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Abstract

An exposition of several homology and cohomology theories is given. Par-
ticular emphasis is placed on coarse homology and coarse analogues of the
Eilenberg-Steenrod axioms. Relations between coarse homology and end ho-
mology are considered, and an isomorphism between these two theories is
proved under a certain contractibility condition on the underlying space.
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Introduction

Homology and cohomology theories are useful algebraic constructions which
can provide topological invariants. Originally built to capture an intuitive idea
of counting holes in a space, the basic ideas have since been axiomatized and
generalized to capture a wider variety of notions. Over the past century, a
large number of theories have been developed, many with the intention of gen-
eralizing duality results: relations between existing theories on certain classes
of manifolds. Several others have been developed to obtain invariants with a
particular flavor advantageous to an area of research. Many of these theories
coincide for spaces satisfying sufficiently nice properties; their differences tend
to lie in how they handle spaces with pathological features.

One aim of this thesis is to give an overview of several homology and
cohomology theories which have been developed, indicating their important
properties (analogues of the Eilenberg-Steenrod axioms) and their relation-
ships with one another. This overview indicates several ways in which theories
can be designed or modified to alter its focus on particular features of a space.
For example, use of Cech and anti-Cech systems permit a focus on small-scale
or large-scale topological features, and certain limit constructions present the-
ories which can disregard topological behavior which is confined to compact
sets.

A primary goal of this thesis is a more detailed exposition of the coarse
homology theory for metric spaces than is found in the literature, featuring
more thorough proofs of coarse analogues of the Eilenberg-Steenrod axioms.
Coarse homology is a theory developed to fit nicely with coarse geometry, an
area featuring the notions of quasi-isometry and coarse equivalence, and guided
by an intuition suggesting that any fixed finite distance should eventually be
considered irrelevant. As an example, the space consisting of two parallel
lines in R? separated by a fixed distance is coarsely equivalent to the space
consisting of a single line in R?, and so both spaces should have the same
coarse homology. Coarse geometry in general has applications to areas such as
geometric group theory, through constructions like the Cayley graph and word
metric of a group, some properties of which are invariant under quasi-isometry.

In addition to this exposition, I investigate the relation between coarse
homology and end homology, an older theory which disregards local behavior
in a different way. Both measure homology “at infinity” in some sense; for
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example, each theory assigns the same groups to a noncompact space X and
X — C where C' C X is compact.

Chapter 1 is a review of the definitions, constructions, and algebraic theo-
rems which are frequently used throughout the thesis. This material is stan-
dard and many references are available. In particular, use was made of [3],
[5], [14], and [22]. Chapters 2 and 3 discuss the Eilenberg-Steenrod axioms
in generality and follow the construction of various homology and cohomol-
ogy theories, noting which axioms and other particularly interesting properties
they satisfy, as well as discussing their relations to one another. Greater atten-
tion is paid to the cohomology theories based on Alexander-Spanier chains in
sections 3.2 and 3.3. Chapter 4 discusses the construction of several theories
which are defined in terms of other theories, indicating a few of the meth-
ods for doing so: the algebraic dual or “naive dual” method of applying the
Hom functor to a chain or cochain complex, taking direct limits over suitable
subspaces, and by taking quotients of the chain groups of distinct theories.

Chapter 5 represents an introduction to coarse algebraic topology on proper
metric spaces. It includes an account of locally finite homology, the basic
properties of coarse maps, coarse homology and cohomology, and a section
on the relation between coarse homology and asymptotic dimension. Section
5.3 is the exposition of coarse homology, incliding more detailed proofs and
discussion of the coarse analogues of the Eilenberg-Steenrod axioms than are
currently found in existing literature. The coarse Mayer-Vietoris theorem is
slightly generalized to allow for certain decompositions of X into subsets A
and B even when AU B # X and AN B = {:

THEOREM A (Coarse Mayer-Vietoris). Let A and B be subsets of the proper
metric space X. If AU B is coarsely equivalent to X by inclusion and if A
and B coarsely intersect in X, then there is a long exact sequence

+— HCH(T) — HCy(A) ® HCp(B) — HCp(X) — HCp1(Z) — -+
for every coarse intersection Z of A and B in X.

The property I have called coarsely intersecting involves the notion pre-
viously identified as the property required of AN B in X to get the original
Mayer-Vietoris sequence; here it has been extended to spaces which do not
necessarily have a nonempty usual intersection. Despite this greater general-
ity, example 5.3.13 shows that it is possible to fail to have a coarse intersection
even when AN B is nonempty.

A coarse analogue of the excision axiom is also stated and proved sepa-
rately:

THEOREM B (Coarse Excision). If A, E C X are such that E C A and for
all R > 0, there is some S > 0 such that Dr(E) — E C Dg(A — E), then the
inclusion map i : (X — E,A— FE) — (X, A) induces an isomorphism.

2
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Section 5.5 is an original exposition of the relation between end homology
and coarse homology. It includes results on isomorphisms between the end and
coarse theories and also discusses the relation between coarse homology and
the theory obtained by mimicking the construction of coarse homology using
end homology instead of locally finite homology. In particular, the following
theorems are proved:

THEOREM C. Let X be a regimented metric simplicial complex with bounded
coarse geometry. Then HE(X) = HC,(X) for n > 1. If in addition R*
coarsely embeds into X, then H§(X) = HCy(X).

THEOREM D. Let X be a proper metric space. Then HC,(X) = HCE(X)
forn > 1. Ifin addition R* coarsely embeds into X, then HCy(X) = HC§(X).

The property I have called being regimented is defined in 5.5.10. It is a
relaxation of uniform contractibility, which is one of the properties required
for an isomorphism between locally finite and coarse homology. Regimented
spaces can wildly fail uniform contractibility, but satisfy a sort of “eventual”
uniform contractibility of R-balls for each R > 0. Examples of such spaces are
given.

Chapter 6 reviews Poincaré and Alexander duality, further relating many
of the theories which appear in earlier chapters.

I would like to thank Professor Ian Hambleton, who served as my advisor
for this thesis, providing guidance and encouragement along the way.



CHAPTER 1

Background Material

1.1. Chain Complexes and Chain Maps

The definitions of homology groups follow a common theme. As such, the
following definitions and theorems are very useful. As noted in the introduc-
tion, this and the next few sections consist of standard material available in
many sources, including [3], [5], [14], and [22].

DEFINITION 1.1.1. A chain complex is a collection of modules C,, over
a ring R and homomorphisms 0,: C;, — C,_; each indexed by the set of

. On+1 7] i
integers, such that for every sequence C,,, — C, = C,_;, the composition
O0pOny1 1s the 0 homomorphism. That is, the following diagram commutes for

ecach n.
0

an +1 6,,

" ’71+1-_)Cn_> p—1 >

The elements of (), are called n-chains. The homomorphisms are called
boundary maps, elements in their images are called boundaries, and el-
ements in their kernels are called cycles. A chain complex is said to be
bounded below if C;,, = 0 for all n less than some integer N. It is bounded
above if there is an N such that C), is trivial for all n greater than N. It is
bounded if it is bounded both above and below.

Motivation for the choice of terminology is clear after studying simplicial
homology, where boundaries and cycles will have nice geometric interpreta-
tions. The chain complexes encountered when discussing homology for topo-
logical spaces are usually bounded below, and often bounded above as well, so

that we will typically be considering complexes of the form 0 — C,, — -+ —
C’o — 0.
The requirement that 9,0,,1 = 0 in a chain complex is equivalent to

im d,41 C ker d,. As such, there is a sequence of quotient modules associated
to any chain complex.

DEFINITION 1.1.2. The n-th homology module H,(C) of the chain com-
plex C'is the quotient module ker 9,,/im ;.

The goal when defining a homology theory is routinely to construct a se-
quence of modules which holds some topological information about a space.

4
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This is often done by constructing chain complexes whose chain groups consist
of functions into or out of the space and taking homology modules as defined
above. These modules are often our end goal, but in some cases they may
be further manipulated. For example, some of the theories we discuss involve
constructing chain complexes for each cover in a sequence of open covers of a
space, and using the resulting homology modules as objects in a direct limit,
letting the open covers vary. Careful choices in construction of the chain com-
plex can result in the homology modules being invariant under certain maps on
the space we start with. For example, some homology theories will be invari-
ant under homotopy equivalence, while others may be invariant under proper
homotopy equivalences. A recurring notion in discussing how maps between
spaces lead to maps between homology modules is the notion of a chain map.

DEFINITION 1.1.3. A chain map between chain complexes C' and D is
a collection f of homomorphisms f,: C,, — D, such that each square of the
form
a¢
Cn — Ln-1

.fnlv lfn—l

Dn ? Dn—l

n

commutes. That is, f,_; 09S¢ = 9P o f,.

The commutativity required of chain maps ensures that they induce ho-
momorphisms on the homology modules of the complexes. This and several
relevant properties of the induced maps follow easily from the definition above
and are recorded below.

PROPOSITION 1.1.4. Let f: (C,0%) — (D,0”) and g: (D, 0") — (E,0F)
be chain maps.

(a) Each f, satisfies fo(kerdS) C kerd? and f,(im OSH) C im OHDH.
That is, cycles are sent to cycles and boundaries are sent to bound-
aries.

(b) Each f, induces a homomorphism between the homology modules H,(C')
and H,(D) defined by ¢ +im S — fu(c) +imdL, ;. Moreover, the
map which sends chain complexes to the corresponding sequence of ho-
mology groups and which sends chain maps to the sequence of induced
homomorphisms is a functor; that is:

(a) The identity chain map induces identity homomorphisms in each
dimension.

(b) The homomorphisms induced by the composition of the two chain
maps f: C'— D and g: D — E are the same as the composition
of the induced homomorphisms. That is, (¢f)s = gu fs.

5
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DEFINITION 1.1.5. Given chain maps f and g between the complexes C'
and D, a chain homotopy h from f to g is a collection of homomorphisms
hn: C,, — Dyyy such that f, — g, = 02 hy, + hy 65

C
Cn . C'n =1

h,
' fn—gn

l hn—1
D,

If such an h exists, f and g are said to be chain homotopic, and we write
f~g

PROPOSITION 1.1.6. If f and g are chain homotopic, then they induce the
same maps on homology.

aD

n+1

Dn+1

PROOF. We show that for cycles ¢ that f,(¢) and g,(c) differ at most
by a boundary, and hence differ by 0 in homology. Let ¢ be an element of
ker Oc,,. Since f ~ g, there is some chain homotopy h such that (f,, —g,)(c) =
0P hy(c) +0. We may then write f,(c) = gu(c) + 0P 1hn(c). It is then clear
that when we consider the induced maps on the homology modules, we get
fen(€) = gun(c) + 0. 0

DEFINITION 1.1.7. Two chain complexes C' and D are chain homotopy
equivalent, denoted C' ~ D if there are chain maps f: C'— Dand g: D — C'
such that ¢gf and fg are chain homotopic to the identity chain maps C' — C
and D — D. If such an f and g exist, they are each said to be chain
homotopy equivalences.

Chain homotopy equivalence is an equivalence relation on chain complexes.
The following proposition is a useful tool in demonstrating the invariance of
homology modules under certain induced maps. It says that chain homotopy
equivalent complexes have isomorphic homology modules.

PROPOSITION 1.1.8. If f and g are chain homotopy equivalences, then the
induced maps f., and g., are isomorphisms.

PROOF. We have that gf ~ id¢ and fg ~ idp, so (¢f)« = g.fc = idu(c)
and (fg)s = f.g. = idy(p)y. This implies that f, and g. are isomorphisms. [

DEFINITION 1.1.9. A chain complex C' is contractible if it is chain ho-
motopy equivalent to the 0 chain complex. Since the only chain map that can
fit in 0 — C' — 0 as either arrow is the 0 map, this is equivalent to ide ~ 0.

DEFINITION 1.1.10. A chain complex C' is acyclic if its homology groups
are all 0.
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Given proposition 1.1.8, contractible complexes are acyclic.

DEFINITION 1.1.11. Let f be a chain map from C' to D. The mapping
cone Cone(f) of f is the chain complex C@& XD where (C@&XD), is C,® D, 14
and 0S®*P is given by sending (¢, d) to (—9c.n(c), fu(c)+0pns1(d)) for c € C,
and d € Dyyy.

The map 0, above can be viewed as left multiplication by the matrix

—0, 0 c "
o on the column vector . Thus, the composition
f n 8D,n—+—1 d

. Ocn-10c 0 .
0p—10, corresponds to the matrix ' n which
RS P —fn~10C',n ra aD,nfn OD,naD.n+1

reduces to 0.

PROPOSITION 1.1.12. A chain map f: C — D is a homotopy equivalence
if and only if Cone(f) is contractible.

1.2. Cochains

Homology theories have a dual notion called cohomology. Cohomology
modules are defined using cochain complexes, and in discussing them, we will
talk about cocycles and coboundaries. There is essentially little difference
between chain complexes and cochain complexes, as can be seen from the
definitions.

DEFINITION 1.2.1. A cochain complex is a collection of modules C™ of
a ring R and homomorphisms 0": C" — C"*! each indexed by the set of
integers, such that any composition 6"*1§" is the 0 homomorphism. Elements
of C™ are called n-cochains. The homomorphisms are called coboundary
maps. Elements in the kernel of a coboundary map are called cocycles, and
elements in the image are called coboundaries.

This differs from the definition of a chain complex only in that the homo-
morphisms map upward in index from n to n+ 1 rather than downward. Since
O o™ is always 0, we are again able to define quotient modules.

DEFINITION 1.2.2. The n-th cohomology module H"(C') of the chain
complex C' is the quotient module ker 6"/ im 6"

There are corresponding notions of cochain maps, cochain homotopy equiv-
alences, and so on. The definitions are analogous to those for chain complexes,
with the necessary changes made to be compatible with the indices.

We can obtain a cochain complex from a chain complex by applying the
Hom(—, R) functor where R is any ring. This functor sends a chain group
C, to the group Hom(C,,, R) of homomorphisms from C), to R. It sends a
boundary homomorphism 9,: C,, — C,,_; to the homomorphism Hom(9,, R) :
Hom(C, 1, R) — Hom(C,, R) determined by ¢+ ¢ o 0, for each ¢ in

7
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Hom(C,, 1, R). If we take Hom(C),, R) to be our cochain group C", and
we take our coboundary maps to be 4, = Hom(0,.1,R) : Hom(C,, R) —
Hom(C), .1, R), then this gives us a cochain complex. To see that 6,046, =0,
note that it sends any ¢ in C™ to ¢ 0 9,41 0 Opyp = 00 =0 in C™*2,

The following theorem states that the cohomology groups of a cochain
complex obtained in the above way are determined by the homology group of
the starting chain complex.

THEOREM 1.2.3 (Universal Coeflicient Theorem for Cohomology). Let C'
be a chain complex of free abelian groups, let H,(C') be the homology groups of
C', and let G be an abelian group. Then, the cohomology groups H"(C; G) of
the cochain complex Hom(C,,, G) are determined by the split exact sequences

0 — Ext(H,_1(C),G) —» HC;G) & Hom(H,(C),G) — 0

where h is the map sending a class of maps ¢ € H"(C;G) represented by a
map ¢: C,, — G to the map ¢: H,(C) — G induced by ¢.

1.3. Direct Sums and Direct Products
Let R be a ring and let {Af;} be a collection of R-modules indexed by 1.
DEFINITION 1.3.1. The direct sum @M is the module consisting of

1
almost-everywhere zero sequences (m;);c; where the i-th term m; is an element
of M;, addition is defined componentwise, and scalars distribute across all
components. By an almost-everywhere zero sequence, we mean a sequence
which takes on non-trivial values on at most finitely many indices.

DEFINITION 1.3.2. A direct system of modules is a collection of mod-
ules M; indexed by a partially ordered set (/, <) and homomorphisms p; j: M; —
M; for each ¢ < j in I such that

(a) for each i and j in I, there exists a k in I such that i, 7 <k,

(b) pi; is the identity homomorphism on M;,

(c) whenever i < j <k, we have p; ipi;j = pik-

DEFINITION 1.3.3. Given a direct system of modules (M;, p; ;), the direct

limit li_)m(z\[i,p,-.j) is defined to be the quotient module | | A / ~ where | |

i€l

is the disjoint union and ~ is the equivalence relation given by m; ~ m; for
m; € M; and m; € M; iff there is some k > 4, j such that p; (m;) = p;r(m;).
Informally, we can say that the direct limit identifies elements if they are
eventually equal. Addition of elements x and y in the direct limit is done by
finding representatives of = and y in the same M;, performing the addition on
the representatives there, and then taking the equivalence class of the sum.
Scaling is likewise done on a representative.

8
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We can obtain the direct sum @M, as a direct limit as follows. First, let
icl
F be the family of finite subsets of I ordered by subset inclusion. For each
set F'in F, define Mp to be the cartesian product x M;. For each F,G in F
icF
such that F' C G, let the homomorphism pg ¢ be the inclusion map.

DEFINITION 1.3.4. The direct product [[M; is the module consisting

1
of all sequences (m;);c; where the i-th term m; is in M;, addition is defined
componentwise, and scalars distribute across all components.

DEFINITION 1.3.5. An inverse system of modules is a collection of
modules M; indexed by a partially ordered set (I, <) and homomorphisms
pji: Mj — M; for each 7 < j in [ such that

(a) for each 7 and j in I, there exists a k in [ such that 7, j <k,

(b) pi; is the identity homomorphism on A,

(c) whenever ¢ < j <k, we have pj iprj = Dr.i-

Note that the difference between the definition of an inverse system and
the definition of a direct system is essentially that the direction of the homo-
morphisms is reversed.

DEFINITION 1.3.6. Given an inverse system of modules (M, p;;), the in-
verse limit 1<i1_n(Mi,pi.j) is defined to be the submodule {(m;)ic; | m; =
pj.i(m;) for all i < j} of the cartesian product x M;. Addition is done termwise,

il
and scaling distributes across all terms.

We can obtain the direct product [[M; as an inverse limit as follows.
i€l
Again, let F be the family of finite subsets of I ordered by subset inclusion,
and for each set F in F, define Mp to be the cartesian product x M;. For
i€F
each F, G in F such that F C G, let the homomorphism p¢ ¢ be the projection
map onto the indices in F.

It is clear from the definitions that the direct sum is the submodule of the
direct product containing only the almost-everywhere zero sequences. Direct
sums and products frequently appear in chain and cochain groups. For exam-
ple, the chain groups in simplicial homology consist of finite formal sums of
simplices. Thus the simplicial n-chain group is isomorphic to Z, the direct

S"
product of copies of Z indexed by the set S,, of n-simplices. In locally finite ho-
mology, we admit infinite formal sums. These groups are isomorphic to direct
products [ [Z where S,, is the set of n-simplices. We also obtain direct products
Sn
in singular cohomology when we dualize the singular chain complex using the
Hom functor. This is a result of the fact that Hom(€PZ, R) is isomorphic to
iel

9
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[TR. To see this, note that since any ¢ in Hom(@Z, R) is determined by the
i€l i€l
values it takes on the generators of @Z, each ¢ has a unique corresponding
iel
sequence (f(1;))ier in [[R where 1; is the element of @Z with 1 in the i-th
i€l il
position and 0 everywhere else.

PROPOSITION 1.3.7. Let (A;. fij) and (B;, g:;) be direct systems of mod-
ules. Suppose that {6;: A; — B;} is a homomorphism of direct systems and
that for each i, there is some j; > i and homomorphism h;: A; — B; such that
the diagram

0

A; e B;
commutes. Then the induced map 0: li_n)l A; — li_n)‘l B is an isomorphism.
PROOF. For each i we have the following exact sequence

0 — kerb;, — A; LA B; — coker#; — 0

It is not hard to check that when we have j; > i such that h; exists, then the
induced maps ker 6; — ker 0, and coker 6; — coker ;, are the 0 map. So for
each 7 we have the following commutative diagram.

0;

0——>ker()j 141' Bj COkel'()J‘—>O
A ;
OT fij ‘\\hl Igi.j TO
0 — ker 6, A; P B; coker ; — ()

It follows that limker; = limcoker#; = 0. This implies that after taking
direct limits, we get an exact sequence

% 0 1.
0— 151)114,' — h_H)lBl — 0
and so 6 is an isomorphism. ]

1.4. Simplicial Complexes

Many of the theories we will discuss involve the notions of simplicial com-
plexes and abstract simplicial complexes. These two ideas are closely related.
Informally, simplicial complexes are spaces which are nicely viewed as a col-
lection of simple geometric objects: points, lines, triangles, and their higher-
dimensional generalizations. Abstract simplicial complexes are collections of
finite sets which generalize the behavior of vertices in a simplicial complex.

10
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DEFINITION 1.4.1. An n-simplex is the smallest convex set in R"*! con-
taining n + 1 points vy, ..., v, which are not all contained in a single (n — 1)-
dimension hyperplane. The points vy, ..., v, are called the vertices, and since
the set of vertices uniquely determines the particular n-simplex, we may denote

=

0-simplex 1-simplex 2-simplex

For example, a 0O-simplex is a point, a 1-simplex is a line segment, a 2-
simplex is a filled-in triangle, and a 3-simplex is a filled-in tetrahedron. For
each nonnegative integer n, there is a standard n-simplex.

DEFINITION 1.4.2. The standard n-simplex A, is the n-simplex deter-
mined by the set of standard basis vectors e; in R"*! where the i-th component
of ¢; is 1 and all other components are 0.

For example, the standard 1-simplex is the line joining (1,0) and (0,1) in
R?, and the standard 2-simplex is the triangle with vertices (1,0,0), (0, 1,0),
and (0,0,1) in R®. We can explicitly describe A, as the set { tie; |

1=0,..4s7
each t;isin Rand ) t; =1}.
i=0,...,n

DEFINITION 1.4.3. Given an n-simplex ¢ with corresponding vertex set
(vg,...,v,), we define an m-face of o to be an m-simplex determined by a
nonempty (m + 1)-element subset of {vo,...,v,}.

For example, the 1-faces of a solid triangle are its edges, its O-faces are its
vertices. Simplices can be collected together into combinatorial objects which
will be important in many of the homology and cohomology theories we will
discuss.

DEFINITION 1.4.4. A simplicial complex K is a collection of simplices
such that if o € K, then every face of ¢ is in K, and for any two simplices
o, and oy in K, the intersection of o; and oy is a face of both simplices. The
vertex set KU is the set of all O-simplices in K.

DEFINITION 1.4.5. An abstract n-simplex is a set containing n + 1 ele-
ments.

DEFINITION 1.4.6. An m-~face of an abstract n-simplex o is a nonempty
subset of o containing m + 1 elements. A vertex of o is a 0-face.

DEFINITION 1.4.7. An abstract simplicial complex K is a collection of
abstract simplices such that if o is in K, then every face of o is as well. The
vertex set K is the set of all 0-simplices in K.

11
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An abstract simplicial complex is exactly a collection of finite sets which
is closed under taking subsets. This notion captures the combinatorial aspect
of a simplicial complex without reference to any geometry.

We can easily obtain an abstract simplicial complex K’ from any simplicial
complex K. To do so, we take advantage of the fact that each simplex in K
corresponds uniquely to its set of vertices. As such, there is an injection v
from K to the collection of subsets of the vertex set K°. The range of v is the
desired abstract simplicial complex K'.

ExXAMPLE 1.4.8. Let K be the simplicial complex consisting of a solid
triangle 7" determined by vertices (v, v1,v2). That is, K is the set containing
T, Lo, Loz2, Li2, vo, v1, and vy, where L; ; is the edge of the triangle joining
v; and v;. The injection v sends T' to {vg, vy, v2}, sends L;; to {v;,v;}, and
sends v; to {v;}. The abstract simplicial complex that comes from K is thus

the set
{{vo, v1,v2}, {vo, v1}, {vo, v}, {v1, v2}, {vo}, {v1}, {va}}

We can also obtain from any abstract simplicial complex K a simplicial
complex |K]| called its geometric realization. The basic idea is to map
the vertex set K° to the standard basis vectors of a real vector space, and
then attach copies of standard simplices where appropriate. First, choose an
injection j from K to the set of basis vectors of the vector space. Now, for each
abstract n-simplex o, we want to include a copy of the standard n-simplex with

the set of basis vectors we want to use, we can choose the obvious embedding
of A, where the point ¢; in A, is mapped to e,;. Call the image of this

embedding A,. Our desired simplicial complex |K| is the union |J A,. We
oek

can assign a topology to |K| either by viewing it as a subspace of the real
vector space we have constructed it in, or by using a path metric.

[t is not hard to see that if we use the method above for obtaining an
abstract simplicial complex from |K|, we will essentially obtain a relabeled
version of K. That is, with the notation above, |K|" = K for abstract simplicial
complexes K.

1.5. Cech and Anti-Cech Systems

The classical homology and cohomology theories can give the impression
that homology and cohomology are defined essentially in terms of the con-
stituent pieces of a space. However, it is possible to associate other structures
to a space and work with them to indirectly gain information. This can have
advantages over the more direct constructions. One method we will discuss is
to approximate the space using sequences of open covers. Cech and anti-Cech
systems fit nicely with this idea; they present a sequence of open covers which
become progressively finer or coarser along the sequence.

12
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DEFINITION 1.5.1. A refinement of a cover U of a space X is a cover V

such that each V' in V is contained in some U in . A refinement map is a
map p: V — U such that V C p(V') for all V' in V.

It is clear that refinement maps always exist for a refinement, though they
might not be unique.

DEFINITION 1.5.2. A cover U of X is locally finite if for every z € X,
there are only finitely many U € U such that z € U.

DEFINITION 1.5.3. A Cech system {U;,p;} for a space X is a sequence
of locally finite open covers U; and maps p; such that the following hold.

(a) Ui,y is a refinement of UY; for each i,

(b) p; is a refinement map p;: U1 — U; for each i, and

(¢) the limit of sup{diameter(U) | U € U;} goes to 0 as i — oo.

DEFINITION 1.5.4. An anti-Cech system {U;, p;} for a space X is a se-
quence of locally finite open covers U; and maps p; such that the following
hold.

(a) Each U; has a diameter sup{diameter(U) | U € U;} bounded by some
positive constant R;,

(b) the Lebesgue number L;yy of Uy, is at least as large as the upper
bound R; of the diameter of U;.

(c) p; is a refinement map p;: U; — U; 1, for each i, and

(d) the diameters R; tend to oo as i — oo.

Conditions (a) and (b) in the definition of an anti-Cech system guarantee
that U; is a refinement of U;, ;. Condition (d) forces the diameters of the U;
to go to infinity as ¢ increases. While both Cech and anti-Cech systems are
sequences of refinements of open covers, Cech systems become finer as we go
along the sequence, and anti-Cech systems become coarser. When we define
theories using these systems, this behavior will allow us to capture small-scale
and large-scale topological features respectively.

For future use, we include the following proposition, which is proved in
[20].

PROPOSITION 1.5.5. Let X be a proper metric space. There is a subset
Y C X such that the distance between distinct points of Y is at least % and the
collection of open balls of unit radius B(y,1) for y € Y cover X. Moreover,
for such a Y, the sequence of collections U, = {B(y,3") | y € Y} forms an
anti-Cech system for X .

PROOF. Let F be the family of subsets S of X such that the distance
between distinct points in S is at least % The family F can be partially
ordered by subset inclusion, and every chain in such an ordering has an upper

13
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bound (namely the union over the chain). By Zorn’s Lemma, there exists an
element Y in F which is maximal with respect to C. If {B(y.1) | y € Y}
did not cover X, then there would be some & € X at least distance 1 from all
y € Y. For such an x, we have Y U {2z} € F and Y C Y Uz, contradicting
maximality of Y.

We now check that the collections U, are locally finite covers. Let A be
a bounded subset of X. Then D(A,3") = {z € X | d(z,A) < 3"} is also
bounded. Since X is proper, the sets in U, as well as D(A, 3") have compact
closures. Any U € U, intersects A iff it is centered at some y € D(A,3")NY.
But, the closure of D(A,3") intersects Y at only finitely many points, so A
can only intersect finitely many elements of U,,.

Each set in U, has diameter R, = 2 -3". We need to check that the
Lebesgue number of U, is at least 2 - 3". Suppose Z C X has diameter
< 2-3" Then Z is contained in a closed ball with radius 2-3". Let z € X
be the center of this closed ball. By definition of Y, there is some y € Y such
that d(z,y) < 1. We have

Z CD(2,2-3")C B(y,2-3"+1) C B(y,2-3""") € Upyy

as required. U]

1.6. Nerves and Vietoris-Rips Complexes

Given any relation R C X x Y, there are two abstract simplicial complexes
which can be defined.

DEFINITION 1.6.1. The nerve of R is the abstract simplicial complex Kp
whose n-simplices are finite subsets {xg,...,z,} C X such that for some
y € Y, we have (z;,y) € R for all 7.

The Vietoris-Rips complex of R is the abstract simplicial complex Lg
whose n-simplices are the finite subsets {yo, ..., yn} C Y such that for some
x € X, we have (z,y;) € R for all 1.

On page 89 of [4], it is shown that certain homology groups as well as
cohomology groups of the geometric realizations of the nerve and Vietoris-
Rips complex of a relation coincide, and moreover, it is shown that these
realizations have the same homotopy type. }

We are interested in using nerves in conjunction with Cech systems and
anti-Cech systems. The relation in consideration is that of set membership
between a space X and an open cover U. Since we will make frequent use of
geometric realizations of such nerves, we make the following definitions. These
definitions and the proposition below appear often in literature involving coarse
homology, including [19] and [21].

DEFINITION 1.6.2. Let X be a topological space and let I/ be an open cover
of X. The nerve K of U is the geometric realization of the abstract simplicial

14
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complex whose n-simplices are finite subsets {Uy,...,U,} of U such that for
some @ € X, we have x € (| U;. That is, K consists of a 0-simplex {U} for each
U in U, and an n-simplex {Uy,...,U,} whenever Uy N ---NU, is nonempty.

DEFINITION 1.6.3. Let A C X, let U be an open cover of X, and let IC be
the nerve of U. The subnerve K |4 consists of those simplices {Uy, ... ,U,}
in K such that (U; N A is nonempty.

Given a Cech system or an anti-Cech system {U;, p; }, there is an associated
system {K;, pi} of nerves and induced maps.

PROPOSITION 1.6.4. Let U and V be locally finite open covers such that V
is a refinement of U, and let Ky and Ky, be the nerves of U and V respectively.
Let p: ¥V — U be a refinement map. Then p induces a continuous, proper map
P Ky — Ky.

PROOF. First, define a map p’ which maps finite sets {Vp,...,V,} CV to
finite sets {p(V5),...,p(Va)}. Note that p’ is not necessarily injective since p
is not necessarily injective. Now, since Ky is a geometric realization based on
an abstract simplicial complex whose simplices are finite sets, each simplex in
Ky is an embedding of a standard simplex A,, with vertices corresponding to
some abstract simplex {Vg,...,V,}. Similarly for K. Thus for each simplex
o in Ky, p determines a map from the vertices of some A, to the vertices
of some A,,, and so it determines a continuous map ca, a,, from A, — A,,.
Let ia, and ja,, be the embedding maps of A, and A,, into Ky and Ky
respectively, and note that o = ia, (4A,). We now define p,: 0 — ja,,(An) by
Po(Z) = jan, © CApAR © i;}z(‘v). This is clearly a continuous, proper map. To
get p*, we take the union over all p, for each o € K,,. Since the covers U and
V are locally finite, p* is proper. O

DEFINITION 1.6.5. Let {U,p;} be a Cech system or an anti-Cech system
for X. The system of nerves {K;, p;} associated to {U;, p;} consists of the
nerves K; of U; for each ¢ and the continuous, proper maps p;: Kiyy — K;
induced by each p;.

Note that we have defined the nerve of an open cover to be a geometric
realization rather than an abstract simplicial complex. This is because we will
later define homology groups for topological spaces, and so we want to have
a topology to work with, rather than just a set. However, we will regularly
conflate the nerve of an open cover with the abstract simplicial complex of
which it is the geometric realization so that we can more easily refer to the
simplices in the nerve. This is a slight abuse of notation since the nerve K of a
cover Y will not actually have elements such as {U;,U,}. Though, these sets
do unambiguously determine simplices in K when they intersect.

EXAMPLE 1.6.6. Let U be the open cover of R consisting of open intervals
(n,n + 2) for each integer n. The nerve K of Y has a 0-simplex (v,) =
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{(n,n+2)} for each n, and a 1-simplex (v, vpi1) = {(n,n+2),(n+1,n+3)}
for each intersecting pair of intervals. Part of K’ is depicted schematically
below. Note that this depiction is of a space homeomorphic to K.

Bq Vo (%1
oo & & & eoo

The above example happens to produce a nerve whose geometric realization
is homeomorphic to the space we started with. This is a consequence of the
particular open covering we used, and will not generally be the case. For
contrast, consider the following examples.

EXAMPLE 1.6.7. Let U be the open cover of R containing intervals of
the form (n,n + 3) for all integers n. The nerve of U will now contain 0-
simplices (v,) = {(n,n + 3)} and l-simplices (v,,vp+1) = {(n,n + 3),(n +
1,n+4)} similarly to the previous example, but it will also contain 1-simplices
(Uny Unao) = {(n,n+3), (n+2,n+ 5)} and even 2-simplices (v,, Vy11, Upia) =
{(n,n+3),(n+ 1,n+4),(n + 2,n + 5)} because of the more complicated
intersection behavior.

ExAMPLE 1.6.8. Consider the open cover U of a space X consisting solely
of the whole space. That is, Y = {X}. The nerve of U is K = {{X}}, and its
geometric realization is a single point.

While very trivial, this last example shows in an exaggerated way how
using a nerve to approximate a space can lead to a loss of local information.

1.7. Sheaf Theory

Sheaf theory provides a language for defining and generalizing theories
which depend on open sets and coverings.

DEFINITION 1.7.1. A presheaf F' on topological space X with values in a
category C is a contravariant functor from the category of open subsets of X
and inclusion maps to the category C. That is, F' is a function which assigns
to each open U C X an object F(U) in C, and assigns to each inclusion map
V — U with V C U a morphism FY: F(U) — F(V) in C called a restriction
morphism which satisfies the following properties.

e For each open set U, the restriction morphism FJY is the identity on
F(U).
e For W C V C U, the restriction morphisms satisfy FY. = F}}- o FU.
The object F(U) is called the sections of F' over U, and if the objects in C
can be thought of as having elements, then each of the elements in F(U) is
called a section over U. A section over X is called a global section.
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EXAMPLE 1.7.2. Given an R-module G, there is a presheaf called a con-
stant presheaf which assigns G to every nonempty U C X, assigns the triv-

ial group 0 to the empty set, and assigns the identity on G to each inclusion
V-oU.

DEFINITION 1.7.3. Given two presheaves F| and F, on X, a homomor-
phism of presheaves h: Fy — F, is a natural transformation of functors.
That is, a collection of homomorphisms hy: Fy(U) — F5(U) for U C X open
such that each hy commutes with the restriction morphisms.

DEFINITION 1.7.4. A sheaf is a presheaf which additionally satisfies the
following unique gluing property. If {U;}ic; is a collection of open sets with
union U = |J;.;U; and we have given s; € F(U;) for each i such that
Fblii"m,j(si) = FLL,:JhUj(sj) for all 4,j in I, then there is a unique s € F(U)
such that F{/ (s) = s; for all 4.

We can associate a sheaf to any presheaf using the notion of germs.

DEFINITION 1.7.5. Let F' be a presheaf on X. Let M be {s € F(U) |
Uisopenand x € U C X}. Let ~ be the equivalence relation in which
s € F(U) and t € F(V) are equivalent iff there is some open W satisfying
r € W CUNYV for which F{j.(s) = F}.(t). The set of germs of F at x is
defined to be the set F, = M/ ~ of equivalence classes of M modulo ~. An
equivalence class in F, containing s € F'(U) is called the germ of s at v € U
and is denoted by s,.

DEFINITION 1.7.6. Given a presheaf F', the sheaf generated by F is the
disjoint union of the sets of germs F, over all x, with the topology generated
by the open sets {s, € F,, | x € U} for all s € F(U) and open U C X.
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CHAPTER 2

Homology

2.1. Eilenberg-Steenrod Axioms for Homology

Homology theories are typically described by assigning groups to certain
kinds of pairs of spaces, for example pairs (X, A) where X is a topological
space and A C X, or pairs (X, A) where X is locally compact and A is a
closed subset of X. This assignment is then usually shown to behave nicely
with a certain class of maps, such as continuous maps or proper maps. The
properties satisfied by the different theories tend to be similar. A list of axioms
was first abstracted from the properties of early theories and presented by
Eilenberg and Steenrod [6], and we include their development here. Apart from
providing a theoretical framework for what a homology theory should be, the
axioms often characterize theories on a particular category of spaces and maps
up to isomorphism of the assigned groups. Also, the axioms are sometimes
sufficient for identifying the groups associated to simple spaces without needing
to explicitly calculate them using the definition of a particular theory.

DEFINITION 2.1.1. We say that (X, A) is a pair of sets if A C X.

DEFINITION 2.1.2. Let (X, A) and (Y, B) be pairs of sets. A function
f: X — Y is said to be a map of pairs from (X, A) to (Y,B) is f(4) C B.
Such a map is denoted by f: (X, A) — (Y, B).

DEFINITION 2.1.3. The lattice of the pair (X, A) is the collection of all
pairs in the following diagram, along with their identity maps, the indicated
inclusion maps of pairs, and their compositions.

X, 0)

(
/ \
(@,0) — (A, 0) (X, A) =X, X)
\

e

(A, A)

A map of pairs f: (X, A) — (Y, B) defines maps between corresponding
members of the lattices of (X, A) and (Y, B) by restriction where necessary.
For example, f [4 is a map of pairs (A,0) — (B,0).
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DEFINITION 2.1.4. A family C of pairs of spaces and maps is an admissible
category if it satisfies the following properties. The spaces and maps in an
admissible category are called admissible.

(a) If (X, A) € C, then the lattice of (X, A) is contained in C.

(b) If f: (X,A) — (Y, B)isinC, then (X, A) and (Y, B) are in C, as well
as all maps from members of the lattice of (X, A) to the corresponding
members of the lattice of (Y, B) which f defines.

(c) If f and g are in C, then if their composition fg is defined, it is in C.

(d) Let I =[0,1] C R. If (X,A) € C, then (X x I, A x I) € C and the
maps o, % : (X,A) — (X x I, A x I) defined by ig(x) = (z,0) and
i1(z) = (z,1) are in C.

(e) C contains a space F, consisting of a single point. Also, if X and P
are in C, if f: P — X, and if P is a single point, then f € C.

EXAMPLE 2.1.5. The following are admissible categories for homology the-
ory.
(a) The set of all pairs of arbitrary sets (X, A) and all maps of such pairs.
(b) The set of all pairs of topological spaces (X, A) and all continuous
maps of such pairs.
(c¢) The set of pairs (X, A) with X a locally compact space and A closed
in X together with all proper maps of such pairs.

DEFINITION 2.1.6. Two maps of pairs fo, fi: (X, A) — (Y, B) in an admis-
sible category C are said to be C-homotopic if there is a map h: (X x I, A x
I) — (Y, B) in C such that fo = hoig = h(z,0) and f; = hoi; = h(x,1). The
map h is called a C-homotopy between f; and f;.

We can now list the axioms for homology theories.

DEFINITION 2.1.7. Let G be a collection either of abelian groups or of R-
modules for some fixed ring R. A homology theory H on an admissible
category C is a collection of functions as follows.

e The first function H is defined for each admissible pair (X, A) and each
integer ¢ and assigns values in G. The value of the function is usually
written H,(X, A) and is called the g-dimensional relative homol-
ogy group of X modulo A. If A is the empty set, then H, (X, A) is
often abbreviated as H,(X).

e The second function is defined for each admissible map f: (X, A) —
(Y, B) and each integer ¢ and assigns a homomorphism f.,: H,(X, A) —
H,(Y, B) called the homomorphism induced by f. The homomor-
phism f., is typically written as f. when it is not ambiguous to do
SO.

e The third function 0 is defined for each admissible (X, A) and each in-
teger ¢ and assigns a homomorphism 0(q, X, A): H, (X, A) — H,_1(A.0)
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called the boundary operator. This homomorphism is typically
written as 0 when it is not ambiguous to do so.
The first two functions above are required to be functorial:
Axiom 1: If f is the identity map (X,A) — (X, A), then f, is the
identity map H (X, A) — H,(X, A) for each q.
Axiom 2: If f: (X, A) — (Y,B)and g: (Y, B) — (Z,C) are admissible,
then (9f)« = g.fi: Hy(X,A) = Hy(Z,C).
The third function must behave well with the first two:
Axiom 3: If f: (X,A) — (Y, B) is admissible, then the map df, is
(f 14):0: Hy(X,A) — H,_1(B,0).
Additionally, the following axioms must be satisfied:
Axiom 4 (Exactness): If (X, A) is admissible and if i: (A4, 0) — (X, 0)
and j: (X,0) — (X,A) are inclusion maps, then the following se-
quence is exact.

S H(A) D H(X) D H(X,A) D H_(A) S -

This sequence is called the homology sequence of the pair (X, A).

Axiom 5 (Homotopy Invariance): If the admissible maps fg, fi from
(X, A) to (Y, B) are C-homotopic, then for each ¢, the homomorphisms
Joss fre: Hy(X, A) — H,(Y, B) are equal.

Axiom 6 (Excision): Let (X, A) be an admissible pair. If U is an open
subset of X whose closure U is contained in the interior of A, and if
the inclusion map i: (X — U, A —U) — (X, A) is admissible, then i
induces an isomorphism i,: Hy(X —U,A—-U) — H,(X, A) for all q.
Any inclusion map i satisfying these conditions is called an excision
map.

Axiom 7 (Dimension): If P is an admissible space consisting of a sin-
gle point, then H,(P) = 0 for all ¢ # 0. The value of Hy(P) is called
the coefficient group or coefficient module of the homology the-
ory, depending on whether G is a family of abelian groups or modules.

We’ll now prove some basic results which follow from the axioms.

DEFINITION 2.1.8. Two admissible pairs (X, A) and (Y, B) are C-isomorphic
if there are admissible maps f: (X, A) — (V,B) and ¢: (Y,B) — (X, A)
such that both fg and gf are identity maps. Such a map f is called a C-
isomorphism and g is called the inverse of f.

PROPOSITION 2.1.9. A C-isomorphism f: (X, A) — (Y, B) induces iso-
morphisms f.: Hy(X,A) — H,(X, B) for all q.
PROOF. Since f has an inverse g and fg is the identity, we have that
(fg)« = feg. is the identity. Similarly, gf is the identity, so (gf). = g.f« is
20
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the identity. This shows that f, has an inverse homomorphism, and so f, is
an isomorphism. U

DEFINITION 2.1.10. Admissible pairs (X, A) and (Y, B) are said to be C-
homotopy equivalent if there are admissible maps f: (X, A) — (Y, B) and
g: (Y,B) — (X, A) such that gf and fg are each C-homotopic to the identity
maps on (X, A) and (Y, B) respectively. Such a map f is called a C-homotopy
equivalence, and g is called the C-homotopy inverse of f.

ProrosITION 2.1.11. If f: (X,A) — (Y, B) and g: (Y,B) — (X, A) are
C-homotopy inverses, then f.: H, (X, A) — H,(Y,B) is an isomorphism with
INVETse (..

PROOF. Since gf is C-homotopic to idy, they induce the same maps by
the homotopy invariance axiom. So we have that (¢f). = g.f. is the identity
H,(X,A) — Hy(X,A). Similarly, fg is C-homotopic to idy, so they induce
the same maps, and hence (fg). = f.g. is the identity H,(Y, B) — H,(Y, B).
This implies that f. and g. are inverse homomorphisms. O

The following properties can be proved from the axioms as well.

PROPOSITION 2.1.12 (Direct Sum Property for Homology). Let X = X, U
- U X, be the union of disjoint sets each of which is closed (and thus open)
in X. Let A; C X; for each i and let A = A U---U A,. Assume that
all pairs formed from the sets X; and A; and their unions are admissible, as
well as all inclusion maps between such pairs. Let iy: (X4, Aa) — (X, A) be
the inclusion map for each o« = 1,...,n. Then, the induced homomorphisms
iox: Hy(Xo, An) = Hy(X, A) yield an injective representation of Hy (X, A) as
a direct sum. That is, each uw € Hy(X, A) can be written uniquely in the form
Y o larlia Where vy € Hy(Xq, As).

DEFINITION 2.1.13. A triad (X; A, B) consists of a space X and two sub-
sets A and B such that X, A, B,AU B, AN B and all pairs formed from
these are admissible, and all of their inclusion maps are admissible. A triad
is called excisive if the inclusion maps ki: (B,AN B) — (AU B, A) and
ky: (A, AN B) — (AU B, B) induce isomorphisms between homology groups
of all dimensions.

Excisive triads give rise to some particularly useful exact sequences. Note
that if B € A C X, then there are inclusion maps (A, 0) X (A,B) —
(X,B) — (X,A) with induced maps on homology, and a boundary map
Hy(X,A) _i ¢-1(A). So, when B C A C X, there is an associated boundary
operator 0: H, (X, A) — H,_1(A, B) defined by 0 = i.0.
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PROPOSITION 2.1.14. Suppose B C A C X. Then the following is a long
exact sequence.
. — H,(A, B) — H,(X,B) — H/(X,A) > H,_,(A,B) — -
PROOF. The proof can be found in [6] on page 25. We only note here that
it involves applications of axioms 1, 2, 3, and 4. d
The following proposition follows easily if we consider the long exact se-

quence associated to BC AUB C X.

PROPOSITION 2.1.15. Suppose (X; A, B) is an excisive triad. Then the
sequence

.= H(A,ANB) - H(X,B) — H(X,AUB) % H,_,(A,ANB) —

is exact, where O here is the composition of the map 0: H(X,AUB) —
H, 1(AU B, B) associated to B C AU B C X and the inverse of the isomor-
phism induced by ky: (A, AN B) - (AU B, B).

PROPOSITION 2.1.16 (Mayer-Vietoris Homology Sequence). Let (X; A, B)
be an excisive triad such that X = AU B. Then the Mayer-Vietoris ho-
mology sequence

.= H(ANB) 5 Hy(A)® Hy(B) > Hy(X) > H,_(ANB) - - -
is exact, where 1, o, A are defined by

Y= (h'lxu —hay)
O(v1, v2) = mys(vy) + mas(v2)

A = -0k,
with inclusion maps hi: ANB — A, ho: ANB—> B, m:A— X, my: B—
X, L1: X = (X,A), and ky: (B,AN B) — (X, A), and boundary operator
0: H(B,ANB) - H,_1(ANB).

The next proposition states that Mayer-Vietoris sequences exist in a rela-

tive form, when A U B is not necessarily the entirety of X.

PROPOSITION 2.1.17 (Relative Mayer-Vietoris Sequence). Let (X; A, B) be
an excisive triad. Then the relative Mayer-Vietoris sequence

.= H,(X,ANB) % H,(X,A)® H(X,B) %
H, (X, AUB) 3 H, ((X,ANB) — ---
18 exact.

It is worth noting that the ability to manually compute homology and
cohomology groups is attributable to the excision axiom. In contrast, higher
homotopy groups satisfy similar axioms and provide similar invariants, but
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lack an analogue of the excision theorem. This represents one of the main
advantages of homology theories.

For many homology theories, the 0-dimensional homology groups of a single
point and other very simple spaces are nontrivial. In some cases it is desirable
to discount this from the theory, and so there is the notion of reduced homology
groups.

DEFINITION 2.1.18. Let H be a homology theory, let X be a nonempty
admissible space, let P be a one-point space, and let ¢: X — P be the unique
constant map. If ¢ is an admissible map, then the n-th reduced homology
group H,(X) is defined to be the kernel of the homomorphism ¢*: H,(X) —
H,(P) induced by c.

PROPOSITION 2.1.19. If H is a homology theory and if the reduced ho-
mology H is defined, then H,(X) = H,(X) ® H,(P) for all n and for any
nonempty admissible space X and one-point space P.

PROOF. The map ¢: X — P is surjective and so there is a map d: P —
X such that ed: P — P is the identity. Since d maps from a one-point
space to X, it is admissible. Thus, ¢ and d both induce homomorphisms on
homology, and their induced homomorphisms satisfy ¢*d* = (ed)* = (idp)*.
So, ¢*: H,(X) — H,(P) is also surjective. Since H, (X) is the kernel of ¢*, we

have an exact sequence 0 — H,(X) — H,(X) < H,(P) — 0 and a map d*
such that ¢*d* is the identity on H,(P). It follows from the splitting lemma

that Ho(X) = H,(X) @ H,(P). U

2.2. Simplicial Homology

Simplicial homology is defined for topological spaces that are homeomor-
phic to a simplicial complex. It is easily computed and familiarity with this
theory provides much of the intuition for working with other theories.

In the discussion that follows, we fix a simplicial complex X. We follow
the development in [8].

DEFINITION 2.2.1. For each nonnegative integer n, the n-th simplicial
chain group C, is the group of finite formal sums of n-simplices. That is,
elements of C), are of the form a0y + - -+ + aror where k is a nonnegative
integer, each a; is an integer, and each o; is an n-simplex. Elements of C), are
called simplicial n-chains.

There is a homomorphism from each ), to the chain group one dimension
lower ), called the boundary homomorphism or boundary map.
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DEFINITION 2.2.2. For positive n, the n-th simplicial boundary map
Op : C,, — (C',_1 is the homomorphism which is defined for individual sim-

plices by
n

an(o') = Z(—l)i<’t’0, 5% G lj'\l 3 5 .1;'n>
i=0
where the hat symbol ~ denotes that the corresponding entry has been removed
from the vertex set. We define 9, for n <0 to be the 0 map.

Each 0, extends from individual simplices to all of C), additively. That is,
(o1 + 09) is 9(01) + d(02). Stated in the terminology of chain complexes, the
set of n-boundaries is the image of d,.1, and the set of n-cycles is the kernel

of 9,.

REMARK. To see why 0 is called the boundary map, note that the image
of an n-simplex o is a formal sum of the (n — 1)-dimensional faces of o. The
alternating sign in the sum accounts for orientation. For example, consider the
case where ¢ is a triangle with vertex set (vg, vy, vo). The image of o under 0,
is (vy,v9) — (vg, v2) + (vo, v1). If we think of the terms in this sum as oriented
edges and treat —(uvp, v2) as the same as (v, vg), then the sum corresponds to
a loop on the edges of the triangle.

It can be checked by direct computation that the boundary maps satisfy
the property that 9, 0 d,,+1 = 0 for every n. Equivalently, the image of 9, is
always a subgroup of the kernel of 0,.

DEFINITION 2.2.3. Given a chain complex {C,, d,} where (), is the n-th
simplicial chain group and 9, is the n-th simplicial boundary map for each
n, we define the n-th simplicial homology group to be the quotient group
H, = kerd,/imd,, for each n. That is, H, is the set of equivalence classes
of n-cycles modulo the n-boundaries.

To illustrate these concepts, we compute the simplicial homology groups
of the circle and of the real line.

EXAMPLE 2.2.4. First, we consider the circle S*. We will use the simplicial
complex consisting of the vertices vy, vy, and v, of a triangle and the edges
between them.

We will first see that Hy(S?) is isomorphic to Z. To do so, we will show
that every 0-cycle is in the same equivalence class as a multiple of (vg). Let
z = a(vg) + b(v1) + c(vs) be an arbitrary O-cycle in our complex. Let v =
b(v1,v0) + (v, o). Then z is a 1-cycle with boundary

O1(x) = blvg) — b{vy) + c{ve) — c(va)
Hence, z + 0(z) = (a+ b+ ¢){(vp) and thus z is in the same equivalence class
as (a+ b+ c¢)(vg). Each integer multiple of (vy) is distinct since no boundary
24
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can have the form b(vy) with b nonzero. Hence there is exactly one class in
Hy(S") for each integer, and so Hy(S') & Z.

To compute H,(S), we compute ker 9; and im d,. We know that a 1-chain
a{vg, v1)+b(vy, v2) +c(va, vo) maps to (c—a){vg)+(a—b){v1)+(b—c)(ve) under
0, and so it is in the kernel if c —a =a — b =0 — ¢ = 0. This is equivalent to
a = b = c. Thus, there is exactly one 1-chain in the kernel for each integer a,
and so ker 0, is isomorphic to Z. The chain group C is trivial since there are
no 2-simplices in our triangle, so the image of J, is trivial as well. It follows
that H,(S') is also isomorphic to Z.

All higher dimension simplicial homology groups of the triangle are trivial,
since the chain groups are 0 and so the boundary homomorphisms have trivial
kernels.

EXAMPLE 2.2.5. Now, we consider the real line. Consider the simplicial
complex consisting of a O-simplex (n) and 1-simplex (n,n+ 1) for every integer
n. The chain group Cj is generated by countably many vertices, so it is the
direct sum of countably many copies of Z. Hence, the kernel of 0, is the direct
sum of countably many copies of Z. Since every 0-cycle is a finite sum, each can
be written as a multiple of the 0-simplex (0) plus finitely many 0-boundaries
of the form a(0) — a(n) with a an integer. For example, the 0-cycle 5(2) —3(9)
can be written as 2(0) + 0, (5(0,2) —3(0,9)) = 2(0) + 5(2) — 5(0) — 3(9) + 3(0).
Hence there is exactly one equivalence class in ker dy/Im0, for each integer
multiple of (0), and these are the only classes. This gives us that Hy(R) is
isomorphic to a single copy of Z. To compute H{(R) we need to determine
ker d;. An element ¢ of C is of the form > a, (n,n+1) with each a,, an integer
and only finitely many a,, nonzero. Such an element ¢ is mapped by 0 to the
O-chain Y (a,(n+ 1) — a,(n)) or equivalently > (a,_; — a,){n). Hence ¢ is in
the kernel of 9y iff a,,_; — a,, is always 0, which happens iff a,,_; = a, for all n.
This can only happen when a,, = 0 for all n, since if N is the maximum index
of the nonzero a,,, then the vertex (N + 1) appears with coefficient (ay —an 1)
and ax, is necessarily 0. Thus, only the trivial 1-chain is in the kernel of 0y,
and so H;(R) is the trivial group 0.

The ease of computation for simplicial homology comes at the cost of it
only being defined for very nice spaces. Singular homology generalizes this
theory to all topological spaces by generalizing the notion of a simplex to the
image of a continuous map from some standard simplex into the space. This
allows for the construction of a theory on arbitrary topological spaces, but
forfeits the ease of computation. However, using singular homology, one can
define an equivalent and much more computable theory for CW-complexes, a
large class of spaces which includes simplicial complexes. In conjunction with
excision, this enables computation of the singular homology groups for many
spaces.
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2.3. Singular Homology

Singular homology generalizes simplicial homology to arbitrary topological
spaces, allowing us to use similar ideas even when we do not have a simplicial
complex to work with. Here, instead of chain groups generated by the simplices
of a space, the chain groups are generated by continuous maps from standard
simplices into the space. These maps can be constant or self-intersecting; we
only require continuity. There are many sources available for discussion of the
singular theories; here we follow [8], which includes the definitions and proofs
of theorems mentioned below.

DEFINITION 2.3.1. Let G be an abelian group. A map o: A, — X is called
a singular n-simplex. The n-th singular chain group C, (X, G) of X with
coefficients in G is the collection of finite formal sums with coefficients in G
of singular n-simplices. Elements of C,(X,G) are called singular n-chains.
When it is not ambiguous to do so, C,, (X, G) is abbreviated by C,,(X).

Note that if A is a subspace of X, then C,(A) is a subgroup of C,(X).

Before we define the boundary homomorphisms, note that any o : A,, — X
has restrictions to the (n — 1)-dimensional faces of A,. We denote these
restrictions by o | (eg,...,€,...,e,) where the hat symbol indicates that the
marked entry has been removed from the list, and we view the restriction as a
map from A, _; by composing with a canonical embedding of A,,_; onto the
face we are considering in A,,.

DEFINITION 2.3.2. For positive n, the n-th singular boundary map
is the homomorphism 9,: C, — C,_; defined by 9,(c) = Y I ,(=1)'c |
(€0y...,€Eiy... ey for maps o: A, — X and extended to all n-chains ad-
ditively. We define 9, for n < 0 to be the 0 map.

EXAMPLE 2.3.3. Let X be any topological space. Consider a singular 2-
simplex o, which is a map from A, to X. The boundary of ¢ is the 1-chain

c=o0[(e1,e2) — 0 | {€g,€2) + 0 | {eo,e1)
and the boundary of ¢ is
o[ (ex) —o [(er)— (o[ (e2) —o [ (o)) + 0 ({e1) —a [ (eo)
which reduces to 0 after cancellation.
EXAMPLE 2.3.4. Consider a 1-chain o + 05 + 03 where each o; is a distinct
map A; — X. In this case we have that 9)(o; + 0+ 03) is equal to the 0-chain
o1 [ (e1) — o1 [ {eo) + 02 [ {e1) — 02 [ (e0) + 03 [ (e1) — a3 [ {eo)

which is zero only if the images of the maps form (possibly degenerate) loops,
or if the maps are themselves loops, so that for example, o | (e1) is the same
map as oy | {(eg).
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[t can be directly checked that 0, 00, is always 0 for the boundary maps
defined above. Moreover, if A is a subspace of X, then 9: C,,(X) — C,—1(X)
sends the subgroup C,,(A) to C,,_1(A). So, there are induced boundary maps
from C,,(X)/C,(A) to C,—1(X)/Cp_1(A) which we refer to by the same nota-
tion.

DEFINITION 2.3.5. Let X be a topological space and let A be a subspace
of X. The n-th singular homology group H,(X) is the quotient group
ker d,/im 0,1 where 0,: C,(X) — C,,_1(X). The n-th relative singular
homology group H, (X, A) is the quotient group using d,: C,,(X)/C,(A) —
C’n—l(X)/Cn—l("q)-

Singular homology satisfies all of the Eilenberg-Steenrod axioms for contin-
uous maps and pairs (X, A) with X a topological space and A a subspace. It
is isomorphic to simplicial homology on simplicial complexes, cellular homol-
ogy on CW-complexes. For certain spaces including CW-complexes, singular

hOIllOlO‘T 7 1s 1somor hiC to 1101110100' \Vith compact su orts, as 18 1'ecorded in
(=} O )

2.4. Cellular Homology

Cellular homology is essentially a more convenient way of calculating the
singular homology groups for a class of spaces called CW-complexes. These
spaces decompose nicely into unions of spaces with easily calculated singular
homology groups. The singular groups are taken as chain groups for a new,
more easily computable homology theory, and then the two theories are shown
to be isomorphic. In section 5.1, we record a similar construction for homology
based on infinite chains. The exposition that follows is again based on that of
[8], which includes the definitions, theorems, and proofs below.

DEFINITION 2.4.1. A CW-complex is a space X which can be written as
a union X = [J X™ of spaces (X°, X*,...) such that the following hold.

(a) The set X is a discrete set whose points are called 0-cells.

(b) The set X" is formed from the set X"~! by attaching open n-disks
referred to as 1-cells. That is, X" is the quotient space of the disjoint
union X"~ ] DI of X" with a collection of closed n-disks under
the identification @ ~ ¢,(x) for x € 9D, where ¢, is a map S"~! —
X" for each a.

(¢) If X # X™ for any finite n, then X is given the weak topology: A C X
is open iff AN X" is open in X" for all n, and B C X is closed iff
BN X" is closed in X™ for all n.

If X = X" for some n, we say that X is finite dimensional, and the smallest
such n is called the dimension of X.
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DEFINITION 2.4.2. If X is a CW-complex and if A is a closed subset of
X which can be written as a union of cells in X, then we say that A is a
subcomplex and we call the pair (X, A) a CW pair.

If A is a subcomplex of X, then it is not hard to see that A is also a CW-
complex. The following lemma allows us to easily compute the chain groups
for this new theory and to demonstrate its equivalence with singular homology.

LEMMA 2.4.3. If X is a CW-complez, then

(a) HY(X™, X" 1) is 0 for k # n and is free abelian for k = n with basis
in one-to-one correspondence with the n-cells of X.

(b) HY(X™) = 0 for k > n. In particular, if X has finite dimension n,
then HY(X) =0 for k > n.

(c) The inclusion i: X" — X induces an isomorphism i.: HY(X") —
HY(X) for k <n.

DEFINITION 2.4.4. The n-th dimensional cellular chain group of X
is CYW(X) = H(X", X"!). Then n-th boundary map d, is defined to
be the composition j, 19,, where d, is the boundary operator from the long
exact sequence of the pair (X", X"~!') in singular homology and j,_; is the
map H, (X" 1) — H,_ (X" X"2) from the long exact sequence of the
pair (XH_I,X"_Z).

Since H:(X™ X" 1) is a free abelian group with basis in one-to-one cor-
respondence with the n-cells of X, the elements of C¢"(X) can be thought
of as linear combinations of n-cells of X. Since d,, = j,_10,, it is clear that
d,,_1d,, = 0 for all n.

DEFINITION 2.4.5. The n-th dimensional cellular homology group of
X is HW(X) = kerd,/imd,,,,.

As mentioned at the beginning of this section, the benefit of this construc-
tion is that it provides an easier method for calculating singular homology
groups. This is because HW coincides with H*.

PROPOSITION 2.4.6. If X is a CW-complex, then HSW (X) = H3(X) for
all n.

PROOF. By the above lemma, H(X"*!) = H3(X) and HS_ (X" X7) =
0, so the long exact sequence of the pair (X", X™) contains the exact se-
quence

HE, (30, X™) =5 Ho(X™) — HY(X) 0
Thus, H3(X) = H}(X")/im Opy;.

Also by the above lemma, H(X"!) = 0 and so the long exact sequence

of the pair (X", X" !) contains the exact sequence

0— Hy(X™) & Hy(x", X" 1) B H_ (X"
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Hence, j, is injective, and so it maps im d,,, isomorphically onto im j,,0,,+1 =
imd, 41, and it maps H;(X") isomorphically onto im j, = ker 0,,.
Similarly, the long exact sequence of the pair (X", X"?) contains the
exact sequence
—1y Jn—1 - -
0___) s (Xn 1) L) s (Xn I.Xn 2)

n—1 n—1

Hence j,_; is injective as well, and so ker 0, = kerd,. By exactness, we have
im0,y =imdpy.

It follows that j, induces an isomorphism of H}(X™)/imd,,; onto the
homology group kerd, /imd,, ;. O

2.5. Steenrod Homology

Steenrod homology was introduced in [23] in order to provide topological
invariants which better captured the connectivity of a space than earlier the-
ories. In particular, Steenrod notes that the earlier Vietoris homology is not
satisfactory for solenoids, which are connected but neither locally connected
nor path connected. Another notable example is the topologist’s sine curve:

EXAMPLE 2.5.1. Let T be the subspace of R? which is the disjoint union
of the graph of sin(1/x) on (0, 1], its limit set along on the y-axis {0} x [—1, 1],
and a path from (0, —1) to (1,sin(1/1)) = (1,0). The space T is connected and
path connected, but it is not locally path connected. The singular homology
of T is trivial in the first dimension, despite the fact that T separates the plane
into two connected components.

The duality results that existed at the time failed for the topologist’s sine
curve because they predicted that the first dimensional homology should be
that of a circle, as one might expect since it encloses a disk. Correcting this
shortcoming of earlier homology theories allowed Steenrod to extend duality
results to a wider class of spaces.

Steenrod defined his homology groups for compact metric pairs.

DEFINITION 2.5.2. A compact metric pair is a pair (X, A) where X is
a compact metric space and A is closed in X.

DEFINITION 2.5.3. Given a simplicial complex K, a regular map of K in
X is defined to be a function f from the set of vertices of K to X such that
for every £ > 0, all but finitely many simplices have vertices mapped into sets
of diameter less than e.

DEFINITION 2.5.4. A regular n-chain of X is a triplet (A4, f,¢) where A
is a simplicial complex, f is a regular map of A in X, and ¢ is a locally finite
n-chain of A. If ¢ is a locally finite n-cycle, then (A, f,c) is called a regular
n-cycle.
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DEFINITION 2.5.5. Two regular n-cycles (Ay, f1,¢1) and (As, fa, co) are de-
fined to be homologous if there is a regular (n + 1)-chain (A, f, ¢) such that
A and A, are closed subcomplexes of A, the regular map f agrees with f; on
Ay and with fy on As, and 0,,1(c) = ¢1 — ¢o.

The relation of being homologous is an equivalence relation on the set of
n-cycles.

DEFINITION 2.5.6. Let X be a compact metric space. The n-th Steenrod
homology group H:'(X) is the quotient group obtained by taking the group
of regular n-chains modulo the relation of being homologous.

On page 90 of [15], Milnor gives a construction extending this definition
to compact metric pairs (X, A). It is shown that these groups are related to
Cech cohomology groups HY(X, A) by the split exact sequence

0 — Ext(H"Y(X, A); G) — H(X, A;G) — Hom(HY(X,A); G) — 0

Steenrod also gave a construction in [23] of his groups based on nerves of
open coverings. Since X is compact, a Cech system for X can be found which
consists of finite coverings. Steenrod uses the sequence of nerves K, associated
to such a system to define a fundamental complex K, which is the disjoint union
of the IC,, with line segments added between points which correspond under the
maps induced by refinement. He then shows that computing homology groups
of K using infinite simplicial n-chains gives groups isomorphic to H:'(X).

In [15], Milnor shows that Steenrod homology satisfies all of the Eilenbger-
Steenrod axioms for continuous maps and compact metric pairs (X, A). Fur-
thermore, it is shown that H* satisfies an additional two axioms: the relative
homeomorphism axiom and the cluster axiom.

THEOREM 2.5.7. Let (X, A) be a compact metric pair.

(a) H*' satisfies all Eilenberg-Steenrod axioms for continuous maps and
compact metric pairs (X, A).

(b) (Relative Homeomorphism Aziom) If f: (X, A) — (Y,B) is a
continuous map of compact metric pairs which maps X — A homeo-
morphically onto Y — B, then f.: H'(X,A) — H;Y(Y,B) is an iso-
morphism.

(¢) (Cluster Axiom) Suppose that X is the union of compact subsets
X1, Xo, ... with diameters approaching 0, and suppose that X;NX; =
{b} for alli#j. Let r;: (X,b) — (X;,b) denote the unique retraction
which carries each X; for j # i into the base point b. Then the map
u — ((r)«(u), (re)<(u),...) is an isomorphism from H3'(X,b) onto
the direct product of the groups H'(X;,b).

Furthermore, Milnor proves that these two additional axioms together with
the Eilenberg-Steenrod axioms characterize Steenrod homology.
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THEOREM 2.5.8. If H and H' are two homology theories defined for con-
tinuous maps and compact metric pairs, and if both H and H' satisfy the
FEilenberg-Steenrod axioms along with the relative homeomorphism aziom and
cluster aziom above, then any coefficient isomorphism Hy(b) = H{(b) extends
to an equivalence between H and H'.

This theorem can be applied to show that H*! coincides with the theories
H¢ and H* of 4.3 and 4.2 respectively for compact metric pairs. For this
reason, and since H> satisfies similar duality results as H*, the theory H>
can be viewed as a generalization of Steenrod homology.

2.6. Borel-Moore Homology

Borel-Moore homology was originally defined in [2] for locally compact
spaces in order to obtain a Poincaré duality result (section 7 of [2]). It is
a theory based on infinite chains with closed supports and is defined for lo-
cally compact spaces. Proper maps induce homomorphisms on the homology
groups.

The Poincaré duality obtained is with cohomology with compact supports.
Since homology based on infinite chains also satisfies this Poincaré duality,
it is clear that these theories are isomorphic at least in some cases. This
isomorphism can be shown to hold for any locally compact Hausdorft space
which is second-countable by applying uniqueness results due to Milnor [15].

PROPOSITION 2.6.1. If X is a locally compact, second-countable, Hausdorff
space, then HBM (X G) = HX(X,G) for all n, where H*® is homology based
on infinite chains, as defined in section 4.2 below.

The definition of Borel-Moore homology in [2] is given sheaf-theoretically,
but there are also standard constructions of Borel-Moore homology given in
terms of generalized singular chains. This singular Borel-Moore homology
construction uses infinite sums of singular simplices so long as they are locally
finite.

DEFINITION 2.6.2. The group of generalized singular n-chains on X

is C,(X,G) = J] @G, and its elements are called generalized singular
o A" X
n-chains.
A generalized singular n-chain [[k,» is locally finite if every @ € X has a
an

neighborhood which intersects only finitely many of the images ¢"(A™) where

kgn # 0.

[t can be checked that the locally finite generalized singular n-chains form
a subgroup.
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DEFINITION 2.6.3. The n-th Borel-Moore chain group on X is denoted
CBM(X @) and defined to be the group of locally finite generalized singular
n-chains on X.

Moreover, the usual singular boundary map extends to a boundary map
9BM on Borel-Moore chains, and continues to satisfy 9295 = (. Thus, we
have a chain complex.

DEFINITION 2.6.4. The n-th Borel-Moore homology group is defined
to be HPM(X, G) = ker 97 /im 97}

T

Massey notes in [14] that such a theory only satisfies a weak version of
the excision axiom, and so is less satisfactory than homology based on infinite
chains as in 4.2.
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CHAPTER 3

Cohomology

3.1. Eilenberg-Steenrod Axioms for Cohomology

Now we will list the axioms for cohomology theories. The definition and
axioms are very similar to those of homology theories; the difference is that co-
homology theories assign homomorphisms with directions reversed from those
assigned by homology theories, and the operators here increase indices rather
than decrease them. Again, these axioms, definitions, and properties were
stated by Eilenberg and Steenrod in [6].

DEFINITION 3.1.1. Let G be a collection either of abelian groups or of R-
modules for some fixed ring R. A cohomology theory H on an admissible
category C is a collection of functions as follows.

e The first function H is defined for each admissible pair (X, A) and
each integer ¢ and assigns values in G. The value of the function is
usually written H?(X, A) and is called the ¢g-dimensional relative
cohomology group of X modulo A. If A is the empty set, then
H1(X,A) is often abbreviated as H1(X).

e The second function is defined for each admissible map f: (X, A) —
(Y, B) and each integer ¢ and assigns a homomorphism f*7: HY(Y, B) —
H(X, A) called the homomorphism induced by f. The homomor-
phism f*¢ is typically written as f* when it is not ambiguous to do
SO.

e The third function ¢ is defined for each admissible (X, A) and each
integer ¢ and assigns a homomorphism (¢, X, A) from H(A,D) to
H9 (X, A) called the boundary operator. This homomorphism is
typically written as 6 when it is not ambiguous to do so.

The first two functions above are required to be functorial:

Axiom 1: If f is the identity map (X,A) — (X, A), then f* is the
identity map H, (X, A) — H,(X, A) for each ¢.

Axiom 2: If f: (X,A) — (Y,B)and g: (Y, B) — (Z,C) are admissible,
then (gf)* = f*g*: Hy(Z,C) — Hy(X, A).

The third function must behave well with the first two:

Axiom 3: If f: (X, A) — (Y, B) is admissible, then the map f*J is

O(f 14) s HY(B,0) — HT(X, A).
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Additionally, the following axioms must be satisfied:
Axiom 4 (Exactness): If (X, A) is admissible and if i: (A4, 0) — (X, 0)
and j: (X,0) — (X, A) are inclusion maps, then the following se-
quence is exact.

L& HYA) & HYX) L& HY(X,A) & HIY(A) & -

This sequence is called the cohomology sequence of the pair (X, A).

Axiom 5 (Homotopy Invariance): If the admissible maps fy, f; from
(X, A) to (Y, B) are C-homotopic, then for each ¢, the homomorphisms
15, fi H(Y,B) — HY(X, A) are equal.

Axiom 6 (Excision): Let (X, A) be an admissible pair. If U is an open
subset of X whose closure U is contained in the interior of A, and if
the inclusion map i: (X —U, A —-U) — (X, A) is admissible, then
induces an isomorphism i,: HY(X,A) - HY(X — U, A - U) for all q.
Any inclusion map i satisfying these conditions is called an excision
map.

Axiom 7 (Dimension): If P is an admissible space consisting of a sin-
gle point, then H,(P) = 0 for all ¢ # 0. The value of Hy(P) is called
the coefficient group or coefficient module of the homology the-
ory, depending on whether G is a family of abelian groups or modules.

PROPOSITION 3.1.2. A C-isomorphism [ induces an isomorphism f* for
all q.

ProprosITION 3.1.3. If f: (X,A) — (Y.B) and g: (Y,B) — (X,Y) are
C-homotopy inverses, then f*: HY(Y, B) — HY(X, A) is an isomorphism with
mverse g*.

PROPOSITION 3.1.4 (Direct Sum Property for Cohomology). Under the
conditions above, the induced homomorphisms i’,: HI(X,A) — HY(X,,A,)
yield a projective representation of HY(X,A) as a direct sum. That is, for
each sequence (uy, ..., u,) in H1( Xy, Ay) x -+ x HY(X,,, A,), there is a unique
element u € HY(X, A) such that i}, (u) = u, for each o =1,... n.

PROPOSITION 3.1.5 (Mayer-Vietoris Cohomology Sequence). Let (X; Xy, X»)
be an excisive triad with X = X, UX,. Then the Mayer-Vietorts cohomol-
0gy sequence

= HY(X, N Xa) & HY(X) @ HY(X,) & HY(X) & H Y (X N Xp) — - --
is exact, where ', ¢, A are defined by

¢(v1,v2) = hi(vr) — h3(vs)
¢ = (mi, m3)

A=—ks
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with the maps hy, ha,my, ma, 1, ky as above and coboundary operator
0: Hq_l()(l N Xz) 4 Hq(JYQ,Xl N _/YQ)

PROPOSITION 3.1.6 (Relative Mayer-Vietoris Sequence). Let (X; A, B) be
an excisive triad. Then the relative Mayer-Vietoris sequence

& HY(X,AUB) & H"{(X,ANB) — -+
. — HYX,ANB) £ HYX, A) ® H(X, B)

18 exact.

3.2. Cohomology with Compact Supports

Cohomology with compact supports is defined for locally compact Haus-
dorff spaces. It produces cohomology groups with induced homomorphisms
defined for proper continuous maps. These groups are defined using the no-
tion of p-functions and their supports. We follow the development in [14],
which includes the definitions, theorems, and proofs below.

DEFINITION 3.2.1. A function f: X — Y is proper if the preimage of
every compact subset of Y is compact in X.

DEFINITION 3.2.2. Let X be a space, let p be a nonnegative integer, and
let G be an abelian group. A p-function on X with values in G is any function
¢: XP*1 — @G where XP*! is the cartesian product of p + 1 copies of X. We
will denote the set of all such p-functions by ®?(X,G) or ®F when it is not
ambiguous to do so.

DEFINITION 3.2.3. A p-function ¢ is finitely valued if the image of ¢ is
a finite set. We denote the set of finitely valued p-functions on X with values
in G by ®.(X,G) or ®}.. If X is empty, we define ®%.(X,G) = {0} for all p.

The set (X, G) is an abelian group under pointwise addition, and ®4.(X, G)
is a subgroup. There is a particular homomorphism between each ®” and ®7*!
that is important for our purposes.

DEFINITION 3.2.4. For each p, let d”: ®?(X,G) — PPT1(X,G) be defined

by
p+1
P(xo, ..., xp) = Y _(=1)'¢(xo, .., Fr,- .-, Tps1)
=0

where the hat symbol indicates removal of the term.

The fact that d?*'d? = 0 can be checked directly in a similar way to that
of the boundary operators of other theories. It can also be shown that d”
preserves the subgroup of finitely-valued p-functions, and so it restricts to a
homomorphism ®%. — ®hF.
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To get the cochain groups for our current theory, we will take certain
subgroups and quotient groups of the group of finitely valued p-functions.
The definition of these groups uses the notion of the support of a p-function.

DEFINITION 3.2.5. The support of a p-function ¢: X?* — G is the
set |¢| consisting of all + € X such that every neighborhood of z contains

elements xy,...,x, for which ¢(xo,...,z,) is nonzero. Equivalently, = is not
in |¢| iff there is a neighborhood V' of x for which ¢(zg,...,x,) = 0 for all
Byee o Bp & V.

The following properties of |¢| are easy to see.

PROPOSITION 3.2.6. Let ¢: XP*! — G be a p-function.

(a) |o| is closed in X,

(b) |0] is empty,

(¢) |d+ | is a subset of |¢| U ||, and

(d) |dP¢| is a subset of |¢].

(e) |@| is empty if and only if there is an open covering U of X such that
for allU € U and all xy,...,x, € U, ¢(xo,...,2p) =0.

DEFINITION 3.2.7. Let ®%.(X, G) be a group of finitely valued p-functions.
The subgroup of p-functions with empty support is ®, (X, G) = {¢ €
DL(X,G) | |¢| is empty}, and the subgroup of p-functions with compact
support is .. (X, G) = {¢ € PL.(X,G) | |¢| is compact}.

It follows from property (c) above that the above defined sets are actually
subgroups, and that ®},(X, G) is a subgroup of ®%..(X,G). It follows from
(d) that d” maps ®%,, into ®he' and maps %, into &%+ Thus, we may define
quotient groups and induced homomorphisms.

DEFINITION 3.2.8. The p-cochain group with compact support C?(X, ()
is the quotient group @ (X,G)/®h,(X,G). We define the p-th relative
cochain group with compact support C?(X, A, G) for A a closed subset
of X by first defining ®%..(X, A, G) to be the subgroup of compactly supported
finitely valued p-cochains of X whose restrictions to A?*! have empty support.
Then CP(X, A, G) = PL..(X, A,G)/P}(X,G). When it is not ambiguous to
do so, we write C?(X) and C?(X, A) for these groups.

It follows from property (c) that if ¢ and ¢ are two elements of the same
equivalence class in CP(X), then they have the same support. So we may
define the support of a p-cochain in the following way.

7,

DEFINITION 3.2.9. Let b€ CP(X) and let ¢ be a representative of 0. We
define the support |O’ of ¢ by |o| = |@|.

DEFINITION 3.2.10. The p-th coboundary homomorphism 67 from
CP(X,G) to CP*Y(X,G) is the homomorphism induced from @ when it is
restricted to ®}..(X. G) and composed with the quotient homomorphism.
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We have that 6?7167 is 0 since dP™'dP is 0, so the collection of p-cochain
groups with compact supports forms a cochain complex. Moreover, if A is
a closed subset of X, then each d? restricts to a homomorphism C?(X, A) —
CPHH( X, A) satisfying the same properties, so the collection of these subgroups
also forms a cochain complex.

DEFINITION 3.2.11. The p-th cohomology group (of X with coeffi-
cients in G) with compact supports is H?(X,G) = ker §?/imé?~*. If A
is closed in X, we define the relative group H?(X, A, ) similarly. When it is
not ambiguous, we will write H?(X') and H?(X, A).

THEOREM 3.2.12. If A is a closed subset of X, then the group H?(X, A, G)
is isomorphic to the group HP(X — A, G).

Continuous, proper maps f: X — Y induce homomorphisms H?(Y,G) —
HP(X,@G) for all p. Continuity is necessary to ensure preservation of empty
supports, and properness is required to ensure preservation of compact sup-
ports.

DEFINITION 3.2.13. Let f: X — Y be a continuous, proper map. Then
f#: ®"(Y,G) — ®P(X,G) is the homomorphism defined by sending ¢ in
P*(Y, G) to the map f#¢ defined by (f#¢)(xo,...,z,)) = (b(f(xo), O i
We define f*: HP(Y,G) — HP(X,G) to be the map induced by f#.

If U is a nonempty open subset of X, then the inclusion map i: U — X
defines a homomorphism from H?(U) to H?(X) as follows. Let QP(U) be the
set {¢p € CP(X) | |¢| C U} of p—cochams of X whose support is contained

in U. The map 7 is not necessarily proper, but it induces an isomorphism
i*: QP(U) — CP(U). Now, in the diagram

QMU) —L- Cr(x)

where j is the inclusion map, the only map oy x which makes the diagram
commute is given by oy y = j(‘i#)‘l. This map oy x commutes with the
coboundary homomorphism, and so it induces a homomorphism on the coho-
mology groups.

DEFINITION 3.2.14. The map 7y x: H?(U) — HP(X) is the homomor-
phism induced by the map oy x in the above diagram.

Stating the properties of of this cohomology theory requires highlighting

one more homomorphism. The construction of this homomorphism uses the
fact that the sequence of cochain Complexes

0— CC(/Y,}l) —) C (1Y) —> C’ ( A ) — 0
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is short exact, where j is inclusion and i is induced by the continuous, proper
inclusion map of A into X. By identifying the cohomology groups of the
complex C.(X, A) with the cohomology groups of the complex C.(U), it can
be shown that this sequence leads to a long exact sequence of cohomology
groups.

. H/(U) 5 HP(X) S HP(A) S HPYY(U) - - -
The homomorphism ¢ is the map we wish to name.

DEFINITION 3.2.15. If U is an open subset of X and A = X —U, we denote
by dx,.4: H?(A) — HP(U) the homomorphism which appears in the long exact
sequence above.

The following theorem summarizes the properties of cohomology with com-
pact supports.

THEOREM 3.2.16. Let X, Y, and Z be locally compact Hausdor[f spaces,
and let G be an abelian group.

(a) H. satisfies all Eilenberg-Steenrod axioms for continuous, proper maps
and pairs (X, A) with X locally compact Hausdorff and A closed in X .

(b) If X is the space consisting of a single point, then H(X,G) is G.

(¢) Tx.x: HP(X) — HP(X) is the identity map.

(d) If U and V are open subsets of X satisfyingVC U C X, then 1y x =
TuXTv,U-

(e) If U and V' are open subsets of X and Y, and if f: X — Y is a
continuous, proper map such that f(U) CV and f(X -U)CY -V,
then the following diagram is commutative.

H2(Y) > HP(X)

—_— I ]‘n ”
(

Hg(v) (flu)* HY U)

(f) Suppose U and V' are open subsets of X andY . Let f: X — Y be a
continuous, proper map such that f(U) CV and f(X -U) CY - V.
Let fi: A — B and fo: U — V be the maps induced by restriction of
f. Then the following diagram is commutative.
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(g) If A is a closed subset of X andU = X —A, then the following sequence
s exact:

= HY(U) D HY(X) S HP(A) S HPYY(U) - -

(h) Let U and V be open subsets of X such thatV C U. Let A= X —U,
let B=X -V, and leti: A — B be the inclusion map. Then the
following diagram is commutative.

™V,U

HE(V) H2(U)
0x.B T‘sx,A

HPY(B) > HP'(A)

(i) Let U and V' be open subsets of X such thatU CV, andlet A = X-U.
Then the following diagram is commutative.

HP(V N A)
\
. HEF (V)

-

HP(A)

c

(j) If X s the the disjoint union of open subsets X; indexed by an arbitrary
set I, then each Tx, x: HP(X;) — HP(X) is injective, and H?(X) is
the direct sum of their images.

(k) HP(X) is the direct limit of the groups HP(U) where U is an open
subset of X with compact closure.

(1) If A and B are closed subsets of X such that X = AU B, then the
Mayer-Vietoris sequence

< HY(X) — HY(A) ® HY(B) — HY(AN B) — HZ*/(X) — -
15 exact.

(m) If A and B are open subsets of X such that X = AU B, then the
Mayer-Vietoris sequence

-« — HY(AN B) — HZ(A) ® HY(B) — HJ(X) — HIY'(ANB) — -
is exact.

(n) If X is not compact and X is the Alexandroff one-point compactifica-
tion of X, then the inclusion X — X induces an isomorphism between
HY(X,G) and the reduced homology I:Ig(X G).
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(0) For any closed A in X, if {Ns,ia} is the collection of closed neigh-
borhoods of A and inclusions i,: A — N,, then {i5} provides a rep-
resentation of H(A) as the direct limit of the system {HZ(N),ix, n, }
where the maps iy, y, are induced by the inclusions iy, n,: N1 — Na.

PROPOSITION 3.2.17. The cohomology groups of R™ for n > 0 and S™ for
n > 1 are given by

q n G g=n
HIR ) = {0 q#n
G q=0,n

HYS,6) = {o q#0,n

PROOF. The proof is given by induction on the dimension of R". The
result holds easily for R? = {0}, so we proceed to the inductive step.
Let R} = {(x1,...,2,) € R" | z; > 0} be a half-space in R". The one-
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