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The problem o-f adaptive state estimation which 

in'volves' the identification of the~an gain matrix without ) .. 

a. pJt.£oJt.£ information on the no~statistics is presented. 

A scheme incorporating an identificatiqn algorithm and a 

tracking algorithm is proposed. This ... scheme provides a 

powerful app:roac~for aaaptive state estimation. 

An ARMA model for system description is deri vedfor 

preliminary.analysis of the noise transition matrix when the 
• 

observation noise is sequentially correlated. 

The innovations process for systemS with. coloured 

observation noise is shown to be white for optimum filtering. 

Simulations· are performed on an inertial navigation 
• 

system for both white and coloured observation noise. 

Numerical results indicate the superiority~'of the filte~ 

wi th tracking over one without. Performance of the filter 
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derivation of the ARMA model. 
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CHAPTER 1. 

INTRODUcrION 

Physical systems are designed to perform certain '1 
'. 

defj,ned functions., To· determine whether a sy'stem is 

perfovroing properly, its 6taXe must be known, In navigation, 

the state 'consists o"f position and velocity of the craft in 

question; in an AC electric power system, .. the state may be 

,taken as voltages and phase angles at network nodes. In 'order . . \ 

, 

• 
to determine, the state, observations of the system must be 

• 

taken. The observations are generally contaminated with 

noise caused by' various independent sources in' the observation 

process. '. 

The problem of determining the state of a,systemfrom 

noisy observations is called n.<.tteJt.btg or 6 tate e6 t.<.m'at.<.on . 

. I t is of. central importance in engineering; since, state' 

estimates are required in the monitorin,g, and for the control' 

of systems. 

Studies were first made b~ Kolmogorov (19) and ,Wiener' 

(34) on the problem of ol?timu.m t.<.neaJt. Ftteung·. Later Kalman 

(15), and Kalman and Bucy (16) reformulated ~he problem in the 

sta~e space, thus deriving the Ka.tman n'<'tteJt., which has as the 

output the optimum estimates of the state of the system. The 

Kalman filter, amenable 1n computational aspects, is still 

1 
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'" 'difficult to implement in practice. It requires the 

a. p.lL.i.olLi knowledge of the system- noi~estatistics' to compute" 
• 

" 

the Ka.lma.n g~n matri~, which in turn determines the 

behaviour of the filter'-; n ""' 
The problem of identify'ingthe ~alman- gain matrix 

'without a. plLio.lL.i. knowledgfr of the system noise statistics, 

otherwise knoWn as a.da.p~ve hza.ze ~hZlma.Zion, is, the ~ain 

concern of the treatise'. 

The thesis is divided into two main parts. Chapter 2 

is, mainly tutorial in nature, whereas the main results of 

the thesis appear in Chapter~ 3 and 4. 

.- \ 

In Chapter 2, the work of Kolmogorov (19), Wiener (34), _ 

Chapter 3 gives 

and Bucl (16) are summarized. 
,t .' 

a brief description of the Carew-, . ' 

Kalman -(15), and Kalman 

B~langer algorithm for the identification of t~e Kalman gain 

matrix in· whize Obh elLva.tion noih e. Also discussed are the 

Robbins and Monro type of st?chastic approximation algorithms 
" 

and the assumptions which are required for convergence in the 

mea.n-hqUa:JLe. Since the algorithm of Carew and B~langer employs 

the c.olLlLeia.Zlo n tec.hniq ue to compute the Kalman gain. a large 

amount of data must be processed to obtain· results which are 

accurate. A method is" presented which reduces the data 

requirement; The proposed scheme uses a small quantity of 

observation data to give an initial estimate of the Kalman 

gain,after which a Robbins and Monro type of stochastic 

approximation algorithm ,is used to track and improve the 
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'I • 

estimate of the Kalman gain matrix. Simulation results for - . , ' ~ 

im ine~tial navigation ,system are gi.ven . 'Th.e results indica-(e 

. that the proposed C.to6 e.d-toop scheme does illlProve, the ope.n-
, .' . -

met~od of Carew and B~langer. TlJeoretical: analysis J" toop 
, 

giytin in Appendi;c A confirms that the stocliastic' approximation 
, , . • c 

algorithm used will converge to the optimum Kalman gain matrix 

in the mean-square sense. ", . . 
The problem, of adaptive state estimation ,in 

c.otoU:l!.e.d .'Ob6 e.lLva.:Uon M.i.6 e.' is dealt wi til in ,Chapter 4., The ' , 

classical results on state estiination" 'in 'coloured observation 

noise were' developed by Bryson and Henrikson (4) which are 

briefly reviewed. The problem of adaptive estimation in 

coloured noise' is still an untouched, problem;""recently Loh 

,and Hause,r' (120) have attempted to solve, it using the Carew-, 
B~langer algorithm. However, theyassume'd that the nO~6 e. 

" , 

.tAa.n6.i.t.i.on ma.tlL.i.xof the coloured observation process is 

known. In'Chapter 4, a time series model called the m~xed' " 

a.utolLe.glLe.66.i.Ve. mov.i.ng a.ve.lLa.ge. model is derived for the systellt 

with coloured observation noise. This time series model 

enables the use 'of a recent result of Wilson (35) to estimate 

the noise' transition matrix. F.ollowing Bryson and Henrfkson, 

the'noise transition matrix is used to transform the 

. observation. process contaminated with coloured noise into 

one' wi t~, hi e .n'oise. . Also, the optimality of the innovations 

process is hown to be invariant under both white and , , 

coloured observatio~.noise. A simUlation for,t?e ~ys~em of 
I 

Chapter 3 with coloured observation no~e is performed. It 

... 
.' 

"- - .. 
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" 

< ' -
inv.olves first the estimation,of the noise transition matrix 

a'" ,. 0 

and transforming the observa.tion' pro'ce'ss " and then usi'ag': the, 
" ' 

proposed scheme of Chapter 3 to identify and, 'track' the 
, . . 

Kalman gain rna t'rix; 
~ 

The, ac'curacy 'of the estimation indicates 
") 

-the appropriateness of ,this novel apprbacp to adaptive state 

estimation with coloured,observation noise, 

Conclusions and suggestions :for future ipvestigation,,' 

in ,the problem of adapti v'e state estimat.ion are discussed 

in C~apter 5. The algQJit~ of Wilson for 'multivariate time 
. 

series estimation is outlined in Appendix ,B. A complete 

program listing of the suproutines'used in implementing the' 
, -

Carew-Belanger algorithm can be found in Appendix C. 

The numerical results were obtainea using a CDC 6400, 

computer. "Parts of this work have been published and appear 
,~ 

in references (32,33). 

, ,J 
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2.1 Introduction 

CHAPTER 2 

OBTIMUM :,.LINEAR FILTERING 
" 

'A p.robl~m which arises in a .. wide variety of 
f • 

engineerib g disciplines is the so-called filtering problem. 

~ The-filtering problem was first formUlated in the now famous 

, "'studi)s of Kolmogorov (19) in U.S.S.R. and Wiener (34) in 

U.S.A. wo~ng independently, the two almost simultaneously 
<f ' 

solved the ,lin ~iltering problem in,which the criterion 

of optimality requires that the estimate of the signal be a 

,U.nea.1t .t1ta.1t6 6olU7ta..t.i.on of the observation that ,minimizes the 

m~an-square estimation error. Wi thin the framework of the 
</ ' 

Kolmogorov-Wiener theory, all random processes (random 

functions of time t) are characterized by cofrelation functions. 

The optimum linear filter whose output is the desired estimate. 

when the input is the cbservation, is specified in terms,of the 

known correlation functions by, an integral equation called the 

W.i.enelt-HoPn equation. 

IIi. 1961 Kalman and Bucy (16) presented a new approach 

to the linear filtering problem. The novelty of, their 

formulation was the representation of all random processes by 

differential (difference) Or state equations rather than 

correlation functions. By restricting their ,attention to 

5 
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GaLL~6-Mallk.ov pllOCe.~6e..1 in particul..ar, \they derived a set 

of differential (dif.ference) equations for the estimate. 

·These equations ·can be used to construct a linear pr6cessor 

that· is identH:a1 to the one specified by 'the Wiener-Hopf 

equation. -.../ ' ' There 1:0; a- defini te practical adv~ tage, however, 

"to a Sjl,t of dif,feren tia1 (difference) equations for .the .. .,. 
estimate, instead of an integral ~uation for the processor. 

. . l.-
To be more exp1icit,itis much easier to solve a 'get of 

differential (difference) equations by analog (digital) 

techniques than to solve an integral equation and then~perform 
" 

a convQ1ution . ,-

2.2 Ko1mogorov-Wiener Filter 

The optimum linear filtering and prediction problem, 

first solved by Ko1mogorov (19) and Wiener (34); may be 

stated as follows.·: Given the sca1/ar random process 

yCt) = x(t) + net) (2.1) 

where x(t) is the useful signal imbedded in the' noise n(t), 

'and both are assumed to be random proce'sses, dete'rmine a 
, , 

filter such that its out~utx(t) will be the best approximation 
2 

to x(t) in ~he mean-square sense. That is, minimize 'E [£ (~)J, 

with 

£(t) 
t, 
= x(t) - x(t), 

) 
(2.2) 
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7 

and E [ . ] . is .the expectat ion operator. 

Using variational arguments, Wie'ner showed that the 
, , 

impulse response JiCt) of the optimum linear filter satisfies 

the following Wiener-Hopf integral equation, 

f RyC-r - er) h(er) der = 0, 

where the crosscorrelation function between xCt) and, 

yet} , is the autocorrelation of s 

(2.4a) 

A 
Ry(-r) = E [yet) yet - -r) J C2. 4b) 

-

The determination of the optimum r transfer 

function requires the knowledge of the c relation fun'ctions 

(or the corresponding spectral densities) as well as per~orming 

spectral factorization (2). Clearly the formulation is' 

cumbersome to imple,ment with the present day computer techniques . 
• i' 

" 

2.3 Kalman Filter 

Kalman ,(15) andKalman and Bucy ClED reformulated the 

optimum filtering problem to remove some of the dif~iculties 

of the Kolmogorov-Wiener filter. The novelty of the Kalman 

filter consisted of combining two well'-known ideas';, 

Ci) the state transition method of describin~ 

1 
1 
1 
1 
1 
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in 

, 

dynamical systems (36) .. and 
. . - j . 

Cii) linear fil~ring regarded ~ orthogonal 

projection in .Hilbert space (24). 

. Consider the cU.!> c.,lLe:tI}~,u me - in v a.Jt..i.a.(t .I!{.I :tern shown 

Figure 2.1. The me.l!>a.ge-gene./La.,ung process is modeled by 

the vector Gauss-Markov equation 

8 

(2.5) 

.. 
." , 

and the observation is modeled by the linear algebraic 
~', , 

relationship 

with 

Yi = Hxi + vi 
"­

(246 ) 

x = the n ~imensional state vector, 

y = the m dimensional observation 
vector, 

. u = the p dimensional message -
generating noise vector, 

v = the m dimerisional,observation 
noise vector. . 

,. 
The message-generating and observation noise are 

assumed to be zero-mean, independent white gaussian noise 

(WGN) with covariance matrices Q and R respectively; in other 

words 

ECuiVj'] = 0 , E[U} 

E [u u .J = QOij i j . 

{ .. 

fO,E[ViJ=O 

E [v'v ~ = fto ",. 
. i j ij (2.7) 

.' 
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l 
, j 

,where ?ij ,is_the'K~onecker delta function, and the prime 

denotes matrix transpose. 

It-is requiredtb obtain the best estimate of the 

state, Xi' ~iven the fixed triple {F,G,H} and the oDserva~ion 
A " ' 
- {Yk' o <k::.,i} . 

; 

s'et Yi 
, 

At a first glance, ~t might seem that the state 

e~imation problem is quite different from the filtering 

problem mentioned earlier. H<?wever, as' poin ted out by Kalman, 
• 

any signal ,with a rational spectral density can be obt~ined 

by applying WGN to a linear system. Thus the optimum estimate , 

can also be,rega!ded as the signal 'to be obtained by filtering 

Yk' and the specification of the system dynamics ,is equival':" 
• 1 .' .......' " 

ent to _~pecifYing th~ autoco~ela tion f~ction of the, sign.al. 

As shown by Kalman and Bucy (16)" the optimal 
';:.' 

estimate Xi +1 1 i' of thE': state vector :,xi +1, 'given the subspace, 
- ' 

V i sp~n~d by the random va:t'iables '{Yk' O<k~ i}' may be 
, '" 
interpreted geometrically as the projection of xi +1 onto Vi' 

Algebraically, the estimates are given by 

, 

} 

(2.8) ,. 

.!) , 

where Ei' the innovations process (14), is defined as 

(2.9) 

• 

" 

/ 
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.' 
and K

i , the Kalman gain 'matrix, is found recursively by the 
./' 

following set of matrix equations 

K 
i FP H 'W -1 

i i' 

Wi ~ .• E [EiE:i) 
• 

= 

.. 
• 

(2.10') 

(2.11) 

(2.12 ) 

Kalman and Bucy (16) have also shown that if. the 

system (2?d, (~.6) ·satisfies the f~110w~ng conditions; 

C - 2.1 uniformly c.ompte.tety ob~elLva.bte ; , 

" -, c - 2.2 uniformly c.ompte.tety c. a 1l.t1LO tt a. b t e ; 
., 

C 2.3 (ll~ I I Q I I ~ (l2 ,(l3 ~ II R I I ~ (l4 

C - 2.4 IIFII ~ (ls . 
Then the Kalman filter is identical ~o the KolmQgorov-Wiener ., 
fil ter and that 

,. 
(i) the Kalman filter is uniformly asymptotically. 

• stable • 

(ii) every solution of the variance equation (2.12) 

starting at a symmetric, non-negative matrix 
. ~ 

Po converges to P as i + ~ 
., 
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, . 
. Therefore,' the steady-state value of the Kltlman 

filter parameters are given by 

6. 
FPH' -1 

(2.13) Kop = lim Ki = W , 
i-><» 

6. 
W = lim Wi = HPH' + R (2.14) , 

i~ 

= FPF' FPH' W-1 HPF' + GQG'. (2.15) 

The filter described by the matrix equatiGhs (2.8), , 
(2.9), lind (2.13) - (2.15) is termed a stationary Kalman 

fil ter. (from here on, the tE7rm Kalman f'il ter will imply the 

stationary Kalman'filte·r). To imPlement the Kalman filter e' 

. w~uld require prior knowledge of theiessage-generating.and-.. 
observation noise covariance matrices Q and R respectively . 

. . . '/ 
In practice, such extensive a. pJU..alL~ information is seldom 

available, with the' resul t that the optimum Kalman gain 

matrix Kop cannot be calculated. On the other hand, if 

incorrect assumptions are mac:!.e' about these matrices, the 
-'. ' 

resulting estimates of the states .are suboptimum. A more , . 

straightforward method to solve the optimum filtering problem 

0 

is to ftetermine the Kalman gain' matrix directly.by using only ~ 

the observations in some adaptive schemes instead of equations 
. . 

(2.13) - (2.15). In the next chapter, the problem of Kalman 

filtering without-prior knowledge of·noise statistics' is dealt 

with. 

( 
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3.1 Introduction 

CHAPTER 3 

ADAPTIVE KALMAN'FILTERING 

s: ,') 
, ' The problem of optimum filtering, formulated by 

Kal an and Bucy (16), assumes complete a p~o~ knowledge 

of the message-generiltiJl,g and observation noise covariance 

matri~es., These statistics "in roost pr'actical situations are 

either unknown or known only approximately; -in suchcas.es', 

the' system performance is at best suboptimum (11). The 

purpose of an adaptive filter. is to reduce or b.ound the 

,estimation errors by modifying or adapting ,the Kalman filter 

to the real data. 

A number of approaches (12, 30) have been presented 

with varying degrees of success for the estimation of the 

unknown covariance ma.trices, a gOOd sU!llJl)ary can be found in 

"-' thilrpaper by Mehra' (22). The use of the "innovations sequence' 

{e:
i

}' in ... the estimation of the unknown, covariances as a 
Q 

criterion of optimality was introduced by Mehra (21). Carew 

and Belanger. (6t, using. the same argument as Mehra,proposed .' , 
,_ • I. 

an algorithm for estimating, the Kalman gain matrix direc~ly. 

Other authors (10, 29, 31) have suggested the us.e of stochastic 

approximation' techniques based on properties of the optimal 
.~ 

'filter to "adopt the Kalman gain matrix. 

• 



/ 

In this chapter, the CarewrBe.langer algorithm and 

stochastic approximation algOrith~ are briefly examined. 

Also a scheme is proposed to identify and track the Kalman 

ga~n matrix combining the advantageous properties of the 

above algorithms. 

3.2 The. Carew-Belanger Algorithm (6) 

· 15 

The algorithm of Carew and Belanger is based on the 

correlation technique (22).' Starting with an arbi tra!y .gain. 

matrix Ks ' which may be calculated from equations (2.13)­

(2.15) by using some assumed values of Qand R, the sub-
if 

optimum fil.ter is g.iven by 

(3.1) 

where 

given 

Xi *, f-l denotes the suboptimum estimates of the state xi 

y i:'l. The steady'-state error covariance of the 

suboptimum filter, related to the 'optimum, is defined by 

p* 

Using equations (2.6), (2.8) and (3.1), it carl be easily 

shown tltat ". 

p* . = (F-~H). P*(F-KgH)' + CKs-Kop) WCKs-Kop) , 

where Kt,p is. the' optimum Kalman gain.' 

(3.2) 

(3.3) 
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Following Mehra (21), the autocorrelation functions· 

for the suboptimum innovations sequence in the steady-state 

are given by 

E [E *E' *' J i i-j 

= I H(F-Ks H)j-l [(F-~sH>'P*H' 

l HP*H'. + W . 

- (K -K )w]' . s op , 

.l 

j 'f 0 

j = 0 

(3.4) 

where Ei*' the suboptimum innovations sequence, defined by 

• 

HXi*\i_l 

is the innovations of the suboptimum filter. For the 

optimum iil ter K ~ = K op and p* = 0 ; hence from (3.4), 

Cj = 0 for j 'f O. 

Define, 
A' 0 . I 

B = [H' IF'H' I ... I(F' )n-l H'J l 

(3.5) 

(3.6) 

which may be recognized as the nrxn system ob" <1.ltva.bLU.t;y ma.t.IUx.. 

From (3.4) and (3.6), define' A as 
/ A 

A = B(FP*H' +·K W) op 

C1 + HKsC O 
= C2 + HKs C1 + HFKsCO 

~-l Cn + HKsCn_1 + •.. + H . KsCO 

(3.7) 

, . 
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" 

'.... " Since the system is Completely observabI~, matrix B 

is of full rank, therefore it'~' pseudoinverse B t , defined as 

(3.8) 

_ (FP*H' + K W),= Bt A 
op ~ , '(3~9) 

( FrOm equations (3.3), (3~5) and (3.9), these , 
simul taneous matrix equations for W, K and p* are established' op 

as below, 

, , , W:::;=' Co - HP*H' ' , (3.l0a) 

K = (Bt A _ FP*H' )W.,.l 
op (3.l0b) 

p* = 
I? 

(F-K H) P*(F-K H)'.+ "(K -K ) W(K -K )'" (3.l0c') s s s op s "OP • 

Rewritting (3.,lOa) - (3.l0c) in recursive form 

= W (X~) 

Kop(Xk ) ,= 

= 

• 

" 

(B t A - FXkH' )W-l(Xk ) 

<~ , .. 
(F-K~H)Xk(F-KsH)' + (Ks-Kop(Xk )) W(Xk) 

.I i 

-, 
(3.lla) 

(3.llb) 

(Ks-Kop(Xk) )', 

(3.11c) 

:, 
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wb,ere ~e:' Rnxn is posi tivesemidefinite.o Carew and Belanger 

have' proved that the algorithm represented by (S.lla):­

(3.11c) will converge uni+:lY to Kop by sh~wing that these 

equations represent a contraction mapping. ~ summary of,the 

scheme of Carew and Belanger is given by the following steps: 

c 

_(i) For an arbitrary gain matrix Ks' based on 

assumed values of Q and R. generate the 

sub.!;lPtimum innovations sequence te:f}" and hence 

estimate the autocorrelation functions Cj from 

I 
J 

1 n-j 
- I: 
N i =l 

e: *' i j = O.l •. , .• n (3.12) 

where,N is the' size'of the innovations sequence. 

The estimates given by (3.12)"are tiiased for 

finite N. but as§mptotically they are unbiased 

and consistent. 
. ~ 

(ii) Using Ks and Cj (j = O .... n),estimates of P*.W. 

andK op 

(S.llal 

are obtaJned iteratively. from equations 

- (S.llc) with X, e: z;' = {It: X positive 
o 

semidefinite. X:< p*+p}. 

The 'iterative scheme (3.11a) (S.llc) converges 

uniquely to the optimum Kalman gain K , op if the autocorrelation 

functions. ,Cj (j = '0.1 .... ,n) are known accurately. However. 

due to the finite size of the innovations sequence,and other 

experimental errors. the a'ccuracy with which Kop can ',be 

determined is limited. 

, 
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3.3 Stochastic Approximation 

3.3.1. Stochastic Approximation Algorithms' 

Stochastic approximation methods may be considered 

as recursive estimation methods, updated by an appropriately 

weighted, arbitrarily chosen error corrective term, with th~ 

only requirement that, in the limit, it converges to the 

true parameter sought., Applications of stochastic approxiination 

algorithms have been proposed in adaptive and learning systems, 

(23), systems identification (26), adaptive communication (27). 

Historically, stochastic approximation was first 

treated by Robbins and, Monro (2'5) and Kiefer andWolfowi tz 

(17), who were concerned with SOlution to two specific 

J'Problerns;, finding the root of a regression function, and 

finding the value that minimizes a'regression function given 

only pertinent random observations . It was Dvoretzky (8) who, 
< 

generalized s~ochastic appr'oximation to any sort of i terati ve 
, , 

solution alg6ri thm, which is convergent, when direct obser- , 

vations of areg~eSSiOn function can be adopted s~cceSSfUllY. 
Excellent surveys of stochastic approximation can be found 

in papers by Sakrison (27) and Saridis (28). 

In general, stochastic approximation algorithms of 

the Robbins and Monro type are used in'adaptive filtering. 

They ,are of the form 

(3.12) 
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c 

where {Yi} is a sequence of suitably chosen smoothing values, 

and {f(yi , K i) - mol is an error correction sequence generated 

at every time instant i by measuring the· .deviation from an 

appropriate goaL The i t.erative scheme (3.12) approaches the 

optimal parameter value, Kop ' where E [f(Yi,'Kop )] = mo' in 

the mean-square sense provided the. following' assumptions are 

satisfied (see Saridis (28) ): 

\ 

A - 3.1 :3 (l,e such that 

(l IIK-KopI12 ~ <K-Kop,E[f(yi,Ki )]- mo> < S IIK-KopIJ2, 

where <',' > denotes the matrix in'ner product operator: 

A - 3.2 The Y i 's are posi ti ve monotone decreasing; 

and 

1: Y i = 
i=1 . '" < '" 

Heuristically, A - 3.1 requires th·at the regression 

function f(y!",K) - mo be bounded on all sides of a true 

solution by a rectangular set 1'n the solution space such 

that it' is not possible ,to overshoot the solution, Kop ' 

which cannot be corrected by a Yi satisfying A-3.2. 

Assumptton A 3.2 provides, smoothing effect on the regres-:-

sion func~ion, unlimited correction effort, and mutual 

cancellation of individual errors for a large number of 

iterations. 
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. 3,3.2 Adaptive Kalman Filtering by Stochastic Approximation 

The successful a~plication of stochastic approx­

imation to search for the optimum gain matrix, K ,requires . , op 

some suitable method for testing i'f the v'alue presently being 

'used is optimum. Hampton and Schultz (10) have proposed, a., 

Robbins and Monro type algorithm which uses the or~h9gonal . 

4 condition 

, 

E [{xi - Xi li _1 } Y /J = '0 

~ 

't j<i (-3.13) 

for this test. Since the ~ctual ,xi is not known, . equation 

(3.13) can only be approxi~ated in a rather involved manner. 

More recently, Sinha and Muhkerjee. (31) have ,also proposed 

a Robbins and Monro type algorithm which makes use of the . / 
property that the innovations 'process, is white (14Y. They 

used. for the test of optimality 

i 'f j {3.14) 

Although their idea is conceptually more direct and works 
, g' ~ 

quite well for the scalar case, it is unsuitable for the 
, . 

multivariate case since thJ error correction'term is 

restricted to a subspace of the ,solution set in most instances. 

A,n algorithm which is more sui table would be ·that proposed 

by Scharf and Alspach (29) , who utilized the orthogonality 

between the innovations process and the estimated state, 
I> 
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) .. 
that is, 

• 

(3.15) 

A 

Note that the product x i !i_1 E: i ' is contained in the same 

spac'e as that of the. Kalman gain, making it applicable for 

mul ti variate problems. The stochasti c approximation algorithm 

thus can be written as 

(3.16) 

where Yi is choosen so as to satisfy assumpti..on A-3.2.· 

Scharf and Alspach (2!}) ha.ve shown, in the scalar case of 
A 

(3.16),that the regression fu~ction, xi !i_1E:l.', satisfies 
.. ' 

assumptio~ A-3.1, thereby showing that (3.16) converges in 

the mean-square to Kop The proof of mean~square convergence 

of (3.16) in the multivariate case ~s shown in Appendix A. 

3.4 Combined Carew-Belanger and Stochastic Approximation 

Algprithm 

. The algorithms dis cussed in the pr.evious two sections 

have their advantages and disadvantages listed in Table 3.1. 

It would appear logical to combine the two methods in such a 
, 

manner as to retain their relative advantages, while disposing 

with their bas~ drawbacks. 
I.. 

, 
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I 

ADVANTAGES DISADVANTAGES 
, 

CAREW-BELANGER STOCHASTIC CAREW-BELANGER STOCHASTIC 
APPROXIMATION APPROXIMATION 

--------------------------------------------------- ------------.---r -----~ ---------:.------------------ -~ -----, , 

(i) fast (i) minimum ( i) opened-loop (i) very slow 
r 

convergence computation, scheme convergence 

'" " 

.0 
- -, , 

(i1)mt.nimum a ptioti ,(ii) closed-loop (ii)complex (ii) required "good" 
. information. adaptivity computation . starting values 

. .' 

~ 
I 

~ 

(iii)large computer 

\ , storage 
required for > 

. !(ccurate' results. 

-

. 
, J 

TABLE 3.1 Advantages and disadvantages of' the Care~-Belanger 

and stochastic approximation algorithms 
• 

, 

.. 
I o 

N 
W 

" 
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, 
Basically t~e Carew-Belanger algorithm is an open-

• 
loop estimator. I:t gathers a samp~e 0: the observations 

and processes:' it. Should the nOiVst~tistiC be "slowly­

varying", .however, tllen the estimated gain will "in all 
,-

24 

likelihood be suboptimal and the_ estimates of the state might 

even diverge after some time. 
J 

More appropriate. would tie,a 'controller which m6nitors 

the observations and the estimates, and be able to determine 

'whether the filter is ~ptimum or not. If the filter is 

suboptimum, the said co~troller should be able to adjust the 

filter again to bring the filter back towards the optimum 

state. ~ Such a controller can be implemented by uSin~_\he 

stochastic approximation algorithm (3.16) discu~sed a 
Section 3.3. 

By the above arguments, it is proposed to implement 
-t. 

o 

the Carew-Belanger algorithm to arrive at a one-shot ~stimate 

of the Kalman gain, followed by using stochastic approximation 

to track any change in the gain matrix which may bring 
. 

further improvement in the estimates. As the system noise 

is slowly varying, these changes will usually be small, 

therefore a slight improvement would result as compared with 
; 

the open-loop estimation of the gain matrix using only the 

method of Carew and Belanger. 

The steps of tne proposed sche~e can be stated as 

follows: 

• 

,n. 

·1 
'~ 
• 1 

i 

,j 



-. 

., 
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. (i) Using the algorithm of Carew and Belanger 

described 'in section 3.2 and a finite 
~ 

observation sample, calculate K, the estimate , ' 

-""" ' ... 
(11) 

of Kop; 

us~.i = KQ, track the Kalman gain with 

equatIon (3.16) . 

• 
3.5 Simulation Results 

To test the proposed scheme, i t w~s appli'ed to the 

same system fro~ inertial navigation as was used by Mehra 
" 

(21)-as weE as Carew and Belanger (6). For this case, the 

system'matrices are 

0.75 -1. 74 -0.3 0.0 -0.15 
' . 

0.09- '0.31 -0.0015 0.0 -0.008 

F = ~O. 0 0.0 0.95' 0.0 0.0 
~ 

0.0 0.0 0.0 0.55 ~p ....... 
0.0 0.0 0.0 0.0 0.905 

0.0 0.0 0.0 
\ 

0.0 p.O 0.0 

24.64 0.0 0.0 
\ 

G = 

0.0 0.835 0.0 

0.0 0,0 1.83 

., 
0 
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.. ,. 

0 , 

H [ 1.0 0.0 0.0 0.'0 1.0 ] = 

0.0 1.0 0.0 1..0 0.0 

~ noise sequence {ui }' and {vi} were getlerated on -

th.e computer, and- their actual covariances, obtained from 

2000 samples are 

Q c diag (0.941,1.050, 0:980), 

R c diag (1.040, 1.024) .. , 

26 

,} :." 

The optim~l Kalman gain matrix for ihis system, found 

by, solving (2.13) - _.(2 .15), 'is_ 

! 
1.563 0.557 .. 0.092 0.387 -. 

Kop = -2.718 -L416 (3.17) 

"I-
0.0 0.137 

0.029 --- -0:702 

The 'first 10,00 values of {Yi} were used with the Carew 

-"Belang~r, algorithm' to estimate the, Kalman gain, and-deter-

mined to be , 

1.439 1.070 

0.130 0.306 
A 

K = -:-2.767 -2,.0~3 (3.18) 

-0 .. 034 0.197 

(l 0.139 ~ -0.79%. 

_0 ' 

, 
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The next 1000 values .of' {Y i} were 

tJi ree methods; 

red by 

~ 

(1) using the optimum gain matrix {3,17}., 

(2) using' the estimated gain matrix (3;'28-) found 
, , : 

by the Carew-Belanger algorithm, 

(3) starting with the Carew-Belanger gain matrix, 

27 

and using ~he stochasti c a~gori thm (3,:16), wi th 
1 A 

:0 i+1 and KO = K. 
'\ , . 

The perf9rmance Qf the three filters', are summarized 

in Table 3.2. The trace of the error covariance matrix P 

'was plotted for each of th~ thr.ee methods, against iterations' 

in Figure 3.1. IT I t was percei ved that ini ti ally, these values 

we~e very close, but moved apart considerably as more time 

elasped. 

'TABLE 3.2 

.COMPARISON OF :fILTER PERFORHANCE (WHITE NOISE) 

. 
Me'thod Pll P22 P33 . ..f44 P55 trace P,: 

, 

, 1) '75.893 1.012 1251. 941 0.897 l:t:.725 1341.468 
, 

" 
2) 81.8'50 1.260 1253.537 1.031 17.185 1354.863 

"" 
3) 80.232 1.174 1252.451 1.022 15.600 1350.479 

• 

.I 

. , 

r 
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" 

3,6 Discussion 

In the example con'~:i.dered, ~he performance of the 

Carew-Belanger algorithm for estimating the .. Kalman gain 

,matrix is adequate. Due to computer storige limitations and 

the possibility' of non-stationarity of the nOise in the 

system, however, a closed~loop scheme employing stochastic 

approximation is used. This scheme, which rkquires minimal 

. storage of past data and computation once it is initiated, 

is very suitable for on-line traCking of the Kalman gain. 

As can be seen from Figure 3.1, the use of , stochastic 
i~ " 

approximation method in conjunction with that of Carew and 
~ 

,Belanger gives a slight improvement in the ~estimates. From 

Table 3.2, the improvement is approximately 48% wi th respect. 

to the optimum gain after 1000 iterations of stochastic 

aJiProximation. Furthermore, this improvement becomes more 
, " 

marked in time even if the noise statistics are stationary. 

If the noise statistics should deviate slowly, the closed-loop 
, 

nature of the proposed scheme would adjU$t to these changes. 

Thus, the proposed scheme is ,very sui table for on-line 

adaptive Kalman fi~ering. 
'-

" 

( , 

, 



CHAPTER 4 

ADAPTIVE' STATE ESTIMATION IN COLOURED 

OBSERVATION NOISE 

4.1 Introduction 

I 

In the previous two chapters, discussion of state 

estimation via Kalman filtering was restricted to systems 

with white noise. More general 

estimation in coloured·noise. 

is the.problem of state , 
/ 

By coloured noise, it is 
, . 

implied that the autocorrelation function of the noise 

is non zero for non zero time lags. 

30 

. . "-Coloured input or message,-.generating noise actually 
". . ..r i 

presents no problem since it can be simply taken into account 
,.; 

by regarding it as the output of a linear system with white 

noise as input and augmenting the state vector accordingly. 

¥ence, .. the basic problem of interest is colqured observation 

doise. 

( The problem of state estimation in dis'crete-time with 

coloured observ~tion noise is essentially the same as for. the 

whfte noise case - to find a filter which will minimize the 

state estimation error in the mean-s'quare sense. Thll problem 

has been studied by Cox (7) in 1963 and later ,by se~ral 

otgers,. However, at the present time, perhaps the best known 

results 01;1 such problems' are those of Bryson and. Henrikson '(4). 
. . , 

Motivated by the solution of the cortesponqing continuous time 
.' 

" 
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problem (5),~ryson and Henrikson transformed the observation 

~rocess into one with white noise disturbances and then solving 

,for a filter-Q,f the K~man ty~e fo~ estimating the state. 

0, Though their -solution is el~gan t, Bryson and Henrikson's 

resul ts require the prior knowledge of ,.the statistics and 'I ' 

behaviour ot' the system noise; In pra<;tical si t"uations, such 

'It pJUoJU knowledge if often not at' hand. Hence, s~me ty~, 
of learning filter must be "used to adaptivel'y estimate the

l 

st~tes without requiring such Itp4~OJU information. 

In this chapter, a brief look at Bryson and Henrikson's 

results is taken. AJ,.so, the :innovations process of ,the' optimum 

fil ter .. for coloured observ_~ tion noise is shown to be whi te I 

" thus optimality is ~own, to be, invarian t for both the whi tei 

and co.loured observation noise. An approach is"pretented in 

which the state space model is rewritten as an .autQJegressive 

moving average (ARMA) model, allowing for preliminary analysis 

of a class of coloured noise to be made. The combined results 

~ve are used in conjunction with th,e "methods of Chapter 3 to 
o ........ 

identify and track the optimum Kalman gain matrix. 
.. .-

";'<~ 

(', 

4.2 .. Some Results of Br~son and Henrikson ~42 , 
\ ' ' .. 

Consider the sys,tem as described by the state equations 
~ 

(2.5) and <,~.6).. It is assumed that the message-generating 

disturbance {u i } is a white gaussiaD. noise' sequence with 

statistics given by (2.7). The ob~rvation ,noise {Vi} is a 

coloured noise which will be ~sstimed to be of the Gauss-Markov 
'" 

r 
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type, modeled by the, following equation', 

-I V \ = AV + w 
'i+1!,," i j,,' 

f (4.1)' 

'.- -.,,/ -

The noise transition matrix A, is assumed to be diagonal; 

and {Wi} is a white ~aussian nqise, sequence of dimension m 

/' independent' of' {ui }. The statistics of {wi} are 

(4.2) 

'" The problem is to determine the best estimate, (in the 
" 

mean-squ'are'sense) of the state. vector, Xi' from the record 

of the noisy input data sequence Y = {Yk' 0 2k ~i }. 
, . i 

'Following the track of the.' corresponding continuous 
,,' 

time problem (5), Bryson and Henrikson began by employing 

me.£U ulte.me.nt- d.£ 66 e.lte.nc-ttlg procedure on the observation pr cess. 

Thus they define 

c t. 
• Yi = 

= 

where 

He 
t:. 0= 

C t. 
vi = 

. I 

Yi+1 - AYi 

Hcxi + v C 

i 

HF- Ali 

HGui , + Bwi 

(4.3a 

(4.3b) 

(4.4) 

(4.5) 

, , 
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.Clearly· {v~} is a white gaussian process, thus the transformed 

observation process' {y~} now has a white disturbance noise 

instead of a sequentially correlated one. Looking closely 

at (4.5) will show that this white disturban'ce is now 
.. :.. 

correlated with the message-generating noise {ui }, and is 
~ 

given by 

= QG'H' 0 
ij (4.6) 

Hence, modifying the original Kalman equations (2.8), (2.9) 

and (2.13) - (2.1'5)", a Kalman type filter can be applied to 

the transformed system. The equations governing such a 

filter are 
c. ,-:-) 

, 

" 
" t:. 

~ FXi KC e: c 
Xftl = + op i (4.7) 

e: c t:. c· = Yi Hc fi i (4.8) 

c" 

where the Kalman gain, c is given by • l}op , 

c t:. 
w~1 K = (FP H ' + GQG'H' ) op c c (4.9) 

As can be seen, to solve for the Kalman gain requires the ,~, 

knowledge of Pc and Wc which are the covariance matrices of 

the state estimatipn error aild innovations process respectively. , 
. r' 

They can be found by solving simultaneouslythe,. following ,:.-



• 
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matrix equations: 

r, 

= FP F' c (FP HI +GQG'H ' ) W-1 (FP H I, + GQG'H')"+ GQGI , 
, C C C C C 

(4.10) 

= E [e:~ e:~1 J 

H PHI + -HGQG'H ' + R, c c c 

where 

= (4.12) 

is the state estimation error. 

Als~ of interest is the behaviour of the auto­

correlation functions of the innovations process {e:~} with 

res~ect to the filter gain K. 

Using (4.3b), ,(4.8), and (4.12), the innovations 

process can be reexpressed in the following form: 

t, 
= (4.13) 

Thus, the autocorrelation functions 'of {e:~} are given by 

t, 
Cj '" E [e:~e:~_j I J ~ 

'" Hc {E[Xi Xi _ j ] Hc ' + E [xiV~_j In , (4.14) 

\ 
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. . 
The expectation values of (4.14) can be'easily shown to.be 

E [Xi ~i-j' J = (F KH )j P .. 
c c ' . C 4 .15a) 

~ 

and E [;; v c , J = (F 
i i-j KHc )j-1[GQG'H'- K(HGQG'H' + R)] ; 

j (4.15b) 

Therefore combining (4.11), (4.14), (4.15a) and (4.15b~ the-

autocorrelation functi9ns of the innovations expressed in 

terms of the filter gain are 

C = He (F-KH )j-1 [FP H'+ GQG'H' j c c c 
, . 

Substituting the vafue of K c op 

is obvious that 

= o 

j l' O. 

(4.16) 

(4.17) 

Therefore, as in the case considered in Chapter 3, the optimum 
~ . . 

Kalman gain matrix forfue co~ured noise case will resul~ in 

a Kalman filter which produces a white innovations process. 

Thus, the"optimality of the innovations for the coloured 

observation noise system, is the same as that of the white 
" . 

noise. system. 

The solution pf the Kalman gain in cO}pured noise 

requir~s the values Q, R aDd A. In the next section, ampdel 
. '-~ 

is developed for estimating A, the noise t~ansition matrix. 

• 

1 

• 
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4.3 Representation of Systems by ARMA Models 

The gerieral system as represented by equations (2.5), 

(2.6) and (4.1) can be rewritten' as a.'mixed autoregressive 

lOOving average (ARMA) model (3). 

Equations (2.5) and(4.1) are both Gauss-Markov type 

equations, and can be expressed in terms of the backwa~d~ 
~ 

-1 shift operator g as below 

xi+1 = (In - -1 -1' F:> ) GU i , (~.18) 

~-l)-lw 
,... 

vi+1 = (I -,m , ' , i (4.19) 

where ·In is an nxn identity matrix. 

S!lbstituting the above eq.uations into '(2.,6), the 

observation process becomes 

= ' 

to' 

'Pr~mul~iplying both sides of the equation by (1m _ ~-1). 

results 'in 

H ('I 
n F~-l -1 (4 21) 

- co ) GUi T Wi". . 
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.-
The annoying fact about (4.21) is the matrix inverse 

(In - Fg-1 )-1. This can be removed by employing Fadeeva's 

scheme (9), 

37 

= 
A Z-1 + ... + AnZ-n 

1. 

1 + A g-l + ... + Ang-n . 
. 1 

• (4.22) 

" where A1 = .! , 
. 

A1 = - trace F, 

Ak = FA
k

_
1 + "k-1! k = 2, ... j n 

"k = - ~ trace' FAk . , k = 2, ... ,n. 

Thus from. (4.!U)and (4.22), the system model is 

+ (1 + A Z-l 
1 .. + ... + " g-n) n wi , (4.23) 

. 
where ~i+1 = (1.+ A g-l 

1 + ... + -n '-. 
An g ) Yi+1' (4.24) 

and { } nxn Ak ,. k=l, ... ,n e: R .. 

The right hand side of (4.23) may be recognized a,s 

the sum of two moving average terms. Box and Jenkins (3) 

have shown that the sum can be expressed as. a singl"e moving 

average term in the following'manner 
., .. , 

I 



.. 

where 

( I - 9 :;"':1 
'm 1 -... -

, " 

{ 9
k

, k = 1, .... , q} e:: R=. 
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(4.25) 

From (4,23) and (4.25), the system, rewritten in· 

terms of the backward shift operator becomes 

\ 

with 

.. (I - 9 :;-1 
m 1·, 

, . 

e :;-4) 
q 

which may be recognized as an ARMA model of order (1, q) 

where q'::' n is to be determined.' 

B 

, . 
, The estimation of the ARMA parameter matrices, 

t:. 
.. {A, 9k , k=1, ... ,q} is accomplished by a non-linear 

(4.26) 

(4.27) 

(4.28) 

least-squares estimation technique proposed recently' by '--

Wilson (35) (see appendix B for outline of algorithm). The 

value'of q is the minimum number of moving average terms to .' 
J 

. obtain a residual sequence {ail which is white, i.e. 

E [a a 'J .. i j 

~ ., '. " 

j 
j ., 



4.4 Proposed, Scheme " 
" 

,In a r.ecent paper (20)' Lon and Hauser have " 
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... .., . .'-

considered the use of the Carew-Belanger algorithm for message-

generating ana observation noise which are correlated. They 

have shown tha~ the' convergence property of the Carew and . 
Belanger ~lgorithm is not affected by such correlation. A 

system with coloured nbise was simulated and the estimation 
,/ 

• 

of the Kalman g3"in was made'. Al though the results were very 

good, an d p4io4i knowledge of the noise transition matrix 

was assumed. 

The proposed scheme relaxes the above restriction . 

The approach therefore, is to use the derived ARMA model of 

the previous section and a finite observation sample Jy i} to 

estimate the noise transition matrix A by the algorithmo~ 
" 

Wilsa,n (35). From the estimated,value of the .matrix A, the 

trans'formil1:ion (4. 3a) can be performed on the observation 

process. Since the optimality of the innovations process is 

invariant, the scheme of Carew and Bel~ger can be ,applied 

,to the transformed ,system (2.5) and (4. 3b) to obta-in an 

initial estimate of the Kalman gain K c. A stochastic op 

approximation algorithm is 1hen used, as proposed in Chapter 

3, for tracking the iiI ter gain m'atrix in a closed-loop 

, fashion. ) 

-
4.5 Simulation Results , 

To· test the proposed scheme, it was applied to the 

same system used in Section 3.5. The white nois~ sequence 



. {u
i

} and {wi} were generated on the computer. Their 

covariances, calculated. from 2000 .. samples are 

diag Q~ = {0.999 , 0.986 1.01~ '. )'-:f. 
diag R = (0.245 ,0.040 ) 

-
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> 

The coloured observation noise {Vi } was calculated 

from { wi} us ing (4.1) and a nOise- tranSition\n~ trix given by 

dlag A = (0.5 0.2) . 

1['>. 

The.optimum Kalman gain derived from>equations (4.97) -. 

(4.112 is , . 
'. 

0.963 1.294 

0.002 0.416 -

K c = -2.943 -2.102 <1. 29 ) op 

-0.002 0.490 

0.035 -1.'279 

I . 

From the first 1000 samples.of {Yi},250 were used 

to obtain an estimate of At .. A\ value of4 = 3 was found' 

. to be ~he minimum moving average~~o .result in a 

whi te residual sequence. Using the estimated A, the' 1000 

fAcknoWledgement.toM.A. Lauzon is extended·here for the use 
of his program to implement Wilson ts' algorithm. 
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• 

samples of' {Yi} were transformed by (4.3a) to give 999 

values for' {Y~}. Applying the scheme of Carew and Belanger 

to ,{y~}, . an initial estimate of the gain matrix' is found 

to be 

0.897 1.360 

0:053 o • 0.553 \ 

~ 

K = -2.909 -3.620 r 

-0.095 0.157 

0.146 -1. 058 
, 

The, remaining 1000'samples of the transformed 

observations {y~} were then filtered by three methods as 

described in Se~ion 3.5. 

The trace of the error covariance matrix Pc is 

(4.30) 

. . -
plotted for each offue three methods against the number of 

". 

iterations, and is shown in Figure 4.1. It was found that 

the behaviour of the error covariance matrix in coloured 

noise was essentially the same as the white noise case in 

Chapter 3. That~, better results were obtained when the 

stochastic approximation algorithm was used to track the 

,filter gain. The final values for the three methods (see 

Section 3.5) are given below- in Table 4.1. 

L 

, 

I 
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TABLE. 4.~ 

COMPARISON OF FILTER PERFORMANCE CCOLOU~D NOISE) . 

PC11 PC22 PC33 PC44 PC55 trace ~ 
"-

Method 

(1) 

(2) 

(3) 

10.10 

14.04 

11.82 

0.54 681.14 

0.89 695.52 

1.26 697.74 

0.55 9.65 702.02 

1.51 15.10 727.44 

1.80 11.12 723.78 
fl 

. 4.6 Discussions 

The method·proposedin Chapter 3 of combining 

stochastic approximation with the algorithm of Carew and 

-Bel.anger has been extended to the case of coloured observation . . 
noise. The scheme proposed in this chapter relaX~e 

conditions for adaptive state estimation in coloured 

observation noise (cf.(20». The scheme makes use of two 

results derived in the Chapter: 

(1) The development of the ARMA model for the­

system which allows :the algorithm of .Wilson 

to be used to estimate the noise· transi tion 

matrix A: 

(2) The invariance of the opti~um innova~ions process 

which allows the·use of the methods described 

in Chapter 3 ~o be used,' that is the Carew-

" Belanger algorithm and the stochastic 

approximation .algori thm. 
, 



-d 

The res~tts shown in Table 4.1 indi.cate that the 
/' 

scheme used to estimate the noise transition matrix A is 

valid because filter 2 (the' Carew-Belanger gain using the 

estimated A), i~ different from filter 1 (the optimum gain 

using the true value of A) by only 3.6%. 

As can be seen, when the stochastic approximation 

44 

. algorithm (3.16) is used to track the filter gain (filter 3), 

an improvement of 17%. .was achieved over that of filter 2. " 

Once again, the scheme of c~sed-Ioop tracking is 'shown to 
" 

be more advantageous wi'thout much burden on the computation ~ 

and data storage in the computer . 

! 
! 

; 
.i 

. , 

, OJ" 

I 

" 

.. 
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CHAPTER 5 

. CONCLUSIONS 

The .problem of adaptiv.e s.tate es1iimation which 
'J 

involves the i?enxification.of the Kalman gain matrix 

without it plL-i.oiU. information on the noise statistics have 

been considered in this thesis ~ 
{ . 

For· systems with white observation nOise,two methods 

for solving the adaptive stat§! estimation problem havfl been 

examined: ~ 

" 

(1) The open-Iopp method of Carew and Belanger, 

which is .a contraction-mapping algorithm based 

on a correlation technique:' 

(2) 
~. l. 

The closed-loop m~hod of t~e Robbins and Monro 

sto·chastic approxjmation algorithms. which are 

basically the stochastic counterpart of the 

steepest descend algorithms. 

A scheme which combines the two algorithms has been proposed· 
".';. 

in Chapter 3.· It essentially used the fast convergence 
. , 

(8 iterations in approximately 13 seconds of computer 

execution time) of ·the Carew-Belanger algor~ thm and a finite 

observation sample to identify a Kalman gain within some 

epsilon neighbourhood of the optimum.~ Once inside this 

neighbourhood; it (~d the closed-loop method of the stochastic 

45 

" 
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approximati,on algoritluii, (3.16) to track and improve the , 

Kalman gain., This tracking, (especially useful for, nOise 
, 

,which are slow time.,..varying)has been shoWn lin Chapter 3 

,to give an improvement of approximately 48% over the filter 

J 
with no tracking. This improvement occuring after 1000 

-~ -~-- --'--

, 

" 1 

• -'""" . 

iterations of th'e stochastic approximatiQn a:rgorTth-m-TIf-~ 

which the ten parameters of the gain matr}x were upd~ted 

leads' to, the con firma tion that wi th tracking, the .9ptimum 

filter will be realized as more time elapses. This state­

ment'his be"en pr.oved theoretically in A~diX A, where 

the stocha~tic approximation algorithm (3 .. ~) has Qeen shown 

to converge in the mean-:sluare sense to Kop' 

"The',adaptive, s"tate estimation in coloured observation 
, '\', ' 

noise problem has, been investigated in Chapter 4. 'Thi's 
',> 

.. investigation' has led to t'wo results: 

~ 

(1)' 0 The' op timlinf innovations process is in varian t for 

both the,whi te and coloured observat~ noise 

systel!1. / 

(2) Derivation of' a mixed autoregressive mov:ing ~, 

average, ~odenepresent the syste,m. () 

Result'l has allowed the methods of Chapter 3 to b' 
~ , 

incorPorated into the solution~f the coloured noise problem. 

Reslll t 2 has allowed preliminary !J,nalysis ,of the noise 

transition matrix using the result of Wilson. A novel 

approach has been presented for the problem of adaptiye state 
"--' 

estimation' in coloured noise. It 'involved the estimation of 

, 

. .': 

" 
" 



the noise transition matrix and the transformrtion of the 

observation process; after /~ the scheme of 'Chapter 3' 

was applied. This forllnn~'t!on as' far ~s the author is' 

aware of, is a, first attempt 'of its kind. Numerical results 

obtained have shown that the .prescribed approach gives 

.'~ 

---------------- --_._--

, . 

<> approximately a 3. S%increase in the ,trace of the error 
", . ,. ;- , , 

covariance m~trixfor the open-Ioop,estimation scheme of 
, , 

Carew and Belanger. Also, the closed-loop approach was 

shown to be, once ag'ain, a better method, since it improved 
, 

the open-loop filter by _approximately 17% wi thput'much effort '-

in computation or,storage of data. These results confirm the 

appropriateness of th'e proposed general approach to solve 

the adaptive state estimation probleJII for coloured' observ'ati9n 

noise.' 

Throughout ~his thesis; stochaStic approximation has 

been used for the closed-loop tracking of the filter. The 

.main ,dif'fiC-J.'ilty'::,which has yet to be overcome, is, the slow 

rate' of convargence. If takes ,approximately 1000 iterations 
"~1---

per perameter to arrive at a relatively good estimate (31). 

Acceleration techniques for stochastic appr6xima~ion algorithms 

have been studied by; K~sten, (18). It is ~eft ~r future 

workers in this' area to investigate techniques \iCh will 

accelerate convergence of stochastic approximation as a"pplied 

to adaptive state estimation. Thus, the overall efficiency 

of the qJosed-loop controlle. may be enhanced. 

The difference in the performance of tracking 

" . 
,between the white and coloured observation noise systems is . \ 

> <; 

47 
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" 

qui te large· ,This is due to th.e manner in which ,the noise 

transition matrix h.as bee'n estimated. Further anal)'sis 

48 

might reveal' a relationship between the Kalman gain and noise , c 
-

transition matrices which is ex~licit enough ,to allow a 

stochastic approximation algorithm to be used to track the 

couple in a closed-loop manner. 

A--rarge-p6r'non of-tlie'compuiatTon-flmeof-WHson I s--~~--'---

algorithm is used to ca'lculate derivativ'es of the' conditional 
, . ,. 

residuals. The number of derivatives is dependent on the 
c 

'parameter arid observation size of· the time series. It is 

hoped that the present (and·the only 

,for vector ARMA model estimation can 

further research. 

! 

o 

one to date) algorithm 

be im~ed w~ th 0 
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APPENDIX' A 
.\ 

STOCHASTIC .,APPROXHIATION - PROOF. OF CONVERGENCE 

From. equation~ (2.6), (2.8) and {2.9)-,_t_h_e_f_i_l_t_~e_r_c_an __ c-< ___ _ 

be described by the following equation 

. :R-i +11 i (A.1) 

Define, 

. , 

\ ' 

= 

(A.2) 
> 

From Mehra (21): the autocorrelation functions of the 

innovations process are 
" 

E i 'J H [F . KH ] j [FPH' . LE: i _ j E:1+1 = = 0,1, 

(A. 3) 

Since the filter' is required to -be sta e for" any reasonable 

choice of K, then the admissible; val~~s are KE:K ={K i : P(F-KH)<l}, 

where pC.) deo,otes the spectralrad£i,lS of a matrix. Assuming 

that ."010"-= X o = 0, then the limiting value of CA.2),· using 

• 
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o 

(A.3) is 
"-

.. 

6. 
~ [ FPH' - KW]· m(K) = lim mi(K) = 

i",<D 
(A.4 ) 

6. <D 
~ = E FjKH [·F - KH] j. 

~=O 
where (A.5) 

For F asymptotically stab.1e and KCK, the matrix sum (A.5) 

forms a ·fini te posi ti ve de.fini te convergent sum (29). ' 
" 6. 

Premultipl-ying (A.4) by K~ = l,(K -- Kop )', then 

K'm(K) = K' ~·[FPH' - KW]. e: e: 

(A. 6) 

Let ~max and ~min be the maximum and minimum positive eigen­

values of ~ resp.ectively, thus 

#' 

- ~max IIKe:112 W::.. K~ m(k)::" - ~minll Ke: 112 W. (A.7) 

Since ~ is dependent on K = Kop +. Ke:,'then ~max and ~min are < 

dependent on Ke:' This dependence can be removed by defining 

s . 6. 
. ~max = 

~I 
min 

'6. 

Sup 
Ke:K' 

~ 
max 

Inf ~ min 
Ke:K 

" (A.Sa) 

CA. Sb), 



o Therefore (A.7) can be restated as 

where a a 

and co < a < i3 < O. 

Thus, asSUmption A-3.1 is satisfied for all 

admissible 

ASsu!ll?tion 

Therefore, 

gain K£K" if the regression term is xi 11- 1£1 

A-3.2 can be satisfied by choosing Yi-~ 1. 
I+I 

the stochastic approximation algorithm 

....... " 

converges" to Kop in the mean-square sense. 
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(A.9) 

(A.10) 

, 



. APPENDIX B 

.WILSON'S ALGORITHM (35) 

Consider the mixed autoregressive moving average 

CARMA) model for a st~ionary zero-mean mult~variate time 

series {Xi}' of the form 

52 

- Elll:!._q . 

(B.1) 

where the {ail are independent rd identically 'distributed 

vector random variable wi th~-mean and a fini t: covariance 

matrix D. Botti Xi and 0.1 are of dimension m .. 

Theun.known parameters are ,the mxm matrices 

/. 

.~k (k "'1, 2, ... "p). Elk (k" 1, 2, ... ,'q) and D. 'The.'paramet­

ers, excluding D, are collectively ret'erred to by the 

parameter vector B "' 

Define, • 
~O;-l) ~ 1m - ~i~-l - ... - ~p~-p 

wh.er~ I m is an rnxm :fden ti ty matrix and ~-lis a complex" 

variable. 

(B.2) 

(B.3) 

\ 



~ 

Then the algorithm for estimating Band D can be 
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summarized by the following steps: 

l 

(a) Assume some starting valu:es for the constant 

parameter ).1>0, and Be:n, where n is a parameter 

space determined by thecondi tibn:· -

Cb) 

Cc) 

Cd) 

det ~ (Z-1) 'f ° for Iz-1 1 ~1 , 

det e (;0-1) 'f ° for Iz-1 1 ~1 

fi .. D (B) = 1 N ~ ~ 

Set 1: ai 
I 

N a i i=1. 

,.. .... -1 
Set Q = D 

.... ..... 1 
Form a matrix A with elements Akl = N . ~ 

~ aai Q(ae-)' the vector g with elements 
1 

(B.4) 

(B.5) 

gk 
1 .. -
N 

N all i , ~ ~ 
1: (-'-) , Q a i I and the scaling quantities 

i=1 aSk 

~ 

(e) Construct the scaled matrix B with elements 
~ ~ 

Bkl .. ~! (ak ,\) and the 
~ ~ ~ 

scaled vector 

h with elements hk .. gk!ak . 

I 
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c 
J' 

A 

(f) Set the diagonal elements 8 to the value of 
.'., 

A 

\, ·1 + A, and solve the equations 8TI = h, and 

evaluate a new set of parameters 
A A 

Ilk 
c Ilk (TIkI ok) • 

'" A -,.. "" . 
(g) Set D c D (8) , and test whether the trace. (DQ)<m. 

(i) If this conditions is satisfied, reduce the 

constraint parameter A by a predetermined 

factor v. return to step p . 
. . 

(ii) If the condition is not satisfied, increase 

the constraint parameter A by v, and 

return to step f. 
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APPENDIX C 

:PROGRAM LISTING AND USAGE " '. 

.~. 

The' subroutines'used to'simulatethe'system with 

white observation noise described in Section 3.5 and the 

implementation of the Carew-Belanger algorithm are listed 

in this Appendix. 

The calling steps of the subroutine are as follows: 

(1) Using SUBROUTINE SYSTEM, a set of observation 

samples {Yi } are generated for a certain 

triple {F,G,H} and, sequence {ui } and{v i }:' 

(2) ) From SUBROUTINE DRIC , a suboptimum Kalman 

gain (variable SR5 t:ransposed) gain can be 

calculated using some assumed values for 

Q and R: . , 
• (3) The suboptimum innovation sequence can be 

, 
generated using the generated observation, 

suboptimum gain, and SUBROUTINE INNOV: 

(4) The various values for the autocorrelation 

functions of the suboptimum innovations 

sequence are the outputs of SUBROUTINE COVINN: 

(5) USing the calculated autocorrelation functions 

and the system,matric~s, the values of matrix A 

and the observability matrix B are obtained from 



SUBROUTINE MATXA and SUBROUTINE OBSERY 

respectively. 

(6). Thi SUBROUTINECARBEL will process the 

'previous calculated :values of A;. B, 

.. Co .. ~ E [e:r e:rJ " and the suboptilll\lm 

gain to give an e§ttmate of the optimum 

Kalman gain • 

. .1---":' 

.-J 

' .. " 56 
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C 
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C 
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C 
c 

, 

, 

4 

" 

" 

THIS SUBROUT/N~, WILL lALCULATr THE OBSERVAT!.ONS OF SYSTEM ~~LOW' 

XCI.'1 • ,F'Xltl+(,U(tl 
,Y(fl • HX~n"'V(I,1 

W"'FPF Xll.l 1~ T~r ,C;TA.TES OF' THF SVSTF'" 
VitI IS THF nQ~FRVATrnNS 
ur(l AliO VitI I," THE PROCESS ANn ORsrRVATION N"nTSF. RF'5P. 

x • N X NO 
. Y • NR X NS 
F • N X N, 
H • liD .X _.M 

G • N x NO 
U • ND X NS 
V • NF1 X N5 
'It') • N~+l 

NS • NU~BF.Q nF nASFPvATtON 5A~PLfS 

Wo~~tNG VEC10R5.ARF.­
VI-V' "I x 1 
V4 ANO v~ NQ X \ 
V6 IS "P ,,: I 

NOTF THE INrTIAl VALUE OF,X MUS~RE DEFINED. 

F.XnRNAL SUBRO'JTI~F~ REDUIRED-
MPRO,MAOD. 

\ 

~'MFN5rn"l XIN,NOI. YtN~t"lSI, F(~tNI. HINR,Nl,' 
,(NRtNS). VlI'il/'). V,CNI. V'HN). V4fNRI. VI}INRI. 

On ~ 1C-1,N5 

nIN.NPI. U(NP.N51, v 
W.cNP I 

DO 1· i.l,~ 
vtctJ-XII,IC.) 
CONTlNU~ 
DO 7 r-J,NP 
V'd"aUn',1{1 
cnNTI~UF 
nn , r."NR 
V4111-VII,1(1 
CONTINUF 
CALL MPQD (F,Vl.V1.N.N.11 
CAll·,~PRO IG,V6.V"N,NP.ll 
CALL MAOD IV2.Vl,Vl,H,1) 
DO 4 l-t.N 
XCI,K+11-V('1 tl 
cnNTINUF 
CALL MP~O IH,Vl.V~'NRfN.l1 
CALL ~AOO IV~tV4tV~,NRtll 
00' t-l,NR 
VCl,Ie I.V5! II 
RETURN 
END 

'" .. -'--
" 

" 

I 
2 

'3 
4 
~ 
6 
7 
8 
9 

10 
II 
1'2 
13 
14 
15 
16 
17 
18 
19 
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20 .' 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

;~\ 
34 . 

3~ 
36 
37 
38 
39 
.0 
41 
42 
43 
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46 
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48 
49 
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c 
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c 
c 
C 
C 
c. 
r 
~ 
C 
C 
C 
c· 
C 
r 
r, 
( 

C 
C 
C 
C 
C 

Y 
r 
C 
c 
C 
C 

~UARnU1INf ORlr fFI~.H.R,O.P.N.NR;NP.FPS.LI~tT,Sl.S?S"~41 
",SD'.Sq?SP',SQ4.~O~.~R~.SP7.S0"5P~.Vl.V?) . 

THI~ SURRoUTJNE SOLVES FOR P OF THE OISCRFTF RICATTI 

Wt-'r:PF n I tNOtC"ATFS TRANSPOS{ OF MATRIX, 
F' • ~ X ,., 

• Ci6' 5 
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1 
2 
3 

• 
5 
6 
7 
8 
9 

(, • " X "0 
H • NO X " .".' . 

~~~--'-->10. 

\. g NR X NR 
O· • N? , NP 

'" 13 P • " X N . 1-

W0RKtNG ~4TRtCES REOUIREO ARr.-

" Tn C;?, AqP. ~ X N 
5Rl Tn SR:\ AoF N X "R 
SR. IS NP X NP 
SR5 TO SRl ARF. NR X N 
SP 1 . I S NP X N ., 
SP~ IS N X NP 

wnR"I"4 VfCTORS ARE-· 
~). 

Vl' AND V? ARE 1 X N 

FXT~RN'L SUPROUTINES REaUIRE~ ARF­
~TRN,MPRO.MSUB,OLY~.MADO,~tNV,NORM. 

n'~F'NSfnN ,Ff.N,NI, r.IN,NP)1 ~N~~l. RINR.~RII aUiP,NP,. PIN,N) 
. ntHC'N5tt)N ~10hNl, 57IN.NI. f.'\f~,Nlt Slol"l,NI, S~ININlft 56IN.Nl. 57 

'~i~~~5'ON SP1INP~N.r,' SP21tls-N"'--(. vliN;' V;:q'Nl . ~ . 
OlfolENSION SR1(N,NRJ. SRe--<N.NR1. SR1IN,NRI, '!;,R4(NR,NRI' SR'5(NR,NI' 
lSR6(N~.Nl' SR7(N I / 
SUM1~O. . / 
no 1 t. <'Nt? " :. 
on 1 J-
SR5( t ,'J _0. 
n" ;1 ,,_ ,LIf..1IT 
CA.lL ~.TRN (H,S~t.NDtNl 

"CAll MoRO (Sql,SQ~.S,,~,~R'Nl" 
CALL MTR~ I~F ,52 ,'''NI 
CALL MSU~ ·(57,S~t51tN.~1 
CALL'MT~N ISR'5,SD"NPt~-~ 
r'ALl ur;-"o l!io"th5D7,AI,NR.NPI 
CALL ~~pn (5P115Q~,5',~,~R'NI 
CALL ~PRn (r.,O.SP'.N,NP,NRI 
.CA'lL MTPN (("SP1,N'ND"1 

. CALL MPQ~ (S~?sot,S4,N'NP.NI 
CALL ~AOD (S1,S4,S1.N,NI •. 
CALL MTRN {51,56,N,HI , 
CALL DLY~ IS~tS"P,NtFP~.~4,S51 
CALL "11'110 dH.D,SP1','1Q,N.NI 
CALL MDPn ·(5P1',5Rl.~R~.NR.N.NRI 
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45 
46 
47 
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.9 
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53 
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CAI.L.",Ann IS~4.R,Sj:U.NQ,"'Rl 

CALL "'INV (~R4.NQ.T~5T,Vl.V" 
IF (TEST.FO.0.1 GO Tn ~ 
CALL MPR~ (SR7.SZ.SR6.NR.N.Nl 
CALL ,..p~~ (SR4.SQ6.SR~.NR.NR.Nl 

rAt\. Nnp~ 11'1.~tJu't"'.NI 

nn T.A •• 1:1.5 (stJa.t 1 -$1I"'2 1 
IF ·lnn·rA.LT.fPSI GI') 'TO 4 
su~t -S(ll,l2 
Ct"INTtNtlF 
Gf' Tn 4 
PRf~T Ij 

RF.TURN 

F~Q~~T 11111.\Ox •• Nn SnLUTION rnR THF nISCR~TE RfCATTT F.QUATtON*,I. 
11111 

fNO 

, 
SUfHml!TINF' DlVA 1A.,('].D.N-,EPS.Tl.T21 

THTS SIII1ROUrTNF' SOLVFS THF nISCR~TE' LYAPIINOV FCUATTON. 
P • AP,lITI+O 

WHFR[ (TI INntC~TES TRANSP05F 
~.PtANQ 0 ARr'N·X N ~ATRrCES 

Tl Tn T~ ARF. N X N WOR~ING ~ATRICES 

EXTFr?NAL SlJRRnuTt"l~r, REnUTREO-
MpqO. 

nt,..tNsrON AI~'''Ilt ~INtN). PCN.N) 
OIM~NS'ON '1INiNI. T21 ... ,NI 
00 L J_Z.N 
"'-J-l 
01" 1 I-t.,.. 
rHJ.Yl-OlttJl .. 
on, J-l.N 
on , I-t.~ 
T1fJ.II-Aft • .J) 
•• 0 
00) J-l.N 
01') , .J-'.~ 
PI t .. ,,.,,11 tJl 
SU'-'1·0. 
CALL "'PRO (1\1~.l:?tNI""tll 
(ALL ~~pn fT,.Tl,OI~,N'.NI 
0""1-1,,",, . 
DO , J.,. N 
PI t .JI.PII.JI+QI J dl 
CALL NnR~ fP.SU~2.N.NI 
F.PDOq.I\~SfSUV'-$U~ll 
SU .... ,.~tI ... ' 
W:·~"'1 
IF IFRnnR.f.f.FPSI Gn Tn 4 
IF f~.Fn.ll r.n T~ 4 
RfTIJ~~ 

'- .. ,-
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SUAQ~UTJN~ INNnV. (·Y'HtF •. r; ... t,...XH.r,A,.,,..,,.N'NR.~S'NChVl'V"V1'V") 

THIS SURROUTINf wTlL '(ALCULAT~ THE INNOVATION SCCUFNCE FROM 
THF. SAt.fP.lFO nRSF.DVATlnN5. 

GjM~Altl • YIT1-HXHlt/l-ll 
. XHll+ll1l • rXHltl1-)I+GAIN CillMMAlt) 

WHfQF ~5 IS THF ~~EQ hr SA~~Lfn pnINTS 
XH IS THF FSrnU .• TE' OF THF .$Y'11::5 X 

~ .. z ~: ~ ~S • ~ 
F • N X N 
GA.IN • H'X NR 
GAM,",A • NR X NS 
XH • ,.. X NO ~ 

NO • "5+.1 

,,"ORK ING VECTORS ~RE-' 
VI AND V2 ARE' N X 1 
V3 AND V4 ARE' NR Xl 

EXTERNAL 'iIlAqOUTtNFo; 

.' 

RECUI n ( ~:;~B'MAOO. 

/ 
",-/ 

OI~FN5ION Y(NR,NSI, HINR.NJ. FIN.1{I. GAINfN.NRI, r."'''''''A(NR.NSJ. XHI., 
'1"hNO), VIIH). V~INlt V~O~RI. V4tNRI ~ 

on 1 '-l.N 
Vllf)aXHCT.ll 
C~NT I NUE . 
OO'4'1C~1,NS 
r)("1 '} 1-!tNR 
V'IIlll_VI.',IC) 
rnNTfNUI=' 
CALL ~PRn (H.V),V4,~R.~.t) 
CALL "15UR ,.cV3.V4,V4,~R,11 
00" l-l,NR 
GA""""A( 1 ,K l_V41 I) 
CONTINUE' 
CALL ~PRn IF'tvl.Vl.N.N.l1 
CALL ~r'lpn ,1r;"I~hV4.Vll'1.NR.l ~ 

CALL u~nn IV7.Vl.Vl.~tll 
on 4 I-l.~ 

XHlt.K+l1-VlCII 
RETURN 
E,O 

c _ ~R .X -"Q"x NN T~Nsnp 
H z ~R X ~ ""ATQlx 
A ~ NHR X NR 
r: ... ~ x ~ 
GAIN. N X ~I'I 
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w~~~r~r. ~ATD1rF~-· 
51 Ar-tO 52" AA"F ~ x 'i 
S, 10 S~ ARE NR X.HR 
~6 t S NA X pre 
~7 ,~ Nq X NQ X N·TF.H~Oq 

F'XTfANAL _C;UC!QntJTtNF~ ~FIiUIRFn­

\4PPf) • 

D'~F.NSlnN CI~P.Nq.~~I. HCNA;NI. GAtN(~.NRI' AIN~q.Nql. SIIN'~)' 51 
1 q:hHI, S,INR,NRI. S4INR.NRI.· S~(~JhNRI. SbINR.NI. S7(NR.NR,Nl. FI N 
;t ,N I 

1')01 r.l.~ 
f)n } J.l,1I4 
5trl.Jlwn. 
51ft.11.1. 
I"U"I ... r., .... 
CALL ~pqD IH,Sl,S~,NPIN'~) 
CALL ~pp" 15~.GAtN,S~.NR,N.NRI 
('ALL foIppn (ST.F,S?"N,N.N) 
no 2 '-l.N 
,,~ '} J-t,"" 
SlII.Jl·~i'lt,JI 
nn '11 1-1.NR 
0('1 ., J_\ta.tp 
S711'J.~I.S1II.J) 
On 4 -=.?~.", 

on,. '-',NR on 4 J_1 ,~q 

t~·t~-,,·a.rQ.T , 
AI PhJI.rl t .:} • .:'," 
O,:'I'(-.:'al.N 
on 6 IC.T-k;:.N 
1('r·rl-... ·l 
00' n-I.Np 
on ~ J,J.l.NP 
5' I r f,.JJ I • ~ 7f , t • JJ.I( I 
~41 tl.JJI.rl' t .JJ.rll" I 
CALL v~PD rS',S4,S~'ND'ND'NRI 
0(' f., I. t '.",m 
£'In f, Jw) .ND 

IN.PC.I-tJ·~D+l 

." At '~·.JI"S'\t r tJJ+A( IN.JI 
RE'TU"~ 

r 
C 
c 
r 
c 
r 
r 
r 

<ND 

THIS SVBq~UTrNF CALCULATES THF.OASERV~TInN MATRIX OF tF.HI.' 
~HEDF. A • nASFRVIF,H). 

., ~lNR X N. 
H • Nt! X ~ 

~.l'XN 
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W~RKtNG ~AT~ICFS-
51 AND S7 ARE ~ X·~ 
~3 15 .... 1) x' ~ 

F'XTc-RNAL SUqROtJTtNC' RF.OU1RFn- MPRD. 

[')l\olFNSln~ Q("'Nq-t~l. HINlh"', F",N. .NI ,.51 IN • .,.'. 51tN .... '. -S'\CUR."ll 
on 1 t.l,~g 
001 "J_l.N 
"Rfl.JI·.HII.JI 

1"1"'" , t.l .... 

~\I I. . . 
'\~~ (~"ili1J.!~~ .' 
. nt"" 4 ".,... ~ 

(ALI "OgO, IS1-,':.5=,\,,,.N,NI 
CAll ""PRI"t~.S.~.NR .• N.NI 
DO., t.l.NR '- -
n('1 " Jal.~ 
["·("·-ll."·Q~r . 
PC lNotJl.S'(, .JI 
nn 4 r-1,'" 
0"-4 J-l,N 
51 (t tJ.I.~'ll.jl 
RFttJRN 
END 

T~'" 511nR(,,)IIT1NC' ",ILL C:"LrULATF fHF rOVARIANO" OF THF 
1"''''tWATI''''' ~~\lF'~CF~ 

(IJ1 • stJ"'l.r.~' (1AMMArt+JIr:.I\,",Mtdll INS 

\NF'Q~ r -. NR X .,.1) )( H" TF'N$'1Q t 
r.I\"'",", . '. NO X NS "''' rrH x 

'IN .. -"'+1 

~nqKtNG "AT~TrF~ hRF­
S1 ~"D 52 AR~·"'q x 'IR 

wnq~tNG VFrT"g~ "qC'_ 
Vl TO VII A,q C' NP X 1. 

C'XTC'D""I c\JFVU'IUT 1 "cot:; Dfnu I Drn "or_ 
"'TR..,.~PQn.I-lj\('I('I. 

/' 

I)I"'''..,SI'''''' CI'II)"II).~!~'l. Cj"P<I.,...t(NQ,"'SI. ·SlC""R."PI. S7INR.~QI. VIINP). 
1 V2CNI'?). V"'IU~). V4(NP) 

M("I 4 - T -1 .NN 
NL-'i~+l-t 

("H"'! 1 J_""'o 
01"" 1 1""_' .~'r:o 
~7IJ."'II'I.r.. 

no " II'_""'L 
('I" ., Jab ".IQ 

V'IJ).r;j\",·'j\I.l.I'U:-ll 
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·V'CJ1·GA~MiIJ.~1 
c".n r'illr 
CALt 14,TAJ.t rv",v •• I,l.IPt 
CALL ~rQo ·IV2.V4,~1INR.l.NRI 

CALL "'''on 1"-',Sl.S,.Nlh~Al 
cnNTY-'U£ 
On .. r.l.~p 
On4 ICK-l.NR 
C(I(.I(I(,tl.S7{K.~I(}/~S 

SUBRrn:TtNF C~R~fl IFI~.CO.etA.GAIN.G 
1 L51'!=' .!,'1.~4 .S",~",Ij."·!,.,,.~a ,51"'''1 1 

r 

~K.Bf.~rAtlIMIT'EPs.N.~q.N~R 
1,V,"V,.V4.V~IV~1 

THI!Ii SUBRnUT1Nr wtLL c.ALeUL 
USINCi THF CARF.W ""If') nrlANc,F. 

THE ~STIMATF KALMAN ~~IN 
t\Lt'·(lRITHv. 

F 15· ~ x ", 
HrSNRXN 
en 1S NR X NR 
B l's"NNA X "I. 
A IS N'iR X NQ 
GAIN AND r,AINIC ARE N x HR 
f\' r ~ t:oI X N"tR 
f'T A t ~ N X "I P• 

WORK r~r. "'''TRICES 
51 Tn 54 N X N 
~, ANO 56 NR X HR 
t;7 AND sa ... x N~ 
S9 I!' tiR X N' 
S10 IS Nt," x' NNR 
~ 11 IS N X "IN!? 

WC"IRItIN(. VFCTni')S 
VI AND V2.NNR x 1 
V)"A1\D V4 N X 1 

- v, ANn V6 NR X 1 

FxTFRNAL 5URR~UTtNf.~ RE~UIREO-
p S~ J "IV ,MPRD ,MT AN ,MS\JB ,"'1 NV ,MAO(1 • Non' ... 

OIUFNSlnN F(~.NI. ~(NR,~I. crrINQ,NR1. ~IN'IR.NI. AINNR.NRI. GAINfN, 
INRI. GAUJ~I":,"IRI. nl " .. ~I~RI, OTAUhNRl 
DI"~FN~tnN 511ft."!)., 57IN;NI. !j,IN.NI. S4INt"NI. SISINR.NQI. S6fNR.NRI 

1. S7IN,NRI. °SPPhNRI. (j'')(NR.NI. '~l('1INNFhN~IRI, !itIIH.NNRI 
OluFNSTON V1INNR). V7INNR1. V1INl. VAINI. V~INRI, VblNRI 
SU",-O. 
(ALL PSFINV 1~.NN~.N.AI.510.S1,S11,Vl,V2.V3,V41 
CALL ~ppn l"t.AI~IA.N.NNR.N~1 
On 1 I.l.~ 
001 J-I.N 
SlIl.JI-O. 
00 ~ ~·',Ll~'T - • 
CALL ~PRO IH.Sl.S~.NR.N.~1 
CALL ~TPN IH.S7,NR.NI 
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C 

CALL w~Rn 1~~,S7.Sb.Nq,N,NRl 
CALL ~5UA fC~.S6,S',NQ,Nq) 
••••••••••••• 
on 2 '_liNR 
DO , Jal."IR 
Sltlt.JI.S,\(t.Jl 
CALL ~r~v IS~.N~,TF~T.V'\.V61 
'r~ IT~~T.r~.~.1 r.n Tn ~ 

CALL ~rRn Ir.St,s,.~,PI,Nl 
CALL ~r~o f~2,Sl.Sft,~.~.NRI 
CALL ~sun (nTA,SAI~AIN,NRI 

'CALL MPRO 1~~.S6,GAIN~,N.NR,NRI 

••••••••••••• 
CALL ~PDO f~AI~.H,S'.~I.Nn.NI 
CALL ~SU~ rr'S',S',N.NI 
CALL ~pno r~l.~l'~~IN,~.NI 
CALL ~TRN (57.54.NtH) 
CALL ~DRn 1~~,~~.~7IN'~INI 
CALL vSUO r~AIN,r.A1N(t~1.Nt~Rl 

CALL ~TnN IS1.sq.'i,~nJ 
CALL MPRO IS7IS~tSA'N'~~INR) 
CALL MP~D ISA.S9.S,.NI~RtN~ 
(ALI ,.."on l~l.S ... ~I.'1t") 
CALL Nr'l'" ~,.tI"lP",.~h"ll 
~FLT~.~ASIAN"R <l~1 
IF ,IOFtTA,LT.fP51 GO TO 4 
SUW'aAN("IO ... 
CONT t p'UF. 
PRPH 6. ( 
RETURN 
PPINT 1 
RFTUI'lN 

. , 

FORMAT 
FnR...,,,T 
END 

111,T40"NUMBER OF.ITEnATION~ OF THr ALGbRTTHP •• ·.r'l 
II 11'40X •• CARfW AND AELANGER ALGORITHM STOPS.,IIII 

SUPQnUTtN~ PsrlNV 1~'N.~'Alt~ttS~tS,.Vl,vi.v~'V41 

TH I S SUf\ROUt I Nf' C.t.Lr:ULAT ES THF PSE:lInOI NvrRSF. 
O"PAT~IX AI~ x VI.' 

IF A IS RANk: loA 

" .... fATA1\INVfRSFlAT 

I J:' It I ~ RUlli:' N 
..... ATIAATIINVfRSF. 

W"E~r A' INDICATES PSEUDOINVF.RSE or .' 

WORKING MATRICES 
SIISNXN 
~7 Is'" )( ... 
.. ,''',\lXN 

1 
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c 

VI .~n V2 ARf N X 1 
Vl AND V4 ARE M X t 

I ~PRD.~INV. 
,xr'RN&L raUp~nUTINFJREOlJIRrn ARF-

OTMrN~TON ~{IM'N , '~I TN,NI, S21M,MI, 
l. V", I ,.., t VA. 1104) / 

00 t I-I.'" '"-----' 
01"1·1 J-l."4 
S":,hI1.AII.JI 
If" {"4.CiT.NI r,n TC" 2 
CALL ~PRn 1~,·.A,5~.~.N,"41 
(ALL ~tNV IS,,~.T'ST.V',V4)· 
'F ITEST .f't').O~.1 GO TO , 
CALL MPAO 1~'tS,.AttM.~,Nl 
RFTURN 
CALL ~~RO (A,S't51,N'~INl 

CALL "'tHV ISltN.TF~T.Vl.V21 
IF fTr~T.rO.r.l ~O TO , 
CALL &.IpRn 15',51 • .I.1.M.N.N) 
AETIHlN 
PAINT 4. 

RETURN 

" 

51.IH.NIt VIINJ. V?(N, 

FORIo4AT 1IIIIt40X"'PSEuootNVERS~ nOES NOT EXTS,-.IIII 
.~n 

THIS 5unROUTr~F CALCULATES THE NORH OF MATRIX A. 

• " A NR X He ~ Torx 

OI~FN510N AINR,Nel, 
~U~hO • 
on 1 l·,.~!R 
DO 1 J'l.~C 
·su~.SU~.AI I ,JIIAI I .JI 
A"IOI'JY'~()RTI5tl"'l 
RrnmN 
'Nn 

SUARnUT1NF Y.SU" fA,~.C,Nq'Nrl 

• 

THT~ ~UM~UTlNE SUBTRACTS TWO MATRTas AS BELOW- •. 
C • A-B. -

WHrRF A.~.AND r ARF NR X NC MATRICES 

DI~ENSI~N AINR.NCI, nINR,NCI. ~INR.NCI 
01"'11 r.ltNI1 
On 1 J_l,NC 

'CI ",JI."" '.J'-RII ,JI 
R!TURN 

o . 
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r , 
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SU~RnUTIH! .~TR~ IA,A,NA.Nel 

THIS SUBRnUTINF OOfS THE OPER4TIO~ AElO.­
B • 41TR4NSPOSFI 

WH!DF A 15 A HQ X Ne ~ATAIX 

OI~"NSlnN AtNR.Nel. AINC.NRI 
no 1 1-'. NR 
on 1 J-f,HC 
F\(Jtll-A(J,JI 
RETURN 
END . 

THIS SUARnUTINF ~UlTIPllrs TWO H4TRIX AS BElOW­
C • -'6 . 

WHFA!~,.A • NR X Ne 
", ~ • Ne x N 

• ' C NR X N 

MATRix 
"'ATRIX 
..... fRlx 

nt~ENsrnN AIHRINe). RINC,Nl. (tHRIN) 
on 1 '_'.NIl 
on 1 J"l,N 
(II.JI-Q. 
no l'k'_HN( 
CII.JI_AI1·.K.I'Alte,JI+CII.JI 
R"TIH~N 
END 

SUBRnUTINE ~AOO IA.R.C,NR.Ne) 

THI~ sun_nUT IN. ADD~ TWO H4TRICES AS AElOW-
. C • A+B 

OlMENSl0N AtNR.NCI. DINR.Nel. (INR,Ne) 
on 1 l.l,~Q 
Of) 1 J.l.NC 

t 1 CII.JI-AII,JI+RITtJI 
RETURN 
ENn 
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