
A GENERATIVE APPROACH TO fESHING GEOMETRY

A GENERATIVE APPROACH TO MESHING GEONlETRY

By
MUSTAFA ELSHEIKH, B.Se.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the degree

tlaster of Applied Science in Software Engineering

Mcl'vlaster niversity
© Copyright by Nlustafa Elsheikh, September 2010

MASTER OF APPLIED SCIENCE (2010)
(Software Engineering)

TITLE: A Generative Approach to iVleshing Geometry
AUTHOR: i\Iustafa Elsheikh, B.Sc. (AI-Azhar University)
SUPERVISOR: Dr. Jacques Carette, Dr. Spencer Smith
NUi\IBER OF PAGES: viii. 116

11

I'vIcMaster University
Hamilton, Ontario

Abstract

This thesis presents the design and implementation of a generative geometric ker­
nel suitable for supporting a family of mesh generation programs. The kernel is
designed as a program generator which is generic, parametric, type-safe. and main­
tainable. The generator can generate specialized code that has minimal traces of the
design abstractions. 'vVe achieve genericity, understandability, and maintainability in
the generator by a layered design that adopts its concepts from the affine geometry
domain. 'vVe achieve parametricity and type-safety by using MetaOCaml's module
system and its support for higher order modules. The cost of adopting natural do­
main abstractions is reduced by combining MetaOCaml's support for multi-stage
programming with the technique of abstract interpretation.

III

Acknowledgments

I would like to thank my supervisors for their support, and my parents for their
love.

IV

Contents

Abstract III

Acknowledgments IV

1 Introduction 1
1.1 IIotivation and Goals. 1
1.2 The Nlesh Generation Problem 3
1.3 The Scope of the Thesis . . 3
1.4 Contributions 4
1.5 Organization of this Thesis. 4

2 Software Engineering In Scientific Computing 6
2.1 Scientific Computing . . 6

2.1.1 Complexity of SC 7
2.1.2 Real 1\ umbers 7
2.1.3 Change 8

2.2 Software Quality .. 8
2.3 Approaches to Better Quality 9
2.4 Program Families in SC 14
2.5 Conclusion........... 14

3 Generative Meta-programming 16
3.1 leta-programming............. 16
3.2 MetaOCaml................. 17

3.2.1 Staging Annotation in MetaOCaml 17
3.2.1.1 Bracket.......... 17
3.2.1.2 Escape........... 19
3.2.1.3 Nleta-Programming (Or, On Splicing of Functions) 20
3.2.1.4 Run.. 21

3.3 Abstract Interpretation. .. 22

v

4 The Design of the Generative Geometric Kernel
4.1 Design Overview .
4.2 Details of the Layered Design
4.3 OCaml IIodules and Functors

5 The Multi-Staging Layer
5.1 Building Staged Types
5.2 Building Staged Operators ...

5.2.1 Staging Unary F\mctions
5.2.2 Staging Binary Operators
5.2.3 Staging Monoid Operators
5.2.4 Staging Ring Operators
5.2.5 Staging Common Types .
5.2.6 Staging Code Constructs.
5.2.7 Generating Let Statements.

5.3 Example: Building a Generator for the Power F\mction
5.4 Conclusion .

6 The Number Types Layer
6.1 The SET Type . .
6.2 The SIGN Type .
6.3 The ORDER Type
6.4 The RING Type .
6.5 The FIELD Type
6.6 The REAL Type .
6.7 A Model Implementation for Integer Number Types
6.8 A rvIodel Implementation for Rational Number Types
6.9 A Model Implementation for Float Types.
6.10 Example: Staged Power
6.11 Conclusion .

7 Affine Geometry
7.1 Introduction .
7.2 Affine Spaces .

7.2.1 Affine Subspaces
7.2.2 Bases .
7.2.3 Frames .
7.2.4 Dimension and Codimension

7.3 Affine Transforms .
7.3.1 \1atrix Representation of Affine Transforms

VI

24
24
25
26

28
28
30
30
31
32
33
34
34
34
36
39

41
41
42
42
42
43
43
43
44
45
48
51

52
52
53
54
54
54
55
55
56

7.4 Euclidean Geometry ...
7.5 The Linear Algebra Layer

7.5.1 The TUPLE Type .
7.5.2 The MATRIX and DETERMINANT Types

7.6 The Affine Space Layer .
7.6.1 The VECTOR and POINT Types
7.6.2 The AFFINE Type .

7.7 Hyperplanes .
7.8 The Types HYPER_PLANE and Hplane_Operations
7.9 The f\/Iodule Orient .
7.10 Hyperspheres .
7.11 The Types HSPHERE and Sphere_Operations.
7.12 The Module Insphere .
7.13 Simplex .
7.14 The Types VERTEX and SIMPLEX
7.15 The Module Inside
7.16 Conclusion .

57
58
58
58
60
60
61
62
64
64
65
67
67
67
68
69
69

8 Implementation and Results 70
8.1 The Tuple Models. 70
8.2 The Module VectorStaged 71
8.3 Example: Generation of Dot Product 72
8.4 The Module En_Point 74
8.5 Example: Generation of 2D and 3D Translations. 75
8.6 Example: Generation of Distances in 1D and 2D 76

8.6.1 Example: Generating Insphere Test for 1D and 2D 78
8.6.2 Example: Generating Orientation Test for 1D Using Exact and Inexact Zero
8.6.3 Example: Generating Orientation Test for 2D 82

9 Conclusions
9.1 Summary of Contributions
9.2 Related Work
9.3 Future Work.

Bibliography

A Reference Guide
A.1 The Multi-staging Layer .

A.1.1 Staged Types and Operators .
A.1.2 The Module Int .

Vll

83
83
84
85

87

97
97
97
98

A.1.3 The l\lIodule String .
A.1.4 The Module Baal .
A.1.5 Staging Code Constructs

A.2 N umber Types .
A.2.1 The Module Type SET .
A.2.2 The ~Iodule Sign
A.2.3 The Module type ORDER
A.2.4 The /Iodule Type RING
A.2.5 The Module Type FIELD
A.2.6 The Module Type REAL

A.3 Linear Algebra
A.3.1 The Module Type TUPLE
A.3.2 The Module Type MATRIX
A.3.3 The Module Type DETERMINANT

A.4 Affine Space
A.4.1 The Module Type VECTOR .
A.4.2 The Module Type POINT .
A.4.3 The lVlodule Type ORDERED_POINT.
A.4.4 The Module type ISO_AXIS_ORDERED_POINT
A.4.5 The Module Type AFFINE
A.4.6 The Module Orientation
A.4.7 The ~Jodule Side .

A.5 Geometric Objects .
A.5.1 The Module Type HYPER_PLANE
A.5.2 The Module Hplane_Operations
A.5.3 The Module Type HSPHERE ...
A.5.4 The Module Sphere_Operations
A.5.5 The Module Type VERTEX .
A.5.6 The Module Type SIMPLEX
A.5.7 The Module Orient .
A.5.8 The rvlodule Insphere
A.5.9 The Module Inside .

Vll!

98
99
99
99
99

100
100
101
102
102
103
103
105
106
106
106
107
108
109
109
110
111
111
III
112
112
113
113
114
115
115
116

Chapter 1

Introduction

This chapter provides the background and motivations for this thesis. The contribu­
tions of this work are stated and the thesis organization is given.

This thesis has evolved out of the following works:

• The work by Smith et. al. [SlVIC07] on improving the quality of scientific com­
puting applications using the program family approach.

• The work by Carette et. al. [Car06, CK05, CK08] on writing generic, efficient,
and type-safe generators for a family of Gaussian Elimination algorithms using
r-,/IetaOCaml's multi-staging facilities.

An explicit goal of this work was to build a program generator for a family of mesh
generators that results in improving the quality of mesh generation software. As a
first step towards this goal, the generative geometTic kemel (GGK) was developed.
GGK was designed and built using the generative meta-programming facilities of
MetaOCaml. The resulting kernel can generate specialized geometric primitives and
objects which can be used to support a family of mesh generators.

1.1 Motivation and Goals

The development of scientific computing programs faces several challenges. Some of
the prominent challenges are:

• Managing the complexity of the software.

• Managing the anticipated changes in the software.

• Taking ad\ antage of the similarity in the algorithms and data structures.

1

MASc Thesis - M. Elsheikh - iVIcMaster - Computing and Software

• Answering the trade-off between efficiency and accurac).

ll'aditionally, the focus of scientific computing development is on answering the 'ef­
ficiency versus accuracy' trade-off. This leads to undermining other qualities of the
software such as usability, reusability, and maintainability.

The use of proper software engineering practices can help in meeting the chal­
lenges of scientific computing programs without neglecting software quality. The
most prominent software engineering approaches are object-oriented design patterns,
component-based development, aspect-oriented development, program families, generic
programming and generative programming. JVlost of those approaches advocate for
modularity, abstraction, and reuse.

In particular, the ideas of program families have been recognized as a promising ap­
proach to develop quality scientific software. However, the program family approach
as mean to analyze and design software does not address the following problem:

• How to achieve high parametricity, yet reduce the cost of abstractions? And
how to reduce the cost of abstractions without undermining understandability
and maintainability?

rv1any abstraction mechanisms (e.g., templates, polymorphism) can provide genericity
and parametricity. However, they generally result in run-time costs. Some mechanism
such as template meta-programming can help in reducing the cost of abstractions.
However, the resulting design and code are difficult to understand and hence suffer
from maintainability problems.

Generative programming can address the problem of implementing program fam­
ilies with high parametricit) and luw cost of abstraction. In particular, multi-stage
programming is a viable approach to develop program generators where the overhead
of abstraction can be reduced using program manipulation at different stages of ex­
ecution. However, a typical problem incurred in generative programming is ensuring
that the generated programs are well-formed and well-typed.

MetaOCaml an extension of OCaml, has been recognized as a promising solu­
tion to those problems through its multi-staging facilities and its static type system.
MetaOCaml ensures the well-formedness and well-typing of both the generator and
the generated programs.

\"re extends the application of multi-stage programming to geometric computa­
tions related to the field of mesh generation. aiming at enhancing the quality of the
mesh generation software.

2

MASc Thesis - fill. Elsheikh - McMaster - Computing and Software

1.2 The Mesh Generation Problem

Given a description of a geometric domain, the mesh generation problem [T\rVOO,
TS\r\f99] tries to decompose the interior of that domain into a set of elements. Those
elements take various shapes such as polygons in 20, and polyhedrons in 3D. The
set of elements is called a mesh. Meshes are widely used in the applications of com­
putational science and engineering. There haver been some attempts for improving
the quality of mesh generation software by using better software engineering practices
[ESC04, SY09].

A Family of Mesh Generators

i\lesh generation exhibits different variations, such as the shape and connectivity of
the elements, the underlying geometry, the algorithms, and the data structures. There
have been some attempts for improving the quality of mesh generation by using the
program family approach [BHK06, Cao06, HLC+06]. A comprehensive study of the
commonalities and the variabilties in a family of mesh generating systems can be
found in [SC04].

1.3 The Scope of the Thesis

vVe propose the following layered design for implementing a family of mesh generators:

Meshing Algorithms
Meshing Data Structures

Meshing Topology
Meshing Geometry

Each layer defines a set of abstractions that represents the commonalities and hides
the variabilities in the family.

Vve propose using the generative meta-programming methodology to build a pro­
gram generator that can generate specialized members of the family. Generative
meta-programming can reduce the cost of generic abstractions resulting from the
family approach without sacrificing the understandability of the generator.

The Generative Geometric Kernel (GGK)

In this work, we limit our scope to the lower layer - the meshing geometry. We
show the design and implementation of a geometric kernel. the generative geomet­
ric kernel (GGK). The requirements of the GGK were motivated by the needs of a

3

MASc Thesis - I\'I. Elsheikh - I\IcMaster - Computing and Software

program family of mesh generators. GGK was designed and built using the genera­
tive meta-programming facilities of MetaOCaml. The resulting kernel is a generator
that can generate specialized geometric primitives and objects. Vve show that using
MetaOCaml's support for multi-stage programming, the cost of abstractions in GGK
is reduced.

1.4 Contributions

The following list highlights the contributions of this work.

• Extending the techniques of [Car06] to the field of mesh generation. 'vVe com­
bined multi-stage programming, abstract interpretation, and OCaml's module
system to build a generator that it is well-typed, highly parametric, and has a
low cost of abstraction.

• Designing a layered generative geometric kernel (GGK) that exhibits modular­
ity, parametricity, domain abstractions, understandability, and maintainability.

• Developing a set of abstractions for coordinate number types that allows writing
geometric computations independent of the number type implementations.

• Developing a set of geometric abstractions based on affine geometry that can
provide a basis for a family of meshing algorithms.

• Providing a proof of concept implementation for the GGK kernel that success­
fully achieves the goals stated in Section 1.1.

1.5 Organization of this Thesis

Chapter 2 provides an overview of some of the common software engineering ap­
proaches to improving the quality of scientific software. The suitability of the program
families approach to scientific computing is also discussed.

Chapter 3 provides a background on generative programming and multi-stage
programming facilities in MetaOCaml. The technique of abstract interpretation is
discussed. Abstract interpretation is used in this work to eliminate unnecessary com­
putations in the generated code.

Chapter 4 gives an overview of the design. Chapter 5 describes the multi-staging
layer of GGK. The multi-staging layer offers abstractions for building and manipu­
lating immediate and code expressions. Chapter 6 describes the number types layer.
Chapter 7 introduces various concepts of affine geometry that are implemented in

4

l"lASc Thesis - fv!. Elsheikh - JVldvlaster - Computing and Software

GGl<. The layers: linear algebra, affine space, and geometric objects are described.
Several examples are given showing the code generation in action.

Chapter 8 presents several modules in the implementation. Several examples for
building code generators and the resulting code, are presented.

Chapter 9 concludes this thesis by providing a summary of the contributions, a
review of the related work, and an outlook on the future work.

Appendix A is the reference guide for GGl<. It lists the modules. and gives details
on their interfaces.

5

Chapter 2

Software Engineering In Scientific
Computing

Scientific computing (SC) software deals with numerical approximations of continuous
quantities. The are three major challenges that face SC. First, SC software can be
very complex. It can involve complex processing of large amounts of data. Second,
SC has a wide-variety of trade-offs regarding its aspects of quality, such as usability,
accuracy and efficiency. Last, SC has to be extensible. The underlying models of
SC have an experimental nature. This means that the understanding of the model
changes over the course of its development. Therefore, SC software should be built
to accommodate change.

Section 2.1 introduces these major challenges. The answer to one concern would
normally compromise some other concern. Good software engineering practices meet
these challenges without compromising quality. Section 2.2 introduces software qual­
ity and section 2.3 provides an overview of several software engineering practices
widely applied to Sc. In section 2.4, we focus on the program family approach and
its application to SC software.

2.1 Scientific Computing

Scientific computing programs [Hea02, KS08, OS06] deal with approximations of con­
tinuous quantities that involve extensive numerical processing. The information pro­
cessing in SC is normally based on mathematical models that are continuous in nature.
j\;Iost of the solutions to continuous models can be constructed in theoretically infinite
iterative processes. Computers, however, have finite capabilities in both storage and
processing times. Therefore, approximate solutions with finite number of steps are
employed. In some cases, the exact solutions can be constructed in finite number

6

MASc Thesis - lVI. Elsheikh - I\lIcMaster - Computing and Software

of steps (iterations). Convergence and accuracy are two distinguishing features of
approximate methods. It is required that the approximate method converges rapidly
and terminates with an accurate solution.

2.1.1 Complexity of SC

SC has applications in different fields such as physics, mathematics, chemistry, bi­
ology, and engineering. SC problems usually involve large amount of computations.
The input can be large (such as in seismic imaging), the output can be large (such
as when solving partial differential equations), or the computation can be complex
(such as optimization problems).

A concern of SC is overcoming this complexity. The follo\ving list names a few
examples of replacing complex system with equivalent, yet simpler, systems.

• Simplifying higher-order systems into low-order systems.

• Converting models with infinite dimensional spaces into models with finite­
dimensional spaces.

• Converting non-linear problems into linear problems.

Another aspect is the readiness of the results. In some cases, SC problems are real­
time problems, where the processing must be rapid. Processing large amounts of
data within time constraints is a challenge to Sc. The accuracy of results adds to the
complexity of building these systems.

2.1.2 Real Numbers

Most SC problems deal with real numbers. A real number x E JR contains infinite
amount of information. Digital computers, however, can only store and process finite
number of digits. Hence, approximations are employed. Approximating real numbers
using finite representations is a well-known issue in computing. The errors that result
from processing such approximate representations take different forms. The following
list names a few types of errors.

• Round-off errors: the difference between the exact (or. true) value of the quan­
tity and the computed approximate value.

• Equality: deciding whether two numbers represent the same quantity or not.

• Overflow and underflow: when the computation results are too large or too
small to be accurately represented.

7

f\/IASc Thesis - M. Elsheikh - McMaster - Computing and Software

Several schemes have been proposed for dealing with the issues of real numbers.
Among the most popular schemes are floating-point arithmetics and interval arith­
metic.

2.1.3 Change

Due to the nature of SC softvvare, it often undergoes rapid change [Seg07]. Developing
SC software involves successive transformations from the real world to mathematical
models then to computational models then to software. During these transformations,
several approximations are employed. This process has an iterative and experimental
nature. It is desirable that the software construction process follows an engineering
discipline that takes change into account.

2.2 Software Quality

Software engineering is concerned with technologies and activities for building and
supporting software products. These technologies span over a range of concepts,
methods, processes, and tools. Software engineering activities include planning, mod­
eling, analysis, specification, design, implementation, testing, and maintenance.

Software products are built according to requirements. Requirements can be func­
tional or non-functional. Functional requirements state how a feature should be imple­
mented. Non-functional requirements state quality goals that the system is expected
to achieve.

The notion of softwaTe quality relates how a software product posses a characteris­
tic that fulfills its requirement [Kan02]. High quality is a desirable feature. However,
there are different aspects of software quality and one aspect might have relative
importance over another aspect. For example, it is acceptable for a mathematical
package to have a non-friendly interface, if the user-base is a small group of math­
ematicians who are familiar with the notations implemented by the software. On
the other hand, the same interface would be unacceptable if the user-base is a wider
general audience.

Some aspects are related. For example, accuracy is usually traded-off with speed.
It is up to the requirements to specify which aspects of quality are more important.
The need to have different aspects of quality is reflected by different quality met­
rics. The precise definitions of software quality metrics depend on the context. The
following definitions are adapted from [Kan05, MET02, Som04].

Correctness Correctness means the software conforms to its functional requirements
and produces correct results.

8

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

Accuracy Accuracy measures ho\\" close the solution is to the true solution.

Reliability Reliability measures the system's ability to deliver services as specified
under given usage conditions. Reliability can be quantified in terms of the
probability of failure-free operation.

Performance Performance is a measure of the resources used to produce the results.
There are typically two types of resources: processing time, and storage.

Maintainability Maintainability is a measure of the effort required to change the
software.

Verifiability \ erifiability is the effort required to verify the operation of the software.

Understandability Understandability is the extent to which the user can compre­
hend the software.

Portability Portability is a measure of the effort required to adapt the program for
a ne"" computing environment.

Usability Usability is a measure of the effort required to learn and use the software.

Reusability Reusability is a measure of how easy it is to use the software in a
different project.

2.3 Approaches to Better Quality

Several approaches have been proposed for building better quality software. In this
thesis, we are concerned with the approaches that addresses the design and imple­
mentation phases.

The rest of this section briefly discusses some of the approaches commonly applied
to scientific computing.

Modularity, Abstraction, and Reuse

t-,/Iodularity [Par72] is a central concept in modern software development. fodularity
increases productivity, program flexibility, and results in better designs. Modularity
is closely related to abstraction and information hiding. One of the challenges that
faces modularity is dealing with concerns that spans several modules. Approaches
such as aspect-oriented programming tries to deal with these concerns.

Abstraction transforms solutions from special cases into more general cases. It
allows reusing the same solutions in various situations. Hovvever. abstract concepts

9

NIASc Thesis - M. Elsheikh - Me 1aster - Computing and Software

needs to be concertized at run-time. This usually introduces runtime overheads.
Approaches such as generative programming aims at reducing this overhead. SC
relies on mathematical models which have an abstract nature. For example, see
[AHMK01] for a discussion of the role of mathematical abstractions in developing
abstractions for scientific software.

The benefits of software reuse have been recognized for many years. In 1968,
McIlroy [McI69] called for software components to be arranged in parametrized fam­
ilies according to certain qualities so they can be reused. Reuse reduces the cost of
development and results in better software quality [LL97]. However, reuse promotes
generic solutions which are not always optimal.

Program Families

It is common for software products to exist in different variations (or flavors) accord­
ing to different requirements, environments and configurations. This situation results
in producing and maintaining different flavors of the same soft"vare. This redundancy
contributes to producing poor quality programs. For example, when a bug is discov­
ered in one flavor of a program, the same bug has to be fixed in all other flavors.
The cost of managing similarity is high and better software engineering practices can
reduce that cost.

The program family (PF) approach [Par76] addresses the problem of managing
similarity. This approach considers a set of programs that posses extensive com­
mon properties to be a family of programs. A single program is called a member
of the family. PF promotes studying the common features of a family befoTe study­
ing the individual members. Designing a family requires studying the problem and
solution domains. A particular process of interest is commonality analysis (CA)
[CHvV98, \iVei98]. The process of CA defines families by studying the common as­
pects of a family before studying the special aspects of its individual members. The
common aspects are called commonalities, and the special aspects are called variabil­
ities. Section 2.4 will further discuss the application of program families in scientific
computing.

Design Patterns

Gamma et. al. [GHJV95] introduced reuse on the level of the design concepts. A
design pattern is a. reusable solution for a recurring design problem. Design patterns
offer generic abstractions for the interaction between modules. Design patterns are
closely related with object-oriented programming. The latter is sometimes avoided
by scientific programmers because of its performance overhead.

Blilie [Bli02] identifies two major benefits of using design patterns in scientific

10

JV1ASc Thesis - .M. Elsheikh - McJV1aster - Computing and Soft"vare

computing that out\\'eigh their cost. First. patterns introduce better code architec­
ture through using proven structures. Second, patterns introduce a division of labor
between the domain experts and programmers. Domain experts, i.e.. scientists. are
concerned with correctness. However, programmers can produce better design and
code. Patterns distribute responsibilities, so that correctness is preserved while, at
the same time, the quality of design and code are not compromised. Extending de­
sign patterns to scientific computing has been studied by [Gar04]. Cickovski et. al.
[Cic05] presents the application of design patterns to create efficient, flexible and
maintainable molecular modeling software.

Component-Based Development (CBD)

Components [Cr096, lv1ey03, Sam97, Szy02] are independent units of software defined
by interfaces that describe their usage. The main difference between a component
and a module is that the interface of a component is designed without considering
other components that uses it. This decoupling facilitates the reuse of the component
in different software projects. Components offer abstraction and modularity. Ab­
straction is gained by focusing on well-defined interfaces. Modularity is achieved by
enforcing encapsulation of functionality. CBD addresses the problems of reuse and
modularity. The use of components has been extended to scientific computing. For
example, see [cca, BerOO].

Aspect-Oriented Development (AOD)

Components offer an expressive high-level view of design. However, this expres­
siveness is often hindered by the complex interactions between the concerns. AOD
[KLlV1+97] addresses the problem of separating concerns between design and imple­
mentation. An aspect encapsulates a concern that cross-cuts several components. A
typical aspect-oriented system has the following infrastructure:

• Component language: for writing abstract component programs.

• Aspect language: for programming the aspects.

• Aspect weaver: for combining components and aspects and generating concrete
components.

AOD was applied with success to scientific computing [HG04, ILG+97. KG07]. AOD
is a promising approach to implement a program family. However, the complexity
of the underlying development infrastructure might increase the development and
maintenance costs.

11

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

Generic Programming

The central concept of generic programming [MS89] is abstraction. Data, algorithms,
and representations are abstracted from concrete implementations into more generic
forms. Generic programming facilitates modularity, reuse, and flexibility by decom­
posing the software into generic components that make minimal assumptions about
other components. Generic programming however, relies mainly on language support
for generic types and generic functions. Generic programming has wide success. Fa­
mous examples are: the C++ Standard Template Library (STL) [SL95], the Matrix
Template Library (JVITL) [SL98], and the Boost Library [DaYv]. Generic programming
has also been applied to scientific computing [GK03, LL02, JVIY01].

Generative Programming

Abstraction tackles the complexity of software design. However, abstractions intro­
duce additional run-time performance penalties. Moreover, it is desirable to intro­
duce automation to the software production process. Generative programming (GP)
[CEOO, CEG+OO, Eis97] addresses those problems by treating the software as fami­
lies and incorporating code generation in the production of the software. The GP
approach involves all the phases of software production. The goals of GP resemble
those of generic programming. However, GP focuses on incorporating more domain­
specific abstractions without compromising performance. The goals of GP can be
summarized as follows [CEG+OO]:

• High intentionality: GP tries to reduce the gap between program code and
domain concepts.

• High reusability and adaptability.

• Easy management of families of components.

• Increased efficiency.

A typical GP system has the following three elements:

• Specification of family members. Techniques such as domain engineering and
feature modeling can be used to analyze and capture the common and variable
features of a software family.

• Components which serve as a configurable base for code generation. Parametriza­
tion is employed to manage the differences and variations among families of
components.

12

NIASc Thesis - NI. Elsheikh - McMaster - Computing and Software

• Configuration knowledge which captures knowledge required to map require­
ment specification into specialized programs. Examples are: dependencies and
interactions among components, domain specific optimizations, and illegal com­
binations of components.

Given a particular specification, a customized family member can be automatically
generated (manufactured) from the components using configuration knowledge.

Generative programming has increased in popularity in scientific computing. For
example, see [ABM09, Car06, McC07, RGZ+09, Ve198 , \J\TPD01].

Domain-Specific Languages (DSL)

DSLs [i\IHS05] aim at intentionality of program code. DSLs are high-le\'el program­
ming languages that provide appropriate notations and abstractions for a particular
problem domain. In their domains, DSLs are more expressive, usable, and productive
than general purpose languages. However, DSLs have limited applicability outside
their domains. DSLs can be small and restricted and can also be embedded in general
purpose languages.

DSLs allow expressing the solution at the domain level. Consequently, using a
DSL enhances software qualities such as reliability and maintainability [KMB+96,
vDK98] and allows for domain-specific optimizations to be implemented more natu­
rally [Bru97, MP99].

DSLs can be used in a program family environment. For example, [\J\TL99] proposes
using a DSL to express the variations betvveen family members. However. DSLs
have potential cost associated with building the language system and the supporting
compilers. A survey on the topic of DSLs can be found in [vDKVOO].

Meta-programming

Meta-programs [She01] are programs that process themselves or other programs.
Meta-programming can be used to construct programs. When used this way, meta­
programs are known as program generators. leta-programming requires no addi­
tional compiler technology and hence offers a low cost environment for implementing
program generators.

The paradigm of generative meta-programming. tha is using meta-programming
for realizing generative programming systems, can result in efficient implementations
in scientific computing. For example, see [EFP07, FSPL08, Ve196]. Chapter 3 dis­
cusses generative meta-programming techniques in further details.

13

MASc Thesis - M. Elsheikh - Mdl/laster - Computing and Software

2.4 Program Families in SC

The program families approach is suitable if the expected changes in that software
are centered around the predictions about the needed family members. Weiss [\i\ ei98]
states three assumptions to be investigated before applying the family approach. \~le

present the three hypotheses based on the investigation by [SNlC07] on the suitability
of program families in scientific computing.

• The Redevelopment Hypothesis: Most software development is mostly redevel­
opment. Scientific computing has produced large amount of software products,
many of which are variations of the same program. For example, a study by
Carette [Car06], showed that there are 35 different implementations of Gaussian
Elimination in the industrial package Maple. A survey by O'wen [Owe98], iden­
tifies 61 software packages which generate triangular meshes, 43 of which uses
Delaunay triangulation algorithms. The FFTW website [FFT] lists 41 different
libraries of FFT.

• The Oracle Hypothesis: It is possible to predict the likely changes. The un­
derlying knowledge of scientific computing is scientific models. In most of the
cases, the literature on those scientific models is stable. Hence. changes can be
predicted by carefully analyzing the scope of the software within the literature
and how the software can evolve.

• The Organizational Hypothesis: It is possible to organize both software and the
software developing organization to take advantage of predicted changes. In
scientific computing, it is possible to use proper abstractions such that predicted
changes can be made independently of other types of changes. Tvlathematical
abstractions provide a way to decouple the predicted changes from other changes
in data structures or algorithms. See [AHJVlK01] for a discussion of the role
of mathematical abstractions, such as computational domains and coordinate
systems, in scientific computing.

Several examples of program families in scientific computing have been demonstrated.
For example, see [BHK06, Cao06, SCNI08].

2.5 Conclusion

This chapter presented a number of software engineering approaches and their ap­
plications to scientific computing. Considering software quality in the production of
scicntific softwarc allows outstanding issucs, such CIS efficiency and accuracy, to be

14

MASc Thesis - j\lI. Elsheikh - NIcMaster - Computing and Software

dealt with without compromising other quality aspects such as usability and porta­
bility.

In particular, program families and generative programming are promising ap­
proaches to develop quality scientific software. Chapter 3 discusses generative meta­
programming techniques in further detail.

15

Chapter 3

Generative Meta-programming

This chapter provides a background on generative meta-programming and abstract
interpretation. Section 3.1 introduces the meta-programming. Section 3.2 introduces
lVletaOCaml and the staging annotations used to build and generate code. Section
3.3 introduces the technique of abstract interpretation.

3.1 Meta-programming

Meta-programs are programs that manipulate other programs [SheD 1]. The program
under manipulation is normally called an object-program. Nleta-programming can be
used to analyze the structure of object-programs. Such systems are called program an­
alyzers. The other use of meta-programming is to construct object-programs. '!\Then
used this way, meta-programs are known as pTOgram generator's. Program generators
fall in two categories: static generators and run-time generators. Static generators
generate programs to be compiled by normal compilers. The generation is done in
one stage before compilation or running. Examples of static generators are parser and
lexer generators (e.g., Yacc [Joh79] and Lex [LS79].) Run-time generators generate
and execute programs at run-time. If the generated program is in turn a run-time
generator, i.e., the generation is done in multiple stages, then the approach is called
multi-stage programming. Languages that support this paradigm are called multi­
stage programming languages, such as MetaOCaml [moc] and MetaML [TSOO].

'When the meta-program and the object-programs are written in different systems,
the meta-programming system is then called a heterogeneous system. If they are
written in the same language, then the system is called homogeneous.

Homogeneous meta-programming systems offer program manipulation and require
no additional compiler technology, which makes them useful for writing code genera­
tors.

16

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

3.2 MetaOCaml

J1etaOCaml [moc] is a meta-programming extension for OCaml [Obj]. OCaml is
a multi-paradigm language that supports functional, imperative and object-oriented
styles of code. OCaml is statically-typed language, which improves the quality of the
compiled programs through early detection of errors.

MetaOCaml is a multi-staged language. It provides mechanisms for constructing
and combining code expressions that will be executed in future stages. For that
purpose, MetaOCaml extends OCaml syntax by three constructs: Bracket, Escape,
and Run. It also extends the type system by one additional type: code. The next
sections introduce these extensions.

The statically-typed environment allow us to encode the variabilities of the gen­
erator as a static information. The type system can then ensure, at the generation
time. that the configuration of the variabilities is consistent. In effect. the static in­
formation about future-stage computations can be exposed in an earlier stage; the
generation stage.

J'vIetaOCaml extends the OCaml tool set, making it fully compatible with OCaml.
All OCaml programs are also MetaOCaml programs. Based on OCaml's support for
functional programming, MetaOCaml provides good abstractions for meta-programming
such as higher order functions, parametric polymorphism, algebraic datatypes, and
parametric modules (functors). MetaOCaml provides homogeneous meta-programming
embedded within OCaml. In effect, the overhead for 'writing program generators in
MetaOCaml is reduced.

3.2.1 Staging Annotation in MetaOCaml

f\/IetaOCaml provides three staging constructs: Brackets, Escape, and Run. These
constructs alloyv the programmer to specify the order of evaluation of terms. This
section introduces these constructs. For a detailed introduction on multi-stage pro­
gramming in MetaOCaml, see [Tah04].

3.2.1.1 Bracket

The Bracket operator (. <e> .) delays the execution of the expression e and hence
constructs a future-stage computation. Given a valid OCaml expression e of type t.
the annotation. <e>. , of type (' a, t) cOde l

, is the lifted code expression for e. The
execution of this annotated expression is delayed to a future stage. However, both
the syntax and the type of this expression are checked at the current stage. This

IThe polymorphic type parameter)a is called the environment classifier [TN03]. The reasons
and details behind environment classifiers are outside the scope of this thesis.

17

MASc Thesis - M. Elsheikh - Mc faster - Computing and Software

gives a static guarantee that the generated code will have the appropriate type when
executed at a future stage. This allows writing code generators that can detect both
syntax errors and type errors of the generated code. In effect, the resulting generated
code is syntactically well-formed and well-typed.

Defining a code expression for a constant is given below2
.

let
val e
let
val e

e = 2.71828183 ;;
float = 2.7182818

e = .< 2.71828183 >. "
('a, float) code = .<2.71828183>.

In the first user input, a normal OCaml constant of type float is defined. In
the second input, a code expression for the same float constant is defined by putting
brackets around the float literal. The expression passes the type checking and gets
typed as (' a, float) code, denoting a code expression of type float. The following
fragment highlights the fact that computations inside the brackets are delayed to a
future stage:

.< 2.0 +. 3.0 >. ;;
- : ('a, float) code = .«2.0 +. 3.0».

ormally, the evaluation of the expression 2.0+3.0 in OCaml would be 5. O. However,
due to the brackets, the computation is delayed to a future stage, and the resulting
expression is the code for the computation. The same bracket construction can also
be used to define code expressions for functions. The following example defines a
code for a multiplication function.

.< fun x y -> X * Y >. ;;
- : ('a, float -> float -> float) code =

.<fun x_1 -> fun y_2 -> (x_1 * y_2».

It is noticeable that the variables x and y are renamed in the resulting code.
MetaOCaml renames all bound variables to avoid accidental variable name captures.

A noticeable feature of t\/IetaOCaml is that the staging annotations allow con­
struction of only valid OCaml expressions [Tah04]. Partial expressions such as . <
let z = 0 in >. or . < 2 * >. cannot be constructed, and will result in syntax
errors. Those limitations imposed by MetaOCaml contribute to the correctness of
the generated code.

2This example and those that follo\\! are verbatim copies of the ~letROCaml top-level interpreter.
The LIseI' prompt is preceded by #. while the lines following are the interpreter's response.

18

MASc Thesis - M. Elsheikh - l\IIcMaster - Computing and Software

3.2.1.2 Escape

Escape operator (. -) allows inlining code expressions inside larger code expressions.
~lhen applying . - to an expression e, MetaOCaml first evaluates e in the current
stage, then splices the resulting expression inside a later stage expression. There are
two conditions for splicing:

1. Escape is only allowed 'within code expressions. Splicing a code expression in a
non-code context is meaningless and results in syntax errors.

2. Escape is only allowed on code expressions. Splicing a non-code expreSSlOn
results in a error.

The following example shows how to combine smaller code fragments into a larger
expression.

let numer = .< 3.0 >. and denom = .< 4.0 >. "
val numer : (' a, float) code = . <3.0>.
val denom : ('a, float) code = .<4.0>.
.< .-numer / .. -denom >. ;;
-: ('a, float) code = .«3.0 /. 4.0».

Splicing functions is no different than splicing expressions thanks to OCaml's sup­
port for functional programming, where functions are first class citizens. To highlight
this, we present the following example. Let us assume we have a cost evaluation
genemtor eval, that takes a cost function cost as a parameter, and inlines its code
in a larger context. The function eval is defined as:

let eval cost = . < fun x -> . - cost x >. "
val eval : ('a, 'b -> 'c) code ->

('a, 'b -> 'c) code = <fun>

Now, we define two exan.1ple cost functions operating on different datatypes (float
and int):

let costi = . < fun x -> log x >. ;;
val costi : ('a, float -> float) code

.<fun x_i -> (log x_i».
let cost2 = .< fun x -> x / 2 >. ;;
val cost2 : ('a, int -> int) code =

.<fun x_i -> (x_i / 2».

19

MA8c Thesis - M. Elsheikh - Mc faster - Computing and 80fh are

Applying eval to cost1 and cost2 results in:

eval cost1 ;;
- : ('a, float -> float) code =

.<fun x_1 -> ((fun x_1 -> (log x_1)) x_1».
eval cost2 ;;
- : ('a, int -> int) code =

.<fun x_1 -> ((fun x_1 -> (x_1 / 2)) x_1».

The resulting expressions have not only the inlined code, but also, the appropriate
types (unary function on floats and ints, respectively). However, the resulting
code, is not optimal and does not resemble a code fragment written by a human. For
example, eval cost2 "vould naturally be written as . < fun x -> x / 2 >. instead.
This issue is addressed in the next section.

3.2.1.3 Meta-Programming (Or, On Splicing of Functions)

The power of the Escape operator lies in the fact that the inlined expression (e in . - e)
is evaluated before splicing. This allows performing general-purpose computations at
the inlining-time. i.e., at the code-generation time. This useful feature is a great aid
to meta-programming. Consider the previous example, where ideally the generated
code should look like the following hand-written code:

1'< fun x -> log x >
.< fun x -> x / 2 >.

This could be achieved by exploiting the aforementioned feature of the Escape op­
erator: the generation-time computation before inlining. By carefully examining the
function eval, we can notice that it inlines cost at the current stage but applies it to
x at a future stage. The following modified eval, named betteLeval, first applies
cost to x at the current stage, then it inlines the result:

let better_eval cost = .< fun x -> .-(cost .<x>.) >.
val better_eval : (('a, 'b) code -> ('a, 'c) code) ->

(' a, 'b -> 'c) code = <fun>

, ,

This modification also requires changing the type of cost from a code of function, to
a function that takes code as an input, and returns code as an output. Doing so, we
get:

20

IvIASc Thesis - M. Elsheikh - McMaster - Computing and Software

let cost l' x = . < log . -x >. ;;
val costl' : (' a, float) code ->

('a, float) code = <fun>
let cost2' x = . < . -x / 2 >. "
val cost2' : ('a, int) code -> ('a, int) code
better_eval costl' ;;

: ('a, float -> float) code
.<fun x_l -> (log x_i».

better_eval cost2' ;;
- : ('a, int -> int) code =

.<fun x_l -> (x_l / 2».

<fun>

where the generated code is simplified and resembles the desired code vvith no tmces
of the generation-time helper functions cost l' and cost2' .

Using this technique, a code generator can be written to produce a clean code
with minimal traces of the generator helper routines.

3.2.1.4 Run

The Run operator (. !) forces the execution of a code expression in the current stage.
Let e be an expression of type (' a, t) code. .! e is the expression of type t resulting
from forcing the execution of e at the current stage. The following identity holds for
Run: . I . <e> . = e.

The following code shows an example where the delayed expressions are evaluated
as expected.

.! .< 2.0 +. 3.0 >. "
- : float = 5.
.< chacoCint 65 >. ;;
- : ('a, char) code = .«char_oCint 65».
. I .< char_of_int 65 >. ;;
- : char = 'A'

The same rule applies for functions:

let incr_code = .< fun x -> x + 1 >. ;;
val incr_code : ('a, int -> int) code =

.<fun x_1 -> (x_1 + 1».
let incr fun .! incr code "

21

lVIASc Thesis - Nl. Elsheikh - lVlcNlaster - Computing and Software

val iner_fun : int -> int
iner fun 4 "
- : int = 5

<fun>

Using Bracket, Escape and Run makes it possible to write code generators. A
notable feature of this approach is that the type system of IetaOCaml can ensure
that the generated programs are syntactically well-formed and well-typed.

3.3 Abstract Interpretation

MetaOCaml has a purely generative approach. It treats the generated code as a
black box. Abstract interpretation [CC77] offers an a priori technique to eliminate
unnecessary computations in the generated code.

The technique of abstract interpretation approximates program semantics by re­
placing the concrete domain of computation by an abstract domain. The main appli­
cation of abstract interpretation is static analysis. Abstract interpretation has been
used in program generators (d. [Car06]) to avoid the need for a posteriori optimiza­
tions. The following steps are typical in applying abstract interpretation for code
generators [KST04]:

1. Identify the concrete domain. The concrete domain for a code generator is
typically the code type, or, variations of it.

2. Design an abstract domain that has more information about the code values.
The abstract domain explicitly encodes the implicit information about the con­
crete domain. For example, a concrete domain of statements has an identity
statement of type unit. This information, i.e., the kind of the statement: unit
or not, is useful to be encoded in the abstract domain. An operation such as
statement sequencing can make use of this explicit information.

3. Provide lifting and concr-etzzation functions. Such functions can be used to
convert between the abstract and concrete domains.

4. Lift all the operators from the concrete type to the abstract type. The abstract
type provides more information and hence some work can be shifted to the first
stage (typically, the generation-time). This results in less work to be done in
the second stage (typically, the run-time).

5. Express the program in terms of the staged operators. The information provided
by the abstract type and the staged operators allows some useful optimizations
to be expressed in the abstract domain without the need to inspect the code.

22

NIASc Thesis - M. Elsheikh - McNIaster - Computing and Software

Vie make use of abstract interpretation in writing code generators. Abstract interpre­
tation allows manipulation of code expressions and a priori optimization. In chapter
5 we show that the generated code exhibit better characteristics such as: constant
folding, constant propagation, and algebraic simplification.

23

Chapter 4

The Design of the Generative
Geometric Kernel

This chapter describes the design of GG K. Section 4.3 discusses the use of OCaml
module system to achieve a high degree of parametricity in the generator. Chapters
5, 6, and 7 discuss the details of the design. The reference guide can be found in
Appendix A.

4.1 Design Overview

The generative kernel was designed and implemented as five loosely coupled layers.
Figure 4.1 shows an overview of these layers. Each layer includes a set of concepts
and defines a set of abstractions. These abstractions are designed to be generic and
parametric.

Geometric Objects
Affine Space

Linear Algebra
Number Types
J\Iulti-staging

Figure 4.1: Overview of the layers of GGK.

24

lVIASc Thesis - M. Elsheikh - McIVIaster - Computing and Software

Orient Inside Simplex
Geometric Hyperplane Hypersphere

Objects Vertex Operations OperationsLayer
Insphere Hypersphere Hyperplane

Affine Space Affine Side
Layer Vector I Point Orientation

Linear Algebra
La er Tuple Matrix Determinant

Number Real Order Field
Types Layer Set Ring Sign

Code Constructs
Multi-staging Base Types

Layer
Staged Types

Figure 4.2: Details of the layers of GGK.

4.2 Details of the Layered Design

The detailed design of GG K layers is shown in Figure 4.2. Th purpose and func­
tionality of each of the layers is described as follows .

• The multi-staging layeT provides code generation facilities. It employs abstract
interpretation and the multi-staging facilities of IVIetaOCaml to offer abstrac­
tions for representing and manipulating multi-staged types, values and func­
tions. The concepts in this layer fall in three categories: staged types, base
types, and code constructs. The staged types category provides the code gen­
eration facilities for types and functions. The base types category provides a
collection of modules that facilitate code generation for the commonly used
types such as boolean and string. The code constructs category offers a multi­
staged version of the useful code constructs such as if-else. Chapter 5 discusses
the design of this layer in detail.

25

NIASc Thesis - M. Elsheikh - IIcMaster - Computing and Software

• The number types layer provides abstractions for number types. This layer
makes it possible for the upper layers to express computations independently
of the number type implementations. The number types provided by this layer
are staged number types. Chapter 6 discusses the design of this layer in details.

• The linear algebra layer provides linear algebra support for the geometric object
and computations. This layer uses the multi-staging facilities provided by the
lower layers and offers abstractions that have a reduced cost. The functionality
and abstractions provided in this layer are motivated by the needs of the affine
geometry, not by the general scope of linear algebra. Chapter 7 discusses the
design of this layer in details.

• The affine space layer provides a basis for the geometric objects and computa­
tions. The concepts in this layer are built around affine geometry. This layer
offers generic abstractions for points, vectors and operations on them. Chapter
7 discusses the design of this layer in detail.

• The geometric objects layer offers abstractions for geometric objects and com­
putations. This layer provides facilities for writing geometric algorithms and
data structures independent from the choices of coordinate types or dimensions.
Chapter 7 discusses the design of this layer in details.

The following chapters discuss each of these layers in details.

4.3 OCaml Modules and Functors

One of the goals in building our code generator is achieving a high degree of para­
metricity. Parametrization is an aid to implementing families. Family variabilities
become parameters. This is achieved by using OCaml's module system for expressing
abstractions. OCaml's module system provides three constructs: mod'ule types (or,
signa t ures), mod1.tles, ancl functors.

Module types (also called interfaces) are module-level type specifications. They
provide a way to specify requirements on modules. ~IIodules can be considered as
implementations of module types. _/Iodules can be checked against specification (i.e.)
module types) by the type checker. This ensure that the type checker will reject
invalid implementations of the requirements.

The use of functors is two-fold. First, functors provide parametrization of modules.
Parametric components can be implemented as functors. Second, functors. in the
OCaml statically typed setting, ensure the composability of the parameters [CK05].
The inputs to functors are modules that match certain type signatures. Adding

26

MASc Thesis - M. Elsheikh - l\lIclVIaster - Computing and Software

constraints ensures that non-composable implementations will be rejected by the type
checker.

27

Chapter 5

The Multi-Staging Layer

The multi-staging layer offers abstractions for building and manipulating staged types.
This layer employs abstract interpretation and provides code generation facilities.
Sections 5.1 and 5.2 provide details on building staged types and operators. An
overview of the benefits resulting from staging and abstract interpretation is pro­
vided in Section 5.4. The details of the module types and interfaces can be found in
Appendix A.

5.1 Building Staged Types

This section provides an overview of the types and functions that we built to provide
facilities for staging types and functions.

Code Expressions

The type code_expr, defined as:

type ('a,'b) code_expr = { c : ('a,'b) code; a : bool }

represents a code expression that can be atomic or non-atomic. The field c captures
a code expressions of polymorphic type 'b. The field a is the atomicity flag. An
expression e is atomic if it is:

1. an immediate value, or

2. a variable.

e is not atomic otherwise, i.e., a result of a computation. The atomicity of an expres­
sion is useful for inserting let-bindings which will be discussed later in this chapter.

28

MASc Thesis - M. Elsheikh - IvIcMaster - Computing and Software

type ('a, 'b, 'c) unary = {
unow : 'b -> 'c ;
ulater : ('a, 'b) code_expr -> ('a, 'c) code_expr

}

with the field unow being In, and the field ulater being fL. The following code sho'ws
the definition of mk_unary:

let mk_unary f = function
I Now x -> Now (f.unow x)
I Later x -> Later (f.ulater x)

5.2.2 Staging Binary Operators

The required staged binary function should satisfy the following equation:

where

Now In(x n , Yn)

Later I,(XI, £(Yn))

Later f,(£(x n), y,)

Later I,(x" y,)

x = Nowxn and Y = NowYn

x = Later XI and Y = Now Yn

X = Now X n and Y = Later Y,

x = Later XI and Y = Later YI

and £ is a lift operator from the a type 'b to (' a, 'b) code_expr (£ is realized by
the function lifLatom in section 5.1).

In the equation above, cases 1 and 4 of Is(x, y) handle similar inputs of type Now
or Later. Cases 2 and 3 handle mixed Now and Later inputs. Whenever Is is applied
to a mix of Now and Later values, the Now value is typecasted (or, lifted) into a Later
value. The following code shows the type binary representing the generalized binaTY
function, Un, I,), and the function builder mk_binary.

type ('a, 'b, 'c,'d) binary = {
bnow : 'b -> 'c -> 'd ;
blater : ('a, 'b) code_expr -> ('a, 'c) code_expr ->

('a, 'd) code_expr
}

31

MASc Thesis - },I. Elsheikh - McMaster - Computing and Software

let mk_binary bop x y =
match x, y with

I (Now x), (Now y) -> Now (bop.bnow x y)
I (Now x), (Later y) -> Later (bop.blater (lift_atom .<x>.) y)
I (Later x), (Now y) -> Later (bop.blater x (lift_atom .<Y>.))
I (Later x), (Later y) -> Later (bop.blater x y)

5.2.3 Staging Monoid Operators

It is common for binary operators to have special elements. For example, addition
has an identity: zero. Vie can take advantage of abstract interpretation and build
better staged operators that respect the identity laws of the base operators. That is,
the resulting staged operator can generate code that does not contain unnecessary
operations such as multiplication by zero. i.e., generating 0 as opposed to generating
o * expression.

In the concrete domain, a monoid operator * is a binary operator along with a
special (unit) element u where:

x*u=u*x=x.

In the abstract domain, staged, u is an immediate value, i.e, a Now expression. x
can be a Now expression or a Later expression. The staged version of *, is can be
described by the equation:

y x = Now u

is(x, y) =
x y = Now u

Same cases as

in mk_binary

where the first two cases implement the monoid laws. The type monoid defined below
represents a monoid operator as a generalized binary function along with an identity
element.

type ('a,'b) monoid = {

bop: ('a, 'b, 'b, 'b) binary;
uelem : 'b

}

The monoid builder function, mk-ffionoid, defined a :

32

MASc Thesis - M. Elsheikh - Mct\/Iaster - Computing and Software

let mk_monoid mon x y
match x, y with
I (Now x), y when x = (mon.uelem) -> y
I x, (Now y) when y = (mon.uelem) -> x
I x,y -> mk_binary mon.bop x y

is an extension of mk_binary which implements the aforementioned monoid laws.

5.2.4 Staging Ring Operators

Similar to monoid operators, the type ring is introduced to capture the quadruple:

where fn is the Jow version of the operator, II is the Later version, and 0 and 1 are
the identity elements of the ring operator. The ring laws are:

and

x * 1 = 1 * x = x.

The following code shows the type ring and mk_ring.

type (la, 'b) ring = {
mon : (la, 'b) monoid;
zelem : 'b

}

let mk_ring rng x y
match x, y with
I (Now x), (Later y) when x
I (Later x), (Now y) when y
I x, Y -> mk_monoid rng.mon x

(rng.zelem)
(rng.zelem)
y

-> Now rng.zelem
-> Now rng.zelem

Both ring and mLring are defined as extensions of monoid and mk..Jl1onoid, respec­
tively.

33

MASc Thesis - Nl. Elsheikh - ~/IcMaster - Computing and Software

5.2.5 Staging Common Types

\1I/e lift some useful types which are commonly used during code generation. The
modules Int, String, and Baal provide staged integers, strings, and boolean types,
respectively. The reader is advised to view Appendix A for further details on the API
of those modules.

5.2.6 Staging Code Constructs

vVe lift various code constructs useful in code generation. The function seq, defined
below, is the lifted version of sequencing.

let seq a b = mk_binary
{ bnow = (fun x y -> (x; y));

blater = fun x y -> lift_camp .< begin .-(to_code a)
.-(to_code b) end >. } a b

The function ife:

let ife cab to code = match c with
Now cc -> if cc then a else b
Later cc ->

of_camp (.< if .-(to_code c) then .-(to_code a)
else .-(to_code b) >.)

is the lifted if-else statement. There are two cases of the condition c:

1. c is a 1 ow expression: ife reduces to an OCaml if-else statement evaluated at
generation- time.

2. c is a Later expression, i.e .. the condition is kn0\\'11 at run-time: ife generates
a code for the if-else statement which gets evaluated FIt run-time.

5.2.7 Generating Let Staten1ents

Straightforward generation of code can easily result in duplication of code. Consider
the following function add which computes the expression x+ (x+y). \i\lhen applied to
code expressions, add will just inline the expression for x twice.

34

l\llASc Thesis - M. Elsheikh - Met/laster - Computing and Software

(* Given that '+' is lifted *)

let add x y = x + (x + y) ;;
add (oCcomp .<1. *.2.>.) (of_atom .<3.>.) ;;

: ('a, float) Staged. staged
Later {c .«(1. *. 2.) +. ((1. * 2.) +. 3.))>.;

a = false}

Obviously, x is a common sub-expression that needs to be bound in a let-expression.
VYe might try to improve add by introducing a let-binding in the function definition
as:

Ilet add1 x y = let ce = x in ce + (ce + y)

However, this is not a solution because the let binding is done at the meta-level
and not inlined in the generated code. A solution is presented in [CK05] by using
continuation passing style (CPS) and monads. "'hich is outside the scope of the work
of this thesis. Vie adopt a simpler approach and rewrite the expression x+x+y as
AX. (x+x+y), then we pass it to the let-generator, leL, where let is inserted and
delayed for the future stage.

leL is defined as follows:

let let_ ce exp =
match ce with

Now -> exp ce
Later c when c.a = true -> exp ce
Later c ->

of_comp .< let _v = .-(c.c) in
.- (to_code (exp (of_atom .<_v>.))) >.

where ce is the common sub-expression, and exp is the body of the let expression.
exp is a function in some parameter v. v replaces the duplications of ceo The common
expression ce has three cases:

1. I\ow expression: leL reduces to function application.

2. An atomic code expression: let_ reduces to function application as well. If the
expression is atomic then there is no harm from duplicating it in the code.

3. A non-atomic code expression: leL generates code containing the binding of
ce into a variable v.

35

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

To demonstrate leL in action, we apply leL to the same example as above:

let add) z y = let_ z (fun x -> x + (x + y))
add' (oLcomp .<1. *. 2.>.) (of_atom .<3.>.)
- : ('a, float) Staged. staged

[rest omittedJ
.<let v_l = (1. *. 2.) in

(v_l +. (v_l +. 3.))>.
add) (of_atom .<1.>.) (oLatom .<3.>.)

: ('a, float) Staged. staged
[rest omittedJ

.<(1. +. 1. +. 3.».

In the first application of add), the expression . <1. *. 2. > . is labeled as non­
atomic, and thus a let-binding is generated. In the second application, the expression
. <1. >. is labeled as atomic (by the application of oLatom), and thus it was inlined
in the resulting code.

5.3 Example: Building a Generator for the Power
Function

"Ve demonstrate the usage of this layer by an example. In this example, we take the
power function and build a staged version of it. The staged version can use staging
to unroll the recursion, and abstract interpretation to avoid generating unnecessary
operations. VYe also build a code generator and demonstrate the use of module types
and functors for expressing the variabilities of the code generator.

Consider the follo'wing cla 'sical example [JGS93, Tah04].

let rec power n x =
match n with
I 0 -> 1

I n -> x * (power (n-l) x);;

val power int -> int -> int = <fun>

It is required to transform power into a generator that can unfold the definition of
power and generate expressions such as . <X*X*X>. instead of . <power 3 x>.. "Ve
achieve this task through three steps:

36

MASc Thesis -]\II. Elsheikh - McIvIaster - Computing and Software

(I) Staging power. First, we analyze the concrete domain of the variable x.
t\Iultiplication, 0, and 1 are the requirements of that domain. A ring operator over int
type provides exactly those operations and constants. We define the multiplication
operator as a generalized binary operator.

let mUl_op
{ bnow = (fun x y -> X * y);

blater = (fun x y -> lift_eomp .<.-(x.e) * .-(y.e».) }

Then we express the integer multiplication ring operator as a monid operator plus a
zero element:

let mul_mon = { bop = mUl_op; uelem = 1 }
let mul_ring = { mop = mUl_op; mon = mUl_mon; zelem O}

The integer multiplication operator is then lifted by:

Now, the power function can be defined as:

let ree power n x =
if n 0 then Now 1
else x * (power (n-1) x)

val power: int -> ('a, int) staged ->
('a, int) staged = <fun>

Applying power to several examples is shown below.

power 4 (Now 3);;
- : ('a, int) staged = Now 81
power 4 (of_atom .<3>.);;

: ('a, int) Staged. staged
Later {e .«3 * (3 * (3 * 3))».;

a = false}

37

l\lIASc Thesis - NI. Elsheikh - McMaster - Computing and Software

(2) Building a generator. The function power only generates code if the input
is a code expression. The required generator should build a code expression (i.e.,
perform abstraction), call power, extract the resulting code expression (i.e., perform
concretization), and then splices the resulting expression in a code context for a
function. The following generator performs those steps.

let gen n =
.< fun x -> .-(to_code

(power n (of_atom .<x>.))) >.

val gen : int -> ('a, int -> int) code

(3) Parameterizing gen. The function power is parametric in the exponent n.
Therefore, the generator should have a variability for the exponent. The following
module type EXP defines this simple variability.

module type EXP
sig

val n int
end

The functor module Power below, provides the required parametrization over the
exponent.

module Power (E EXP)
struct
let gen () =

.< fun x -> .-(to_code
(power E.n (of_atom .<x>.))) >.

end

To demonstrate the generator in action, we generate the power for exponents 1, 2, and
3 using the following code. First we define three different values for the variabilities.

module Expl
module Exp2
module Exp3

struct let n = 1 end
struct let n = 2 end
struct let n = 3 end

Then we instantiate and call the generator for each.

38

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

module Powerl
module Power2
module Power3

Powerl .gen ();;
- : ('a, int ->

.<fun x_l
Power2.gen ();;
- : ('a, int ->

. <fun x_l
Power3.gen ();;

('a, int ->
. <fun x_l

Power (Exp1)
Power(Exp2)
Power(Exp3)

int) code
-> x_l>.

int) code
-> (x_l * x_1) > .

int) code
-> (x_l * (x_l * x_i))> .

It is noticeable that the base case of the recursion would normally result in a multi­
plication by 1. The resulting code however, has no extra multiplication by 1. This
simplification is due to the ring laws implemented in mk_ring.

5.4 Conclusion

By combining abstract interpretation, and multi-staging facilities of IetaOCaml. we
are able to represent, manipulate. and generate code expressions that exhibit the
following features.

Constant folding If a certain computation involves only constants, then it is fully
performed at generation-time, and the results are generated instead. For exam­
ple, given that add is the staged version of addition, the expression (to_code
(add (Now 1) (Now 3))) has the value (to_code (Now 4)) = .<4>., instead
of . <1 +3>. In other words, the constants are folded first at generation-time,
then the code is generated.

Constant propagation If a variable x have an immediate value v, known at generation­
time, then v is inlined for every occurrence of x. This is due to the fact that
immediate values (constants) are labeled with the tag Now. 'With abstract in­
terpretation, staged operators can extract the value of a Now expression and use
it or inline it as needed.

Algebraic simplification Operations that involve special elements are simplified.
Some examples are the identities for +, -. -;.-, and exponential with regard to

39

NIASc Thesis - NI. Elsheikh - Mc IIaster - Computing and Software

o and 1. For example, given that add is the staged addition over integers, the
expression (to_code (add (Later . <x>.) (Now 0))) evaluates to the code
expression . <x>. instead of . <x+O> .

Dead code elimination If a piece of code is not going to be executed at run-time,
then it should not be generated in the first place. This is achieved by lifting
the conditional statement. The following few examples show ife in action.

ife (Now true) (Now 1) (Later . <3>.)
- : ('a, int) Staged. staged = Now 1
ife (Now false) (Now 1) (Later . <3>.)
- : ('a, int) Staged. staged = Later .<3>.
.< fun x -> .-(to_code

(ife (Later . <x>.) (Later . <1>.) (Later . <3>.))) >.
('a, bool -> int) code =

.<fun x_1 -> if x_1 then 1 else 3>.

Common sub-expression elimination If a piece of code is used in several places
in an expression, then it should be factored out. and bound to a variable name.
An example was presented in Section 5.2.7.

40

Chapter 6

The Number Types Layer

The number types abstraction layer serves two purposes. First. it makes it possible
to write algorithms independently of the number type choice and the number type
implementations. In other words, it allows implementing a family of algorithms with
the number type as a variability. Second, this layer offers staged number types.
Staged typed, as described in previous chapters, form the base for code generation.

This chapter introduces the hierarchy of number type abstractions in this layer.
The design of these abstractions is based on the traditional algebraic structures such as
ring and fields. However. the design is motivated by the common data types available
in OCaml. In other \\fords. we do not provide a full hierarchy of algebraic structures
such as semi-group or a magma. Instead, the number types are abstracted based
on the behavior of their operators. Each interface (module type) specifies a minimal
set of operations. To minimized duplications, we use OCaml's module inclusion for
extension among types. The following types are ordered by the inclusion relation
(A ~ B if module B includes module A):

SET ~ RING ~ FIELD ~ REAL.

Sections 6.7, 6.8, and 6.9 provide the details of an implementation of this layer.
Implementations for integer, rational and float types are provided. The details of
exact and inexact floating point sign calculation are given. Section 6.10 demonstrates
an example of using the modules of this layer. The details of the module types and
interfaces can be found in Appendix A.

6.1 The SET Type

The SET type is an abstraction for a set of elements of some number type n. The type
n is called the base number type. It represents the immediate values of that type.
The staged version of n is the type ns.

41

MASc Thesis - t-.II. Elsheikh - McMaster - Computing and Software

The SET type is an interface requirement for the modules implementing the set
concept. Such modules have to provide the following operations: an equality check,
inequality check, and typecasting to strings. An additional version of equality with
tolerance (eq_tol) is also required. This allows an opportunity for implementing
inexact number types.

Two versions of the same function eq are required: the base version (eq_b), and the
staged version (eq_s). An additional base version is included as a design choice that
gives the users of the module the freedom to use either the staged version (eq_s), the
Now version (eq_b.bnow), or the Later version (eq_b.blater). For the same reasons,
to_string_b was added to the interface.

6.2 The SIGN Type

A notion of sign is required before introducing the signed number types. The module
type SIGN defines the type of sign as follows.

type t = Pos I Zero I Neg I PosOrZero I NegOrZero

A given number is either positive, negative, or zero. The type t represents this
information. To be able to conveniently express the 2: and:::; relationships, an addi­
tional two signs are added: PosOrZero and NegOrZero.

6.3 The ORDER Type

The module type ORDER represents a linear order relationship over a staged number
type (referred to as the carrier set). The order is bounded from both sides. It has a
top element and a bottom element. Example values for top (and bot) are positive
(and negative) infinity. The interface for ORDER specifies the comparison functions:
eq, neq, compare, It, 1e, gt, ge, min, and max. As in SET, tv"o versions are provided
for each function, the base version (with suffix _b) and the staged version (with suffix
_s) .

6.4 The RING Type

The RING type is an abstraction of the following algebraic structure:

(5, +, *, -,0,1)

where 5 is a carrier set. RING is thus defined as an extension of the SET type by
module inclusion. Elements of RING are signed numbers and have absolute values.

42

MASc Thesis - II. Elsheikh - McMaster - Computing and Software

6.5 The FIELD Type

The FIELD type is an abstraction of the following algebraic structure:

(S. +, *, -,-1,0,1)

It is defined as an extension of RING by adding the multiplicative inverse operation:
inv. Division is then possible.

6.6 The REAL Type

The type REAL is defined as an ordered FIELD with top and bottom elements. The
interface requires the implementations to provide common functionality such as the
square root operation.

6.7 A Model Implementation for Integer Number
Types

The module IntegeLSet provides an implementation of the interface SET. It is de­
fined as:

module Integer_Set SET
struct

type n = int
type 'a ns = ('a, n) staged

The signature constraint IntegeLSet: SET allows the OCaml type checker to
ensure that the module Integer_Set implements the interface SET.

The module Integer_Ring, defined as:

module Integer_Ring : RING =
struct

include Integer_Set
let zero = 0
let one = 1
let negone = -1
let two = 2

43

IvIASc Thesis - M. Elsheikh - IvIcMaster - Computing and Software

let add_op
{ bnow = (fun x y -> x+y);

blater = (fun x y -> lift _comp .<.-(x.c) + .-(y.c».) ; }

let add_b { bop add_op; uelem ° }

let add_s a b = mk_monoid add_b a b

is an extension of Integer_Set. It is an implementation of the interface RING. The
code above shows the definition of the staged addition operator as a monoid.

6.8 A Model Implementation for Rational Num­
ber Types

The modules RationaLSet and RationaLRing implements a rational number ring.
They have the following definitions (partial code):

module Rational Set : SET
struct

(* A rational number is represented as a fraction *)
type n = int * int
type 'a ns = (la, int * int) staged

end

module Rational_Ring : RING
struct

include Rational_Set
let zero = (0, 1)

let muLop = {

bnow = (fun (a,b)
blater = (fun x y

let mul_mon
let mul b

(c,d) -> a*b,c*d);
-> lift_comp .<

(fst .-(x.c»*(fst .-(y.c» ,
(snd .-(x.c»*(snd .-(y.c» >.); }

{ bop = mUl_op; uelem = one}
{ mop = mUl_op; mon = mUl_mon;

zelem = zero }
let mul s x y

44

MASc Thesis - M. Elsheikh - McNIaster - Computing and Software

if x = (Now negone) then neg_s y
else if y = (Now negone) then neg_s x
else mk_ring mul_b x y

end

The choice of representing rational numbers as an OCaml product type (pair) is
hidden by the module abstraction. The interfaces in this layer make no assumption
on the type n. This abstraction allows writing generators that are independent of
the choice of representation and yet the generated code contains these choices. For
example, generating code for the multiplication operation:

.< fun x y -> . -(to_code (Rational_Ring.mul_s
(of_atom .<x>.) (oCatom .<y>.))) >.

results in generating the proper pair manipulation, and the proper type signature int
* int:

('a, int * int -> int * int -> int * int) code
.<fun x_i -> fun y_2 ->

(((fst x_i) * (fst y_2)),
((snd x_i) * (snd y_2))».

vvhich is completely abstract at the generator level. Changing the implementation,
results in a different generated code with proper type signature.

6.9 A Model Implementation for Float Types

The module Float-Set is an implementation ofthe interface SET for the floating point
number type.

module Float Set SET
struct

type n = float
type 'a ns = ('a, n) staged

end

45

MASc Thesis - IV1. Elsheikh - i\lIc faster - Computing and Software

The Inexact Sign Calculation

The interface RING specifies that the numbers have a sign. \1\ e provide two imple­
mentations for sign calculation: exact and inexact. The exact sign of a number x
results from the comparison x > O. The inexact calculation, however, depends on a
tolerance in the calculation. The tolerance is a small number, referred to as E. Vve
use the following rule for determining the inexact sign of a floating point number:

{

zero - E :::; X :::; E

sgn(x) = positi~e x > E,

negatIve x < -E,

By using functors, the sign calculation becomes parametric in the tolerance. The
following module provides the exact sign calculation:

module Float_Sign_Exact
struct

let sgn x

end

And the following functor provides the inexact sign calculation:

module Float_Sign_Inexact
(E : sig val eps : float * (la, float) code end)

struct
let eps
let eps_c
let sgn x

end

fst E.eps
snd E.eps

The parameter E carries the tolerance information. The module FloaLRing_Base
provides the ring operation except the sign calculation.

module Float_Ring_Base
struct

include Float_Set

end

46

MASc Thesis - Ivt Elsheikh - IvIcMaster - Computing and Software

Float-Ring_Exact extends Float-Ring_Base and adds the exact sign calculation.

module Float_Ring_Exact : RING =
struct

include Float_Ring_Base
include Float_Sign_Exact

end

Similarly, Float-Ring_Inexact extends Float-Ring_Base by the inexact sign calcu­
lation.

module Float_Ring_Inexact
(E : sig val eps : float * ('a, float) code end) RING

struct
include Float_Ring_Base
include Float_Sign_Inexact (E)

end

Float-Field_Exact, and Float-Field_Inexact are implementations of FIELD.
They are defined as:

module Float Field Exact : FIELD
struct

include Float Field Base
include Float_Sign_Exact

end

module Float_Field_Inexact
(E : sig val eps : float * ('a, float) code end)

struct
include Float_Field_Base
include Float_Sign_Inexact (E)

end

FIELD

where Float_Field_Base extends FloaLRing_Base and implements the extra func­
tionality of the division.

I
module Float Field Base
struct

47

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

j"nclUde
end

The same pattern is used for Float-ReaLBase.

module Float_Real_Base =
struct

include Float_Field_Base

end

Finally, the two modules FoaLReaLExact and Float_ReaLInexact are defined
as:

module Float Real Exact : REAL
struct

include Float Real Base
include Float_Sign_Exact

end

module Float_Real_Inexact
(E : sig val eps : float * (la, float) code end) REAL

struct
include Float_Real_Base
include Float_Sign_Inexact (E)

end

6.10 Example: Staged Power

\"le demonstrate the use of this layer by an example. vVe reuse the same example
from section 5.3. The difference here is that we choose two variabilities for the power
function generator: the number type and the exponent. Recall, the power function is
defined as:

rlet rec power n x
match n with
I 0 -) 1

48

l\IASc Thesis - 1. Elsheikh - r'vIcMaster - Computing and Software

I n -) x * (power (n-1) x);;

val power int -) int -) int = <fun)

\i\ e achieve the task of building a generator through four steps:
(1) Staging power. The RING type provides the multiplication operation and

the constants 0 and 1. Let R be a module of type RING. power can then be rewritten
into a generic form as follows:

let rec power n x =

match n with
I 0 -) Staged. of_immediate R.one
I n -) R.mul_s x (power (n-1) x)

with the type:

Ival power: int -) 'a R.ns -) 'a R.ns <fun>

(2) Parameterizing power. The function power is parametric in R. The functor
GenericPower, belovv, provides the required parametrization over the number type.

module GenericPower (R : RING) =
struct

let rec power n x
match n with
I 0 -) Staged. of_immediate R.one
I n -) R.mul_s x (power (n-1) x)

end

(3) Collecting variabilities. The generator has two variabilities: the number
type, and the exponent. These two variabilities can be collected in the type:

module type POWER_VAR
sig

module R : RING
val n : int

end

49

MASc Thesis - M. Eisheikh - McI\!Iaster - Computing and Software

which becomes the input for the generator.
(4) Building the generator. The generator, GenPower, is defined as:

module GenPower (PV : POWER_VAR) =
struct

let gen_power () =
let module GP = GenericPower(PV.R) in
.< fun x -) .-(Staged.to_code

(GP.power PV.n (Staged.of_atom .<x).»)).
end

module GenPower :
functor (PV : POWER_VAR) -)
sig
val gen_power :

unit -) (la, PV.R.n -) PV.R.n) code
end

gen_power is wrapped in a functor that takes the module PV as an input. PV
contains the values for the variabilities. In other words, PV is the configuration for
the generator. The function returned by gen_point has the code type of PV. R. n -)
PV . R. n. That is, a unary function on the abstract number type PV. R. n.

Finally, we generate the power function for exponents 1, 2, and 3 using two differ­
ent number types: FloaLRing and Integer_Ring. For the float type and exponent
2, the variability is:

module Float2 = struct
module R = Float_Ring_Exact
let n = 2

end

and the instantiation for the generator is: module GenF2
instantiated gen_power has the type:

GenPower (Float2). The

gen_power : unit -) (la, Float2.R.n -) Float2.R.n) code

where the abstract number type PV. R. n is bound to the concrete type Float2. R. n.
Calling the generator results in:

50

I'vIASc Thesis - 1\1. Elsheikh - McMaster - Computing and Software

GenF2.gen_power () ;;

('a, Float2.R.n -> Float2.R.n) code
.<fun x_1 -> (x_1 *. x_1».

The resultant code has no traces of power, and has the proper type Float2 .R. n
-> Float2. R. n. The following code snippet shows similar instantiations for Float1,
Float3, Integerl, Integer2, and Integer3:

- : ('a, Float1.R.n -> Float1.R.n) code
.<fun x_1 -> x_1>.

- : ('a, Float3.R.n -> Float3.R.n) code =
. <fun x_1 -> (x_1 *. (x_1 *. x_U) >.

: ('a, Integer1.R.n -> Integer1.R.n) code
.<fun x_1 -> x_1>.
: ('a, Integer2.R.n -> Integer2.R.n) code
.<fun x_1 -> (x_1 * x_1».
: ('a, Integer3.R.n -> Integer3.R.n) code

.<fun x_1 -> (x_1 * (x_1 * x_1))>.

6.11 Conclusion

In this chapter we presented a hierarchy of staged number types. We presented a
concrete implementation of integer, rational, and floating point numbers. Finally,
through an example, ,,ve presented the usage of the abstractions in this layer.

51

Chapter 7

Affine Geometry

In this chapter we introduce various concepts that support geometric computations.
We also augment the geometric concepts by introducing the modules and types for
three layers:

• The linear algebra layer.

• The affine space layer.

• The geometric objects1 layer.

The details of the module types and interfaces can be found in Appendix A. Several
examples will be shown in chapter 8.

7.1 Introduction

Genericity in geometric computing can be achieved by abstraction, modularity, and
layered designs. Proper abstraction includes identifying a number type, and a geo­
metric algebra for geometric objects and operations on them. This approach resulted
in generic higher-dimensional geometric kernels [lVIlVIN+ 97] \ and coordinate-free com­
putations [GH\iVOO]. A comparison of the different types of geometric algebras can
be found in [FD03, Go102]. Affine geometry treats n-dimensional spaces through the
same set of abstract concepts. In effect, geometric primitives which are based on affine
geometry scale to higher dimensions. However, the affine geometry does not allow a
straightforward extension to different coordinate systems other than the orthogonal

1We use the term geometric objects to denote both objects such as hyperplanes, and computations
such as orientation tests. The rationale is that the computations are functional objects, that is,
objects with a functionality.

52

r--/IASc Thesis - M. Elsheikh - McMaster - Computing and Software

coordinate systems [DeR89]. A promising alternative geometric algebra can be found
here [FD03].

The development of affine geometry presented here is adopted from [Aud03, dBvKOS97,
GalOO, SE02]. The concepts are selected to satisfy two goals: scalability for n­
dimensions, and high degree of abstraction. The higher abstraction allows a uniform
(generic) representation for the same concept regardless of the dimension or the coor­
dinate number type. The generative approach allows us to manipulate those generic
forms and generate code that corresponds to the specialized forms of the concepts for
a given dimension and number type.

7.2 Affine Spaces

Let (V, V) be a vector space over a division ring V, and a set of free vectors V.
Free vectors are directions that can move freely in space. A vector v has a direction
(denoted as v) and a magnitude (denoted as Ilvll), but no fixed starting point. Let P
be a set of points. Points are fixed positions in space. The triple (V, P, V) is called
an affine space if the following conditions hold:

1. For each pair of points p and q in P such that p =I q, there exists a Ul1lque
vector v E V such that v = p - q.

2. For all points pEP and vectors v E V, there exists a point q E P such that
p + 'v = q.

3. For any three points p, q, and l' in P, the following equation holds:

(q-p)+(1'-q) = (1'-p),

Let {XdiEJ be a family of elements in space, having the same type (either points or

vectors), and let {'\LEI be a family of scalars. The element u = L ,\Xi is called
iEJ

the linea1' combination of the elements Xi. If the condition LAi = 1 holds then u is
iEJ

called an affine combination.
A family {xJ iEJ of points or vectors is said to be lineaTly dependent if there exists

a family of non-zero scalars {AJiEJ such that L AiXi = O. The element 0 is the
iEJ

zero element (the zero vector or the zero point). The family is said to be lineaTly

independent if there are no such scalars satisfying L AiXi = O.
iEJ

53

NIASc Thesis - /1. Elsheikh - McMaster - Computing and Software

A family of points {Pi}iEJ is affinely independent if the family {Pk - pJiEJ\{k} of
vectors is linearly independent for some k E I. In other words, if the point Pk is
chosen as the origin.

7.2.1 Affine Subspaces

An affine subspace is a subset of an affine space closed under affine combinations.
Formally, if S = (V, P, V) and ReP, then R is called a subspace of S if for all

families of points {PdiEf in R, the affine combination L /\Pi is also in R.
iEf

7.2.2 Bases

Let S = (V, P, V) be an affine space. Let B = {b1 , ... , bd be a finite subset of V. B is
said to span V if for all v in V there exists an assignment of scalars)1}, ... , Ak E V such

k

that v = L Aibi' In other words, all the vectors in V can be expressed (generated)
i=1

as a linear combination of the vectors in B. B is called a basis of S if the following
two conditions hold:

1. The vectors in B are linearly independent.

2. B spans V.

7.2.3 Frames

Let S = (V, P, V) be an affine space, let B = {b1 , . .. , bk } c V be any basis for V,
and let 0 be any point in P. The tuple (0, b1 , ... ,bk) is called an affine frame of S.
The point 0 is called the origin of the frame. A frame is not unique. Given an affine
frame, all the vectors and points in the space can be uniquely written as a linear
combination of the frame elements. That is, every vector v E V can be written as:

k

V = L Vibi = Vl bl + ... + Vkbk,

i=1

or as a matrix multiplication:

54

MASc Thesis - Iv!. Elsheikh - 'LeMaster - Computing and Software

Similarl,). every point pEP can be "vritten as:

k

P = 0 + L Pi bi = 0 + (P1

i=1

The scalar tuples (VI, ... ;Vk) and (Pl; ... ;Pk) are called the affine coordinates for the
vector V, and the point P, respectively. The coordinates depend on the choice of the
frame.

7.2.4 Dinlension and Codimension

The dimension of an affine space 5, denoted as dim(5), is equal to the cardinality
of the set of basis B [Art91]. If B = {b l , .. . ,bn }, then dim(5) = 11, and the space is
called an n-dimensional space.

The codimension is a relative concept between a space and it subspaces. If T is a
subspace of S. then the codimension ofT in S, denoted as codim(T), is given by:

codim(T) = dim(S) - dim(T).

7.3 Affine Transforms

An affine transform is a mapping between two affine spaces which preserves the struc­
ture of the space [DeR89, SE02]. It maps points to points, vectors to vectors, and
frames to frames. Other objects (e.g. lines and polygons) can be represented in
terms of points and vectors, and thus can be mapped by affine transformations as
well. Given two affine spaces 51 and 52, the function f : 51 -7 52 is said to be an
affine transform (or affine transformation, or affine map) if for any family of points

{PdiEI in 51. and any family of scalars {adiEI such that Lai = 1, the equality:
iEI

f(L aiPi) = L ai!(Pi)
iEJ iEJ

holds.
Affine transformations can be composed to produce new transformations. Given

two affine transforms T 1 and T 2 , the transform T l 0 T2 is the composition of T l and
T2 if and only if: for all elements x of the space, the following condition holds:

55

MASc Thesis - M. Elsheikh - trIcNlaster - Computing and Software

7.3.1 Matrix Representation of Affine Transforms

Affine transforms can be represented by the equation

T(x) = Ax + b

where A is an n by n matrix, and b and x are both n by 1 matrices. A is called the lin­
eCtr transformation matrix. x is the column matrix representing the affine coordinates
of the object subject to transformation. b is the additive part of the transformation,
normally called the translation part. To minimize the number of matrix operations
involved, A and b can be augmented in a generalized matrix representation. Let
x = (Xl, ... ,xn), and b = (b l , ... , bn), the transformation T(x) can be rewritten as:

where i\1 is called the affine transformation matrix. III! is an augmented matrix which
has the form:

bl

~if = A
bn

0, ... ,0 1

The type of the transformation is determined by the values in the matrix iII. Vie
discuss two types of affine transforms: translation and scaling.

Translation. Translation corresponds to moving object in space. In ad-dimensional
space, A is an identity matrix of size d. b is a column vector of d rows. b carries the
translation information, that is, the displacement on each coordinate. Let the coor­
dinates be numbered 1,2, up to d, the translation b = (L~q, 6 2 , ... , 6d) applied to an
object with affine coordinates (Xl,X2,'" Xd) results in a translated object T(x) with
coordinates (Xl + 6 1 , X2 + 6 2 , ... ,Xd + 6d)'

Scaling. In a d-dimensional space, A is a diagonal matrix of size d, and b is a
zero column vector of d rows. The diagonal of A carries the scaling factor for each
coordinate. Applying a scaling

_(Sl. 0)A- .
o Sd

to an object with coordinates (Xl. X2,' .. ,Xd), results in a scaled object with coordi­
nates:

56

MASc Thesis - M. Elsheikh - NlcIVlaster - Computing and SofLware

7.4 Euclidean Geometry

Before introducing Euclidean space, we need to define the notion of a metric. Let
S = (V, P, V) be an affine space, the inner product of two vector u, v E V, denoted
as (u, v), is a mapping from V x V to V. For an operator (,) to be an inner product
it has to satisfy the following three conditions:

1. Symmetry: For all u, v E V, (u, v) = (v, u).

2. Bi-linearity: For all u, v, w E V and a, b E V:

(a) a (u, w) + b (v, 'Ill) = (au + b'u. tv).

(b) a (u, v) + b (u. w) = (u, av + bw).

3. Positive definiteness: Let 0 be a special vector in V called the zero vector with
the property that (0,0) = O. (.) is positive definite if for all v E V \ {O},
(v, v) > O.

The dot product [Aud03] denoted as 0, is an inner product defined on vector
spaces over real numbers. The dot product of two vectors u = (UI, ... ' un) and
v = (VI, ... ,vn) is defined as:

n

U . V = 2..= UiVi·

i=l

Euclidean affine space, shortly Euclidean space, is an affine space equipped with
the dot product O. The dot product defines the notions of length, distance and
angle. The length of a vector v is defined as:

I v 1= ;V:V.

A vector is called a unit vector if its length is 1. The distance between two points]J

and q is defined as:
distance(]J, q) =1 q -]J I .

The angle between two vectors v and u is defined as:

v·u
e= cos-I I v II u I

Orthonormal Basis. Two vectors VI and V2 are oTthogonal if VI . V2 = O. A set
of basis B is orthonormal if the following two conditions hold:

1. For all the vectors b in B: b is a unit vector.

2. For all bi and bj in B such that i =I=- j: bi and bj are orthogonal.

57

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

7.5 The Linear Algebra Layer

An abstract implementation of affine geometry uses matrices. l\!Iatrices are generally
inefficient in terms of time and space requirements. However, using the multi-staging
layer, the cost of using matrices is alleviated and the generated code has no traces of
the data structures of this layer. This is an example of how the cost of a convenient
abstraction can be reduced by using multi-staging.

This section describes the linear algebra layer. This layer provides types and func­
tionality for matrices and determinants over staged number types. The functionality
and abstractions provided in this layer are motivated by the needs of the geometric
computations in the other layers, not by the general scope of linear algebra.

7.5.1 The TUPLE Type

A tuple is a fixed-size ordered container of staged numbers. It supports projection,
mapping, folding and conversion to and from lists. Tuples are used for representing
the coordinates of vectors and points. Tuples can also be used to represent entries in
some of the affine transforms.

For a tuple t = (to t i , ...• td-l). the projection of the -ith element is given by:

proj (t, i) = ti .

The function map f t maps t into a new tuple given by:

(J(to),· .. , f(td-l)) .

The function map2 fuses two tupies together. If t = (to, ... , , td-l) and tt = (t~, ... , t~_l),
then:

map2ftt' = (J(to,t~),···,f(td-l,t~_l))'

The fold operation is defined as:

fold f z t = f(to, f(t 1, . .. f(~, td-d ...)).

mapfold and map2fold are shorthands for the composition of map then fold, and
map2 then fold, respectively.

7.5.2 The MATRIX and DETERMINANT Types

The MATRIX type provides an abstraction of matrices of staged numbers. The interface
specifies common matrix operations such as: matrix addition, subtraction, multipli­
cation, augmentation and minor. lvlatrix augmentation and minor are important
operations for the computations of the affine transforms.

The type DETERMINANT defined as:

58

I\lASc Thesis - I\1. Elsheikh - McMast r - Computing and Software

FIELD
MATRIX with type 'a n s
'a M.m -> 'a N.ns

module type DETERMINANT
sig

module N
module M
val eval

end

'a N.ns

is an abstraction of the determinant expansion computation.
DETERMINANT is required to have two instances of FIELD and
type constraint:

IWith type 'a n_s = 'a N.ns

A module of type
MATRIX types. The

ensures that the instantiation is appropriate. In other words, it allows the type checker
to check whether the given matrix Mis defined over the same number type of N or
not. This encoding of the condition through type constraints, enhances the reliability
of the generator by statically checking the composability of the variabilities.

The function eva1 takes a matrix m from the type MATRIX and returns the de­
terminant expansion of it. The entries of m are staged numbers. It is up to the
implementation to define eval in terms of the staged operators of Nand M, or not. In
the former case, eval can generate code for the determinant expansion. In the latter
case, eval generates code to perform the expansion at run-time.

Two concrete implementations are given for DETERMINANT and MATRIX. The func­
tor Determinant defined as:

module Determinant (N : FIELD)
(M : MATRIX with type 'a n s 'a N.ns)

struct

end

is a model of determinants. The functor Matrix

module Matrix (N : FIELD) : MATRIX =
struct

end

is a model for matrices.

59

DETERMINANT

~/IASc Thesis - M. Elsheikh - McMaster - Computing and Software

7.6 The Affine Space Layer

The affine space layer is motivated by the definition of the affine spaces. The generic
design is based on the triple (V, P, V) defining a space. The number types layer pro­
vides abstractions for the division ring V. The affine space layer provides abstractions
for points, vectors and operations on them. The rest of this section introduces the
the module types in this layer.

7.6.1 The VECTOR and POINT Types

The module type VECTOR, defined as:

module type VECTOR
sig

module N : REAL
type vector
type 'a vector s

end

('a, vector) staged

is the type of Euclidean n-dimensional free vectors. The interface defines two types
vector and vectoLS. vector is the type of vectors used at run-time, i.e., the base
type. vector_s is the type of staged vectors used at generation time. The number
type N is the type of coordinates. The choice of REAL is to accommodate the square
root operation required for the Euclidean length metric.

The interface includes various vector operations, such as: vector addition and
subtraction, dot product, cross product, scaling, and length. The functions have
dimensionless types. This is due to the fact that all the functions are defined over
the abstract type vector_so For example, subtracting two vectors is defined as:

val sub: 'a vector_s -> 'a vector_s -> 'a vector_s

where the dimension is not dictated by the function signatures. However, the field
val dim: int provides the dimension information. The module implementation
is responsible for setting the value of the dimension.

Similar to VECTOR, the module type POINT, defined as:

ImOdUle type POINT =

Slg

60

},IIASc Thesis - IV!. Elsheikh - McMaster - Computing and Software

module N : REAL
module V : VECTOR with module N = N
type point
type 'a point_s ('a, point) staged
val dim : int

end

is an abstraction of a point in an n-dimensional affine space. Points have coordinates
from a REAL number type. Points rely on a VECTOR for point subtraction. That is why
a module of type POINT has to know the type of vectors. The interface includes basic
operations on points. such as extracting a coordinate, and subtracting two points to
get a vector.

A common operation in computational geometry is ordering points. The module
type ORDERED_POINT is an extension of the type point with the addition of an order
relation. Iso-axis order is an interesting order on points. Iso-axis means in the
direction of the axis. The ordering ISO_AXIS_ORDERED_POINT is a modification of
ORDERED_POINT. It provides a coordinate-wise comparison. For example, the function
It in ORDERED_POINT has the type:

Ival lt : 'a point_s -> 'a point_s -> 'a Bool.b

whereas the same function in ISO_AXIS_ORDERED_POINT has the type:

val lt : int -> 'a point_s -> 'a point_s -> 'a Bool.b

The extra integer parameter specifies that the comparison is to be done on the ith
coordinate.

7.6.2 The AFFINE Type

The type AFFINE provides an abstraction for the affine transformation concept. The
interface AFFINE, defined as:

module type AFFINE
sig

module N REAL
module M MATRIX with

type 'a n s 'a N.ns

61

lASe Thesis - II. Elsheikh - IIdvlaster - Computing and Software

module V : VECTOR with module N = N
module P : POINT with

module N = N and module V V
module T : TUPLE
type 'a t
val apply_p 'a t -> 'a P.point_s -> 'a P.point_s
val apply_v 'a t -> 'a V.vector s -> 'a V.vector s
val compose 'a t -> 'a t -> 'a t
(* 80em affine transforms *)

val id : int -> 'a t
val translation: 'a V.vector s -> 'a t
val scaling: 'a T.t -> 'a t

end

provides the type of the affine transform. The interface includes functions to create,
compose, and apply the transform to points and vectors. Three types of transforms
are supported: identity, translation and scaling.

A concrete implementation, AffineTransformations, is given by the following
functor:

module AffineTransformations
(N REAL) (V : VECTOR with module N = N)
(P : POINT with module N = N and module V V)
(T : TUPLE) AFFINE =

struct
module N N
module M Matrix (N)
module V V
module P P
module T T

end

The transforms are internally represented as matrices.

7.7 Hyperplanes

A hyperplane is an affine subspace of codimension 1. In an n-dimensional space, a
hyperplane is uniquely defined by n points satisfying the equation:

AlP] + ... + AnPn = c

62

MASc Thesis - t\I. Elsheikh - McMaster - Computing and Software

where)'1, ... ,An and c are scalars and at least one of the scalars)'1, ... ,An is not
zero. A hyperplane can also be defined using a point Po and a normal vector n:

H = {p : n . (p - Po) = O}.

Basis of Hyperplane. A hyperplane in d-dimensional space is a space of dimen­
sion d-l. This means that a hyperplane has a basis, an origin and a frame. Any point
lying on the plane has local coordinates with respect to a given hyperplane frame.
Finding the local coordinates of a point is useful for operations such as projecting
points on a hyperplane.

Let H be a hyperplane defined by the points PI, ... ,Pn. Fix a point Pk to be the
origin, where 1 ::; k ::; n. A basis is given by:

The frame can then be defined as:

The general problem of finding orthonormal basis of a hyperplane is not addressed
here in this thesis.

Distance and Projection. The signed distance from a point P to a hyperplane
H defined by a normal vector n and a point Po is given by [SE02]:

5(H, p) = n . (p - Po).

The projection of ponto H is given by:

7/ = P - 5(H, p)n.

Orientation. A hyperplane H partitions the space into two disjoint halfspaces:
positive and negative. given by the inequalities:

and

/\lPl + ... + AI1 P71 > c.

Any point x can lie either on the positive side (positive halfspace). the negative side
(negative halfspace), or on the hyperplane. This relative position is usually called

63

MASc Thesis - M. Elsheikh - ~IIcMaster - Computing and Software

the orientation of x relative to H. The orientation is determined by the sign of the
following determinant:

Pl,1 Pl,2 PI,n 1

P2.1 P2,2 Ih,11 1

6 jj (x) =
PI1,l Pn,2 Pn,11 1
Xl X2 :En 1

where the hyperplane is defined by the points PI, ... 1 Pn (Pi,j being the ;th coordinate
of the point Pi)' The orientation takes the following cases:

{

on

orient(H, x) = positive

negative

6f[(x) = 0

6f[(x) > 0

6f[(x) < 0

In the computational geometry jargon (d. [dBvKOS97]), these sides are usually
called above and below in the 3D case. In the 2D case, the orientations are called
left and right turn. Counter-clockwise (ccw) and clockwise (cw) are other names for
orientation. The following table summarizes the different namings:

positive left ccw above
negative right cw below

zero collinear collinear coplanar

7.8 The Types HYPER_PLANE and Hplane_Operations

The interface HYPER_PLANE specifies a hyperplane constructable from a set of points.
The interface allows the extraction of the hyperplane polynomial, the hyperplane
bases, and local frame.

The functor Hplane_Operations takes a module of type HYPER_PLANE and builds a
module that contains two hyperplane operations: dist and project. dist computes
the distance between a hyperplane and a point. project computes the projection of
a point on a hyperplane.

7.9 The Module Orient

The module Orient provides the orientation test. It is defined as a functor parametrized
by the hyperplane type.

64

NlASc Thesis - NI. Elsheikh - Md/laster - Computing and Software

module Orient (H

struct

end

Orient defines a function orient h p which gives the sign of the orientation determi­
nant for a point p and a hyperplane h. The functor also includes several conveniently­
named functions for testing specific sides of the orientation. For example, ccw h p
checks if the point p is counter-clockwise with the hyperplane h. pas h p has the
same semantics as ccw. This redundancy was introduced to accommodate the differ­
ent names of the orientation tests.

7.10 Hyperspheres

Hypersphere (also n-sphere) is a generalization of the circle concept in higher dimen­
sions. A hypersphere S with a centre c and a radius r is defined as the set of all
points that are r-equidistant from c. Formally:

S={x:l/x-cll=r}.

In an n-dimensional space, a hypersphere S is uniquely defined by n + 1 points lying
on its surface. If the points are PI: ... , Pn+l, each described by a tuple of coordinates
(Pi.!, ... ,Pi.n), then the equation of Sis:

2ls(x) = a
where x = (Xl, ... ,xn) is any point lying on the sphere surface, and:

P1.1 Pl,2 Pl.n (pf,l + ... + pf.n) 1

P2.1 P2.2 P2.n (P~.l + ... + P~.n) 1

2ls(x) =

Pn+l,l Pn+1.2 Pn+l,n (P;+l,l + ... + P;+l.rJ 1
Xl X2 Xn (Xf+"'+x~) 1

The following table shows various examples of hyperspheres in different dimen­
S1Ons:

I Dimension I Hypersphere I Points I
1 Line segment 2
2 Circle 3
3 Sphere 4

n n-sphere n+l

65

MASc Thesis - }.II. Elsheikh - fvIcMaster - Computing and Software

Hypervolume. The n-dimensional volume (hypervolume) of a hypersphere with
radius l' is given by:

and the hyper-surface area is given by:

5 C n-I
n = n n 1'

where
7fn/2

Cn = ----
f(~ + 1)

The following table gives a few examples of evaluations of the volume and surface
area at dimensions 1, 2, 3 and 4.

I Dimension [Q;] 5n I Vn I

1 2 2 21'

2 7f 27f1' 7f1' 2

3 'I7T 47f1,2 47T 1'3
1 1"

4 7[" 27f2r- 3 7[" 4
2 21'

Sideness. The surface of the hypersphere divides the space into tvvo disjoint sets:
interior and exterior. Any point x = (Xl ,xn) can either lie on the surface of the
hypersphere. outside, or inside. The predicate, inside(5, x). determines the position
of a point x relative to a hypersphere 5:

{

on ~s(x) = 0

inside(5, x) = inside ~s(x) > 0

outside ~s(x) < 0

Circumcentre and Circumradius. The centre of a hypersphere can be com­
puted using the matrix [Bou]:

? ? 1Pl.l + ... + Pi,n Pl,l Pl,n
2 + 2 1P2l + ... P? n P2,1 P2,n

!VI = ' -,

2 2 1Pn+l,l + ... + Pn+l,n Pn+l,l Pn+l,n

Let J\!.h denote the minor of the matrix 1111 resulting from deleting the column k. The
centre c = (Cl, ... , en) is given by:

66

MASc Thesis - M. Elsheikh - lVlcl\ilaster - Computing and Software

and the radius is given by:

7.11 The Types HSPHERE and Sphere_Operations

The module type HSPHERE is an abstraction of the hypersphere concept. It provides
an abstract type for spheres. In an n-dimensional space, a sphere can be constructed
in two different ways: from n + 1 points, or by specifying a centre point and a radius.

The functor Sphere_Operations takes a module of type HSPHERE as an input, and
builds a module that contains the following functions:

• centre: computes the centre of a sphere.

• radius, radius2: computes the radius (resp. squared radius) of a sphere.

• content: computes the hyper-volume of a sphere.

• surface: computes the hyper-surface area of a sphere.

7.12 The Module Insphere

This module provides a generic test for a point inside a sphere. It is implemented
as a functor with the input being a module S of type HSPHERE. inside s p tests if
the point p is inside the sphere s. The interface is dimensionless. The dimension
information is retrieved from the passed instance of S.

7.13 Simplex

An affine combination 2..= AiPi of a family of points {pd iEJ, is called a convex combi-
iEJ

nation if Ai :2: 0 for all i E I. A finite subset of points S is said to be convex if for all
points x and y in S, the line segment xy lies completely in S. The convex hull of a
set of points P, denoted as ClHl(P), is the smallest convex set containing P. ClHl(P)
is defined as:

ClHl(P) = {2..= AiPi : Pi E P and 2..=Ai = 1 and /\ :2: 0 for all i}
iE! iEJ

67

~/IASc Thesis - M. Elsheikh - Me /Iaster - Computing and Software

In other words, the convex combination of any set of points Pl, PI> in P is also in
ClHI(P). The convex hull ClHI(P) defines a convex domain Q with a boundary denoted
as an.

d-Simplex

A d-simplex in a d-dimensional space is the convex hull of d + 1 affinely independent
points. O-simplex is a vertex (point), a I-simplex is a line segment, 2-simplex is a
triangle, 3-simplex is a tetrahedron.

The points forming the simplex are called the veTtices of the simplex. If 11 is the
set of vertices of a simplex S, then any subset F of 11 is called a face of the simplex.
The face opposite to vertex Vi is the face formed by the vertices 11\{vd.

Volume. Let S be a d-simplex defined by the points PI, ... , PMl. The signed
volume of S is given by the equation [Ste66]:

PI,l PI,2 PI,71 1

P2.1 P2.2 P2,n 1
1

-
d!

Pd.l Pd.2 Pd,n 1

Pd+l.l Pd+l,2 Pd+l.71 1

Circumsphere. Given a simplex S 'with vertices Pl, ... ,Pd+l, the ciTcumscTibed
spheTe (shortly, circumsphere), is the hypersphere passing through the vertices of S.

7.14 The Types VERTEX and SIMPLEX

A vertex is always attached to some simplex. This introduces a mutual dependency
between the vertex and simplex types. To break the tie, the type VERTEX declares
an abstract type simpleLs whereas the interface SIMPELX uses explicitly an instance
module of the type type VERTEX.

The interface for VERTEX provides basic construction facilities. A vertex is created
by specifying the point determining its location. The function attach attaches an
incident simplex to a vertex.

The interface for SIMPLEX provides functionality for construction of simplices,
retrieval of vertices and faces, and accessing neighborhood information. Two versions
of face retrieval are included in the interface: non-oriented faces, and oriented faces.
The vertices of an oriented face f opposite to a given vertex V are ordered such that:
orient h p = Ccw. where h is the hyperplane passing through the vertices of f, and
p is the point specifying the geometric location of v.

68

7.15

MASc Thesis - I'll. Elsheikh - McMaster - Computing and SofLware

The Module Inside

This module provides a generic test for a point inside a simplex. The parametric­
ity is realized using a functor. The inputs to the functor are two modules of type
HYPER_PLANE and HSPHERE.

7.16 Conclusion

In this chapter we presented a development of the affine geometry concepts, and their
corresponding mod ules and type in three layers: linear algebra, affine geometry, and
geometric objects. Affine geometry was chosen as the underlying geometric algebra
because it treats n-dimensional spaces through the same set of abstract concepts. In
effect, geometric primitives scale to higher dimensions. The concepts of affine geom­
etry that suites the mesh generation domain were implemented as abstract interfaces
using OCaml's module types. The interfaces were chosen to be generic and dimen­
sionless. The dimension information is statically fed at the generation-time by the
modules implementing these interfaces. The resulting layers are abstract and generic.

69

Chapter 8

Implementation and Results

This chapter presents modules that implement the concepts in the following layers:
linear algebra, affine geometry. and geometric objects. Other modules were presented
in earlier chapters. Several examples for building code, generators and the resulting
code, are presented.

It is worthnoting that the additional infrastructure required for building the code
generator and capturing the variabilities using the OCaml module system, results in
a simplified code. Several examples in this chapel' show this cost trade-off in details.

8.1 The Thple Models

The module TuplelD defined below provides a model for a I-tuple. A I-tuple is a
number.

module TuplelD : TUPLE
struct

type 'a t 'a
let dim 1

end

Two models of 2-tuples were implemented: Record2D and Pair2D. Record2D uses
record types to store the two elements in the tuple, whereas Pair2D uses product
types (pairs). Record2D is defined as:

[type 'a rec2_type 0 { cO , 'a ; cl

70

'a }

IVIASc Thesis - ~vI. Elsheikh - Md'l1aster - Computing and Software

module Record2D : TUPLE =
struct

type 'a t = 'a rec2_type

end

and Pair2D is defined as:

module Pair2D : TUPLE
struct

type 'a t

end

'a * 'a

Record3D is an implementation of a 3-tuple using records.

type 'a rec3_type = { x
module Record3D : TUPLE
struct

'a ; y : 'a ; z : 'a}

type 'a t

end

'a rec3_type

8.2 The Module VectorStaged

The functor VectorStaged is a model for VECTOR. It implements an n-dimensional
free vectors over a staged number type. VectorStaged is defined as:

module VectorStaged
(N REAL)

(T : TUPLE) : VECTOR

It takes two parameters: the number type N. and the tuple type T. Internally. the
vector type is represented as a staged tuple from T. The operations are written using
staged constructs.

71

NIASc Thesis - 11. Elsheikh - Mc laster - Computing and Software

Eliminating Code Duplication

The operations of VectorStaged are implemented such that a let-insertion is used
whenever duplication is expected. For example, consider the function length for
computing the length of a vector. A naive implementation of length is:

(* N is a number type *)
let length v = N.sqrt_s (dot v v)

However, if v is an non-atomic expression, e.g. a computation, the resulting code will
contain duplications. A let-binding should be used here. The variable v, repeated
twice in dot v v, can be bound to a let expression by:

let length v = N.sqrt_s (Code. let_ v (fun v-> (dot v v»)

which avoids the code duplications.

8.3 Example: Generation of Dot Product

As an example, we write a generator for dot product of two vectors using VectorStaged.
'vVe fix the number type Float, and instantiate three different concrete implementa­
tions of VectorStaged:

1. V1: using Tuple1D, a ID implementation of tuples.

2. V2R: using Record2D, a 2D implementation of tuples as records.

3. V2P: using Pair2D, a 2D implementation of tuples as pairs.

4. V3R: using Record3D, a 3D implementation of tuples as records.

The following genera tor can be used to genera te the code for dot product:

module Gen (V : VECTOR) =
struct

let dot
.< fun a b -> .-(Staged.to_code (

V.dot (of_atom .<a>.) (of_atom ..») >.
end

72

l'vIASc TlJesis - j'vI. Elsheikh - Icl'vIaster - Computing and Software

Instantiating the generator for Vl, V2R, V2P, and V3R, and calling Gen. dot (), results
in the following code (up to indentation):

(* lD *)
module Vl = VectorStaged(Float_Real_Exact) (TuplelD)
module GenVl = Gen (Vl)
GenVl. dot ()
(la, Vl,vector -> Vl.vector -> Vl.N.n) code
.<fun a_l -> fun b_2 -> (a_l *. b_2».

(* 2D Using Records *)

module V2R = VectorStaged(Float_Real_Exact) (Record2D)
module GenV2R = Gen (V2R)
GenV2R.dot ()
(la, V2R.vector -> V2R.vector -> V2R.N.n) code
.<fun a_l -> fun b_2 -> ((a_l.cO *. b_2.cO)

+. (a_l.cl *. b_2.cl))>.

(* 2D Using Pairs *)

module V2P = VectorStaged(Float_Real_Exact) (Pair2D)
module GenV2P = Gen (V2P)
GenV2P.dot ()
(la, V2P.vector -> V2P.vector -> V2P.N.n) code
. <fun a_l ->

fun b_2 -> (((fst a_U *. (fst b_2))
+. ((snd a_U * (snd b_2))».

(* 3D Using Records *)

module V3R = VectorStaged(Float_Real_Exact) (Record3D)
module GenV3R = Gen (V3R)
GenV3R. dot ()
(la, V3R.vector -> V3R.vector -> V3R.N.n) code
.<fun a_l ->

fun b_2 -> ((a_l.z *. b_2.z) +.
((a_l.x *. b_2,x) +. (a_l.y *. b_2.y))»,

The generator has the same interface: dot product of two atomic code expressions of
vectors a and b. However. the generated code has high intentionality, and resembles
exactly the choices of dimension (lD, 2D, or 3D), and the underlying data structure
(pairs and records). Another notable features is: there are no traces of the internal

73

NIASc Thesis - NI. Elsheikh - !IcMaster - Computing and Software

(generation-time) routines. For example, dot is internally implemented as fusion and
map of two tuples:

(* map2fold on vectors using the representation of tuples *)

let map2fold m f z v v' =
let bnow v v' = T.map2fold_n m f z v v'
and blater v v' = (T.map2fold_c m f z v v') in
mk_binary { bnow = bnow; blater = blater } v v'

(* The dot product *)

let dot vO v1 =
map2fold N.mul_s N.add s N.zero vO v1

However, none of the functions T.map2fold_n, T .map2fold_c, or other generation­
time functions, appear in the generated code.

8.4 The Module En_Point

The functor En_Point provides a parametrized implementation of an n-dimensional
point. The base type for points is a tuple. Hence the operations implemented in
En_Point are dimensionless. The dimension is determined by T.

module En_Point (N : REAL)
(V : VECTOR with module N N)
(T : TUPLE) : POINT =

struct
module N = N
module V = V
type point N.n T.t
type 'a point_s = ('a, point) staged

end

module Iso_Axis_Ordered_En_Point (N : REAL)
(V : VECTOR with module N = N)
(T : TUPLE) : ISO AXIS ORDERED POINT

struct

74

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

l,nelUde
end

En_Point(N) (V)(T)

is a model for ordered points. It provides an axis-oriented ordering over the point
type.

8.5 Example: Generation of 2D and 3D Transla­
tions

vVe use the following generator:

module Gen (AT : AFFINE)
struct

let translate () =
.< fun p v -> .~(

(* 1. lift to abstract *)

let p' = of_atom .<p>.
and v' = of atom .<v>. in
(* 2. call staged generator *)

let t = AT. translation v' in
let y = AT.apply_p t p' in

(* 3. concretize *)

Staged. to_code y) >.
end

module Gen :
functor (AT: Affine.AFFINE) ->
sig
val translate :

'a -> ('b,
AT.P.point -> AT.V.vector -> AT.P.point) code

end

1"otice that the body of the generator has 3 steps: 1. Lift the function parameters
into the abstract type (staged). 2. Call the staged generator routines. Those are the
staged functions provided by the AFFINE interface. 3. Concretize the results back.
Instantiating the generator with floating point numbers and vectors in 2D results in
the following code (up to indentation):

75

MASc Thesis - M. Elsheikh - Mc Iraster - Computing and Software

module V2R = VectorStaged (Float_Real_Exact) (Record2D)
module P2R = En_Point (Float_Real_Exact) (V2R) (Record2D)
module AT2R = AffineTransformations

(Float_ReaLExact) (V2R) (P2R) (Record2D)
module G2R = Gen (AT2R)
G2R.translate ()

(la, AT2R.P.point -> AT2R.V.vector -> AT2R.P.point) code =
.<fun p_l -> fun v_2 ->

{cO = (p_l.cO +. v_2.cO); cl = (p_l.cl +. v_2.cl)}>.

and the following code in the 3D case:

module V3R = VectorStaged (Float_Real_Exact) (Record3D)
module P3R = En_Point (Float_Real_Exact) (V3R) (Record3D)
module AT3R = AffineTransformations

(Float_ReaLExact) (V3R) (P3R) (Record3D)
module G3R = Gen (AT3R)
G3R.translate ()

('a, AT3R.P.point -> AT3R.V.vector -> AT3R.P.point) code
.<fun p_l -> fun v_2 ->

{x (p_l.x + v_2.x);
y (p_l.y + v_2.y);
z = (p_l.z +. v_2.z)}>.

The generated code has no traces of the matrices used for the internal representation
of the translation.

8.6 Example: Generation of Distances in ID and
2D

We present two example generations of the distance between a point and a O-hyperplane
and a I-hyperplane. A O-hyperplane is a point in I-dimensional space, and a 1­
hyperplane is a line in 2D space. Recall that the distance between a point x and a
hyperplane H with normal n and an origin Po is given by:

n· (x - Po).

76

MASc Thesis - M. Elsheikh - !IcMaster - Computing and Software

The case of the O-hyperplane is interesting because the normal vector n 1, and
hence the equation reduces to subtraction of two numbers. The instantiation below
reflects exactly this derivation in the 1Dease.

We use the following generator:

module Gen (H: HYPER_PLANE) =

struct
module OP = Hplane_Operations (H)
let dist ()

.< fun ps p -> .-(
(* Lift *)

let p' = of_atom .<p>.
and ps' = Array.to_list

(Array.init H.V.dim (fun i -> of atom .<ps. (i».)) in
(* create a hyperplane *)

let h = H.of_points ps' in
let d = OP.dist h p' in
to_code d) >.

end

where dist generates a code for a function H. P. point array -> H. P. point ->
H. V. N. n. The point x is given by the second argument, and the points defining
H are given by the first argument l

.

The code below instantiates the point and vector types in 1D.

module V1 VectorStaged (Float_ReaLExact) (Tuple1D)
module P1 En_Point (Float_ReaLExact) (Vi) (Tuple1D)
module HO N_plane (Float_Real_Exact)(V1)(P1)
module GenDist1D = Gen (HO)
GenDist1D.dist ()

\Nhen the generator is invoked, the complex computations correctly reduces to sub­
straction of two numbers:

('a, HO.P.point array -> HO.P.point -> HO.V.N.n) code
.<fun ps_1 -> fun p_2 -> (ps_1. (0) -. p_2».

IThe usage of an array instead of one point is a specific choice in this example. This choice
effectively allows the number of points defining a hyperplane to vary in different instantiations. This
facilitates reusing the same generator with spaces of varying dimensions.

77

NIASc Thesis - M. Elsheikh - McMaster - Computing and Software

The instantiation and output for the 2D case is:

module V2R = VectorStaged (Float_Real_Exact) (Record2D)
module P2R = En_Point (Float_Real_Exact) (V2R) (Record2D)
module H1 = N_plane (Float_Real_Exact)(V2R)(P2R)
module GenDist2D = Gen (H1)
GenDist2D.dist ()

('a, H1.P.point array -> H1.P.point -> H1.V.N.n) code
.<fun ps_1 ->

fun p_2 ->
let _v_10
let _v_9
let _v_7 =

(* The hyperplane is represented by two points ps_1. (0)
and ps_1. (1). The position vectors for which are v 5
and _v_6, respectively.

let _v_5 = {cO = (ps_1. (0» .cO; c1 = (ps_1. (0» .c1} in
let _v_6 = {cO = (ps_1. (1» .cO; c1 = (ps_1. (1» .c1} in
(* Compute the normalized vector _v_9 = ps_1. (1) - ps_1. (0). *
{cO = (_v_5.cO -. _v_6.cO); c1 = (_v_5.c1 - _v_6.c1)} in

let _v_8 = (sqrt ((_v_7.cO *. _v_7.cO) +.
(_v_7.c1 *. _v_7.c1») in

{cO = (_v_7.cO /. _v_8); c1 = (_v_7.c1 /. _v_8)} in
(* The normal _v_10 = perp _v_9*)
{cO = (--. _v_9.c1); c1 = _v_9.cO} in

let v 11 =
(* Normal vector was computed. Evaluate the distance equation. *
let _v_3 = {cO (ps_1. (O».cO; c1 = (ps_1.(0».c1} in
let _v_4 = {cO = p_2.cO; c1 = p_2.c1} in
{cO = (_v_3.cO -. _v_4.cO); c1 = (_v_3.c1 -. _v_4.c1)} in

((_v_10.cO *. _v_11.cO) +. (_v_10.c1 *. _v_11.c1»>.

8.6.1 Example: Generating Insphere Test for 1D and 2D

\Ne use the following generator to generate the insphere test. The module Gen is
parametric in the number and tuple types. It instantiates the required modules. a.nd
generate an in_ call.

78

MASc Thesis - lV1. Elsheikh - lId/laster - Computing and Software

module Gen (N : REAL) (T : TUPLE)
struct

module V VectorStaged (N) (T)
module PEn_Point (N) (V) (T)
module S Sphere (N) (P)
module IS = Insphere (S)
let insphere () =

.< fun ps p -> .-(Staged.to_code (
let p) = of_atom .<p>.
and pSi = Array.init (V.dim+i)

(fun i -> of_atom .<ps. (i».) in
let s = S.of_points (Array.to_list pSi) in
IS.in_ s pi)) >.

end

In the ID case the test is equivalent to the following expansion:

ps_i.(O) ps_i. (O)*ps_i. (0) 1
ps_1. (1) ps_1. (1) *ps_1. (1) 1 = O.

p_2 p_2*p_2 1

The generated code (using Float_ReaLExact and TupleiD) is:

- : ('a, GSi.S.P.point array -> GSi.S.P.point -> bool) code
.<fun ps_i ->

fun p_2 ->
(CCps_1. (0) *. CCps_1. (1) *. ps_1. (1)) +. (--. (p_2 *. p_2)))) +.

(c--. CCps_1. (0) *. ps_1. (0)) *. (ps_1. (1) +. c--. p_2)))) +
((ps_1. (1) *. (p_2 *. p_2)) +.

(--. ((ps_1. (1) *. ps_1. (1)) *. p_2))))) > 0.».

In the 2D case, the test is equivalent to the following expansion (using FloaLReaLExact
and Record2D):

(ps_1. (0)) .cO
(ps_1. (1)) . cO
(ps_i. (2)) . cO

p_2. cO

(ps_1. (0)).c1
(ps_1. (1)).c1
(ps_1. (2)).c1

p_2. c1

(ps_1. (0)) . cO* (ps_1. (0)) . c1 1
(ps_1. (1)) . cO* (ps_1. (1)) . c1 1
(ps_1. (2)) . cO* (ps_i . (2)) . c 1 1

p_2.cO*p_2.ci 1

= O.

The generated code is long. '0le only show a part of it:

79

lASe Thesis - M. Elsheikh - MdvIaster - Computing and Software

. <fun ps_l ->
fun p_2 ->

((((ps_1. (0)) .cO *
(((ps_1. 0)).c1 *.

(let _v_7 = {cO = (ps_l. (2)) .cO; cl = (ps_l. (2)) .cl} in
let _v_8 = {cO = (ps_l. (2)) .cO; cl = (ps_l. (2)) .cl} in
(Cv_7.cO *. _v_8.cO) +. Cv_7.c1 *. _v_8.c1)) +
(--.

let _v_9 = {cO = p_2.cO; cl = p_2.cl} in
let v 10 = {cO = p_2.cO; cl = p_2.cl} in
((_v_9.cO *. _v_l0.cO) +. (_v_9.cl *. _v_l0.cl))))) +.

(c- .

(let _v_5 = {cO = (ps_l. (1)) .cO; cl = (ps_l. (1)) .cl} in
let _v_6 = {cO = (ps_l. (1)) .cO; cl = (ps_l. (1)) .cl} in
(Cv_5.cO *. _v_6.cO) +. Cv_5.cl *. _v_6.c1)) *.
((ps_l.(2)).cl +. (--. p_2.cl)))) +

(((ps_1. (2)).c1 *

8.6.2 Example: Generating Orientation Test for ID Using
Exact and Inexact Zero

VVe demonstrate choosing different number types through this example. The following
generator:

module Gen (N REAL) (T TUPLE)
struct

let col n =
let module V VectorStaged (N) (T) in
let module PEn_Point (N) (V) (T) in
let module H N_plane (N) (V) (P) in
let module HO = Orient (H) in
.< fun ps p -> .-(Staged.to_code (

let points = Array.init V.dim
(fun i -> of_atom .<ps. (i».) in

let 1 = H.of_points (Array.to_list points) in
HO.col 1 (of_atom .<p>.))) >.

end

80

MASc Thesis - NI. Elsheikh - IVldvlaster - Computing and Soft\~are

can generate the collinearity test for a point and a hyperplane in any dimension.
In the 1D case. the hyperplane is a point, and the test reduces to (where p is the
h) perplane, and x is the test point):

I
p 1 I= a
xl'

or
p - x = O.

This equality test can be exact or inexact. The inexact number type FloaLReaLlnexact
uses a tolerance, f. and this test takes the form:

-E ~ P - .1: ~ E,

or in expanded form:
(- E ~ P - x) 1\ (p - x ~ E).

vVe instantiate the generator "vith two different number type implementations. First,
we instantiate with the inexact floating-point type:

module Float_E6 = Float_Real_Inexact(struct
eps

module GH1' = Gen (Float_E6) (Tuple1D)

let
1e-6, .<1e-6>. end)

where the tolerance in the sign calculation set to 10-6 . Second, we use the exact
floating-point type:

module GH1 = Gen (Float_Real_Exact) (Tuple1D)

Calling the generator results in the following code for the exact float:

(' a,
Float.Float Real_Exact.n Tuple.Tuple1D.t array ->
Float.Float_Real_Exact.n Tuple.Tuple1D.t -> bool)

code
. <fun ps_1 -> fun p_2 -> ((ps_1. (0) +. (--. p_2)) = 0.».

which corresponds to testing p - x = O. \J\ hereas, the code for the inexact float is:

81

IvIASc Thesis - ~/I. Elsheikh - McMaster - Computing and Software

(' a,
Float E6.n Tuple.TuplelD.t array ->
Float_E6.n Tuple.TuplelD.t -> bool)

code

.<fun ps_l ->
fun p_2 ->
let x_3 = (ps_1. (0) +. (--. p_2»
and eps_4 = le-6 in
((x_3 >= (--. eps_4» && (x_3 <= eps_4»>.

which correspond to testing (-E ~ P - x) 1\ (p - x ~ E).

8.6.3 Example: Generating Orientation Test for 2D

The following instantiation uses the same generator in the example abO\ e. The 2D
generation follows from the choice of Record2D, an implementation of 2-tuples using
record data structure.

module GH2 = Gen (Float_Real_Exact) (Record2D)

Calling the generator results in the follO\ving code (type signature omitted):

.<fun ps_l ->
fun p_2 ->

((((ps_l.(O».cO * ((ps_l.(l».cl +. (--. p_2.cl») +
((--. CCps_1. (0».c1 *.

((ps_l.(l».cO +. (--. p_2.cO»» +
(((ps_1. (1» .cO *. p_2.c1) +.

c--. CCps_1. (1».c1 *. p_2.cO»») =
0.» .

which corresponds to expanding the determinant:

(ps_1. (0» . cO (ps_1. (0» . c1 1
(ps_1. (1» . cO (ps_1. (1» . c1 1 = O.

p_2. cO p_2. c1 1

82

Chapter 9

ConcIusions

This chapter concludes this thesis by summarizing the contributions and discussing
the related work. Finally, an outlook on the future work is given.

9.1 Summary of Contributions

The work presented in this thesis contributes to improving the quality of mesh gen­
eration software through building a program generator for geometric kernels suitable
for mesh generation systems.

Three primary concerns of mesh generation software are managing the complex­
ity of the software, managing the anticipated changes, and improving the quality of
the soft-ware. Development as a program family is a promising approach to address
those concerns. However, using good software engineering practices for implementing
a family, such as modularity and abstraction, generally results in run-time overheads.
To avoid these overheads, further techniques can be applied at the cost of the under­
standability and maintainability of the soft"vare. This thesis presents a step towards
answering the question of the cost of the abstractions in the mesh generation domain
without sacrificing understandability and maintainability.

The relative success of generative programming for implementing program families
is due to its focus on abstraction, reusability. portability, maintainability. and effi­
ciency. Generative meta-programming and in particular multi-stage programming.
offers an opportunity for building program generators without requiring additional
compiler technology. Abstract interpretation - a technique usually applied in static
analysis - can be combined with generative programming to eliminate unnecessary
computations in the generated code. l\IetaOCaml offers multi-stage facilities and
a static type system which ensures that the generated code is well-typed. Because
i'vletaOCaml is based on OCaml, it enjoys all its features such as polymorphic types,

83

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

higher-order functions, and a powerful module system.
In this thesis, we have shown how abstract interpretation, layered design, and

MetaOCaml's support for multi-staging can be combined to achieve our goal in vvrit­
ing a parametric, type-safe, abstract and maintainable generator for a geometric ker­
nel. The generated code has minimal traces of the design abstractions and exhibits
quality features such as: constant folding and propagation, algebraic simplification,
and common sub-expression elimination. The generator is based on abstractions that
are natural to the domains of mesh generation and computational geometry. The
maintainability and understandability of the generator are not undermined, yet the
cost of abstraction is reduced in the generated code.

It should be easy to see that these techniques generalize to other aspects of mesh
generation systems.

9.2 Related Work

Previous works on the geometric core of mesh generation and computational geometry
have mainly focused on genericity, flexibility, and performance. Qualities such as
understandability and maintainability are usua.lly sacrificed to achieve genericity and
efficiency.

Simpson [Sim99] presents an attempt to decouple mesh generators from the un­
derlying geometry by using object-oriented programming techniques to dynamically
bind computations to different local coordinate representations. However, object­
orient programming can introduce run-time overheads.

XYZ GeoBench [Sch91] offers a programming environment for implementing geo­
metric algorithms by relying on object-oriented programming and virtual functions to
implement genericity. By using object-oriented programming, geometric algorithms
can be implemented in an arithmetic independent way. However, using dynamic
binding for achieving flexibility, can result in performance penalties.

LEDA [MN99] is a comprehensive library of data types and algorithms. LEDA
makes use of C++ templates to achieve genericity. The library has a layered design
that decouples geometric algorithms from number types. The independence from
coordinate systems is achieved by having two sets of geometric kernels: one for the
Cartesian coordinates, and another for the homogeneous coordinates. This duplica­
tion is a challenge to the extensibility and maintainability.

The CGAL [FGK+OO] library is written in C++ using generic programming
to achieve flexibility, efficiency, and robustness. Adaptability and extensibility are
achieved by parameterizing each geometric object by the geometric kernel type and
the number ype. CGAL relies on C++ template instantiation at compile-time to
reduce the performance penalties of the parametrization. However, C++ template

84

MASc Thesis - M. Elsheikh - McNlaster - Computing and Software

meta-programming provides no guarantee on the correctness of the program gener­
ator. Programs written using this technique are difficult to understand, and hence
their maintainability is a challenging task.

Outside the context of mesh generation and scientific computing, meta- and gen­
erative programming were applied to scientific computing.

Carette et. al. [CK05] provides a highly parametrized generator for a family of
Gaussian Elimination algorithms. The use of monads and multi-stage programming
allows eliminating all the abstraction overhead while preserving the type-safety of the
generated code. Blitz++ [VeI98] uses C++ meta-programming to eliminate the cost
of abstractions in vector mathematics.

9.3 Future Work

The results of this thesis work encourage future research in the development of pro­
gram generators for a family of geometric kernels and mesh generation in general.
Our time constraints have limited our scope to implementing a simple version of the
generative geometric kernel. Therefore, more work should be done in the future to
refine the kernel and expand its scope. The following list presents the prominent
future investigations.

1. Expand the staging layer. .Many refinements can be done in the staging layer.
These refinements include:

(a) Modifying the type staged to accommodate more complex types such as
staged pairs and records.

(b) Employing the monadic techniques from [CK05], to improve the generation
of control structures, and let-bindings. Monads are promising in handling
the generation of non-trivial data types and situations where nesting and
side effects are involved.

(c) Implementing more code optimizations such as loop unrolling and other
code transformations from [CDG+06].

2. Expand the number type layer for a comprehensive set of abstractions. For
example, the current abstractions do not differentiate between concepts such
as division rings and commutative rings. Such a finer set of abstractions will
allow expressing the geometric algorithms in terms as close as possible to the
domain concepts and hence, reduce the gap between program code and domain
concepts.

85

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

3. Experiment with different geometric algebras. Chapter 7 discussed the reasons
behind choosing affine geometry. Other kinds of geometric algebras should be
considered for experimentation. For example, the algebra in [FD03] is promising
for handling different coordinate systems.

86

Bibliography

[ABIVI09]

[AHMKOl]

[Art91]

[Aud03]

[BerOO]

[BHK06]

[Bli02]

[Bou]

[Bru97]

Ritu Arora .. Purushotham Bangalore, and t\/Iarjan Mernik. Developing
scientific applications using generative programming. In SECSE 109:
Pmceedings of the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, pages 51-58. \iVashington, DC,
USA. 2009. IEEE Computer Society.

Krister Ahlander, Magne Haveraaen, and Hans Z. Munthe-Kaas. On the
role of mathematical abstractions for scientific computing. In Pmceed­
ings of the IFIP TC2/WG2.5 Working Conference on the Architecture
of Scientific Software, pages 145-158, Deventer, The Netherlands, The
Netherlands, 2001. Kluwer, B.V.

Michael Artin. Algebra. Prentice-Hall, New Jersy, USA, 1991.

Michele Audin. Geometry. Springer-Verlag, Inc., New York, NY, USA,
2003.

Guntram Berti. Generic components for grid data structures and algo­
rithms with C++. In First Workshop on C++ Template Programming,
2000.

Maria Cecilia Bastarrica and ancy Hitschfeld-Kahler. Designing a
product family of meshing tools. Adv. Eng. Softw., 37(1):1-10, 2006.

Charles Blilie. Patterns in scientific software: An introduction. Com­
puting in Science and Engg., 4(3):48-53, 2002.

Paul Bourke. Equation of a sphere from 4 points on the surface.
http://local. wasp. uwa.edu.aur pbourkelgeometryIspherefrom4/.

D. Bruce. \!\That makes a good domain-specific language? APOSTLE.
and its approach to parallel discrete event simulation. In Proceedings
of the ACM SIGPLAN Workshop on Domain Specific Languages, pages
17-35, Paris, France, January 1997.

87

[Cao06]

[Car06]

[CC77]

MASc Thesis - NI. Elsheikh - McMaster - Computing and Software

Fang Cao. A program family approach to developing mesh genera­
tors. Master's thesis, McMaster University, Hamilton, Ontario, Canada,
2006.

Jacques Carette. Gaussian elimination: a case study in efficient gener­
icity with MetaOCaml. Sci. Comput. Program., 62(1):3-24, 2006.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni­
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL '77: Proceedings of the 4th
A CM SIGA CT-SIGPLAN symposium on Principles of programming
languages, pages 238-252, New York, NY, USA, 1977. ACIvI.

[cca] The Common Component Architecture Forum.
forum.org/ .

http://www.cca-

[CDG+06]

[CEOO]

[CEG+OO]

[CH\!\I98]

[Cic05]

[CK05]

Albert Cohen, Sebastien Donadio, Maria-Jesus Garzaran, Christoph
Herrmann, Oleg Kiselyov, and David Padua. In search of a program
generator to implement generic transformations for high-performance
computing. Sci. Comput. Program., 62(1):25-46, 2006.

Krzysztof Czarnecki and Ulrich \!\I. Eisenecker. Generative pTOgram­
ming: methods, tools, and applications. ACM Press/Addison- \iVesley
Publishing Co., New York, NY, USA, 2000.

Krzysztof Czarnecki, Ulrich \iV. Eisenecker, Robert Gluck, David Van­
devoorde, and Todd L. Veldhuizen. Generative programming and active
libraries. In Selected Papers fTOm the International Seminar on Generic
PTOgramming, pages 25-39, London, UK, 2000. Springer-Verlag.

James Coplien, Daniel Hoffman, and David \!\Ieiss. Commonality and
variability in software engineering. IEEE Softw., 15(6):37-45. 1998.

ll'evor Cickovski. Design patterns for generic object-oriented scientific
software. In ICSE05, Twenty-Seventh International Conference on Soft­
ware Engineering, 2005.

Jacques Carette and Oleg Kiselyov. Multi-stage programming with
functors and monads: Eliminating abstraction overhead from generic
code. In Robert Glck and Michael Lowry, editors, Generative PTOgram­
ming and Component Engineering, volume 3676 of Lecture Notes in
Computer Science, pages 256-274. Springer Berlin / Heidelberg, 2005.

88

[CK08]

[Cro96]

MASc Thesis - M. Elsheikh - l\lIc /Iaster - Computing and Software

Jacques Carette and Oleg Kiselyov. Multi-stage programming with
functors and monads: Eliminating abstraction overhead from generic
code. Science of Computer Pmgramming, In Press, Corrected Proof,
2008.

Thomas 'vV. Crockett. Beyond the renderer: Software architecture for
parallel graphics and visualization. Technical report, 1996.

[Daw]

[dBvKOS97]

[DeR89]

[EFP07]

[Eis97]

[ESC04]

[FD03]

[FFT]

[FGK+OO]

[FSPL08]

B. Dawes. Home page of C++ Boost. http://www.boost.org/.

Mark de Berg, .tvlarc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Apphcations.
Springer, 1st edition, 1997.

T. D. DeRose. A coordinate-free approach to geometric programming.
Theory and practice of geometric modehng, pages 291~305, 1989.

Martin Erwig, Zhe Fu, and Ben Pflaum. Parametric FORTRAN: pro­
gram generation in scientific computing. J. SoJtw. Maint. Evol., 19:155~

182, May 2007.

U. Vv. Eisenecker. Generative programming (GP) with C++. Lecture
Notes in Computer Science, 1204:351~365, 1997.

A. H. E1Sheikh, S. Smith, and S. E. Chidiac. Semi-formal design of
reliable mesh generation systems. Adv. Eng. Softw., 35(12):827-841,
2004.

Daniel Fontijne and Leo Dorst. l\lIodeling 3D Euclidean geometry. IEEE
Comput. Graph. Appl., 23(2):68-78, 2003.

FFTVl Home Page. http://wvvw.fftw.org/benchfft/ffts.html.

Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and
Sven Schonherr. On the design of CGAL a computational geometry
algorithms library. Softw. Pract. Exper., 30(11):1167-1202,2000

Joel Falcou, Jocelyn Serot, Lucien Pech, and Jean-Thierry Lapreste.
lVleta-programming applied to automatic SNIP parallelization of linear
algebra code. In Proceedings oj the 14th internatwnal Eum-Par con­
ference on Parallel Processing, pages 729-738, Berlin, Heidelberg, 2008.
Springer-Verlag.

89

[GaIOO]

[Gar04]

MASe Thesis - IVI. Elsheikh - NIe /Iaster - Computing and Software

Jean Gallier. Geometric methods and applications: for computer science
and engineering. Springer-Verlag, London, UK, 2000.

Henry Gardner. Design patterns in scientific software. In Computational
Science and Its Applications - ICCSA 2004, pages 776-785. 2004.

[GHJV95]

[GHWOO]

[GK03]

[Go102]

[Hea02]

[HG04]

[HLC+06]

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De­
sign patterns: elements of reusable object-oriented software. Addison­
\iVesley Longman Publishing Co., Inc., Boston, lVIA, USA, 1995.

Philip 'vV. Grant, Magne Haveraaen, and Michael F. \iVebster. Coordi­
nate free programming of computational fluid dynamics problems. Sci.
Program., 8(4):211-230, 2000.

J. Gerlach and J. Kneis. Generic programming for scientific computing
in C++, Java, and C#. Lecture Notes in Computer Science, 2834:301~
310, 2003.

Ron Goldman. On the algebraic and geometric foundations of computer
graphics. ACM Trans. Graph., 21(1):52-86, 2002.

Michael T. Heath. Scientific Computing: an Introductory Survey.
McGraw-Hill, New York, NY, USA, 2002.

Bruno Harbulot and John R. Gurd. Using AspectJ to separate concerns
in parallel scientific Java code. In AOSD '04: Proceedings of the 3rd in­
ternational conference on Aspect-oriented software development, pages
122-131, New York, TY, USA, 2004. ACIVI.

N. Hitschfeld, C. Lillo, A. Caceres, M. Bastarrica, and IV!. Rivara. Build­
ing a 3D meshing framework using good software engineering practices.
In Sergio Ochoa and Gruia-Catalin Roman, editors, Advanced Software
Engineering: Expanding the Frontiers of Software Technology, volume
219 of IFIP International Federation for Information Processing, pages
162-170. Springer Boston, 2006.

John Irwin, Jean-l'vIarc Loingtier, John R. Gilbert, Gregor Kiczales,
John Lamping, Anurag Mendhekar, and Tatiana Shpeisman. Aspect­
oriented programming of sparse matrix code. In ISCOPE '97: Proceed­
ings of the Scientific Computing in Object- Oriented Parallel Environ­
ments, pages 249-256, London, UK, 1997. Springer-Verlag.

90

JVIASc Thesis - IvI. Elsheikh - JVIcMaster - Computing and Software

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation
and automatic program generation. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[Joh79] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX
PTOgrammer's Manual, volume 2, pages 353-387. Holt, Rinehart, and
vVinston, New York, NY, USA, 1979. AT&T Bell Laboratories Technical
Report July 31, 1978.

[Kan02] Stephen H. Kan. Metrics and Models in Software Quality Engineer­
ing. Addison-v'lesley Longman Publishing Co., Inc., Boston, NIA, USA,
2002.

[Kan05] Ronald Kirk Kandt. Software Engineering Quality Practices (Applied
Software Engineering). Auerbach Publications, Boston, MA, USA,
2005.

[KG07] Chanwit Kaewkasi and John R. Gurd. A distributed dynamic aspect
machine for scientific software development. In VMIL '07: Proceedings
of the 1st workshop on Virtual machines and intermediate languages
for emerging modular~zation mechanisms, page 3, Nevv York, TY, USA,
2007. ACM.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean- 1arc Loingtier, and John Irwin. Aspect-oriented
programming. In European Conference on Object-Orzented Program­
ming (ECOOP) , Jyviiskylii, Finland, volume 1241 of Lecture Notes in
Computer Science. Springer-Verlag, June 1997.

[KMB+96] Richard B. Kieburtz, Laura McKinney, Jeffrey JVI. Bell, James Hook,
Alex Kotov, Jeffrey Lewis, Dino P. Oliva, Tim Sheard, Ira Smith, and
Lisa \t\1alton. A software engineering experiment in software component
generation. In ICSE '96: Proceedings of the 18th intemational confer­
ence on Software Engineering, pages 542-552, Washington, DC, USA,
1996. IEEE Computer Society.

[KS08] Dianne Kelly and Rebecca Sanders. Assessing the quality of scientific
software. 2008.

[KST04] Oleg Kiselyov, Kedar N. Swadi, and vValid Taha. A methodology for
generating verified combinatorial circuits. In EMSOFT '04: Proceedings
of the 4th A CM intemational conference on Embedded software, pages
249-258. New York, NY. USA, 2004 ACM.

91

[LL97]

[LL02]

[LS79]

[McC07]

[McI69]

lVIASc Thesis - M. Elsheikh - MclVIaster - Computing and Software

Nam-Yong Lee and Charles R. Litecky. An empirical study of soft­
ware reuse with special attention to Ada. IEEE Trans. Softw. Eng.)
23(9):537-549, 1997.

Lie-Quan Lee and Andrew Lumsdaine. Generic programming for high
performance scientific applications. In JGI '02: Proceedings of the 2002
Joint ACM-ISCOPE conference on Java Grande, pages 112-121, New
York, NY, USA, 2002. ACM.

Michael E. Lesk and Eric Schmidt. Lex A Lexical Analyzer Generator.
In UNIX Programmer's Manual, volume 2, pages 388-400. Holt, Rine­
hart, and \iVinston, New York, NY, USA, 1979. AT&T Bell Laboratories
Technical Report in 1975.

J. McCutchan. A generative approach to a virtual material testing
laboratory. Master's thesis, McMaster University, Hamilton, Ontario,
Canada, 2007.

Doug McIlroy. Mass-produced software components. In J. M. Buxton,
P. Naur, and B. Randell, editors, Proceedings of Software Engineering
Concepts and Techniques, pages 138-155. NATO Science Committee,
January 1969.

[MET02] Maurizio Morisio, Michel Ezran, and Colin Tully. Success and failure
factors in software reuse. IEEE Trans. Software Eng., 28(4):340-357,
2002.

[Mey03] Bertrand lVIeyer. The grand challenge of trusted components. In ICSE
'03: Proceedings of the 25th Intemational Conference on Software Engi­
neering, pages 660-667, 'Washington, DC, USA, 2003. IEEE Computer
Society.

[l\lIHS05] Marjan IvIernik, Jan Heering, and Anthony M. Sloane. \iVhen and how
to develop domain-specific languages. ACM Comput. Surv., 37(4):316­
344, 2005.

[MMN+97] Kurt Mehlhorn, Michael Muller, Stefan 1 aher, Stefan Schirra, Michael
Seel, Christian Uhrig, and Joachim Ziegler. A computational basis for
higher-dimensional computational geometry and applications. In SCG
'97: Proceedings of the thirteenth annual symposium on Computational
geometry, pages 254-263, New York, NY, USA, 1997. AGlvI.

92

[MN99]

[moe]

[MP99]

[l\11SS9]

[MYOl]

[Obj]

[OS06]

[Owe9S]

[Par72]

[Par76]

]V1ASc Thesis - M. Elsheikh - McMaster - Computing and Software

Kurt Mehlhorn and Stefan Niiher. LEDA: a platform for combinatorial
and geometric computing. Cambridge University Press. New York, NY,
USA, 1999.

MetaOCaml Home Page. http://ww'vv.metaocaml.orgj.

Vijay Menon and Keshav Pingali. A case for source-level transforma­
tions in MATLAB. In DSL '99: PToceedings of the 2nd conference on
ConfeTence on Domain-Specific Languages, pages 5-15, Berkeley, CA,
USA, 1999. USENIX Association.

D. R. Musser and A. A. Stepanov. Generic programming. In P. (Pa­
trizia) Gianni, editor, Symbolic and algebraic computation: InteTna­
tional Symposium ISSAC '88, Rome, Italy, July 4-8, 1988: proceed­
ings, volume 35S of Lecture Notes in ComputeT Science, pages 13-25,
pub-SV:adr, 19S9. Springer Verlag.

Peter NIcGavin and Roger Young. A generic list implementation. SIG­
PLAN FOTtran Forum, 20(1):16-20, 2001.

Objective Caml. http://caml.inria.fr/ocamlj.

Suely Oliveira and David E. Stewart. Writing Scientific Software: A
G1Lide to Good Style. Cambridge University Press, New York, NY, USA,
2006.

Steven J. Owen. A survey of unstructured mesh generation technology.
In PTOceeding of the 7th InteTnational Meshing Roundtable, pages 239­
267, 1995.

David Lorge Parnas. On the criteria to be used in decomposing systems
into modules. Commun. ACM, 15(12):1053-105S, 1972.

David Lorge Parnas. On the design and development of program fami­
lies. IEEE Trans. Software Eng., 2(1):1-9,1976.

[RGZ+09]

[Sam97]

Suman Roychoudhury, Jeff Gray, Jing Zhang, Purushotham Bangalore,
and Anthony Skjellum. Modularizing scientific libraries with aspect­
oriented and generative programming techniques. Acta ElectTotechnica
et InfoTmatica, 9(3) :16-23, 2009.

Johannes Sametinger. SoftwaTe engineeTing with reusable components.
Springer-Verlag New York, Inc., New York. NY, USA, 1997.

93

[SC04]

[Sch91]

[SClVI08]

[SE02]

[Seg07]

[She01]

[Sim99]

[SL95]

[SL98]

MASc Thesis - M. Elsheikh - NlcNlaster - Computing and Software

S. Smith and C. H. Chen. Commonality analysis for mesh generating
systems. Technical Report CAS-04-10-SS, lVIcNlaster University, 2004.

Peter Schorn. Implementing the XYZ GeoBench: A programming en­
vironment for geometric algorithms. In CG '91: Proceedmgs of the
International Workshop on Comp'utational Geometry =- Methods, Al­
gOTithms and Applications, pages 187-202, London, UK, 1991. Springer­
Verlag.

Spencer Smith, Jacques Carette, and John McCutchan. Commonality
analysis of families of physical models for use in scientific computing.
In Proceedings of SECSE08 conference, 2008.

Philip J. Schneider and David Eberly. Geometrzc Tools for Computer
Graphics. Elsevier Science Inc., New York, NY, USA, 2002.

Judith Segal. Some problems of professional end user developers. In
VLHCC '07: Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computmg, pages 111-118, \iVashington, DC, USA,
2007. IEEE Computer Society.

Tim Sheard. Accomplishments and research challenges in meta­
programming. In Proceedings of the Second International Workshop on
Semantics) Applications) and Implementation of Program Generatwn,
pages 2-44, London, UK, 2001. Springer-Verlag.

R. Bruce Simpson. Isolating geometry in mesh programming. In Proc.
of the 8th Tnt'l Meshing Roundtable, pages 45-54, South Lake Tahoe,
California, October 1999.

Alexander Stepanov and l\!Ieng Lee. The standard template library.
Technical report, vVG21/ T0482, ISO Programming Language C++
Project, 1995.

Jeremy G. Siek and Andrew Lumsdaine. The matrix template library:
A generic programming approach to high performance numerical linear
algebra. In ISCOPE '98: Proceedings of the Second InteTnational Sym­
posium on Computing in Object- Oriented Parallel Environments, pages
59-70, London, UK, 1998. Springer-Verlag.

[Sl\!IC07] S. Smith, J. NlcCutchan, and F. Cao. Program families in scientific com­
puting. In J. Sprinkle, J. Gray, tv!. Rossi, and J.-P. Tolvanen, editors,

94

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

7th OOPSLA Workshop on Domain Specific Modelling, pages 39-47,
Montreal, Quebec, 2007.

[Som04] Ian Sommerville. Software Engineering. Addison-'Wesley, 7th edition.
l\!Iay 2004.

[Ste66] P. Stein. A note on the volume of a simplex. The American Mathemat­
ical Monthly, 73(3):299-301, 1966.

[SY09] S. Smith and \N. Yu. A document driven methodology for develop­
ing a high quality parallel mesh generation toolbox. Adv. Eng. Softw.,
40(11):1155-1167,2009.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented PTO­
gmmming. Addison-Wesley Longman Publishing Co., Inc., Boston, l\!IA,
USA, 2002.

[Tah04] \iValid Taha. A gentle introduction to multi-stage programming. In
Domain-specific PTOgmm Genemtion) LNCS, pages 30-50. Springer­
Verlag, 2004.

[TN03] \Nalid Taha and Michael Florentin Nielsen. Environment classifiers.
SIGPLAN Not., 38(1):26-37, 2003.

[TSOO] Walid Taha and Tim Sheard. lVIetaML and multi-stage programming
with explicit annotations. Theor. Comput. Sci., 248(1-2):211-242, 2000.

[TSW99] Joe F. Thompson, Bharat K. Soni, and Nigel P. \Neatherill, editors.
Handbook of grid genemtion. CRC Press, Boca Raton, FL, 1999.

[TWOO] Shang-Hua Teng and Chi \iVai Wong. Unstructured mesh generation:
Theory, practice, and perspectives. Int. J. Computational Geometry
and Applications, 10(3):227-266, Jun 2000.

[vDK98] Arie van Deursen and Paul Klint. Little languages: little maintenance.
Journal of Software Maintenance, 10(2):75-92, 1998.

[vDKVOO] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific lan­
guages: an annotated bibliography. SIGPLAN Not., 35(6):26-36, 2000.

[Ve196] Todd Veldhuizen. Expression templates, pages 475-487. SICS Publica­
tions, Inc., New York, NY, USA, 1996.

95

[Ve198]

[\Nei98]

[\rVL99]

MASc Thesis - M. Elsheikh - McIVIaster - Computing and Software

Todd L. Veldhuizen. Arrays in Blitz++. In ISCOPE '98: Proceedings of
the Second International Symposium on Computmg in Ob}ect-Oriented
Parallel Environments, pages 223-230, London, UK, 1998. Springer­
Verlag.

David M. \Neiss. Commonality analysis: A systematic process for defin­
ing families. In Proceedmgs of the Second International ESPRIT ARES
Workshop on Development and Evolution of Software Architectures for
Product Families, pages 214-222, London, UK, 1998. Springer-Verlag.

David t-./I. \Neiss and Chi Tau Robert Lai. Software product-line engi­
neering: a family-based software development process. Addison-vVesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[\NPD01] R. Clinton \Nhaley, Antoine Petitet, and Jack Dongarra. Automated
empirical optimizations of software and the atlas project. Parallel Com­
puting, 27(1-2):3-35, 2001.

96

Appendix A

Reference Guide

A.I The Multi-staging Layer

A.I.! Staged Types and Operators

Types

code_expr A code expression c with its atomicity flag a.

staged

Now

Later

unary

binary

monoid

ring

Functions

Staged expression.

Type constructor for Now staged expression.

Type constructor for Later staged expressions.

Generalized unary function.

Generalized binary function.

A binary function and a unit element.

A monoid and a zero element.

of _immediate Lifts an immediate expression into a Now staged expression.

of_atom

of_camp

Lifts a code expression into a Later staged expression with atomic flag =
true.

Lifts a code expression into a Later staged expression with atomic flag =
false.

97

MASc Thesis - M. Elsheikh - McNlaster - Computing and Software

to_later Typecasts a staged expression into a Later expression.

to_code Typecasts a staged expression into a MetaOCaml's code value.

mk_unary Builds a unary staged operator from a generalized unary function.

mk_binary Builds a binary staged operator from a generalized binary function.

mk-.monoid Builds a monoid staged operator from a monoid.

mk_ring Builds a ring staged operator from a ring.

A.1.2 The Module lnt

Types

t

Constants

Staged integer type.

zero The constant zero.

Functions

random_n Generates an immediate random integer. Input is an immediate expres­
sion for the seed.

random_c Generates a code expression for generating a random integer. Input is a
code expression for the seed.

random Takes a staged integer seed and returns a random staged integer.

succ The successor function over staged integers.

A.1.3 The Module String

Types

t

Functions

Staged string.

concaLb Concatenation monoid. Empty string "" is the unit element.

concaLs Concatenates two staged strings.

98

MASc Thesis - M. Elsheikh - lVIcMaster - Computing and Software

A.1.4 The Module Baal

Types

b Staged boolean.

Constants

false_ False.

True.

Functions

noLb Generalized unary function for logical negation.

noLs egation of staged boolean.

Conjunction ring. False is ring's zero and true is ring's one.

Conjunction of two staged boolean expressions.

Disjunction ring. True is ring's zero and false is ring's one.

Disjunction of two staged boolean expressions.

Equality test for two staged expressions.

A.1.5 Staging Code Constructs

ife cab Abstraction of the if-else construct: if c then a else b.

leL ce exp Abstraction of the let construct: let t = ce in (expt t).

A.2 Number Types

A.2.1 The Module Type SET

Types

n Base number type.

ns Staged number type.

99

MASc Thesis - M. Elsheikh - NlcMaster - Computing and Software

Functions

Equality test for two numbers of type n.

Equality test for t"vo staged numbers.

Equality test with tolerance for two staged numbers.

Inequality test for two numbers of type n.

Inequality test for two staged numbers.

to_string_b Returns the string representing a number of type n.

to_string_s Returns the staged string representing a staged number.

A.2.2 The Module Sign

Types

t

Functions

Type of sign.

pos s True if s is a positive sign.

neg s True if s is a negative sign.

zero s True if s is a sign marker for zero.

bind bind abc d e builds a function that takes a sign s and returns a (resp.
b, c, d, e) if the sign is positive (resp. zero, negative, positive or zero,
negative or zero).

A.2.3 The Module type ORDER

Types

t Base type of elements of the carrier set.

Ls Staged type of elements of the carrier set.

100

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

Constants

bot Bottom element of the order.

top Top element of the order.

Functions

eq Equality test for two staged elements.

neq Inequality test for two staged elements.

compare_b Generalized binary function. compare_b x y returns 0 if x
y and -1 if x < y.

y, 1 if x >

Generalized binary function. 1Lb x y returns true if x < y according
to the order relation.

Generalized binary function. le_b x y returns true if x < y according
to the order relation.

gLb Generalized binary function. gt_b x y returns true if x > y according
to the order relation.

Generalized binary function. ge_b x y returns true if x > y according
to the order relation.

Generalized binary function. min_b x y return the minimum of x and y
according to the order relation.

Generalized binary function. max_b x y return the maximum of x and y
according to the order relation.

The functions compare_s, 1Ls, 1e_s, gLs, ge_s, min_s, and maLS are the staged
versions of their _b counterparts.

A.2.4 The Module Type RING

Constants

zero

one

negone

two

Zero of the ring.

One of the ring.

The constant 'negative one'.

The constant 'two'.

101

lVIASc Thesis - M. Elsheikh - McMaster - Computing and Software

Functions

add_b Monoid operator for addition.

sub_b Generalized binary operator for subtraction.

muLb Ring operator for multiplication.

neg_b Generalized unary operator for negation.

sgn sgn n s returns true if the staged number n has the sign s.

abs_b Generalized unary operator for absolute value.

pow pow x y returns xY where both x and yare staged numbers.

int_pow inLpow n x returns xn where x is a staged number and n is an integer.

The functions add_s, sUb_s, muLs, neg_s, and abs_s are the staged versions of their
_b counterparts.

A.2.5 The Module Type FIELD

Constants

pi The constant 7f.

Functions

Generalized unary function. inv_b x returns ~.

Generalized binary function. div_b x y returns!'..
Y

The functions inv_s, and div_s are the staged versions of their _b counterparts.

A.2.6 The Module Type REAL

Constants

bot Bottom element of the type.

top Top element of the type.

102

MASc Thesis - IvI. Elsheikh - McMaster - Computing and Software

Functions

sqrLs

eq

neq

Square root of a staged numbers.

Equality test for two staged numbers.

Inequality test for two staged numbers.

compare_b Generalized binary function. compare_b x y returns 0 if x
y and -1 if x < y.

y, 1 if x >

1Lb

gLb

Generalized binary function. 1Lb x y returns true if x < y.

Generalized binary function. 1e_b x y returns true if x < y.

Generalized binary function. gLb x y returns true if x > y.

Generalized binary function. ge_b x y returns true if x > y.

Generalized binary function. min_b x y return the minimum of x and y.

Generalized binary function. max_b x y return the maximum of x and y.

The functions compare_s, 1Ls, 1e_s, gLs, ge_s, min_s, and maLS are the staged
versions of their _b counterparts.

A.3 Linear Algebra

A.3.1 The Module Type TUPLE

Types

t

Constants

Tuple type.

dim Number of elements in the tuple.

103

lVIASc Thesis - lVI. Elsheikh - lVIcIVlaster - Computing and Software

Functions

init init n f creates a tuple (f 0, f 1, f 2, ... , f (n-1)).

pro j _n x i returns the i th element of x. x is of type t.

pro j _c x i returns the i th element of x. x is of type t code.

oLlisLn Creates a tuple from a list of values.

oLlisLc Creates a code expression for a tuple from a list of code values.

to_lisLn Converts a tuple into a list of values.

to_lisLc Converts a code expression of a tuple into a code expression of list of
values.

mapLn

mapLc

map_n f t maps t element-wise by f. f and t are immediate values.

map_n f t maps t element-wise by f. f and t are code values.

map_n f t t' fuses t and t' element-wise by f. f, t, and t' are imme­
diate values.

map_n f t t) fuses t and t' element-vvise by f. f, t, and t' are code
values.

mapLn f t maps t element-wise to (f 0 (pro j _n to), f (pro j _n t
1), ...). f and t are both immediate values.

mapLn f t maps t element-wise to (f 0 (proj_c to), f (proj_c t
1), ...). f and t are both code values.

fold_n f z t folds the tuple elements by f. z is an initial value.

The code version of fold_no

mapfold_n mapfold_n m f z t is equivalent to fold_n f z (map_n m t) .

mapfold_c mapfold_c m f z t is equivalent to fold_c f z (map_c m t) .

map2fold_n map2fold_n m f z t t' is equivalent to fold_n f z (map2_n m t t») .

map2fold_c map2fold_c m f z t t' is equivalent to fold_c f z (map2_c m t t') .

104

A.3.2

Types

MASc Thesis - M. Elsheikh - MdVIaster - Computing and Software

The Module Type MATRIX

n_s Types of the matrix entries.

m The matrix type.

Functions

nrows

ncols

dim

create

nrows m returns the number of rows of m.

ncols m returns the number of columns of m.

dim m returns (nrows m, ncols m).

create r c f creates a matrix r by c, 'where the elements of m are given
by: m(i , j) = f i j.

create_row create_row n f creates a matrix n by 1, 'where the elements of mare
given by: m(i , j) = f i j.

create_col create_col n f creates a matrix 1 by n, where the elements of mare
given by: m(i , j) = f i j.

get get m i j returns the element indexed (i, j).

zero zero r c creates a zero matrix r by c.

diag diag n f creates a diagonal matrix where diagonal elements are given by
(f 0), (f 1), etc.

id id n creates an identity matrix of size n.

transpose Transpose of a matrix.

haugment Horizontal augment of two matrices.

vaugment Vertical augment of two matrices.

map map f m maps the matrix m element-wise by f.

map2 map2 f m m' fuses m and m) element-wise by f.

add l\!Iatrix addition.

sub Matrix subtraction.

105

MASc Thesis - M. Elsheikh - McMaster - Computing and Softvlare

mul l\/Iatrix multiplication.

sadd sadd m s adds the scalar s to every element in m.

ssub ssub m s subtracts the scalar s from every element in m.

smul smul m s multiplies the scalar s by every element in m.

sdiv sdivms divides every element in m by the scalar s.

minor minor m i j return the minor of m resulting from removing row i and
column j.

A.3.3 The Module Type DETERMINANT

Constants

N

M

Functions

Module of type FIELD.

Module of type MATRIX.

eval eval m evaluates the determinant of m. m is a matrix of type M. m, with
entries of type N.ns. The result of eval is a staged expression.

A.4 Affine Space

A.4.1 The Module Type VECTOR

Types

vector Base type of vectors. Used at run-time.

vector_s Staged vectors. Used at generation-time.

Constants

N Type of the coordinates. N is a module of type REAL.

dim Dimension of a vector.

106

MASc Thesis - 1\11. Elsheikh - McMaster - Computing and Software

Functions

zero Returns a staged zero vector.

oLcoords Creates a vector from a list of coordinates of type N.ns.

coord Returns the nth coordinate of a vector.

eq Tests equality of two staged vectors.

neq Tests inequality of two staged vectors.

mirror Mirrors a staged vector.

add Adds two staged vectors.

sub Subtracts two staged vectors.

dot Returns the dot product of two staged vectors.

bcross Returns the cross product of two staged vectors.

gcross Returns the generalized cross product of a list of staged vectors.

scale Scales a staged vector by a scalar of type N. ns.

shrink Shrinks a staged vector by a scalar of type N. ns.

length Returns the length of a staged vector.

length2 Returns the squared length of a staged vector.

direction direction v returns the unit vector in the direction of v.

A.4.2

Types

point

poinLs

The Module Type POINT

Base type of points. Used at run-time.

Staged points. Used at generation-time.

107

MASc Thesis - M. Elsheikh - IVlcMaster - Computing and Software

Constants

N Type of the coordinates. N is a module of type REAL.

V Type of the position vector. V is a module of type VECTOR.

dim Dimension of a point.

Functions

to_code Converts a staged point into a code expression of type () a, point) code.

of _code Converts a point code expression into a staged point.

of _list Creates a staged point from a list of coordinates of type N. ns.

to_list Returns a list containing the coordinates of a staged point.

eq Tests the equality of two staged points.

neq Tests the inequality of two staged points.

eq_tol Tests the equality, with a tolerance, of two staged points.

orig Returns a zero point (the origin).

coord Returns the ith coordinate of a point.

pos_vec Returns the position vector a point. The vector is of type V. vector_so

add add p v returns the point (p+v).

sub sub a b returns the vector (b-a).

to_string Returns the string representing a point.

A.4.3 The Module Type ORDEREDYOINT

Constants

bot Bottom point.

top Top point.

108

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

Functions

It Less than.

gt Greater than.

1e Less than or equal.

ge Greater than or equal.

min Minimum.

max Maximum.

A.4.4 The Module type ISO_AXIS_ORDEREDYOINT

Constants

bot Bottom point.

top Top point.

Functions

It It i a

gt gt i a

1e 1e i a

ge ge i a

min min i a
dinate.

b is the < relation on the ith coordinate of a and b.

b is the> relation on the ith coordinate of a and b.

b is the :S relation on the ith coordinate of a and b.

b is the 2:. relation on the i th coordinate of a and b.

b returns the minimum of a and b with respect to the ith coor-

max max i a b returns the maXImum of a and b with respect to the ith
coordinate.

A.4.5 The Module Type AFFINE

Types

t Type of the affine transform.

109

MASc Thesis - Ivl. Elsheikh - iVlcMaster - Computing and Software

Constants

N

p

v

M

Functions

Number module.

Point module.

Vector module.

Matrix module for transformation matrix.

apply_p Applies a transformation to a point.

apply_v Applies a transformation to a vector.

compose Composes two transformations.

id Identity transformation.

translation Creates a translation transform from a given vector.

scaling Creates a scaling transform. Scaling parameters are given by an input
tuple.

AA.6 The Module Orientation

Types

t

Functions

Type of orientations.

ccw ccw x returns true if the orientation x is a counter-clockwise orientation.

cw cw x returns true if the orientation x is a clockwise orientation.

col col x returns true if the orientation x is a collinear orientation.

ccw_or_col ccw x returns true if the orientation x is a counter-clockwise or a collinear
orientation.

cw_or_col cw x returns true if the orientation x is a clockwise or a collinear orienta­
tion.

oLsign Returns the orientation equivalent to a given sign.

110

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

of _sign Returns the sign equivalent to a given orientation.

bind bind abc d e builds a function that takes a orientation x and returns
a (resp. b, c, d, e) if x is ccw (resp. col, CW, ccw_oLcol, cw_oLcol).

A.4.7 The Module Side

Types

t

Functions

Type of sideness.

in_ in_ x returns true if the sideness x is 'in'.

on on x returns true if the sideness x is 'on'.

out out x returns true if the sideness x is 'out'.

ouLoLon ouLOLon x is equivalent to out x V on x..

of _sign Returns the sideness equivalent to a given sign.

oLsign Returns the sign equivalent to a given sideness.

bind bind abc d e builds a function that takes a sideness x and returns a
(resp. b, c, d, e) if x is in_ (resp. on, out, in_aLan, ouLoLon).

A.5 Geometric Objects

A.5.! The Module Type HYPERYLANE

Types

Ls Type of hyperplanes.

Constants

N

v

p

Number module.

Vector module.

Point module.

111

MASc Thesis - M. Elsheikh - McMaster - Computing and Software

Functions

dim Dimension of a hyperplane.

oLpoints Constructs a hyperplane from a list of points.

point Returns the ith point of a hyperplane.

points Returns the list of points used to construct the hyperplane.

poly Returns the polynomial of a hyperplane.

normal Returns the normal of a hyperplane.

orig Returns the origin of the local frame of a hyperplane.

basis Returns the ith basis of the local frame of a hyperplane.

bases Returns the list of bases of the local frame of a hyperplane..

frame Returns the local frame of a hyperplane ..

coord Returns the local coordinates of a given point on a hyperplane.

pas_vee Returns the position vector of a given point on a hyperplane.

A.5.2 The Module Hplane_Operations

Inputs

H A module of type HYPER_PLANE.

Functions

dist dist h p returns the distance between a point p and a hyperplane h.

pro j eet project h p returns the projection of a point p on the hyperplane h.

A.5.3 The Module Type HSPHERE

Types

sphere_s Type of spheres.

112

NIASc Thesis - M. Elsheikh - NlcIVlaster - Computing and Software

Constants

N Number module.

P Point module.

Functions

dim Dimension of a sphere.

of _points Constructs a sphere from a list of points.

point Returns the ith point of a sphere.

points Returns the list of points used to construct the sphere.

oLcentre_radius Constructs a sphere from a centre point and a radius.

A.5.4

Inputs

N

H

The Module Sphere_Operations

A number type module.

A sphere module.

Functions

centre Computes the centre of a sphere.

radi us Computes the radius of a sphere.

radius2 Squared radius.

content Returns the hyper-volume of a sphere.

surface Returns the hyper-surface area of a sphere.

A.5.5 The Module Type VERTEX

Types

vertex_s Type of vertices.

simplex_s Type of incident simplices.

113

MASc Thesis - M. Elsheikh - }'ilcNlaster - Computing and Software

Constants

P Point type module.

Functions

dim Dimension of a vertex.

eq Tests equality of two vertices.

iso Tests isomorphism between two vertices.

create Creates a vertex from a geometric point.

point Returns the geometric location of a vertex.

incident Returns the simplex incident to a vertex.

attach Sets a simplex to be incident to a vertex.

A.5.6 The Module Type SIMPLEX

Types

simplex-s Type of simplices.

Constants

V Vertex type module.

Functions

dim Dimension of a simplex.

oLvertices Creates a simplex from a list of vertices.

eq Tests equality of two simplices.

vertex Returns the ith vertex of a simplex.

vertices Returns the list of vertices in a simplex.

is_vertex is-yertex s v returns true if v is a vertex of s.

v_index v_index s v ret urns the index of vertex v in s.

114

face

faces

oface

of aces

f_index

MASc Thesis - 1\11. Elsheikh - MclVlaster - Computing and Software

Returns the ith face of a simplex.

Returns the list of faces in a simplex.

Returns the ith oriented face of a simplex.

Returns the list of oriented faces of a simplex.

is_face s f returns true if v is a face of s.

Lindex s f returns the index of face f in s.

is-lleighbor is_neighbor s n returns true if n is a neighbor to s.

n_index n_index s n returns the index of neighbor n in s.

A.5.7 The Module Orient

Inputs

H

Functions

orient

Type of hyperplanes.

orient h P returns the orientation of point p with regard to hyperplane
h.

col Tests if a point is collinear with a hyperplane.

pos, ccw, below Tests if a point is below a hyperplane.

neg, cw ,above Tests if a point is above a hyperplane.

pos_or_col, ccw_or_col, below_or_on Tests if a point IS below or collinear with a
hyperplane.

neg_or_col, cw_or_col, above_or _on Tests if a point is above or collinear with a hy­
perplane.

A.5.8 The Module Insphere

Inputs

s Type of hypersphere.

115

MASc Thesis - M. Elsheikh - NlcMaster - Computing and Software

Functions

inside inside s p checks if the point p is inside the sphere s.

in_ in_ s p returns true if the point p is inside the sphere s.

on on s p returns true if the point p is on the sphere s.

out out s p returns true if the point p is outside the sphere s.

in_or_on in_or_on s p returns true if the point p is inside or on the sphere s.

out_or_on ouLor_on s p returns true if the point p is outside or on the sphere s.

A.5.9

Inputs

H

S

The Module Inside

Type of hyperplanes.

Type of simplices.

Types

poinLinside_simplex Type of the sideness test results.

Functions

in_ in_ s v returns true if the vertex v is inside the simplex s.

on on s v returns true if the vertex v is on the simplex s.

out out s v returns true if the vertex v is outside the simplex s.

in_or_on in_or_on s v returns true if the vertex v is inside or on the simplex s.

116

