o %
(1) The open- 1opp method of Carew and Belanger,
| Which is a contraction—mapping algorithm based
5' . " on a. correlation technique
(2) The closed-loop me'%od of the Robbins and Monro.
stochastic approximation algorithms, which are
basiCaliy the stochastic counterpart of the
steepest.deSCeed aigorithms.
A scheme which combiﬁgs tﬁe'two algofithms'has been proposed -
in Chapter 3. It essentially used the fasf convergence
(8 iterations in approximately 13 seconds of - computer

execution time) of the Carew—Belanger algorithm and & finite

observation sample to identify a Kalman gain within some

epsilon neighbourhood of the optimum.< Once inside this

neighbourhoodﬂ 1t{ﬁ§ed the closed-loop method of_the stoehastic

a5 -



: the stochastic approx1mation algorithm (3

- noise problem has been investigated in Chapter 4 This
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"~

approximation algorithm (3.18) to track and improve the

Kalman gain.\ This tracking, (especially useful for noise

iwhich are slow time—varying) has been shown dn Chapter 3

to give an—improvement of approximately 48% over the filter

with no traoking ' This improvement occuring after 1000

which the ten parameters of the gain matr}x were updated

leads'to,the confirmation that with tracking, the optimum

-filter will be realized as more time elapses. This state-

"ment has been proved theoretically in Appe;:ix.A, where

-

) has heen shown

to oonverge in the mean square sense to K op”

* The'-adaptive dtate estimation in coloured observation

-:einvestigation has led to two results:

-
T

(1)' The optimum innovations process is invariant for

both theawhite and coloured.observat n noise
} *\,} system. = S ' , T R

(2) Derivation ofna mixed autoregressive moving T

L)

Result 1 has allowed the methods of Chapter 3 tob

average model epresent the system ("

1incorporated into tne ‘solution 0f the coloured noise problem.

Result 2 has allowed preliminary analysis.of the noise
transition matrix using the result of Wilson. A novel
approach has been presented-for tne problem of adaptive state

. _ N _ .
estimation” in coloured noise. It 'involved the estimation of
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the noise transition matrix and the transformation of the
‘observation process; after/ghich,the scheme of Chapter 3’

was applied. This formﬂi/tion as- far as the author is’
aware of, is a first attempt ‘of its kind. Numerical results

obtalned have shown that the prescribed approach gives

approximately a 3. 6% increase in the trace of the error
rcovariance matrix"for the open—loop-estimation scheme of
Carew and Belanger. AlSo, the closed;lbop approach sas_
shown to be, once again, a better‘method-since it improved
'.the open-loop filter by approximately 17% without:much effort _
in computation or. storage oi data ' These'results confirm the
appropriateness of the proposed general approach to solve
‘the adaptive state estimation problem for coloured observatipn_
noise.’ | . ‘

Throughout fhis thesis, stochastic appronimation.has
" been used for the closed-loop tracking of the filter. The
{main‘difficultfi.which has yet‘to be overcome.is-the slow
rate of convergence. It takes approximately 1000 iterations
per perameter to arrirejZE a relatively good estimate (31).
Acceleration techniques for stochastic approximation algorithms
have been studied by Kesten (18) It is left r future
workers in this area to investigate techniques ¥hich will
accelerateiconvergence of stochastic approximation as applied
to adaptive state estimation Thus the overall efficiency
. of the closed-loop controlle‘ may be enhanced
The difference in the performance of tracking

-

-between the white and coloured observation noise systems is

C E—
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quite large - This is due to the manner in which -the noise
transition matrix has been estimated. Further analysis =

Ehe Kalman gain and noise

[~

might reveal a relationship between
trgnsitidn matrices which is explicit enough to allow a
stochastic approximation algorithm to be used to track the

coupie in a closed-loop mannef.

ﬁ*Iﬁfge portion of the computation time of Wilson's
algorithm is used to éilculate derivatives of the:condiyional
réﬁiduals.' Tﬁe number of'derivat%ves is dependent on thé '
l'Paramefer aid observation size of the time series. It is

hﬁped fhat'therpresent (and ‘the oﬁly one to date) ?lgorithm
" for vector ARMA model estimation can be improved. with . ¢

further research.
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APPENDIX A
A - .
STOCHASTIC APPROXIMATION - PROOF OF CONVERGENCE

_From‘equations {(2.6), (2.8) and gg:Q}, the filter c;nr
L " be described by the following equation
. ‘ 1-1

| 1 3 .
) Ri41] 1 F Ry ot 350 FRey 4. (A.1)

Define,

4
/
rj' ‘ ; . ‘
. ) . A R . o
5\‘\ N mi(k) = . ;[.xi+1|iai+1]
T ' :

-

i-1
1 J
= FE E£0|o~ €j,9+ I FUKE[e

=0 1-5%iead -

(A.2)
From Mehra'(21)f the autocorrelation functions 6f the
innovations process are
_' C T IR _
Eleyyejyd = #lF-m] LrpE' - KW , 0,1, ...
) ' (A.3)

- 8ince the filter is requiréd to 'be stable for any reasonable

choipe of K, then'the admissib1% valqgs are Kek ={Ki:p(F-KH)<1},
where p(.) denotes the spectral‘:&dfﬁé of a matrix. Assuming
that ﬁolo-_= X = 0, then the limiting value Qf (A.2),5using

LN
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(A.3) is )
; m(K) = 1lim mi(K)'= ¢[_fpa' - Kw]'; (A.4)
1+ . T
where > 2 ¢ Plru[r-x]d. ' . (A.5)
| o |

v
-

‘For F asymptotically stable and Kek, the matrix sum (A.5)
forms a -finite positive definite convergent sum (29).

[

: . ' o
Premultiplying (A.4) by Ké = a:(K —-Kop)', then

: f{é n(K) = Ké'-@-[FpH' - xw] - g

=" . Ké'¢JKE W. A o (A.8)

: o : ' -
let max and min be the maximum and minimum positivg eigen
values of ¢ respectively, thus

o f

2 .. | .
= MR W KD mys =0 | K[][CW. (A7)

Since ¢ is dependent on X = Kop +_K€,‘then Qmax and ®min &T€

dependent on Ke' This dependence can be removed by defining

s )
. = Sup ¢ s .. (A.8a)
max Kex. Max : '
I <4, C o :
= o _
0min Int min : (Afsb)'

Kexk -
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. Thereio}e (A.7) can be restated as

. | L | |
ol K 112 < k. mk) < 81K 1%, (A.9)
. ) .\ & . : . &
where a4 = f‘6gax W8 = ,'Qéin W, ' .
and | - w < g <B < 0. >

Thus, - asshmption.A—3.1 is satisfied for all
admissible gain Ken if the regression term is xili 1 i
Assunption A-3.2 can be satisfied by choosing y;™= 1.

i+i_

Therefore, the stochastic approXimation algorithm

~

. - t
| . 1 *111~154
Kifl , Ki_+ 1 - ||§ £'l|2 (A.10)
: - i|1-1 v '
converges to Kop in tha mean-square sense.
v
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i
" APPENDIX B
_WILSON'S ALGORITHM (35)
' Considerxthe mixed autoregressive moving average o
(ARMA) model for a st&ionary zero-mean multiyariﬁte time
~ seriles (xi}'of the form - ~ |
Xy T ¥Xgaq et Exyp v Ry - 0gay g - 0y,

| | (B.1)

where the'{ai} are independent d identically -distributed
“.

vector random variablewithkfgxzimean and a finite covariance
matrix D. BotH x, and a, are of dimension m..

The -unknown parameters Are_the mxm matrices

S (k %1, 2,...,p), 9 (k-=1, 2,...,q) and D. 'The_.paramet-

efs, excluding D, are collectively referred to by the
parameter vector 8 = {‘%s,k’ evs,k} = {Bl,...,Bk}.

Define, - L | .

argmiy b =1 o =P
¢(? ) Im f ¢18 e ¢pz , (B.2)
azly 1 —ogl o -ez9, O (8.3)
m 1= e q ' : )
where Iniis an mxm fdentity matrix and Z"l‘is a complex :
. S e~

variable.



Then the algorithm for estimating 8 and D can be
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-

' summarized by the following steps

(a)

(b)

(a)

(e)

Assume some starting values for the constant

jparameter A0, and Ben, where Q is a parameter

" space’ determined by the condition

1, (B.4§

det ¢ (2°1) # 0 for |3

det 6 (871) # 0 for |81 >y . (B.5)
o N
1 S~ oa

Set B=D(8) =3 I a, a,°

ST oM A
Set Q = D1 R
: Lo . .4 N o2ag
Form a matrix A with elements A , = & Eg—gﬁ)

» ~ 1
- aai .
Q(aB ¥} the vector g with elements

N Bai ' A

gL = I (==)"Q 3 and the scaling quantities
k * N,k g,

Construct the scaled matrix 5 with elemente

5 = A (a,a ) and the scaled vector
h with elements hk =.gk/uk.

Y
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o ‘3‘-

Set the diagonal elements B to the value of

1 + A, and solve the'eQuations B = h, and

~ evaluate a new set of parameters

B = B (/o)

Set B = D (8), and test whether the trace. (B&)<m,
(i) If this conditions is satisfied, reduce the
' constraint parameter A by a predetermined

factor v, return to step .
(11) If the condition is not satisfled, increase
the constraint paramete} A by v, and

return to step f.'
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APPENDIX C
/PROGRAM LISTING AND USAGE
L ¢ ’

“The’ subroutines ‘used to- ‘simulate the system with

white observation noise described in Section 3.5 and the

implementation of the Carew-Belanger algorithm are listed .

in this Appendix : e

The calling steps of the subroutine are as follows:

(1)

(@)

(3)

Using. SUBROUTINE SYSTEM a set of observation
samples {yi} are generated for a certain.

triple {F G,H} and, sequence {ui} and{v

From SUBROUTINE DRIC , a suboptimum Kalman

gain tvariabie SRS transposed) gain can be
calculated'usipg some assumed values for

Q aqd'Rf | 2
&he suboptimum innovation sequence can be -

generated using the generated observation,

 suboptimum gain,and SUBROUTINE INNOV:

- )

(5)

The various values for the autocorrelation
functlons of the suboptimum innovations

sequence are the outputs of SUBROUTINE COVINN:

Using the calculated autocorrelation functions

and the system matrices, the values of matrix A

! ¢

and the observability matrix B are obtained from
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SUBROUTINE MATXA and SUBROUTINE OBSERY
respectively. s |

(6) . The/ SUBROUTINE CARBEL will process ‘the |
previous calculated values of A; B,

Co.= Ef[ef e, and the suboptimum
gain to give an egtfmate'qf the optimum

Kalman gain.

TN



f\f‘\"\f\!‘\ﬂ-"\n:‘\ﬂf\ﬂﬂ-"\ﬂ'\."\‘\’\ﬂﬁ'\‘\’\-"\ﬂﬂﬂﬂ"\

e 3

SUQQHUTTNF SYSTrM txOY!FvG|HlU1VtN!N51NRtNS|NQlV]IV?|M1|V¢|V5;VﬁI

THIS SUBROUT!NE wWitL LALCULATF THE OBSERVATIONS OF SYSTEM BELOH

X111 = FXUII+GULDY
YEIY = HXOF1SVED)

WHERF X111 1S THF STATES OF THE SYSTEM
Y1) 1S THF NoSFRVATINNS !

Uutry AND VIET) IS5 THE PROCESS AND OASERVATION NOTSE. rRFSP.

= N X NO
= MR X NS
a N X N

= MR X.N
= M X NO
w NP X N§
= NR X NS
NA = NS+

.
<COIM<x

NS = NUMBER nF NASFRVATION SAMPLES

WORRING VECTORS. ARE~
Vi=v1 N X 1

V& AND VR NT X 1

ve 15 np‘%_1

NOTE THE IRTTIAL VALUE OF ,X MUST_RE DEFINED.

EXTERNAL SUBROUTINFS REQUIRED~
MPRD +MADD

-

\

NIMENS AN X(NcNO’- YINRvQSl- FINyNYs HINRINY Y GINsNPIs UCNPsNS)s V
TINRANST e VIINLs V2UMEs VAIN)Y VALIHR) s VBINRY VAINP)

DN & K2l ,N§
DO 1 [sleN
VIt eX T4k}

_CONTINUE

DO ? I=1.NP
VAIT1aULTIR)

" CANT INUF

NA 1 lwlsNR .
Vallievi] Kl o
CONTINUE

CALL MPRD {FiVI+aV2sNsNs1)
CALL -MPRD [GaVE&IVIININP T}
CALL MADD (V2+V34V2aNe 1)
DO &4 IwlyN

X{Tyk+ydayatly

CONTINUF

CALL MPAD [HeVIIVENRINIT)
CALL MADD lVHrV#.V5|NR|l!
DO % I=1:NR

YiTsk I evS(])

RETURN

END -
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AAMNANRAAANAANAAANANRNAAN

.

SUARDUT INE DRIC !F‘G.Huﬂ QPN HRINPAFPS LIMITIS1152+51454

CALL MPRED 152745R]1 4504 «NAWNNRY : 38

ey

1555 1

11.5n1.5q7.591.5a¢.son.ﬂnﬁs597‘$nv-SP?-VI-V71 2
3

THIS SURROUTINE SOLVES FOR P OF THE DISCRFTIF RICATTI UATTON= 4

5

D.FPF(JU-FDWPHITHRHINVERSFIHPF(THGO ‘ 4

; : ) 7

WHERF [T) INDICATFS TRANSPOSF OF MATRIX, a
FoeonXW ) S * L 9

G = N X NO ‘ ‘ . . - N 1

H o= NR X N 5 1

R = NR X NR -~ ' : 12

O = NP ¥ NP N . T \\\ 13
P« NXN L ' - ) 1a

: . ' o B 18
WORKING MATRICES RENUIRED ARF- - 16

. A ST ST . . .. . . . A %

S1. TN ST ARP N X N 18

SRT TO SR ARF N X NR ' 19

SR4 IS5 NP X NP - . 20

SRS TO SAT ARF NR X N . 21

SP1 1S NP X N .“w | . : : 22

Se2 1S N X NP , . . ¥ 23

. L . ) 24
WARK TNG veéToRS ARE-. -~ _ . 28

: 268

VY AND V? ARF 1 X N ' 27

. o . . , a 'gg

' rxerNAL SUFROUTINES REQUIRED ARE- ' : 'oag
MTRH.MDRD-HSUB-DLYR-MADD ulnv.nonu. 3

! 32
NIMFNSTON FINsNIs GINGNP)s HINRyNT . RINRSNRD OUNPWNPY PLN'N) ER)
,?anvsrbn slfN.N:- SPINANTY SATINGNYs SLININD s SSINWNIR SEINsNT, 57 ;g_

’

NIMFNSTON SP1INPsNTy SP2INsNBYs V]lN)- V2N " 1%
DIMENSION SR1{N+NR)» snafﬂ NR}s SqunnNR|. %RA(NR.NR!. sng{NR-Na. 37
I5REINRWNI Y SRT(N y 7 : 38
SUMieg, - v, 39
no 1 1= ~ - 40
DO 1 Ja . 41
SR5(1 N 42
no 2 Ke L 43
CALL MTRN (H SRIsNR N} ‘ 44
. CALL MPRD {501 +58%+S1 N NRN) . ) 8%
CALL MTAN (F4523NaNT - ) ‘ 46
“ CALL MS5UR "{52357,51 )NaN) . , 47
CALL "MYRN {SR%s5R14NP N Y . : 48
CALL MPEND (H09,0 4577 M4 NRINR) . - . &9
CALL YPRD (SPR2+50%4 574N NRsN) v . R 50
CALL MPRN (64045P2 gN NP sNR) . 51
LALL MYAN {GaSPYaNWND) : 82
. CALL MPpRD ISF?.SDI|5A|N0NPQN! B ~~ X
CALL MADD (53454153 4NWN) , . : 54
CALL MTRN {51+563NsN} - . L)}
CA,LL DLYA lSﬂ.S"cP-N.FP"n'-A.S!l ’ /t . .}
CALL MPRD JHy05PTyuRNoN) . 57

G
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AT R

e T T NaNa ¥aYaXae TaXa!

DO L Je2sN

CALL. MADD (SRARSR6 +NDWNR)
CALL MINV (SR&WNDWTESTV14V2) . )
IF (TEST.FO.0.} GO TH '
CALL MPRD {SR7+52+5RENRINsN)
CALL MPRD (SR4+SRE+SRE+NRsNRNI
CCALL NNPM [P o SUMI 4N N)
RFLTA=ARS {SUMT=SUM2 )

IF ANDELTALLT.FPS) GO TO &
SUM1=SLIM2 -

CONTINUF

Gn Tn 4

PRINT §

RETURN

12/0
END o . . L '

- kel
SUBﬂanINF DLYA [Asn DN+ EPSeTIT2)

THIS SUNROUTINF SOLVFS.THF NT1SCRFTE LYAPUNOV FQUATION,
’ . P = APA[TI+D

WHFRE (T) INDICATES TRANSPOSE
ALPyAND 0 ARF'N X R MATRICES

T1 TO T2 ARE N X N WORKING MATRICES

EXTFRNAL SURRDUTINES REAUIRED- N

, , - MPROD, S
NIMERSION ACNINIS 2{NsN}s PINWN) 3
DIMENSTON TLINSN1s T2{NWN)

!

M =] ! s B
DN ] lulam 7 .
CISER RET 10 S SR ' . ’ o . -
Dy ? UwleN

0n 2 IslsN ° . ‘ - T
TriJel)mAl T )

[ L]} '

DO 3 I=14H4 -

NO 3. JulyN L —a

Plletantle :

SUMIwD,

CALL “PRD (AN T2¢N Mt

CALL MDPPD [T24T1a0sNsNoNY

DN % Tal.N ’

DO % JulaN

CIRENIET IR YIRS 10 SN G .

CALL NORM (PpSUM2 WNaNI

ERROReANS (SUMI=SUNY )

SUM | mStiu)

KeK+]

IF (FRONRGF.FPS) G TD &

IF (KuFR41) A0 TN &

RETURN

FORMAT [///7/+10X+#Nn SOLUTION FOR THE DISCAFTE RICATTI EQUATION®s/
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61
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66
67
68
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70
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12.
73
74
75-
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1

EN[
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SUBQNUTINE INNOV ‘?DHIFlﬁlt“'!”!ﬂA"PA'NINRINS'NOOVl!V?IV’!VA)

THIS SUARCUTINE WILL 'CALCULATE THE [NNOVATION SCQUFNCE FROM
THFE SAMPLED ORSERVATINNS,.

GAMMALT) = Y{Ti~HXHITI/I-1])
TXHITH1/1) . FXHl!f!-ll*GAIN GAMMATL T . R ’

WHERF RS 1S THF NUMPER hF SaunLED POINTS
XM IS THE FSTIMATE OF THF STATES X

Y - NR X NS
H'= NR X X
F=NXN
GAIN = N"X MR
GAMMA = NR X NS H

- L]

s -
XH = N X NO - .
NO = NS5+] 2 . : ) ,

. . " ' /
WORKING VECTORS ARE- - . N . Ther

V1 AND V2 ARE N X 1
V3 AND Va ARE NR X1

EXTERNAL SUBROUTINFS REQU1
. . M n.usua.unno.,

DIMFNSION YINRaNS1+ MHINRsN3» FINaND» GA!N!N.NRI. AAMMA (NRINS) XH{,

NeNGIs VIINTS VPIRYs VI{NR] W VAINRl " -

DN 1 T=14N

VT IwXHI{T ) . R

CONTINUE : . : ) -

DO 4 xel1WsNS .

NN 2 jelWNR ) o . T

VAT I=Y(Tax) . <

CANTINUF - ‘ '
A .

CALL MPRD (HaVlsVasNRaMa 1)

CALL MSUR (V3IaVaVarNR) ) |

D03 I=1sNR

GAMMAL 14X 1=VAILT) -

CONTINUE. ~ .* -

CALL MPRN (FaVIsV2ZsNsNslY . .
CALL ™PPND AGQATH2VASVY s MeNRS 1) . o
CALL MAND IV2,V14VIeNaTY . ¢

DO 4 I=n1WM .

XH{TK+1)mVIL]Y : .

RETURN . : s

END 5 : . - ' -

«

SUARNUT INF HATXA (CoHoF GAINy A.N NN-NRvﬂNQvﬁlos?lS3|Sk 5%+56157)

= NR X NRTX NN TFNSOP
2 MR X N MATRIX
= HNNR X NR

=N XN

GATN =« N X NRB

)

M» XN

‘:".r.~

60
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e e N ¥ YaTa e Ra T Xa

.

NN = N3l

WORK TG WATPICFS=

81 AND S2 ARF N X N

$3 TD 5% ARE NR X _NR

S5 IS KR X N .
7 15 NR X N@ X N°TENSQQ

FYXTERNAL SUARNUTINFS RFAUL

DIMENSION CINPSNRWNNI+ HINRIND Y GAININWNRI+ ACNNReNRIe STINsW)s 52
TIHsNI+ SAINRINRI» SAINRINRD Y SS(NRs+NRI» SAINRsN)» STINRSNRWNIy FIN

JeNY)

ne 1 I=1.8
RO Y JmlaM
Stti.=0,
S1{TeT¥s1,
RO 1 Fa)sN
CALL YPRD {HsS1sSKaNRINsN)
CALL MPRND {S5AK+GATN+S2INRININR
CALL MBRN (51+FeS2sNeNN)

DO 2 T'I‘N

nr 2 =l
CSTIDedr=S2( e )

no oA I:l.NR

DO 1 J=1 MR .
STtIvJex 15301 0J)

0N & Xe? My .

DN & Tw=1aNR

DN &4 JmYNR
Iretr-21ennasl
ALTNAJYCITataX Y

DA A ¥al,N ;

DN & KTwKaN
Krerlars}

No % IlwleNp

DA & Jx1eNR

SACLT v Y=STIT R0t
SAUTT g1 aC i [ o) tary) )
CALL YPRD [S71+54+55¢NRINDINR)
De A [=lvwR .
0O 4 el enB

IN=(KT-11eMP+] |
ALINSSIFSAL T v JT+ALING )
RETURH .

END -

REN-
MPE),

}

-

:SUFRﬂUTJNF MARSFRY [HMeFsReNsNRINNR3ST 45295831

TH1S SUBROUTINF CALCULATES THF . OASERVATINN MATRIX OF tFeHY .’

WHERE R = ORSFRVIF.H),

N s MNR X N
H = NP X &
Faem XN

.
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- 11

12
13
14
15.

16
17

18
19 .
20
21

22

23
24
2%
26
27
23
29
30
11
32
13
14
15
1%
37
s
19
40
41
42
43
a4
4%
46
47 -
48
49
50
51
52
53
LY.
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AT ANANYIYAANAAA S

‘f'_l"lﬂ"\l"lﬂ

B

WORXING MATRICFS-
51 AND S? ARE N X N ; -“\\\\
$3 15 4o X » — :
FXTERNAL SURROUTINT REQUIRFN- MPRD,
DIMFNSINAN BINNRN]y HINRMY, rlN-Nl-,Sfo;Hl. 5>lN-41c“51!”R-H|
DO 1 I=1.49 _ ,
DO 1 JelsN . .
ACTadbaHlTs D] -
PR > Talaw

NA 4 Xe2WN
CALl o) {(STFsS5 NN

CALL MPR® tH.SIitT.NR-N-NI
[»ia 0 T'logﬁh' '_ ’ .
DO twl W . ‘
[um{r-t}smesl-

PLINeJIaSA T4} g : . //’//’
NO A felem : . :

DN- a4 JslaK

Stityss201.)

nrtuan

END

A 2 JalsM : - T ' .
\S1(1e 1m0, ' .

»

SHARNUTINF CAVINN [CriAMMAZNR sNSeNH VIV 0V 14 VA 51520

THTS SURROUTINEG witl CALCULATF THF COVARTANCF OF THF
INNAVAT [ AN §§°UFFCF;

ClJY = suvlii =11 GAMMATT+JICAMMALLL /NS
= WMFRE C-x NR X NR X KRN TFNSNR ' . ' L |
L RANMMA . x NO X NS MATRIX

NN s Nl

WNARK ING »ATRICES ARF -
51 ANPR S2 ARF-MR X NR

WO ING VFCTORS AQF-
V1 TO VA ARF NR X 1.

. EXTEPMA] €1RSAUTINES DEAUIDFN ARF-

MTRN «MPRA +MADD,

DIMEFNSIAN CLun %R enmr)y GAMMAINR NS -STINRSHR) s SPINRANR) VIINR) .
1 V2iNRY, VIR ) . Va(MP)} .

PO 4 Te)loNN

NLaY§+1~]

A 1 Jel.ne \

BDF 1 ree) e ) \

K21 wvr e,

DO » ¥at,Mp ’ .

NA 2 JelevR .

V2TV ufAMMA L 1, 14K 21 . :
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ﬂ‘\ﬁ!\ﬁf\n‘\nf\ﬂf*ﬂf\ﬂr\ﬂfWﬂrﬁﬂl\ﬂf\n'\ﬂf\ﬂ

NS mGAMMA L J4 )

. CANTINUF

CALL “TRm IVIaVaL ) NP

CALL YPED (V2.V4451+NRe12NR)

CALL YADD t%7.51-s=.nn.ﬂn) : : P
CANTINUE

PO & XYulenr

DO & XK=l4NR

CIK oKX s T 1wS2{N4RR} /NS
RETION ’

tun

SUBROUTINE CARABFL (FsHsCO4B1ASGATNIG
157982081054 :58,54,57.5R458,517.51

THIS SUBRPUTINF WILL CALCUL

USING THF CAREW AND NFLANGER ALGARTTHM,

€ 15 NR X NR .
B IS5 KRR X N.
A IS5 NNR X NP
GAIN AND GAINK ARE N X NR
AT IS N X NNR -
RTA [S N X NP

WORKING VATRICES
$1 TD S8 N X N
‘88 AND S& NR X NR®
§7 AND 58 N X NR
59 IS NR X N
"510 1S NMHR X' NNR
$11 1S N X NNR

WORY [NG VFCTARS
V1 AND V2 NNR X 1 - . <
VI AKD V& N X 1 C g

VS8 AND V6 NR X 1 o

EXTFRMAL RURROUTINFq REnUIRED-

MK BT «RIACLIMIT dEPS N «NR «NNR
].V?IV1.VQ|V§IVA) v

THE TSTIMATF KALMAN GAIN

PSEINVsMPRD «MTRN s MSUBWMINV HADD WNORM,

DIMENSION FINMaN)e HINRWNY+ COUNRINRY s BINHR Ny AINNRWNR)s GAININS

INRIs GATHEIMANRY» ATTAAHNRYy BTAIRWNR)Y

DIMFNSINN 51IH-N11 SPINsNYs SAUINWNI s S4INYNDs SSTINRNRY,
1o STINWNRY “SP{NINRT) SOUNRN! ¢ "STOINNRINNRTs ST1INHGNNR)
DIMFNSTION VIINNR)- V2INNR] V!lHln ValNty VSINR), VﬁlﬂRl

SU“-n- .

CALL PSFINV f"cNNRcN-RTOQIO'SI SlllV\uVZoVBlV“l
CALL MPPD (P4 AVARIASNINNRINRY

D 1 I=laN ) . .

DO 1 Jsl.«N . - N
S1ilsJ)=0,

DO 1 Kel LIMIT

CALL MPRD (Hi%ltﬁﬁvNR-HlN|

CALL MTRAN [(HaST+MRWN])

56 TNRWNR}

FETI IVRY
OV
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32
13
- L
33
1]
37
32
19
AN
Al

OB - P R

-
-0

LY R I
OLBYOP T WwN

[NR SN Y)
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O DEuOA e

b
N
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o
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&

n

- aYal

s e RaYa¥aNaaXakeXa¥nRaaTataXaYaal

A
\il’

N

CALL MPRD (50457 +SA81NRWNINR)
CALL MSUR (CrH+SH¢S55 N7 «NR)

DO 2 I=l+NR
0O ? Jul+NR
SatTe a5 )

CALL

MNY

[SAINMR TF'Y|V5|V6|

F ATFRT ARy 60 TN %

CALL MPRD [F+S1452 NN

CALL vhRD 52357258 NN NR)
S CALL MSUR (RATAWSRISAGNINRY .
‘CALL MPRD (5R+58+GATNK «NNRWNR)

CALL
CaLL
CatL
CALL

- CALL

CALL
CALL
CALL
CALL
CALL

CALL

DFLTA=ARSIANNR
“IF IDFLTALLT.EPS)

vpRD
wSURA
NP
MTRN
MDRND
v5UB
MTRN
MPRD
MERD
MATD
NN

SUMa ARODY
CONTIMUE

PRINT &+ K
RETURN

PRINT 7
RFTURN

FORMAT
FORMAT

END

SURRAUTING PSFIRV 1A|NcH-AtuSlcS?nS!nV]vV20V1vVAI

‘THIS SUHROUTlHF CALCULATES THF PSEUDOINVFRSF

£77¢1404WNUMBER OF

fGllNoH!S?i”oNnONl
[FeS7e523NsN)
[52+51 45N N)
[57¢SasMNeN)
{57054 S2sNsNN)
TGAIR«GAINK ¢ SToeNeNR)
{5759 )
{5715%:SAWNIHRINRY
(SAeS59+57 M NR'NL
[S5245% %1444}
AMARPM NN
SUMY
o0 10 &

oF * PATQI‘ AN X M),

IF A 15 RANK M
A+m{ATAY{ INVFRSFIAT

1F A IS RAMK N
A+nATIAATYINVFRSF

WHERF A+ INDICATES PSEUDOINVFRSE CF A

WORK ING HATRICES
51 IS NXN

2 IS5 M X w

1[5 W X N

WARK TRG VECTORS

[TERATIONS OF THF ALGORITHMa® 191
CZ777 v40XswCAREW AND BE[ANGER ALGORITHH STOPSw /72

.84

(Y
%4
AB
A9
30
51
82
LR ]
8N
55

56
57
58
59
&0
81
62
63
84
65
&6
34
68
69
70
Tl

" T2

13
Téh
75
T8
17
78
19
80
a1
az2-

St e et bk il Bt Pk bl et pes .
L@ W PUWREO 0D SN



Y1 AND V2 ARF N X 1}
V3 AND V4 ARE M X |

FXTFRNAL SURROUTINFS REQUIREN ARF=~

(ol Ba Na¥alal

Je VI(MYy V4IM)
DO 1 leluN ST
DN.1 JaleN .0 .
1 Sl e )il o )
IF (M.GT.N) 60 TO 2
CALL VYPRD [5TeAsS52 MMM
CALL MINV (52U TEST VA VL)
1F ITEST.FN.0%Y GO TO 1
CALL MPRD 15225% A eMiMaNY - ~
RFTURN - .
? CALL MPRD (A »S% 51 sNiMIN)
CALL MINV (ST oNeTFSTeV]evV2)
IF [TFST.FR.M) GO TO 1
CALL MPRD fS\-Sl-lloMrNiﬂl
RETIIRN .
] PRINT &
RETURN

[ Ealat

FORUAT (/777+40%+9PSEUDOTNVERSE DOES NOT EX1STee/ /71
END , S :

SURRNUTINF NARM [ AvANORMNR NG

* THIS SURROUTINF CALCULATES THE NORM OF MATRIX A

2 Ea¥a¥a¥al

A IS A NR X NC HATRIX

DIMENSTON A(NRINC)
SUM=0,
DO 1 TeY4NR .
DO [ Jet NG

! JSUMRSUMAALT s JINA[T 4 )

‘ ANOPY e SORT { SHIM)

RFTURN
2un

-~ - »

SURRNUTINF MS5UR (AsR e NR!N(!

C
¢ THLS SUHQOUTINE SURTRACTYS Two HATRICES AS BELON-'
C . C = A=B. \
C .
o HHERF AsVyAND ¢ ARE NR X NC MATRICES
4 . ‘ '
DIPENSION ATNRNCIs NINRSNCHe CINRWKC)
DA 1 Im=YsNR
DN 1 Jel NG
1 Ciled)aAl] e )=RELJY

" RETURN

‘ \\\\‘”;" ; MPRDIMINVS o
DIMERSION A (N3 TiMonrs SN . s:«u.u:. SYIMsNI v:tn1. V2 (N}
/-

o

-

— e

P O O @ d O PR
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[a¥a%aXaXatal

alalnSaNaNa¥alel

SARTYNN

END

SURROUTIRE MTRH (A«ReNRINC) .

THIS SUBRNUTINE DOES THE OPERATION HELOH-
. B = AITRANSPOSF)

HHFQF A IS A Nﬂ X NC “ITFIX

DIMFNSION AINRsNCI ﬂlNCINR,

NO 1 I=14NR

On 1 JsleNC ]
RiJel1aAlTd) ' . . '
RETIIRK

EMND

SURRQUTINFE MPRD (A+RsCosNReNCN)

THIS SUBRGUTINF MULTIPLIFS TWO MATRTX AS BELOH-

C s AB .

" WHFRE=A ®» NR X NC MATRIX
"R NC X N MATRIX .
- C = RHR X N MATR!X

NIMENSION ALNRy Ncl- BINCINTs CINRNY
DO 1 TwlsNR

DN 1 JelWN

ClileduQ,

RO 1K) aNC '
ClI-Jl-A(Y'KllﬂlK|Jl¢C(I.J1

RFYURN

END

SUBRAUT TNE MADC LAsReCoNR +NC)

THIS SUNRAUTINF ADDS TWO MATRICES AS PELOW-
T C w A+4B

WHERF AWy AND r ARF NR X NC MATRICFS

DIMENSION A‘NRDNC" BINRIKNCY s CEINReNC) -
0N .1 TelWNR

DN 1 JelaNC

SBENIEY IR ENAEL 1N FW)
" RETURN

£ND

ey

s gt

— o~ ! .
OO -0 P W

. -
WNEEO0 B3 BN I-l‘

[
-

-
- RS A RPN

1T

— e .
N OO 3 0 F N
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