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Abstract

An exposition of several homology and cohomology theories is given. Par­
ticular emphasis is placed on coarse homology and coarse analogues of the
Eilenberg-Steenrod axioms. Relations between coarse homology and end ho­
mology are considered, and an isomorphism between these two theories is
proved under a certain contractibility condition on the underlying space.
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Introduction

Homology and cohomology theories are useful algebraic constructions which
can provide topological invariants. Originally built to capture an intuitive idea
of counting holes in a space, the basic ideas have since been axiomatized and
generalized to capture a wider variety of notions. Over the past century, a
large number of theories have been developed, many with the intention of gen­
eralizing duality results: relations between existing theories on certain classes
of manifolds. Several others have been developed to obtain invariants with a
particular flavor advantageous to an area of research. Many of these theories
coincide for spaces satisfying sufficiently nice properties; their differences tend
to lie in ho\v they handle spaces with pathological features.

One aim of this thesis is to give an overview of several homology and
cohomology theories which have been developed, indicating their important
properties (analogues of the Eilenberg-Steenrod axioms) and their relation­
ships with one another. This overview indicates several ways in which theories
can be designed or modified to alter its focus on particular features of a space.
For example, use of Cech and anti-Cech systems permit a focus on small-scale
or large-scale topological features, and certain limit constructions present the­
ories which can disregard topological behavior which is confined to compact
sets.

A primary goal of this thesis is a more detailed exposition of the coarse
homology theory for metric spaces than is found in the literature, featuring
more thorough proofs of coarse analogues of the Eilenberg-Steenrod axioms.
Coarse homology is a theory developed to fit nicely with coarse geometry, an
area featuring the notions of quasi-isometry and coarse equivalence, and guided
by an intuition suggesting that any fixed finite distance should eventually be
considered irrelevant. As an example, the space consisting of two parallel
lines in 1R2 separated by a fixed distance is coarsely equivalent to the space
consisting of a single line in 1R2

, and so both spaces should have the same
coarse homology. Coarse geometry in general has applications to areas such as
geometric group theory, through constructions like the Cayley graph and word
metric of a group, some properties of which are invariant under quasi-isometry.

In addition to this exposition, I investigate the relation between coarse
homology and end homology, an older theory which disregards local behavior
in a different way. Both measure homology "at infinity" in some sense; for
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example, each theory assigns the same groups to a noncompact space X and
X - C' where C' ~ X is compact.

Chapter 1 is a review of the definitions, constructions, and algebraic theo­
rems which are frequently used throughout the thesis. This material is stan­
dard and many references are available. In particular, use was made of [3],
[5], [14], and [22]. Chapters 2 and 3 discuss the Eilenberg-Steenrod axioms
in generality and follow the construction of various homology and cohomol­
ogy theories, noting which axioms and other particularly interesting properties
they satisfy, as well as discussing their relations to one another. Greater atten­
tion is paid to the cohomology theories based on Alexander-Spanier chains in
sections 3.2 and 3.3. Chapter 4 discusses the construction of several theories
which are defined in terms of other theories, indicating a few of the meth­
ods for doing so: the algebraic dual or "naive dual" method of applying the
Hom functor to a chain or cochain complex, taking direct limits over suitable
subspaces, and by taking quotients of the chain groups of distinct theories.

Chapter 5 represents an introduction to coarse algebraic topology on proper
metric spaces. It includes an account of locally finite homology, the basic
properties of coarse maps, coarse homology and cohomology and a section
on the relation between coarse homology and asymptotic dimension. Section
5.3 is the exposition of coarse homology, inclttding more detailed proofs and
discussion of the coarse analogues of the Eilenberg-Steenrod axioms than are
currently found in existing literature. The coarse Mayer-Vietoris theorem is
slightly generalized to allo,v for certain decompositions of X into subsets A
and B even when Au B =I- X and An B = 0:

THEa REM A (Coarse Mayer-Vietoris). Let A and B be subsets of the proper
metric space X. If A U B is coarsely equivalent to X by inclusion and if A
and B coarsely intersect in X, then there is a long exact sequence

..• ----t HC'p(I) ----t HC'p(A) EB HC'p(B) ----t HC'p(X) ----t HC'p_l(I) ----t •••

for every coarse intersection I of A and B in X.

The property I have called coarsely intersecting involves the notion pre­
viously identified as the property required of A n B in X to get the original
Mayer-Vietoris sequence; here it has been extended to spaces which do not
necessarily have a nonempty usual intersection. Despite this greater general­
ity, example 5.3.13 shows that it is possible to fail to have a coarse intersection
even when A n B is nonempty.

A coarse analogue of the excision axiom is also stated and proved sepa­
rately:

THEOREM B (Coarse Excision). If A, E ~ X are such that E ~ A and for
all R > 0, there is some S > 0 StLch that DR(E) - E ~ Ds(A - E), then the
inclusion map i : (X - E, A - E) ----t (X, A) induces an isomorphism.

2
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Section 5.5 is an original exposition of the relation between end homology
and coarse homology. It includes results on isomorphisms between the end and
coarse theories and also discusses the relation between coarse homology and
the theory obtained by mimicking the construction of coarse homology using
end homology instead of locally finite homology. In particular, the following
theorems are proved:

THEOREiVI C. Let X be a r'egimented metric simplicial complex with bounded
coarse geometry. Then H,~(X) ~ HCn(X) for n > 1. If in addition IR+
coarsely embeds into X, then Hg(X) ~ HCo(X).

THEOREM D. Let X be a proper metric space. Then HCn(X) ~ HC~(X)

fOT n > 1. If in addition IR+ coarsely embeds into X, then HCo(X) ~ HCg(X).

The property I have called being regimented is defined in 5.5.10. It is a
relaxation of uniform contractibility, which is one of the properties required
for an isomorphism between locally finite and coarse homology. Regimented
spaces can wildly fail uniform contractibility, but satisfy a sort of "eventual"
uniform contractibility of R-balls for each R > O. Examples of such spaces are
given.

Chapter 6 reviews Poincare and Alexander duality, further relating many
of the theories which appear in earlier chapters.

I would like to thank Professor Ian Hambleton, who served as my advisor
for this thesis providing guidance and encouragement along the way.
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CHAPTER 1

Background Material

1.1. Chain Complexes and Chain Maps

The definitions of homology groups follow a common theme. As such, the
following definitions and theorems are very useful. As noted in the introduc­
tion, this and the next few sections consist of standard material available in
many sources, including [3], [5], [14], and [22].

DEFINITION 1.1.1. A chain complex is a collection of modules Cn over
a ring R and homomorphisms On: Cn --7 Cn - 1 each indexed by the set of
. h h f' C' 0,,+1 C 0" C h ..mtegers, suc t at or every sequence n+l --7 n --7 n-l, t e composltlOn
OnOn+l is the 0 homomorphism. That is, the following diagram commutes for
each n.

o
~

C 0,,+1 C 0" C
...~ n+l~ n~ n-l~'"

The elements of Cn are called n-chains. The homomorphisms are called
boundary maps, elements in their images are called boundaries, and el­
ements in their kernels are called cycles. A chain complex is said to be
bounded below if Cn = 0 for all n less than some integer TV. It is bounded
above if there is an N such that Cn is trivial for all n greater than N. It is
bounded if it is bounded both above and below.

Motivation for the choice of terminology is clear after studying simplicial
homology, where boundaries and cycles will have nice geometric interpreta­
tions. The chain complexes encountered when discussing homology for topo­
logical spaces are usually bounded below, and often bounded above as well, so
that we will typically be considering complexes of the form 0 --7 Cn --7 ... --7

Co --7 O.
The requirement that OnOn+l = 0 in a chain complex is equivalent to

im On+l ~ ker On' As such, there is a sequence of quotient modules associated
to any chain complex.

DEFINITION 1.1.2. The n-th homology module Hn(C) of the chain com­
plex C is the quotient module ker ani im On+l'

The goal when defining a homology theory is routinely to construct a se­
quence of modules which holds some topological information about a space.

4



j\!IcMaster University - Mathematics lVI.Sc. Thesis - Matthew Luther

This is often done by constructing chain complexes whose chain groups consist
of functions into or out of the space and taking homology modules as defined
above. These modules are often our end goal, but in some cases they may
be further manipulated. For example, some of the theories we discuss involve
constructing chain complexes for each cover in a sequence of open covers of a
space, and using the resulting homology modules as objects in a direct limit,
letting the open covers vary. Careful choices in construction of the chain com­
plex can result in the homology modules being invariant under certain maps on
the space we start with. For example, some homology theories will be invari­
ant under homotopy equivalence, while others may be invariant under proper
homotopy equivalences. A recurring notion in discussing hmv maps between
spaces lead to maps between homology modules is the notion of a chain map.

DEFINITION 1.1.3. A chain map between chain complexes C and D is
a collection f of homomorphisms fn: Cn --7 Dn such that each square of the
form

fJC
Cn~Cn-l

In1 lIn-l

Dn~Dn-l
fJ,~

commutes. That is, fn-l 00;:' = o,~ 0 fn.

The commutativity required of chain maps ensures that they induce ho­
momorphisms on the homology modules of the complexes. This and several
relevant properties of the induced maps follow easily from the definition above
and are recorded below.

PROPOSITION 1.1.4. Let f: (C,oG) --7 (D,OD) and g: (D,OD) --7 (E,OE)
be chain maps.

(a) Each fn satisfies fn(l<ero;:,) ~ kero,~ and fn(imo;:'+l) ~ imo~+l'
That is) cycles are sent to cycles and boundaries are sent to bound­
anes.

(b) Each fn induces a homomorphism between the homology modules Hn(C)
and Hn(D) defined by c + imo;:'+l I-t fn(c) + imo'~+l' Moreover) the
map which sends chain complexes to the corresponding sequence of ho­
mology groups and which sends chain maps to the sequence of induced
homomorphisms is a functor; that is:
(a) The identity chain map induces identity homomorphisms in each

dimension.
(b) The homomorphisms induced by the composition of the two chain

maps f: C --7 D and g: D --7 E are the same as the composition
of the induced homomorphisms. That is, (gl)* = g*f*·

5
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DEFIl ITION 1.1.5. Given chain maps f and 9 between the complexes C
and D, a chain homotopy h from f to 9 is a collection of homomorphisms
hn: Cn -----7 Dn+1 such that fn - gn = o1~+lhn + hn+1o;{.

0;(
Cn ) Cn - 1

hn~Jgn /
~ J 1/hn

-
L

O"+l
D n+1 ) D n

If such an h exists, f and 9 are said to be chain homotopic, and we write
f ~ g.

PROPOSITION 1.1.6. If f and 9 are chain homotopic, then they induce the
same maps on homology.

PROOF. We show that for cycles c that fn(c) and gn(c) differ at most
by a boundary, and hence differ by 0 in homology. Let c be an element of
keroc,n. Since f ~ g, there is some chain homotopy h such that (fn - gn)(c) =
o[;+lhn(c) + O. Vve may then write fn(c) = gn(c) + o7~+lhn(c). It is then clear
that when we consider the induced maps on the homology modules, we get
fm(c) = gm(c) + O. 0

DEFINITION 1.1.7. Two chain complexes C and D are chain homotopy
equivalent, denoted C ~ D if there are chain maps f: C -----7 D and g: D -----7 C
such that gf and fg are chain homotopic to the identity chain maps C -----7 C
and D -----7 D. If such an f and 9 exist, they are each said to be chain
homotopy equivalences.

Chain homotopy equivalence is an equivalence relation on chain complexes.
The following proposition is a useful tool in demonstrating the invariance of
homology modules under certain induced maps. It says that chain homotopy
equivalent complexes have isomorphic homology modules.

PROPOSITIO 1 1.1.8. If f and 9 are chain homotopy equivalences, then the
induced maps f*n and gm are isomorphisms.

PROOF. vVe have that gf ~ idc and fg ~ idD, so (g1)* = g*f* = idH(c)
and (fg)* = f*g* = idH(D). This implies that f* and g* are isomorphisms. 0

DEFIl ITION 1.1.9. A chain complex C is contractible if it is chain ho­
motopy equivalent to the 0 chain complex. Since the only chain map that can
fit in 0 -----7 C -----7 0 as either arrow is the 0 map, this is equivalent to idc ~ O.

DEFINITION 1.1.10. A chain complex C is acyclic if its homology groups
are all O.

6
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Given proposition 1.1.8, contractible complexes are acyclic.

DEFINITION 1.1.11. Let f be a chain map from C to D. The mapping
cone Cone(J) of f is the chain complex C(fJ'f,D where (C(fJ'f,D)n is Cn(fJDn+1

and 8~$L,D is given by sending (c, d) to (-8e,n(c), fn(c) +8D,n+l(d)) for c E Cn
and d E Dn+1 .

The map 8n above can be viewed as left multiplication by the matrix

(-8
e
j:: 8D,n+~) on the column vector ( ~) . Thus, the composition

8 8 d 1 . ( 8e n-l8enO) 1· hn-l n correspon s to t le matnx -f a +' 8 f' 8 8 W l1C
n-1 e;n D,n n D,n D,n+l

reduces to o.
PROPOSITION 1.1.12. A chain map f: C ~ D is a homotopy equivalence

if and only if Cone(J) is contractible.

1.2. Cochains

Homology theories have a dual notion called cohomology. Cohomology
modules are defined using cochain complexes, and in discussing them, we will
talk about cocycles and coboundaries. There is essentially little difference
between chain complexes and cochain complexes, as can be seen from the
definitions.

DEFINITION 1.2.1. A cochain complex is a collection of modules cn of
a ring R and homomorphisms 8n : cn ~ cn+1 each indexed by the set of
integers, such that any composition 8n+18n is the 0 homomorphism. Elements
of en are called n-cochains. The homomorphisms are called coboundary
maps. Elements in the kernel of a coboundary map are called cocycles, and
elements in the image are called coboundaries.

This differs from the definition of a chain complex only in that the homo­
morphisms map upward in index from n to n + 1 rather than downward. Since
8n+18n is always 0, we are again able to define quotient modules.

DEFINITIO 1 1.2.2. The n-th cohomology module Hn(c) of the chain
complex C is the quotient module ker 8n / im 8n - 1

.

There are corresponding notions of cochain maps, cochain homotopy equiv­
alences, and so on. The definitions are analogous to those for chain complexes,
with the necessary changes made to be compatible with the indices.

We can obtain a cochain complex from a chain complex by applying the
Hom(-, R) functor where R is any ring. This functor sends a chain group
Cn to the group Hom(Cn, R) of homomorphisms from Cn to R. It sends a
boundary homomorphism 8n : Cn ~ Cn- 1 to the homomorphism Hom(8n , R) :
Hom(Cn _ 1, R) ~ Hom(Cn , R) determined by ¢ I---> ¢ 0 8n for each ¢ in

7
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Hom(Cn _ 1 , R). If we take Hom(Cn , R) to be our cochain group cn, and
we take our coboundary maps to be 6n = Hom(On+l, R) : Hom(Cn, R) ---t

Hom(Cn +1 , R) then this gives us a cochain complex. To see that 6nH o6n = 0,
note that it sends any ¢ in cn to ¢ 0 On+l OOn+2 = ¢ 0 0 = 0 in cn+2.

The following theorem states that the cohomology groups of a cochain
complex obtained in the above way are determined by the homology group of
the starting chain complex.

THEOREM 1.2.3 (Universal Coefficient Theorem for Cohomology). Let C
be a chain complex of free abelian gTOUpS, let Hn (C) be the homology groups of
C, and let G be an abelian gTOUp. Then, the cohomology gTOUpS Hn(c· G) of
the cochain complex Hom(Cn , G) are determined by the split exact sequences

o---t Ext(Hn_1(C), G) ---t Hn(C; G) ~ Hom(Hn(C), G) ---t 0

where h is the map sending 5!. class of maps ¢ E Hn(C; G) represented by a
map ¢: Cn ---t G to the map ¢: Hn (C) ---t G induced by ¢.

1.3. Direct Sums and Direct Products

Let R be a ring and let {Mi } be a collection of R-modules indexed by I.

DEFINITION 1.3.1. The direct sum EBj\lfi is the module consisting of
i

almost-everywhere zero sequences (rni)iEI where the i-th term rni is an element
of 1I1fi , addition is defined componentwise, and scalars distribute across all
components. By an almost-everywhere zero sequence, we mean a sequence
which takes on non-trivial values on at most finitely many indices.

DEFINITION 1.3.2. A direct system of modules is a collection of mod­
ules j\lfi indexed by a partially ordered set (I, ::;) and homomorphisms Pu: j\lfi ---t

j\lfj for each i ::; j in I such that

(a) for each ·i and j in I, there exists a k in I such that i,j ::; k,
(b) Pi,i is the identity homomorphism on 1I1fi ,
(c) whenever i ::; j ::; k, we have Pj,kPi.j = P.i,k.

DEFINITION 1.3.3. Given a direct system of modules (Jvfi,Pi,j), the direct

limit 1i..!r(J\!Ii l Pi,j) is defined to be the quotient module Uj\!Ii/ rv where U
iE[

is the disjoint union and rv is the equivalence relation given by mi rv rnj for
rni E j\lJi and rnj E Mj iff there is some k 2:: i,j such that Pi,k(rni) = pj,k(rnj)'
Informally, we can say that the direct limit identifies elements if they are
eventually equal. Addition of elements x and y in the direct limit is done by
finding representatives of x and y in the same M i , performing the addition on
the representatives there, and then taking the equivalence class of the sum.
Scaling is likewise done on a representative.

8
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We can obtain the direct sum EBMi as a direct limit as follovvs. First, let
iE!

F be the family of finite subsets of I ordered by subset inclusion. For each
set F in F, define lVIF to be the cartesian product x lVIi . For each F, G in F

iEF
such that F ~ G, let the homomorphism PF,G be the inclusion map.

DEFI ITION 1.3.4. The direct product TI1I{ is the module consisting
i

of all sequences (mi)iE! where the i-th term mi is in ~Ii, addition is defined
componentwise, and scalars distribute across all components.

DEFI TJTION 1.3.5. An inverse system of modules is a collection of
modules Hi indexed by a partially ordered set (1,:::;) and homomorphisms
pj,i: Mj --t lVfi for each i :::; j in I such that

(a) for each i and j in I, there exists a k in I such that i, j :::; k,
(b) Pi,i is the identity homomorphism on M i,
(c) whenever i :::; j :::; k, we have pj,iPk,j = Pk,i'

Note that the difference between the definition of an inverse system and
the definition of a direct system is essentially that the direction of the homo­
morphisms is reversed.

DEFINITION 1.3.6. Given an inverse system of modules (lVIi, Pj,i) , the in­
verse limit l~( ~Ii, Pi,]) is defined to be the submodule {(miLE! I mi =
PJ' i(m J) for all i :::; j} of the cartesian product x lVh Addition is done termwise,

, iE!

and scaling distributes across all terms.

Vie can obtain the direct product TI lVIi as an inverse limit as follovvs.
iE!

Again, let F be the family of finite subsets of I ordered by subset inclusion,
and for each set F in F, define II/IF to be the cartesian product x lVh For

iEF
each F, Gin F such that F ~ G, let the homomorphism PG,F be the projection
map onto the indices in F.

It is clear from the definitions that the direct sum is the submodule of the
direct product containing only the almost-everywhere zero sequences. Direct
sums and products frequently appear in chain and cochain groups. For exam­
ple, the chain groups in simplicial homology consist of finite formal sums of
simplices. Thus the simplicial n-chain group is isomorphic to EBZ, the direct

8/1
product of copies of Z indexed by the set 5n of n-simplices. In locally finite ho-
mology, we admit infinite formal sums. These groups are isomorphic to direct
products TIZ where 5n is the set of n-simplices. vVe also obtain direct products

8 11

in singular cohomology when we dualize the singular chain complex using the
Hom functor. This is a result of the fact that Hom(EBZ, R) is isomorphic to

iE!

9
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ITR. To see this, note that since any ¢ in Hom(EBZ, R) is determined by the
iE[ i.E[

values it takes on the generators of EBZ, each ¢ has a unique corresponding
iE[

sequence (J(l i ) )i.E[ in IT R where Ii is the element of EBZ with 1 in the i-th
iEI iEI

position and 0 everywhere else.

PROPOSITION 1.3.7. Let (Ai, Aj) and (B i , gi,j) be direct systems of mod­
ules. Suppose that {ei : Ai. ~ Bd is a homomorphism of direct systems and
that for each i, there is some ji > i and homo1TwTphism hi: Ai ~ B j such that
the diagrmTL

commutes. Then the induced map e: lim Ai ~ lim Bi is an isomoTphis1Tl-.
~ ~

PROOF. For each i we have the following exact sequence
B

o ~ kerei ~ Ai ~ Bi ~ cokerei ~ 0

It is not hard to check that when we have Ji > i such that hi exists, then the
induced maps ker ei ~ ker eji and coker ei ~ coker eji are the 0 map. So for
each i vve have the following commutative diagram.

B
o~kerej~Aj ~Bj~cokerej~O

01 fi,j r '( 19i
,j 10

It follows that lim ker ei = lim coker ei = O. This implies that after taking
~ ~

direct limits, we get an exact sequence

o ~ lim Ai ~ limBi ~ 0
~ ~

and so eis an isomorphism. 0

1.4. Simplicial Complexes

IVlany of the theories vve will discuss involve the notions of simplicial com­
plexes and abstract simplicial complexes. These two ideas are closely related.
Informally, simplicial complexes are spaces which are nicely viewed as a col­
lection of simple geometric objects: points, lines, triangles, and their higher­
dimensional generalizations. Abstract simplicial complexes are collections of
finite sets which generalize the behavior of vertices in a simplicial complex.

10
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DEFINITION 1.4.1. An n-simplex is the smallest convex set in ~n+l con­
taining n + 1 points va, ... ,Vn which are not all contained in a single (n - 1)­
dimension hyperplane. The points va, ... ,Vn are called the vertices, and since
the set of vertices uniquely determines the particular n-simplex, \ve may denote
an n-simplex using its vertices as (va, . .. , vn ) .

•
O-simplex I-simplex 2-simplex

For example, a O-simplex is a point, a I-simplex is a line segment, a 2­
simplex is a filled-in triangle, and a 3-simplex is a filled-in tetrahedron. For
each nonnegative integer n, there is a standard n-simplex.

DEFINITION 1.4.2. The standard n-simplex ~n is the n-simplex deter­
mined by the set of standard basis vectors ei in ~n+l where the i-th component
of ei is 1 and all other components are O.

For example, the standard I-simplex is the line joining (1,0) and (0,1) in
~2, and the standard 2-simplex is the triangle with vertices (1,0,0), (0, 1,0),
and (0,0,1) in ~3. We can explicitly describe ~n as the set { L tiei I

i=O, ... ,n

each ti is in ~ and L t i = I}.
'i=O, ... ,n

DEFINITION 1.4.3. Given an n-simplex cr with corresponding vertex set
(va, ... ,vn ), we define an m-face of cr to be an m-simplex determined by a
nonempty (m + I)-element subset of {va, ... ,vn }.

For example, the I-faces of a solid triangle are its edges, its O-faces are its
vertices. Simplices can be collected together into combinatorial objects which
will be important in many of the homology and cohomology theories we will
discuss.

DEFINITION 1.4.4. A simplicial complex lC is a collection of simplices
such that if cr E lC, then every face of cr is in lC, and for any two simplices
crl and cr2 in lC, the intersection of crl and cr2 is a face of both simplices. The
vertex set lCo is the set of all O-simplices in lC.

DEFINITION 1.4.5. An abstract n-simplex is a set containing n + 1 ele­
ments.

DEFINITION 1.4.6. An m-face of an abstract n-simplex cr is a nonempty
subset of cr containing m + 1 elements. A vertex of cr is a O-face.

DEFINITION 1.4.7. An abstract simplicial complex lC is a collection of
abstract simplices such that if cr is in lC, then every face of cr is as well. The
vertex set lCo is the set of all O-simplices in lC.

11
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An abstract simplicial complex is exactly a collection of finite sets which
is closed under taking subsets. This notion captures the combinatorial aspect
of a simplicial complex without reference to any geometry.

We can easily obtain an abstract simplicial complex K' from any simplicial
complex K. To do so, we take advantage of the fact that each simplex in K
corresponds uniquely to its set of vertices. As such, there is an injection v
from K to the collection of subsets of the vertex set K a. The range of v is the
desired abstract simplicial complex K'.

EXAMPLE 1.4.8. Let K be the simplicial complex consisting of a solid
triangle T determined by vertices (va, VI, V2). That is, K is the set containing
T, La,I' La,2' L I,2, Va, VI, and V2, where Li,j is the edge of the triangle joining
Vi and Vj' The injection V sends T to {Va,Vl,V2}, sends Li,j to {Vi,Vj}, and
sends Vi to {vd. The abstract simplicial complex that comes from K is thus
the set

{{VO,VI,V2}, {VO,VI},{VO,V2},{Vl,V2}, {VO},{VI}, {V2}}

We can also obtain from any abstract simplicial complex K a simplicial
complex IKI called its geometric realization. The basic idea is to map
the vertex set KO to the standard basis vectors of a real vector space, and
then attach copies of standard simplices where appropriate. First, choose an
injection j from KO to the set of basis vectors of the vector space. Now, for each
abstract n-simplex (J, we want to include a copy of the standard n-simplex with
its vertices on the appropriate basis vectors. Since j( (J) = {ecr,l, e cr,2, ... , ecr,n} is
the set of basis vectors we want to use, we can choose the obvious embedding
of ~n where the point ei in ~n is mapped to ecr,i. Call the image of this
embedding ~cr' Our desired simplicial complex IKI is the union U ~cr' \Ne

crEK

can assign a topology to IKI either by viewing it as a subspace of the real
vector space we have constructed it in, or by using a path metric.

It is not hard to see that if we use the method above for obtaining an
abstract simplicial complex from IKI, we will essentially obtain a relabeled
version of K. That is, with the notation above, IKI' = K for abstract simplicial
complexes K.

1.5. Cech and Anti-Cech Systems

The classical homology and cohomology theories can give the impression
that homology and cohomology are defined essentially in terms of the con­
stituent pieces of a space. However, it is possible to associate other structures
to a space and work with them to indirectly gain information. This can have
advantages over the more direct constructions. One method we will discuss is
to approximate the space using sequences of open covers. Cech and anti-Cech
systems fit nicely with this idea; they present a sequence of open covers which
become progressively finer or coarser along the sequence.

12
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DEFINITION 1.5.1. A refinement of a cover U of a space X is a cover V
such that each V in V is contained in some U in U. A refinement map is a
map p: V -7 U such that V <;;; p(V) for all V in V.

It is clear that refinement maps always exist for a refinement, though they
might not be unique.

DEFINITION 1.5.2. A cover U of X is locally finite if for every x EX,
there are only finitely many U E U such that x E U.

DEFINITION 1.5.3. A Cech system {Ui , pd for a space X is a sequence
of locally finite open covers Ui and maps Pi such that the following hold.

(a) Ui+l is a refinement of Ui for each i,
(b) Pi is a refinement map Pi: Ui+l -7 Ui for each i, and
(c) the limit of sup{diameter(U) I U E Ui } goes to a as i -7 00.

DEFINITION 1.5.4. An anti-Cech system {Ui , Pi} for a space X is a se­
quence of locally finite open covers Ui and maps Pi such that the following
hold.

(a) Each Ui has a diameter sup{diameter(U) I U E Ui } bounded by some
positive constant I4,

(b) the Lebesgue number Li+1 of Ui+1 is at least as large as the upper
bound I4 of the diameter of Ui .

(c) Pi is a refinement map Pi: Ui -7 Ui+ 1 for each i, and
(d) the diameters Ri tend to 00 as i -7 00.

Conditions (a) and (b) in the definition of an anti-6ech system guarantee
that Ui is a refinement of Ui+l' Condition (d) forces the diameters of the Ui

to go to infinity as i increases. While both 6ech and anti-6ech systems are
sequences of refinements of open covers, 6ech systems become finer as we go
along the sequence, and anti-6ech systems become coarser. 'When we define
theories using these systems, this behavior will allow us to capture small-scale
and large-scale topological features respectively.

For future use, we include the following proposition, which is proved in
[20].

PROPOSITION 1.5.5. Let X be a proper metric space. Ther'e is a subset
Y <;;; X such that the distance between distinct points of Y is at least ~ and the
collection of open balls of unit radius B(y, 1) for y E Y cover X. Moreover,
for such a Y, the sequence of collections Un = {B(y,3n) lyE Y} forms an
anti- Cech system fOT X.

PROOF. Let :F be the family of subsets S of X such that the distance
between distinct points in S is at least ~. The family :F can be partially
ordered by subset inclusion, and every chain in such an ordering has an upper

13
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bound (namely the union over the chain). By Zorn's Lemma, there exists an
element Y in F which is maximal with respect to s:;;. If {B(y, 1) lyE Y}
did not cover X, then there would be some x E X at least distance 1 from all
y E Y. For such an x, we have Y U {x} E F and Y c Y U x, contradicting
maximality of Y.

'vVe now check that the collections Un are locally finite covers. Let A be
a bounded subset of X. Then D(A,3n ) = {x E X I d(x, A) :S 3n } is also
bounded. Since X is proper, the sets in Un as well as D(A, 3n ) have compact
closures. Any U E Un intersects A iff it is centered at some y E D(A, 3n) n Y.
But, the closure of D(A, 3n

) intersects Y at only finitely many points, so A
can only intersect finitely many elements of Un'

Each set in Un has diameter Rrt = 2 . 3n. Vve need to check that the
Lebesgue number of Un+1 is at least 2 . 3n . Suppose Z s:;; X has diameter
:S 2· 3n . Then Z is contained in a closed ball with radius 2· 3n . Let z E X
be the center of this closed ball. By definition of Y, there is some y E Y such
that cl(z, y) < 1. We have

Z s:;; D(z, 2· 3n
) s:;; B(y, 2· 3n + 1) s:;; B(y, 2· 3n+1) E Un+1

as required. o

1.6. Nerves and Vietoris-Rips Complexes

Given any relation R s:;; X x Y, there are two abstract simplicial complexes
which can be defined.

DEFINITION 1.6.1. The nerve of R is the abstract simplicial complex K R

whose n-simplices are finite subsets {xo, ... , x n } s:;; X such that for some
y E Y, we have (Xi, y) E R for all i.

The Vietoris-Rips complex of R is the abstract simplicial complex £R
whose n-simplices are the finite subsets {Yo, . .. ,Yn} s:;; Y such that for some
x E X, we have (x, Yi) E R for all i.

On page 89 of [4], it is shown that certain homology groups as well as
cohomology groups of the geometric realizations of the nerve and Vietoris­
Rips complex of a relation coincide, and moreover, it is shown that these
realizations have the same homotopy type.

We are interested in using nerves in conjunction "vith Cech systems and
anti-Cech systems. The relation in consideration is that of set membership
between a space X and an open cover U. Since we will make frequent use of
geometric realizations of such nerves, we make the following definitions. These
definitions and the proposition below appear often in literature involving coarse
homology, including [19] and [21].

DEFINITION 1.6.2. Let X be a topological space and let U be an open cover
of X. The nerve K of U is the geometric realization of the abstract simplicial

14
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complex whose n-simplices are finite subsets {Uo, ... ,Un} of U such that for
some x E X, we have x E nUi . That is, K consists of a O-simplex {U} for each
U in U, and an n-simplex {Uo, . .. , Un} whenever Uon ... n Un is nonempty.

DEFINITIO. 1.6.3. Let A ~ X, let U be an open cover of X, and let K be
the nerve of U. The subnerve K fA consists of those simplices {Uo, ... ,Un}
in K such that nUi n A is nonempty.

Given a Cech system or an anti-Cech system {Ui,pJ, there is an associated
system {Ki,pn of nerves and induced maps.

PROPOSITION 1.6.4. Let U and V be locally finite open covers such that V
is a refinement ofU, and let Ku and K v be the nerves ofU and V respectively.
Let p: V -t U be a refinement map. Then p induces a continuous, proper map
p*: K v -t Ku .

PROOF. First, define a map pi which maps finite sets {Vo, . .. , Vn } ~ V to
finite sets {p(Vo), ... ,p(Vn )}. Note that pi is not necessarily injective since p
is not necessarily injective. Now, since K v is a geometric realization based on
an abstract simplicial complex whose simplices are finite sets, each simplex in
Kv is an embedding of a standard simplex 6.n with vertices corresponding to
some abstract simplex {Vo, . .. ,V;1}' Similarly for Ku . Thus for each simplex
(]" in K v , pi determines a map from the vertices of some 6.n to the vertices
of some 6.m , and so it determines a continuous map c~n,~m from 6.n -t 6.m .

Let i~n and j~m be the embedding maps of 6.n and 6.m into Kv and Ku
respectively, and note that (]" = i~n (6.n). Vve now define Pa: (]" -t j~m (6.m) by
Pa(x) = j~m 0 c~n,~m 0 i~:, (x). This is clearly a continuous, proper map. To
get p*, we take the union over all Pa for each (]" E Kv. Since the covers U and
V are locally finite, p* is proper. 0

DEFINITION 1.6.5. Let {Ui , pJ be a Cech system or an anti-Cech system
for X. The system of nerves {Ki,pi} associated to {Ui , Pi} consists of the
nerves K i of Ui for each i and the continuous, proper maps pi: Ki+l -t K i

induced by each Pi'

Note that we have defined the nerve of an open cover to be a geometric
realization rather than an abstract simplicial complex. This is because we will
later define homology groups for topological spaces, and so we want to have
a topology to work with, rather than just a set. However, we will regularly
conflate the nerve of an open cover with the abstract simplicial complex of
which it is the geometric realization so that we can more easily refer to the
simplices in the nerve. This is a slight abuse of notation since the nerve K of a
cover U will not actually have elements such as {U1 , U2 }. Though, these sets
do unambiguously determine simplices in K when they intersect.

EXAMPLE 1.6.6. Let U be the open cover of lR consisting of open intervals
(n, n + 2) for each integer n. The nerve K of U has a O-simplex (vn ) =
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{(n, n + 2)} for each n, and a I-simplex (vn , Vn+I) = {(n, n + 2), (n + 1, n + 3)}
for each intersecting pair of intervals. Part of K' is depicted schematically
below. Note that this depiction is of a space homeomorphic to K.

V-I Va VI
••• ---4.It--••-~.~- •••

The above example happens to produce a nerve 'whose geometric realization
is homeomorphic to the space we started with. This is a consequence of the
particular open covering we used, and will not generally be the case. For
contrast, consider the following examples.

EXAMPLE 1.6.7. Let U be the open cover of lR containing intervals of
the form (n, n + 3) for all integers n. The nerve of U will now contain 0­
simplices (vn ) = {(n, n + 3)} and I-simplices (vn , Vn+l) = {(n, n + 3), (n +
1, n+4)} similarly to the previous example, but it will also contain I-simplices
(vn , Vn+2) = {(n, n + 3) (n + 2, n + 5)} and even 2-simplices (vn , Vn+l, Vn+2) =
{(n, n + 3), (n + 1, n + 4), (n + 2, n + 5)} because of the more complicated
intersection behavior.

EXAMPLE 1.6.8. Consider the open cover U of a space X consisting solely
of the whole space. That is, U = {X}. The nerve of U is K = {{X}}, and its
geometric realization is a single point.

While very trivial, this last example shows in an exaggerated way how
using a nerve to approximate a space can lead to a loss of local information.

1.7. Sheaf Theory

Sheaf theory provides a language for defining and generalizing theories
which depend on open sets and coverings.

DEFINITION 1.7.1. A presheaf F on topological space X with values in a
category C is a contravariant functor from the category of open subsets of X
and inclusion maps to the category C. That is, F is a function vvhich assigns
to each open U s:;;; X an object F(U) in C, and assigns to each inclusion map
V ~ U with V s:;;; U a morphism F\~: F(U) ~ F(V) in C called a restriction
morphism which satisfies the following properties.

• For each open set U, the restriction morphism Fff is the identity on
F(U).

• For W s:;;; V s:;;; U, the restriction morphisms satisfy F\~ = FI~ 0 F{j.
The object F(U) is called the sections of F over U, and if the objects in C
can be thought of as having elements, then each of the elements in F(U) is
called a section over U. A section over X is called a global section.
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EXAiVIPLE 1.7.2. Given an R-module G, there is a presheaf called a con­
stant presheaf which assigns G to every nonempty U ~ X, assigns the triv­
ial group 0 to the empty set, and assigns the identity on G to each inclusion
V -t U.

DEFINITION 1.7.3. Given two presheaves F 1 and F2 on X, a homomor­
phism of presheaves h: Fi -t F2 is a natural transformation of functors.
That is, a collection of homomorphisms hu : Fi(U) -t F2 (U) for U ~ X open
such that each hu commutes with the restriction morphisms.

DEFINITION 1.7.4. A sheaf is a presheaf which additionally satisfies the
following unique gluing property. If {UihEI is a collection of open sets with
union U = UiEI Ui and we have given Si E F(Ui) for each i such that

F~inuj(Si) = F~jnuj (Sj) for all i, j in I, then there is a unique s E F(U)
such that Ffh (s) = Si for all i.

vVe can associate a sheaf to any presheaf using the notion of germs.

DEFI ITION 1.7.5. Let F be a presheaf on X. Let ~tf be {s E F(U) I
U is open and x E U ~ X}. Let rv be the equivalence relation in which
S E F(U) and t E F(V) are equivalent iff there is some open W satisfying
x E W ~ un V for which Ft(r(s) = F\~(t). The set of germs of F at x is
defined to be the set Po = ~tf/ rv of equivalence classes of !vI modulo rv. An
equivalence class in Po containing s E F(U) is called the germ of s at x E U
and is denoted by SX'

DEFIN ITION 1.7.6. Given a presheaf F, the sheaf generated by F is the
disjoint union of the sets of germs Po over all x, with the topology generated
by the open sets {sx E Po I x E U} for all s E F(U) and open U ~ X.
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CHAPTER 2

Homology

2.1. Eilenberg-Steenrod Axioms for Homology

Homology theories are typically described by assigning groups to certain
kinds of pairs of spaces, for example pairs (X, A) where X is a topological
space and A ~ X, or pairs (X, A) where X is locally compact and A is a
closed subset of X. This assignment is then usually shown to behave nicely
with a certain class of maps, such as continuous maps or proper maps. The
properties satisfied by the different theories tend to be similar. A list of axioms
was first abstracted from the properties of early theories and presented by
Eilenberg and Steenrod [6], and we include their development here. Apart from
providing a theoretical framework for what a homology theory should be, the
axioms often characterize theories on a particular category of spaces and maps
up to isomorphism of the assigned groups. Also, the axioms are sometimes
sufficient for identifying the groups associated to simple spaces without needing
to explicitly calculate them using the definition of a particular theory.

DEFINITION 2.1.1. vVe say that (X, A) is a pair of sets if A ~ X.

DEFINITION 2.1.2. Let (X, A) and (Y, B) be pairs of sets. A function
f: X -7 Y is said to be a map of pairs from (X, A) to (Y, B) is f(A) ~ B.
Such a map is denoted by f: (X, A) -7 (Y, B).

DEFINITION 2.1.3. The lattice of the pair (X, A) is the collection of all
pairs in the following diagram, along with their identity maps, the indicated
inclusion maps of pairs, and their compositions.

(X,0)

/~
(0,0) -- (A, 0) (X, A) -- (X, X)

~/
(A,A)

A map of pairs f: (X, A) -7 (Y, B) defines maps between corresponding
members of the lattices of (X, A) and (Y, B) by restriction where necessary.
For example, f IA is a map of pairs (A,0) -7 (B,0).
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DEFINITION 2.1.4. A family C of pairs of spaces and maps is an admissible
category if it satisfies the following properties. The spaces and maps in an
admissible category are called admissible.

(a) If (X, A) E C, then the lattice of (X, A) is contained in C.
(b) If f: (X, A) ~ (Y, B) is in C, then (X, A) and (Y, B) are in C, as well

as all maps from members of the lattice of (X, A) to the corresponding
members of the lattice of (Y, B) which f defines.

(c) If f and 9 are in C, then if their composition fg is defined, it is in C.
(d) Let I = [0,1] C R If (X, A) E C, then (X x I, A x 1) E C and the

maps i o, i 1 : (X, A) ~ (X x I, A x 1) defined by io(x) = (x,O) and
i1(x) = (x, 1) are in C.

(e) C contains a space Po consisting of a single point. Also, if X and P
are in C, if f: P ~ X, and if P is a single point, then f E C.

EXAlvIPLE 2.1.5. The following are admissible categories for homology the­
ory.

(a) The set of all pairs of arbitrary sets (X, A) and all maps of such pairs.
(b) The set of all pairs of topological spaces (X, A) and all continuous

maps of such pairs.
(c) The set of pairs (X, A) with X a locally compact space and A closed

in X together with all proper maps of such pairs.

DEFINITION 2.1.6. Two maps of pairs fa, h: (X, A) ~ (Y, B) in an admis­
sible category C are said to be C-homotopic if there is a map h: (X x I, A x
1) ~ (Y, B) in C such that fa = h 0 io = h(x,O) and h = h 0 i 1 = h(x, 1). The
map h is called a C-homotopy between fa and h.

We can now list the axioms for homology theories.

DEFINITION 2.1.7. Let 9 be a collection either of abelian groups or of R­
modules for some fixed ring R. A homology theory H on an admissible
category C is a collection of functions as follows.

• The first function H is defined for each admissible pair (X, A) and each
integer q and assigns values in 9. The value of the function is usually
written Hq(X, A) and is called the q-dimensional relative homol­
ogy group of X modulo A. If A is the empty set, then Hq(X, A) is
often abbreviated as Hq(X).

• The second function is defined for each admissible map f: (X, A) ~
(Y, B) and each integer q and assigns a homomorphism f*q: Hq(X, A) ~
Hq(Y, B) called the homomorphism induced by f. The homomor­
phism f*q is typically written as f* when it is not ambiguous to do
so.

• The third function 8 is defined for each admissible (X, A) and each in­
teger q and assigns a homomorphism 8(q, X, A): Hq(X, A) ~ Hq_1(A, 0)
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called the boundary operator. This homomorphism is typically
written as EJ when it is not ambiguous to do so.

The first two functions above are required to be functorial:

Axiom 1: If f is the identity map (X, A) -----+ (X, A), then f* is the
identity map Hq(X, A) -----+ Hq(X, A) for each q.

Axiom 2: If f: (X, A) -----+ (Y, B) and g: (Y B) -----+ (Z, C) are admissible,
then (g1)* = g*f*: Hq(X, A) -----+ Hq(Z, C).

The third function must behave well with the first two:

Axiom 3: If f: (X, A) -----+ (Y, B) is admissible, then the map EJ f* is
(f fA)*EJ: Hq(X A) -----+ Hq_1(B, 0).

Additionally, the following axioms must be satisfied:

Axiom 4 (Exactness): If (X, A) is admissible and if i: (A,0) -----+ (X,0)
and j: (X,0) -----+ (X, A) are inclusion maps, then the following se­
quence is exact.

... !-. Hq(A) ~ Hq(X) ~ Hq(X, A) !-. Hq_1(A) ~ ...

This sequence is called the homology sequence of the pair (X, A).
Axiom 5 (Homotopy Invariance): If the admissible maps fa, II from

(X, A) to (Y, B) are C-homotopic, then for each q, the homomorphisms
fo*, fh: Hq(X, A) -----+ Hq(Y, B) are equal.

Axiom 6 (Excision): Let (X, A) be an admissible pair. If U is an open
subset of X whose closure D is contained in the interior of A, and if
the inclusion map i: (X - U, A - U) -----+ (X, A) is admissible, then ·i
induces an isomorphism i*: H(/X - U, A - U) -----+ Hq(X, A) for all q.

Any inclusion map i satisfying these conditions is called an excision
map.

Axiom 7 (Dimension): If P is an admissible space consisting of a sin­
gle point, then Hq(P) = 0 for all q =1= O. The value of Ho(P) is called
the coefficient group or coefficient module of the homology the­
ory, depending on whether 9 is a family of abelian groups or modules.

Vve 11 now prove some basic results which follow from the axioms.

DEFINITION 2.1.8. Two admissible pairs (X, A) and (Y, B) are C-isomorphic
if there are admissible maps f: (X, A) -----+ (Y, B) and g: (Y, B) -----+ (X, A)
such that both fg and gf are identity maps. Such a map f is called a C­
isomorphism and 9 is called the inverse of f.

PROPOSITION 2.1.9. A C-isomorphism f: (X, A) -----+ (Y, B) induces iso­
morphisms f*: Hq(X, A) -----+ Hq(X, B) for all q.

P ROO F. Since f has an inverse 9 and f 9 is the identity, we have that
(fg)* = f*g* is the identity. Similarly, gf is the identity, so (g1)* = g*f* is
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the identity. This shows that f* has an inverse homomorphism, and so f* is
an isomorphism. 0

DEFINITION 2.1.10. Admissible pairs (X, A) and (Y, B) are said to be C­
homotopy equivalent if there are admissible maps f: (X, A) ~ (Y, B) and
g: (Y, B) ~ (X, A) such that gf and fg are each C-homotopic to the identity
maps on (X A) and (Y, B) respectively. Such a map f is called a C-homotopy
equivalence, and 9 is called the C-homotopy inverse of f.

PROPOSITION 2.1.11. If f: (X,A) ~ (Y,B) and g: (Y,B) ~ (X,A) are
C-homotopy inverses, then f*: Hq(X, A) ~ Hq(Y, B) is an isomorphism with
znverse g*.

PROOF. Since gf is C-homotopic to idx , they induce the same maps by
the homotopy invariance axiom. So we have that (g1)* = g*f* is the identity
Hq(X, A) ~ Hq(X, A). Similarly, fg is C-homotopic to id y , so they induce
the same maps, and hence (1g)* = f*g* is the identity Hq(Y, B) ~ Hq(Y, B).
This implies that f* and g* are inverse homomorphisms. 0

The following properties can be proved from the axioms as well.

PROPOSITION 2.1.12 (Direct Sum Property for Homology). Let X = Xl U
... U X n be the union of disjoint sets each of which is closed (and thus open)
in X. Let Ai <;;; Xi for each i and let A = Al U ... U An. Assume that
all pairs formed from the sets Xi and A and their unions are admissible, as
well as all inclusion maps between such pairs. Let ia : (Xa, A a) ~ (X, A) be
the inclusion map for each ex = 1, ... , n. Then, the induced homomorphisms
ia*: Hq(Xa, Aa) ~ Hq(X, A) yield an injective representation of Hq(X, A) as
a direct sum. That is, each u E Hq(X, A) can be written uniquely in the form
"2:a ia*ua where U a E Hq(Xa, AQ}

DEFINITION 2.1.13. A triad (X; A, B) consists of a space X and tvlO sub­
sets A and B such that X, A, B, Au B, An B and all pairs formed from
these are admissible, and all of their inclusion maps are admissible. A triad
is called excisive if the inclusion maps kl : (B, A n B) ~ (A U B, A) and
k2 : (A, A n B) ~ (A U B, B) induce isomorphisms between homology groups
of all dimensions.

Excisive triads give rise to some particularly useful exact sequences. Note

that if B <;;; A <;;; X, then there are inclusion maps (A, 0) ~ (A, B) ~
(X, B) ~ (X, A) with induced maps on homology, and a boundary map

Hq(X, A) ~ Hq_I(A). So, when B <;;; A <;;; X, there is an associated boundary
operator fJ: Hq(X, A) ~ Hq_I(A, B) defined by fJ = i*o.
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PROPOSITION 2.1.14. Suppose E ~ A ~ X. Then the following is a long
exact sequence.

[j
... ~ Hq(A, E) ~ Hq(X, E) ~ Hq(X, A) ~ Hq_1(A, E) ~ ...

PROOF. The proof can be found in [5] on page 25. 'vVe only note here that
it involves applications of axioms 1, 2, 3, and 4. D

The following proposition follows easily if we consider the long exact se­
quence associated to B ~ Au E ~ X.

PROPOSITION 2.1.15. Suppose (X; A, E) is an excisive triad. Then the
sequence

... ~ He/A, A n B) ~ He/X, B) ~ Hq(X, A U B) ~ Hq_1(A, A n B) ~

is exact, where 0 here is the composition of the map [): Hq(X, A U B) ~
Hq_1(A U B, B) associated to E ~ Au B ~ X and the inverse of the isomor­
phism induced by k2: (A, A n E) ~ (A U B, B).

PROPOSITION 2.1.16 (r'·/Iayer-Vietoris Homology Sequence). Let (X; A, B)
be an excisive tr-iad such that X = A U E. Then the M ayer- Vietoris ho­
mology sequence

'IjJ 1> 6.... ~ Hq(A n E) ~ Hq(A) EB Hq(B) ~ Hq(X) ~ Hq_1(A n E) ~ ...

is exact, where 'l/J, ¢, 6. are defined by

'l/J = (hh' -h2*)
¢(Vl, V2) = mh(vd + m2*(v2)

6. = -ok1*llh

with inclusion maps hI: An E ~ A, h2: An E ~ E, ml: A ~ X, m2: E ~
X, h: X ~ (X, A), and k1 : (E, A n B) ~ (X, A), and boundary operator
0: Hq(E, A n B) ~ Hq_1(A n E).

The next proposition states that Mayer-Vietoris sequences exist in a rela­
tive form when Au E is not necessarily the entirety of X.

PROPOSITION 2.1.17 (Relative Mayer-Vietoris Sequence). Let (X; A, E) be
an excisive triad. Then the relative M ayer- Vietoris sequence

if; 1>... ~ Hq(X, A n B) ~ Hq(X, A) EB Hq(X, B) ~
6.Hq(X, A U B) ~ Hq_1(X, A n E) ~ ...

is exact.

It is worth noting that the ability to manually compute homology and
cohomology groups is attributable to the excision axiom. In contrast, higher
homotopy groups satisfy similar axioms and provide similar invariants, but
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lack an analogue of the excision theorem. This represents one of the main
advantages of homology theories.

For many homology theories, the a-dimensional homology groups of a single
point and other very simple spaces are nontrivial. In some cases it is desirable
to discount this from the theory, and so there is the notion of reduced homology
groups.

DEFINITION 2.1.18. Let H be a homology theory, let X be a nonempty
admissible space, let P be a one-point space, and let c: X ~ P be the unique
constant map. If c is an admissible map, then the n-th reduced homology
group fIn(X) is defined to be the kernel of the homomorphism c*: Hn(X) ~
Hn(P) induced by c.

PROPOSITION 2.1.19. If H is a homology theory and if the reduced ho­
mology fI is defined, then Hn(X) ~ fIn(X) EB Hn(P) for all n and for any
nonempty admissible space X and one-point space P.

PROOF. The map c: X ~ P is surjective and so there is a map d: P ~
X such that cd: P ~ P is the identity. Since d maps from a one-point
space to X, it is admissible. Thus, c and d both induce homomorphisms on
homology, and their induced homomorphisms satisfy c*d* = (cd)* = (idp )*.
So, c*: Hn(X) ~ Hn(P) is also surjective. Since fIn(X) is the kernel of c*, we

- c'
have an exact sequence a ~ Hn(X) ~ Hn(X) ~ Hn(P) ~ a and a map d*
such that c*d* is the identity on Hn(P). It follmvs from the splitting lemma
that Hn(X) ~ fIn(X) EB Hn(P). D

2.2. Simplicial Homology

Simplicial homology is defined for topological spaces that are homeomor­
phic to a simplicial complex. It is easily computed and familiarity with this
theory provides much of the intuition for working with other theories.

In the discussion that follows, we fix a simplicial complex X. vVe follow
the development in [81.

DEFI TJTION 2.2.1. For each nonnegative integer n, the n-th simplicial
chain group C! is the group of finite formal sums of n-simplices. That is,
elements of Cn are of the form eLIO"l + ... + eLkO"k where k is a nonnegative
integer, each eLi is an integer, and each O"i is an n-simplex. Elements of C n are
called simplicial n-chains.

There is a homomorphism from each Cn to the chain group one dimension
lower Cn - 1 called the boundary homomorphism or boundary map.
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DEFINITION 2.2.2. For positive n, the n-th simplicial boundary map
an : en ----t e n- 1 is the homomorphism which is defined for individual sim­
plices by

n

On(O") = ~(-I)i(vo, . .. ,Vi, . .. vn)
i=O

where the hat symbol ~ denotes that the corresponding entry has been removed
from the vertex set. vVe define an for n ~ a to be the a map.

Each an extends from individual simplices to all of en additively. That is,
0(0"1 + 0"2) is o(O"d + 0(0"2)' Stated in the terminology of chain complexes, the
set of n-boundaries is the image of On+1, and the set of n-cycles is the kernel
of an'

REI'vIARK. To see why a is called the boundary map, note that the image
of an n-simplex 0" is a formal sum of the (n - 1)-dimensional faces of 0". The
alternating sign in the sum accounts for orientation. For example, consider the
case where 0" is a triangle with vertex set (vo, VI, V2). The image of 0" under 02
is (VI, V2) - (Vo, V2) + (Vo, VI)' If we think of the terms in this sum as oriented
edges and treat -(Vo, V2) as the same as (V2' vo), then the sum corresponds to
a loop on the edges of the triangle.

It can be checked by direct computation that the boundary maps satisfy
the property that an 0 On+l = a for every n. Equivalently, the image of On+l is
always a subgroup of the kernel of an.

DEFINITION 2.2.3. Given a chain complex {en, an} where en is the n-th
simplicial chain group and an is the n-th simplicial boundary map for each
n, we define the n-th simplicial homology group to be the quotient group
Hn = ker ani im On+l for each n. That is, Hn is the set of equivalence classes
of n-cycles modulo the n-boundaries.

To illustrate these concepts, we compute the simplicial homology groups
of the circle and of the real line.

EXAMPLE 2.2.4. First, we consider the circle 51. We will use the simplicial
complex consisting of the vertices Vo, VI, and V2 of a triangle and the edges
between them.

Vve will first see that Ho(51
) is isomorphic to Z. To do so, we will show

that every a-cycle is in the same equivalence class as a multiple of (vo). Let
z = a(vo) + b(Vl) + C(V2) be an arbitrary a-cycle in our complex. Let:r; =
b(Vl,VO) + C(V2,VO)' Then x is aI-cycle with boundary

o](x) = b(vo) - b(v]) + c(vo) - C(V2)

Hence, z + o(x) = (a + b + c) (vo) and thus z is in the same equivalence class
as (a + b+ c)(vo). Each integer multiple of (vo) is distinct since no boundary
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can have the form b(vo) with b nonzero. Hence there is exactly one class in
Ho(51) for each integer, and so Ho(51) ~ 2.

To compute H 1(51
) we compute ker81 and im82 . 'vVe know that a I-chain

a(vo, VI) +b(V1, V2) +C(V2, vo) maps to (c-a)(vo) + (a-b)(v1) + (b-C)(V2) under
8, and so it is in the kernel if c - a = a - b = b - c = O. This is equivalent to
a = b = c. Thus, there is exactly one I-chain in the kernel for each integer a,
and so ker 81 is isomorphic to 2. The chain group C2 is trivial since there are
no 2-simplices in our triangle, so the image of 82 is trivial as well. It follows
that HI (51) is also isomorphic to 2.

All higher dimension simplicial homology groups of the triangle are trivial,
since the chain groups are 0 and so the boundary homomorphisms have trivial
kernels.

EXA il.PLE 2.2.5. Now, we consider the real line. Consider the simplicial
complex consisting of a O-simplex (n) and I-simplex (n, n+ 1) for every integer
n. The chain group Co is generated by countably many vertices, so it is the
direct sum of countably many copies of 2. Hence, the kernel of 80 is the direct
sum of countably many copies of 2. Since every O-cycle is a finite sum, each can
be written as a multiple of the O-simplex (0) plus finitely many O-boundaries
of the form a(O) - a(n) with a an integer. For example, the O-cycle 5(2) - 3(9)
can be written as 2(0) + 81 (5(0,2) - 3(0, 9)) = 2(0) + 5(2) - 5(0) - 3(9) + 3(0).
Hence there is exactly one equivalence class in ker 80 /Im81 for each integer
multiple of (0), and these are the only classes. This gives us that Ho(IR) is
isomorphic to a single copy of 2. To compute H1(IR) we need to determine
ker 81 . An element c of C1 is of the form L an(n, n+ 1) with each an an integer
and only finitely many an nonzero. Such an element c is mapped by 81 to the
O-chain L(an(n + 1) - an(n)) or equivalently L(an-1 - an)(n). Hence c is in
the kernel of 81 iff an-1 - an is always 0, which happens iff an-1 = an for all n.
This can only happen when an = 0 for all n, since if N is the maximum index
of the nonzero an, then the vertex (rv +1) appears with coefficient (aN - aN+d
and aN+1 is necessarily O. Thus, only the trivial I-chain is in the kernel of 81 ,

and so HI (IR) is the trivial group O.

The ease of computation for simplicial homology comes at the cost of it
only being defined for very nice spaces. Singular homology generalizes this
theory to all topological spaces by generalizing the notion of a simplex to the
image of a continuous map from some standard simplex into the space. This
allows for the construction of a theory on arbitrary topological spaces, but
forfeits the ease of computation. However, using singular homology, one can
define an equivalent and much more computable theory for CW-complexes, a
large class of spaces which includes simplicial complexes. In conjunction with
excision, this enables computation of the singular homology groups for many
spaces.
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2.3. Singular Homology

Singular homology generalizes simplicial homology to arbitrary topological
spaces, allowing us to use similar ideas even when we do not have a simplicial
complex to work with. Here, instead of chain groups generated by the simplices
of a space, the chain groups are generated by continuous maps from standard
simplices into the space. These maps can be constant or self-intersecting; we
only require continuity. There are many sources available for discussion of the
singular theories; here we follow [8], which includes the definitions and proofs
of theorems mentioned below.

DEFINITION 2.3.1. Let G be an abelian group. A map 0-: 6.n -t X is called
a singular n-simplex. The n-th singular chain group Cn(.X, G) of X with
coefficients in G is the collection of finite formal sums with coefficients in G
of singular n-simplices. Elements of C,lX, G) are called singular n-chains.
When it is not ambiguous to do so, Cn(X, G) is abbreviated by Cn(X).

Note that if A is a subspace of X, then Cn(A) is a subgroup of Cn(X).
Before we define the boundary homomorphisms, note that any 0- : 6.n -t X

has restrictions to the (n - 1)-dimensional faces of 6.n . ,rye denote these
restrictions by 0- r (eo, ... ,€i, ... ,en) where the hat symbol indicates that the
marked entry has been removed from the list, and we vie"v the restriction as a
map from 6.7'1-1 by composing with a canonical embedding of 6.n - l onto the
face we are considering in 6.n .

DEFINITION 2.3.2. For positive n, the n-th singular boundary map
is the homomorphism 8n : Cn -t Cn - 1 defined by 8n (0-) = 2.:7=0 (-1) i 0- r
(eo, ... ,€i, ... ,en) for maps 0-: 6.n -t X and extended to all n-chains ad­
ditively. We define 8n for n :::; ato be the amap.

EXAiVIPLE 2.3.3. Let X be any topological space. Consider a singular 2­
simplex 0-, which is a map from 6.2 to X. The boundary of 0- is the I-chain

C = 0- r (el' e2) - 0- r (eo, e2) + 0- r (eo, e1)

and the boundary of c is

0- r (e2) - 0- r (e1) - (0- r (e2) - 0- r (eo)) + 0- r (e1) - 0- r (eo)

which reduces to aafter cancellation.

EXAMPLE 2.3.4. Consider a I-chain 0-1 + 0-2 + 0-3 where each o-i is a distinct
map 6.1 -t X. In this case we have that 81(0-1 +0-2+0-3) is equal to the a-chain

0-1 r (e1) - 0-1 r (eo) + 0-2 r (el) - 0-2 r (eo) + 0-3 r (e1) - 0-3 r (eo)

which is zero only if the images of the maps form (possibly degenerate) loops,
or if the maps are themselves loops, so that for example, 0-1 r (e1) is the same
map as 0-1 r (eo).
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It can be directly checked that an 0 On+1 is always 0 for the boundary maps
defined above. Moreover, if A is a subspace of X, then a: Cn(X) -7 Cn- 1(X)
sends the subgroup Cn(A) to Cn- 1(A). So, there are induced boundary maps
from Cn(X)jCn(A) to Cn- 1(X)jCn- 1(A) which we refer to by the same nota­
tion.

DEFINITION 2.3.5. Let X be a topological space and let A be a subspace
of X. The n-th singular homology group Hn(X) is the quotient group
keronjimon+1 where an: Cn(X) -7 Cn-1(X). The n-th relative singular
homology group Hn(X, A) is the quotient group using an: Cn(X)jCn(A) -7

Cn- 1(X)jCn- 1(A).

Singular homology satisfies all of the Eilenberg-Steenrod axioms for contin­
uous maps and pairs (X, A) 'with X a topological space and A a subspace. It
is isomorphic to simplicial homology on simplicial complexes, cellular homol­
ogy on C\i'l-complexes. For certain spaces including GW-complexes, singular
homology is isomorphic to homology \0\ ith compact supports, as is recorded in
4.3.6.

2.4. Cellular Homology

Cellular homology is essentially a more convenient way of calculating the
singular homology groups for a class of spaces called CW-complexes. These
spaces decompose nicely into unions of spaces with easily calculated singular
homology groups. The singular groups are taken as chain groups for a new,
more easily computable homology theory, and then the two theories are shown
to be isomorphic. In section 5.1, we record a similar construction for homology
based on infinite chains. The exposition that follows is again based on that of
[8], which includes the definitions, theorems, and proofs below.

DEFINITION 2.4.1. A CW-complex is a space X \ovhich can be written as
a union X = Uxn of spaces (XO, Xl, ... ) such that the following hold.

(a) The set XO is a discrete set whose points are called O-cells.
(b) The set X n is formed from the set xn-1 by attaching open n-disks

referred to as I-cells. That is, xn is the quotient space of the disjoint
union X n - 1 U:l' D~ of X n - 1 with a collection of closed n-disks under
the identification x rv <Per(x) for x E oD~, where <Per is a map sn-1 -7

xn-1 for each a.
(c) If X of- xn for any finite n, then X is given the weak topology: A ~ X

is open iff A n xn is open in xn for all n, and B ~ X is closed iff
B n xn is closed in xn for all n.

If X = x n for some n, we say that X is finite dimensional, and the smallest
such n is called the dimension of X.
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DEFINITION 2.4.2. If X is a CW-complex and if A is a closed subset of
X vvhich can be written as a union of cells in X, then we say that A is a
subcomplex and we call the pair (X, A) a CW pair.

If A is a subcomplex of X, then it is not hard to see that A is also a CW­
complex. The following lemma allows us to easily compute the chain groups
for this new theory and to demonstrate its equivalence with singular homology.

LEMMA 2.4.3. If X is a CW-complex, then

(a) Hl.(Xn, X n- l ) is 0 for k -=I- n and is fTee abelian for k = n with basis
in one-to-one correspondence with the n-cells of X.

(b) Ht(xn) = 0 for k > n. In particular, if X has finite dimension n,
then Ht(X) = 0 for k > n.

(c) The inclusion i: xn - X induces an isomorphism i*: Ht (Xn) ­
Ht(X) for k < n.

DEFINITION 2.4.4. The n-th dimensional cellular chain group of X
is C1~'W (X) = H1~ (Xn, xn-l ). Then n- th boundary map dn is defined to
be the composition jn-tfJn, where On is the boundary operator from the long
exact sequence of the pair (Xn, xn-l) in singular homology and jn-l is the
map Hn_1(xn-l) - Hn_l(xn-l,xn-2) from the long exact sequence of the
pair (xn- l ,xn-2).

Since H~(xn, xn-l) is a free abelian group with basis in one-to-one cor­
respondence with the n-cells of X, the elements of C

1
?W (X) can be thought

of as linear combinations of n-cells of X. Since dn = jn-Ion, it is clear that
dn-1cln = 0 for all n.

DEFINITION 2.4.5. The n-th dimensional cellular homology group of
X is H;;w (X) = ker dn / im dn+1 .

As mentioned at the beginning of this section, the benefit of this construc­
tion is that it provides an easier method for calculating singular homology
groups. This is because Hew coincides with HS.

PROPOSITION 2.4.6. If X is a CW-complex, then H1?W(X) ~ H1~(X) for
all n.

PROOF By the above lemma HS(xn+l) ~ HS(X) and HS (xn+l xn) =. , n n n-l'
0, so the long exact sequence of the pair (Xn+l, X n ) contains the exact se-
quence

HS (:y-n+l X n) a~l Hs(Xn) _ HS(X) _ 0n+1 ./, n n

Thus, H~(X) ~ H1~(xn)/ imon+l'
Also by the above lemma, H~(xn-l) = 0 and so the long exact sequence

of the pair (Xn , xn-1) contains the exact sequence

0- Hs(Xn) ~ Hs(Xn X n- 1) ~ H S (Xn- 1)n n' 71-1
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Hence, ]n is injective, and so it maps im 8n+1 isomorphically onto im ]n8n+1 =
imdn+1 , and it maps H~(xn) isomorphically onto im]n = kerol1 .

Similarly, the long exact sequence of the pair (xn-1, xn-2) contains the
exact sequence

Hence ]n-1 is injective as well, and so ker 8n = ker dn . By exactness, we have
im 8n+1 = im dn+1 .

It follo\vs that ]n induces an isomorphism of H1~(xn)/ im 8n+1 onto the
homology group ker dn / im dn +1 . 0

2.5. Steenrod Homology

Steenrod homology was introduced in [231 in order to provide topological
invariants which better captured the connectivity of a space than earlier the­
ories. In particular, Steenrod notes that the earlier Vietoris homology is not
satisfactory for solenoids, which are connected but neither locally connected
nor path connected. Another notable example is the topologist's sine curve:

EXAMPLE 2.5.1. Let T be the subspace of LR2 which is the disjoint union
of the graph of sin(1/x) on (0,1]' its limit set along on the y-axis {O} x [-1,1]'
and a path from (0, -1) to (1, sin(1/1)) = (1,0). The space T is connected and
path connected, but it is not locally path connected. The singular homology
of T is trivial in the first dimension, despite the fact that T separates the plane
into two connected components.

The duality results that existed at the time failed for the topologist's sine
curve because they predicted that the first dimensional homology should be
that of a circle, as one might expect since it encloses a disk. Correcting this
shortcoming of earlier homology theories allowed Steenrod to extend duality
results to a wider class of spaces.

Steenrod defined his homology groups for compact metric pairs.

DEFINITION 2.5.2. A compact metric pair is a pair (X, A) where X is
a compact metric space and A is closed in X.

DEFINITION 2.5.3. Given a simplicial complex K, a regular map of Kin
X is defined to be a function f from the set of vertices of K to X such that
for every c > 0, all but finitely many simplices have vertices mapped into sets
of diameter less than c.

DEFINITION 2.5.4. A regular n-chain of X is a triplet (A, f, c) ""here A
is a simplicial complex, f is a regular map of A in X, and c is a locally finite
n-chain of A. If c is a locally finite n-cycle, then (A, f, c) is called a regular
n-cycle.
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DEFINITION 2.5.5. Two regular n-cycles (AI, iI, CI) and (A2 , 12, C2) are de­
fined to be homologous if there is a regular (n + I)-chain (A, f, c) such that
Al and A 2 are closed subcomplexes of A, the regular map f agrees with II on
Al and with 12 on A2 , and 8n+ l (c) = CI - C2·

The relation of being homologous is an equivalence relation on the set of
n-cycles.

DEFINITION 2.5.6. Let X be a compact metric space. The n-th Steenrod
homology group H~t(X) is the quotient group obtained by taking the group
of regular n-chains modulo the relation of being homologous.

On page 90 of [15], ~Iilnor gives a construction extending this definition
to compact metric pairs (X, A). It is shown that these groups are related to
Cech cohomology groups fICJ(X, A) by the split exact sequence

o-+ Ext(fICJ+1(X, A); G) -+ H1~t(X, A; G) -+ Hom(fICJ(X, A); G) -+ 0

Steenrod also gave a construction in [23] of his groups based on nerves of
open coverings. Since X is compact, a Cech system for X can be found which
consists of finite coverings. Steenrod uses the sequence of nerves K n associated
to such a system to define a fundamental complex K, which is the disjoint union
of the K n with line segments added between points which correspond under the
maps induced by refinement. He then shovvs that computing homology groups
of K using infinite simplicial n-chains gives groups isomorphic to H~t(X).

In [15], Milnor shows that Steenrod homology satisfies all of the Eilenbger­
Steenrod axioms for ~ontinuous maps and compact metric pairs (X, A). Fur­
thermore, it is shown that Hst satisfies an additional two axioms: the relative
homeomorphism axiom and the cluster axiom.

THEOREM 2.5.7. Let (X, A) be a compact metric paiT.

(a) Hst satisfies all EilenbeTg-Steenrod axioms fOT continuous maps and
compact metTic paiTs (X, A).

(b) (Relative Homeomorphism Axiom) If f: (X,A) -+ (Y,B) is a
continuous map of compact n/'etric paiTs which maps X - A homeo­
mOTphically onto Y - B, then f*: H;t(X, A) -t H;t(y, B) is an iso­
mOTphism.

(c) (Cluster Axiom) Suppose that X is the union of compact subsets
X I, X 2, . .. with diameters approaching 0, and suppose that Xi n X j =
{b} for all i i- j. Let Ti: (X, b) -t (Xi, b) denote the uniq'ue Tetraction
which caTTies each X j f01' j i- i into the base point b. Then the map
u I--t ((rd*(u), (T2)*(U), . .. ) is an isom01'phism from H1~t(X, b) onto
the direct product of the groups H~t(Xi' b).

Furthermore, Milnor proves that these two additional axioms together with
the Eilenberg-Steenrod axioms characterize Steenrod homology.
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THEOREM 2.5.8. If H and H' are two homology theories defined for con­
tinuous maps and compact metric pairs, and if both H and H' satisfy the
EilenbeTy-Steenrod axioms along with the relative homeomorphism axiom and
cluster axiom above, then any coefficient isomorphism Ho(b) ~ H~(b) extends
to an equivalence between H and H'.

This theorem can be applied to show that Hst coincides with the theories
He and H of 4.3 and 4.2 respectively for compact metric pairs. For this
reason, and since Hco satisfies similar duality results as Hst , the theory HCO
can be viewed as a generalization of Steenrod homology.

2.6. Borel-Moore Homology

Borel-Moore homology was originally defined in [2] for locally compact
spaces in order to obtain a Poincare duality result (section 7 of [2]). It is
a theory based on infinite chains with closed supports and is defined for lo­
cally compact spaces. Proper maps induce homomorphisms on the homology
groups.

The Poincare duality obtained is with cohomology with compact supports.
Since homology based on infinite chains also satisfies this Poincare duality,
it is clear that these theories are isomorphic at least in some cases. This
isomorphism can be shown to hold for any locally compact Hausdorff space
which is second-countable by applying uniqueness results due to Milnor [15].

PROPOSITION 2.6.1. If X is a locally compact, second-countable, Hausdorff
space, then H1~i\I(X, G) ~ H n (X, G) for all n, where HCO is homology based
on infinite chains, as defined in section 4.2 below.

The definition of Borel-Moore homology in [2] is given sheaf-theoretically,
but there are also standard constructions of Borel-Moore homology given in
terms of generalized singular chains. This singular Borel-Moore homology
construction uses infinite sums of singular simplices so long as they are locally
finite.

DEFINITION 2.6.2. The group of generalized singular n-chains on X
is Cn(X, G) = f1 G, and its elements are called generalized singular

all: 6,r1---+./Y

n-chains.
A generalized singular n-chain f1 kan is locally finite if every x E X has a

an
neighborhood which intersects only finitely many of the images (In(~n) where
kan -1= O.

It can be checked that the locally finite generalized singular n-chains form
a subgroup.
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DEFI TITION 2.6.3. The n-th Borel-Moore chain group on X is denoted
C,~l\I(X, G) and defined to be the group of locally finite generalized singular
n-chains on X.

Moreover, the usual singular boundary map extends to a boundary map
OBi\! on Borel-Moore chains, and continues to satisfy OBi\! OBM = O. Thus, we
have a chain complex.

DEFINITION 2.6.4. The n-th Borel-Moore homology group is defined
to be HBM(X G) = ker oBlHI im OBMn' n n+l'

Massey notes in [14] that such a theory only satisfies a weak version of
the excision axiom, and so is less satisfactory than homology based on infinite
chains as in 4.2.
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CHAPTER 3

Cohomology

3.1. Eilenberg-Steenrod Axioms for Cohomology

Now we 'will list the axioms for cohomology theories. The definition and
axioms are very similar to those of homology theories; the difference is that co­
homology theories assign homomorphisms with directions reversed from those
assigned by homology theories, and the operators here increase indices rather
than decrease them. Again, these axioms, definitions, and properties were
stated by Eilenberg and Steenrod in [6].

DEFINITION 3.1.1. Let 9 be a collection either of abelian groups or of R­
modules for some fixed ring R. A cohomology theory H on an admissible
category C is a collection of functions as follows.

• The first function H is defined for each admissible pair (X, A) and
each integer q and assigns values in g. The value of the function is
usually written Hq(X, A) and is called the q-dimensional relative
cohomology group of X modulo A. If A is the empty set, then
HCJ(X, A) is often abbreviated as HCJ(X).

• The second function is defined for each admissible map f: (X, A) -?

(Y, B) and each integer q and assigns a homomorphism f*q: HCJ(Y, B) -?

HCJ(X, A) called the homomorphism induced by f. The homomor­
phism f*CJ is typically written as f* when it is not ambiguous to do
so.

• The third function 8 is defined for each admissible (X, A) and each
integer q and assigns a homomorphism 8(q, X, A) from HCJ(A,0) to
HCJ+l(X, A) called the boundary operator. This homomorphism is
typically written as 8 when it is not ambiguous to do so.

The first two functions above are required to be functorial:

Axiom 1: If f is the identity map (X, A) -? (X, A), then f* is the
identity map Hq(X, A) -? HCJ(X, A) for each q.

Axiom 2: If f: (X, A) -? (Y, B) and g: (Y, B) -? (Z, C) are admissible,
then (gl)* = f*g*: HCJ(Z, C) -? HCJ(X, A).

The third function must behave well with the first two:

Axiom 3: If f: (X, A) -? (Y, B) is admissible, then the map f*8 is
8U rA)*: HCJ(B, 0) -? Hq+l(X, A).
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Additionally, the following axioms must be satisfied:

Axiom 4 (Exactness): If (X A) is admissible and ifi: (A,0) -t (X,0)
and j: (X,0) -t (X, A) are inclusion maps, then the following se­
quence is exact .

...L Hq(A) ~ Hq(X) t- Hq(X, A) L Hq-I(A) ~ ...

This sequence is called the cohomology sequence of the pair (X, A).
Axiom 5 (Homotopy Invariance): If the admissible maps fa, it from

(X, A) to (Y, B) are C-homotopic, then for each q, the homomorphisms
f~, R: Hq(y, B) -t Hq(X, A) are equal.

Axiom 6 (Excision): Let (X, A) be an admissible pair. If U is an open
subset of X whose closure [; is contained in the interior of A, and if
the inclusion map i: (X - U, A - U) -t (X, A) is admissible, then i
induces an isomorphism i*: Hq(X, A) -t Hq(X - U, A - U) for all q.
Any inclusion map i satisfying these conditions is called an excision
map.

Axiom 7 (Dimension): If P is an admissible space consisting of a sin­
gle point, then Hq(P) = 0 for all q =/: O. The value of Ho(P) is called
the coefficient group or coefficient module of the homology the­
ory, depending on whether 9 is a family of abelian groups or modules.

PROPOSITION 3.1.2. A C-isomorphism f induces an isomorphism f* f01'
all q.

PROPOSITION 3.1.3. If f: (X,A) -t (Y,B) andg: (Y,B) -t (X,Y) are
C-homotopy inverses, then f*: Hq(y, B) -t HfJ(X, A) is an isomorphism with
inver-se g*.

PROPOSITION 3.1.4 (Direct Sum Property for Cohomology). Under the
conditions above, the induced homomorphisms i~: Hq(X, A) -t Hq(Xa , Ao,)

yield a pmjective repr-esentation of Hq(X, A) as a direct sum. That is, for
each sequence (UI, ... ,un) in Hq(XI, Ad x ... x Hq(Xn, An), ther-e is a unique
element u E Hq (X, A) such that i~ (u) = U a for each a = 1, ... , n.

PROPOSITION 3.1.5 (Mayer-Vietoris Cohomology Sequence). Let (X' Xl, X 2 )

be an excisive tr-iad with X = Xl UX2 . Then the Mayer- Vietoris cohomol­
ogy sequence

... t- Hq(XI n X 2) L Hq(Xd EB Hq(X2) !- Hq(X) ~ Hq-I(XI n X 2) t- ...

is exact, where '1/;, ¢, t:. are defined by

?/J(VI, V2) = hi(vI) - h;(v2)
¢ = (mi, m;)
t:. = -lik;-li5
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with the maps hI, h2 , ml, m2, ll' k l as above and coboundary operator

S: Hq-I(XI n X 2 ) ----t Hq(X2 , Xl n X 2 )

PROPOSITION 3.1.6 (Relative Mayer-Vietoris Sequence). Let (X; A, B) be
an excisive triad. Then the relative Mayer- Vietoris sequence

t- Hq(X, A U B) e- Hq-I(X, A n B) f- ...

. . . f- Hq(X, A n B) :P- Hq(X, A) EB Hq(X, B)

is exact.

3.2. Cohomology with Compact Supports

Cohomology with compact supports is defined for locally compact Haus­
dorff spaces. It produces cohomology groups with induced homomorphisms
defined for proper continuous maps. These groups are defined using the no­
tion of p-functions and their supports. vVe follow the development in [14],
which includes the definitions, theorems, and proofs below.

DEFINITION 3.2.1. A function f: X ----t Y is proper if the preimage of
every compact subset of Y is compact in X.

DEFINITION 3.2.2. Let X be a space let p be a nonnegative integer, and
let G be an abelian group. A p-function on X with values in G is any function
¢: Xp+l ----t G where XP+1 is the cartesian product of p + 1 copies of X. We
will denote the set of all such p-functions by <I>P(X, G) or <I>P ""hen it is not
ambiguous to do so.

DEFINITION 3.2.3. A p-function ¢ is finitely valued if the image of ¢ is
a finite set. We denote the set of finitely valued p-functions on X with values
in G by <I>~(X, G) or <I>~. If X is empty, we define <I>~(X, G) = {O} for all p.

The set <I>P(X, G) is an abelian group under pointwise addition, and <I>j.(X, G)
is a subgroup. There is a particular homomorphism between each <I>P and <I>p+l
that is important for our purposes.

DEFINITION 3.2.4. For each p, let dP: <I>P(X, G) ----t <I>P+l(X, G) be defined
by

p+1
dP¢(xo, . .. ,xp ) = I) -l)i¢(xo, . .. , Xi,·· ., Xp+l)

i=O

where the hat symbol indicates removal of the term.

The fact that dP+1dP= 0 can be checked directly in a similar way to that
of the boundary operators of other theories. It can also be shown that dP

preserves the subgroup of finitely-valued p-functions, and so it restricts to a
homomorphism <I>~ ----t <I>j.+l.
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To get the cochain groups for our current theory, we will take certain
subgroups and quotient groups of the group of finitely valued p-functions.
The definition of these groups uses the notion of the support of a p-function.

DEFINITION 3.2.5. The support of a p-function <p: Xp+l -; G is the
set 1<p1 consisting of all x E X such that every neighborhood of x contains
elements xo, ... xp for which <p(xo, . .. , xp ) is nonzero. Equivalently, x is not
in 1<p1 iff there is a neighborhood V of x for which <p(xo, ... ,xp ) = °for all
Xo, ... ,xp E V.

The following properties of 1<p1 are easy to see.

PROPOSITION 3.2.6. Let <p: Xp+l -; G be a p-function.

(a) 1<p1 is closed in X,
(b) 101 is empty,
(c) I<p + 7/.'1 is a subset of 1<p1 U 17/.'1, and
(d) IdP<p1 is a subset of 1<p1·
(e) I<PI is empty if and only if theTe is an open coveTing U of X such that

fOT all U E U and all xo, ... , xp E U, <p(xo, ... , xp ) = 0.

DEFINITION 3.2.7. Let 1>j(X, G) be a group of finitely valued p-functions.
The subgroup of p-functions with empty support is 1>jo(X, G) = {<p E

1>j(X, G) 11<p1 is empty}, and the subgroup of p-functions with compact
support is 1>jc(X,G) = {<p E 1>j(X,G) 11<p1 is compact}.

It follows from property (c) above that the above defined sets are actually
subgroups, a11d that 1>jo(.X, G) is a subgroup of 1>jdX, G). It follows from
(d) that clP maps 1>jo into 1>i61 and maps 1>ic into 1>i~l. Thus we may define
quotient groups and induced homomorphisms.

DEFINITION 3.2.8. The p-cochain group with compact support cg(X, G)
is the quotient group 1>jdX, G)j1>jo(X, G). vVe define the p-th relative
cochain group with compact support cg(X, A, G) for A a closed subset
of X by first defining 1>idX, A, G) to be the subgroup of compactly supported
finitely valued p-cochains of X whose restrictions to AP+l have empty support.
Then cg(X, A, G) = 1>~dX, A, G)j1>jo(X, G). When it is not ambiguous to
do so we write cg(X) and cgex, A) for these groups.

It follows from property (c) that if <p and 7/.' are two elements of the same
equivalence class in cg(X), then they have the same support. So we may
define the support of a p-cochain in the following way.

DEFINITION 3.2.9. Let (fi E cg(X) and let <p be a representative of (fi. vVe
define the support !(fil of (fi by l(fi! = 1<p1·

DEFINITION 3.2.10. The p-th coboundary homomorphism I5P from
Cg(X, G) to cg+ 1(X, G) is the homomorphism induced from clP when it is
restricted to 1>idX, G) and composed with the quotient homomorphism.
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vVe have that i5P+1 i5P is 0 since dp+1dP is 0, so the collection of p-cochain
groups with compact supports forms a cochain complex. Moreover, if A is
a closed subset of X, then each i5P restricts to a homomorphism cg(X, A) ---7

Cg+1(X, A) satisfying the same properties, so the collection of these subgroups
also forms a cochain complex.

DEFINITION 3.2.11. The p-th cohomology group (of X with coeffi­
cients in G) with compact supports is Hg(X, G) = ker i5P/ im i5P- 1 . If A
is closed in X, we define the relative group Hg(X, A, G) similarly. vVhen it is
not ambiguous, we "vill write Hg(X) and Hg(X, A).

THEORE~II 3.2.12. If A is a closed subset of X, then the group Hg(X, A, G)
is isomorphic to the group Hg(X - A, G).

Continuous, proper maps f: X ---7 Y induce homomorphisms Hg(Y, G) ---7

Hg(X, G) for all p. Continuity is necessary to ensure preservation of empty
supports, and properness is required to ensure preservation of compact sup­
ports.

DEFINITION 3.2.13. Let f: X ---7 Y be a continuous, proper map. Then
f#: <I>P(Y, G) ---7 <I>P(X, G) is the homomorphism defined by sending ¢ in
<I>P(Y, G) to the map f#¢ defined by (J#¢)(xo, ... , xp )) = ¢(J(xo),··· ,f(xp )).

Vve define 1*: Hg(Y, G) ---7 Hg(X, G) to be the map induced by f#.

If U is a nonempty open subset of X, then the inclusion map i: U ---7 X
defines a homomorphism from Hg(U) to Hg(X) as follows. Let QP(U) be the
set {¢ E CP(X) I I¢I ~ U} of p-cochains of X whose support is contained
in U. The map i is not necessarily proper, but it induces an isomorphism
i#: QP(U) ---7 cg(U). Now, in the diagram

where j is the inclusion map, the only map au.x which makes the diagram
commute is given by au,X = j(i#)-l. This m'ap au,x commutes with the
coboundary homomorphism, and so it induces a homomorphism on the coho­
mology groups.

DEFINITION 3.2.14. The map TU,X: Hg(U) ---7 Hg(X) is the homomor­
phism induced by the map au,x in the above diagram.

Stating the properties of of this cohomology theory requires highlighting
one more homomorphism. The construction of this homomorphism uses the
fact that the sequence of cochain complexes

o---7 Cc(X, A) ~ Cc(.X) ~ Cc(A) ---7 0
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is short exact, where j is inclusion and i# is induced by the continuous, proper
inclusion map of A into X. By identifying the cohomology groups of the
complex Ce(X, A) with the cohomology groups of the complex Ce(U), it can
be shown that this sequence leads to a long exact sequence of cohomology
groups.

-. .• 6
... ~ H~(U) ~ H~(X) ~ H~(A) ~ H~+l(U) ~ ...

The homomorphism 0 is the map we wish to name.

DEFINITION 3.2.15. If U is an open subset of X and A = X - U, we denote
by OX,A: H~(A) ~ H~(U) the homomorphism which appears in the long exact
sequence above.

The following theorem summarizes the properties of cohomology with com­
pact supports.

THEOREM 3.2.16. Let X, Y, and Z be locally compact Hausdorff spaces,
and let G be an abelian group.

(a) He satisfies all Eilenberg-Steenrod axioms fOT continuous, pTOpeT maps
and pairs (X, A) with X locally compact Hausdorff and A closed in X.

(b) If X is the space consisting of a single point, then H~(X,G) is G.
(c) TX,X: H~(X) ~ H~(X) is the identity map.
(d) If U and il aTe open subsets of X satisfying V ~ U ~ X, then TV,X =

TU,XTV,u·

(e) If U and V are open subsets of X and Y, and if f: X ~ Y is a
continuous, pTOper map such that f(U) ~ V and f(X - U) ~ Y - V,
then the following diagram is commutative.

H~(Y)~ H~(X)

TV,XI Iru,x

H~(V)~ H~(U)

(f) Suppose U and V are open subsets of X and Y. Let f: X ~ Y be a
continuous, pTOper map such that f(U) ~ V and f(X - U) ~ Y - V.
Let h: A ~ Band Jz: U ~ V be the maps induced by TestTiction of
f. Then the following diagram is commutative.
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(g) If A is a closed subset of X and U = X - A, then the following sequence
is exact:

... ~ Hg(U) ~ Hg(X) ~ Hg(A) ~ Hg+1(U) ~ ...

(h) Let U and V be open subsets of X such that V ~ U. Let A = X - U,
let B = X - V, and let i: A ~ B be the inclusion map. Then the
following diagmm is commutative.

TIf,U
Hf(V) ) Hg(U)

8X,8 r r8X,A

Hg-1(B)~ Hg-1(A)

(i) Let U and V be open subsets of X such that U ~ V, and let A = X -U.
Then the following diagram is commutative.

Hg(V n A)

~
T Hg+1(U)

/
Hg(A)

(j) If X is the the disjoint union of open subsets Xi indexed by an arbitmry
set I, then each TXj,X: Hg(Xi ) ~ Hg(X) is injective, and Hg(X) is
the direct sum of their images.

(k) Hg(X) is the direct limit of the groups Hg(U) where U is an open
subset of X with compact closure.

(1) If A and B are closed subsets of X such that X = AU B, then the
Mayer- Vietoris sequence

... ~ H~(X) ~ Hg(A) EB H~(B) ~ H~(A n B) ~ H~+l(X) ~ ...

is exact.
(m) If A and B are open subsets of X such that X = Au B, then the

Mayer- Vietoris sequence

... ~ H~(A n B) ~ H~(A) EB H~(B) ~ H~(X) ~ Hg+l(A n B) ~ ...

is exact.

(n) If X is not compact and X is the Alexandroff one-point compactijica-

tion of X, then the inclusion X ~ X induces an isomorphism between

Hg(X, G) and the reduced homology iIg(X, G).
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(0) For any closed A in X, if {Nn,in} is the collection of closed neigh­
borhoods of A and inclusions in: A ~ Nn, then {i~} pTOvides a rep­
resentation of Hq(A) as the direct limit of the system {Hg(N), iN2 ,NJ

where the maps i N2 ,Nl are induced by the inclusions i N1 ,N2 : N I ~ N2.

PROPOSITION 3.2.17. The cohomology groups ofjRn for n 2:: 0 and sn for
n 2:: 1 are given by

H'(lll.n , G) = { ~

H'(S", G) ~ { ~

q=n

qi=n

q = O,n

q i= 0, n

PROOF. The proof is given by induction on the dimension of jRn. The
result holds easily for jRo = {O}, so we proceed to the inductive step.

Let R':. = {Crl,'" ,xn) E jRn I Xl 2:: O} be a half-space in jRn. The one-

point compactification R~ is homeomorphic to a closed n-disc, and any closed
n-disc is contractible to a point. So Hq(R~, G) = 0 for all q. Now, consider
the following long exact sequence, which is the cohomology sequence of the
pair (R~, Rn-l) where Rn-l ~ jRn-1 is {(O, X2, ... ,,&n) E jRn} .

... ~ H~(R~) ~ H~(Rn-l) ~ H~+l(R~ - Rn- l ) ~ H~+l(R~)··.

Since Hq (R~, G) = 0 for all q, this is

... ~ 0 ~ H~(Rn-l) ~ Hrl(R~ - Rn- l ) ~ 0 ~ ...

Thus, the coboundary operator 6 is an isomorphism at each q. Now, note
that R':. - Rn-l = {(Xl,"" Xn ) E jRn I Xl > O} is isomorphic to jRn. Thus
Hg(jRn-l) ~ Hg(Rn-l) ~ Hrl(jRn). This completes the inductive step.

The result for sn follows since sn is homeomorphic to the one-point com-
pactification of jRn. 0

3.3. Alexander-Spanier Cohomology

The ideas involved in the definition of cohomology with compact support
can be used to define cohomology groups for all spaces. This is done by using
groups of arbitrary p-functions, or groups of locally finitely valued p-functions,
rather than restricting ourselves to finitely valued p-functions as was done
previously. Let X be a topological space and let G be an abelian group. vVe
will use the definition and properties of arbitrary p-functions as in section 3.2
in addition to the following definitions. vVe include the development in f\'Iassey
[14], though Spanier's own text [22] covers this content.
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DEFINITION 3.3.1. A p-function ¢: XP+1 -7 G is locally finitely valued
if every (p+ I)-tuple (xo, ... ,xp ) E XP+1 has a neighborhood U in the product
topology of XP+1 such that ¢(U) is a finite set. vVe denote the set of locally
finite valued p-functions by <I>l~(X, G) or <I>~.

The group of locally finitely valued p-function is a subgroup of the group of
arbitrary valued ones. The homomorphisms dP defined in section 3.2 preserve
locally finitely valued p-functions; that is, dPmaps <I>~(X, G) into <I>~+l(X, G).
So, we may define the following cochain groups and induced coboundary ho­
momorphisms.

DEFINITIO I 3,3.2. vVe define <I>g(X, G) to be the subgroup of p-functions
with empty support, and we define <I>~o(X, G) = <I>~ n <I>g to be the subgroup
of locally finitely valued p-functions with empty support.

DEFINITION 3.3.3. The p-th Alexander-Spanier eochain group C~(X,G)
is the quotient group <I>P(X, G)/<I>g(X, G). The p-th Alexander-Spanier
cochain group based on locally finitely valued cochains Cf(X, G) is
the quotient group <I>~(X, G)/<I>~o(X,G).

DEFINITIOI 3.3.4. The p-th coboundary homomorphism 8P is the ho­
momorphism induced by dP. vVe will abuse terminology and use this same
name and notation for the induced maps on C~ and Cf

The coboundary homomorphisms satisfy 8p+18P = 0 in both cases, so we
may define cohomology groups.

DEFINITION 3.3.5. The p-th Alexander-Spanier cohomology group is
H~(X, G) = ker 8P / im 8P-

1 where the 8 maps are the ones in the complex of ar­
bitrary cochain groups. The p-th Alexander-Spanier cohomology group
based on locally finitely valued cochains is H£(X, G) = ker 8P / im 8P- 1

where the 8 maps are those in the complex of locally finitely valued cochain
groups.

PROPOSITION 3.3.6. If X is paracompact and Hausd01ff, then the inclu­
sion maps Cf -7 C'bo induce isomorphisms between the cohomology groups
Hf(X, G) and H~(X,G).

As Massey notes, the above isomorphism indicates that for most spaces
considered, there is no essential difference between the cohomology groups.
The value in having the separate constructions is mostly derived from the
increased ease in proving properties. In some cases, the simple generality of
the arbitrary valued cochain construction provides easy groups to work with,
in other cases, the locally finitely valued construction lends itself to the task
more readily.

Continuous maps f: X -7 Y induce homomorphisms between cohomology
groups in this theory. We use the same definition of f# as in definition 3.2.13,
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and note that continuity ensures that f# maps <I>~(Y) into <I>j,(X) and <I>g(y)
into <I>b(X),

DEFINITION 3.3.7. Let f: X -----t Y be a continuous map. Abusing notation,
we denote by 1* both of the homomorphisms H~(Y) -----t H~(X) and Hf(Y) -----t

Hf(X) induced by f#·

In order to state a result about exact sequences of Alexander-Spanier co­
homology groups of pairs (X, A) where A is a subspace of X, we need to first
define relative cohomology groups.

DEFINITION 3.3.8. Let X be a space, let A be a subspace of X, and let i be
the inclusion map A -----t X. The relative cochain complex C~(X,A, G) is
the cochain complex with p-th cochain group C~(X,A, G) equal to the kernel
of the induced map i#: CP(X, G) -----t CP(A, G).

If A is closed in X, then we also define the relative cochain complex
based on locally finitely valued cochains CL(X, A, G) to be the cochain
complex ,vith p-th cochain group Cf(X, A, G) equal to the kernel of the in-
duced map it: Cf(X, G) -----t Cf(A, G).

DEFINITION 3.3.9. The p-th relative Alexander-Spanier cohomol­
ogy group H~(X,A, G) is the p-th cohomology group of the relative cochain
complex C~(X, A, G). The p-th relative Alexander-Spanier cohomology
group based on locally finitely valued cochains Hf(X, A, G) is the p-th
cohomology group of CL(X, A, G).

The definitions above cleady imply the following.

PROPOSITION 3.3.10. If A is a subspace of X, then the following sequence
of cochain complexes is exact.

o -----t C~(X, A, G) ~ C~(X, G) !!!.. C~(A, G) -----t 0

where j# is the inclusion map.
If A is closed in X, then the following sequence is also exact.

'# '#

o -----t Cr(X, A, G) ~ CUX, G) ~ Cr(A, G) -----t 0

where jt is the inclusion map.

If \ve let i*, i1, j*, and j'L be the maps induced on cohomology groups by
the maps in the above proposition, then we have the following,

PROPOSITION 3.3.11. If A is a subspace of X, the following is a long e.mct
sequence of cohomology groups.

d '. '. d
••• -----t HP (X A G) ~ HP (X G) ~ HP (A G) -----t HP+l (X A G) -----t •••

} OO} 00' 00' ,
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If A is closed in X, then the following is also a long exact sequence .

. . . ~ Hf(X, A, G) i Hr(X, G) i HHA, G) ~ Hr+1(X, A, G) ~ ...

'vVe now summarize the properties of Alexander-Spanier cohomology. The
proofs are contained in Spanier's text, and Massey refers us to [11 and [131 in
his book for characterizations of this theory.

THEOREM 3.3.12. Let X be a space, and let G be an abelian group.

(a) H oo satisfies all Eilenberg-Steenrod axioms for continuous maps and
pairs (X, A) where X is any topological space and A is any subspace
of x.

(b) H L satisfies all Eilenberg-Steenrod axioms for continuous maps and
pairs (X, A) where X is paracompact Hausd01ff and A is closed in X.

(c) (Strong Excision) If X and Yare paracompact Hausdorff spaces, if
A and B are closed subsets of X and Y respectively, and if f: (X, A) ~
(Y, B) is a closed, continuous map which is bijective between X - A
and Y - B, then the induced maps 1*: Hfo(Y, B) ~ Hfo(X, A) and
fL: Hf(Y, B) ~ Hf(X, A) are isomorphisms.

(d) If X is paracompact Hausdorff, A is a closed subset of X, and U
is an open subset of X such that U <::;; A, then the inclusion map
j: (X - U, A - U) ~ (X, A) induces isomorphisms j*: Hfo(X, A) ~
Hfo(X - U, A - U) and j2: Hf(X, A) ~ Hf(X - U, A - U).

(e) If A is a subspace of X and X is the union of mutually disjoint
open subsets Xi as above, then there is an isomorphism H'fo(X, A) ~
TIi HP (Xi, Xi n A). If A is closed, then there is also an isomorphism
Hf(X, A) ~ TIi Hf(Xi , Xi n A).

(f) If X is paracompact Hausdorff and both A and B are closed subsets
of X, then the triad (X; A, B) is excisive for both H oo and H L .

(g) If X is a normal space, and if X = A U B with A and B open subsets
of X, then the t1'iad (X; A, B) is excisive for H oo .

(h) (Vietoris-Begle Theorem) If X and Yare paracompact Hausdorff
spaces, if f: X ~ Y is a closed, continuous, surjective map, and if for
every y E Y, the reduced homology group HP (J-l(y)) = 0 for p :::; n,
then the induced map 1*: Hfo(Y) ~ HP (X) is an isomorphism for
p :::; n and a monomorphism for p = n + 1.

(i) If X is paracompact Hausd01ff and if either G is countable or the topol­
ogy of X is compactly generated, then the group of homotopy classes of
maps of X into the Eilenberg-Mac Lane space K(G, n) is isomorphic
to H n (X, G).

(j) If X is paracompact Hausd01ff, then the covering dimension of X is
equal to the largest p (or 00) such that H'fo (X, A, G) i= 0 for some
closed A <::;; X.
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Note that the hypothesis of the strong excision property is stronger than
only requiring that f be a homeomorphism between X - A and Y - B. Also
note that since H oo and H L satisfy the Eilenberg-Steenrod axioms, excisive
triads have cohomology sequences and Mayer-Vietoris sequences which are
exact, as shown in section 3.1.

There is a natural transformation from Alexander-Spanier cohomology into
singular cohomology. The definition of this transformation makes use of a
notion of supports for singular cochains. This notion is used in the construction
of a function f.1 from <I>P(X, G) to a subgroup of the singular p-cochain group,
which is given by sending ¢ E <I>P(X, G) to the singular p-cochain defined by

(WP)(CJ) = ¢(CJ(eo) , ... ,CJ(en ))

PROPOSITION 3.3.13. The map f.1 above induces a homomoTphism

f.1*: Hr:o(X, A, G) ~ Hf(X, A, G)

wheTe Hf is the p-th singulaT cohomology gTOUp with Tespect to the abelian
gTOUp G, as defined in section 4.1 below.

Under certain conditions, f.1* is an isomorphism. Two such conditions are
given in [22]. The notable feature of these conditions is that they are require­
ments that X be locally nice in some way.

Moreover, Spanier showed that Alexander-Spanier cohomology is isomor­
phic to Cech cohomology for paracompact Hausdorff spaces.

PROPOSITION 3.3.14. If X is a pamcompact Hausdorff space, then Hbo(X, G),
Hf(X, G), and ifP(X, G) are all isomorphic, where if denotes Cech cohomol­
ogy, as defined in section 3.4 below.

This is demonstrated by giving a construction of Cech cohomology with
coefficients in a presheaf, showing that the presheaf r of cochain complexes
which assigns the Alexander-Spanier cochain complex C(U, UnA; G) to open
U ~ X is Jsomorphic to its generated sheaf f, and exhibiti~g an isomorphism
between Cech cohomology and the cohomology groups of r for paracompact
Hausdorff spaces.

3.4. Cech Cohomology Using Sheaves

The creation of Cech cohomology was motivated by the need for theories
better at handling local pathologies than the singular theories. The topolo­
gist's sine curve of example 2.5.1 serves as a good example here as well, this
time indicating a difference between singular and Cech cohomology.

There are several developments of Cech cohomology. The recurring theme
in the constructions is the use of a direct system of open covers and refinement
maps. In one development, nerves of each open cover are taken, singular coho­
mology groups are assigned to the nerves, and Cech cohomology is defined as
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the direct limit under refinement of these singular cohomology groups. Since
cohomology reverses the direction of the refinement maps, the singular groups
represent finer and finer topological information as one progresses in the se­
quence, and so the direct limit captures fine or local information about the
space. However, the use of open covers as approximations to the space pre­
vents certain pathological features from being detected. For example, nerves
of a Cech system are unable to separate the limit set of the topologist's sine
curve from the curve itself.

Below we include the construction of Cech cohomology using presheaves,
as treated by Spanier [22].

DEFINITION 3.4.1. Let f be a presheaf of modules on X and let U be an
open cover of X. For each q 2:: 0, define Cq(U; f) be the module of functions
1/J: Uq+l -----+ f which map (q+l)-tuples (Uo, . .. , Uq) to elements 1/J(Uo, ... , Uq) E
f(Uon ... n Uq ).

DEFINITION 3.4.2. The coboundary operator 8: Cq(U; r) -----+ Cq+1(U; f) is
defined by the usual alternating sum formula:

81/J(Uo, ... ,Uq+l) = L 1/J(Uo, ... , Oi' ... ,Uq+1)
O::;i::;q+l

where the hat symbol indicates that entry should be removed.

The coboundary operator satisfies 88 = O. So, these cochain groups and
coboundary operators form a cochain complex. vVe denote the cohomology
groups of this complex by Hq(U; r)

If V is a refinement of the open cover U and p: V -----+ U is a refine­
ment map, then there is a cochain map p: C(U; f) -----+ C(V; r) defined by
p-!/J(Vo, .. . , Vq ) = 1j;(p(Vo) , ... ,p(\0,)). Different choices of refinement maps
lead to cochain homotopic cochain maps. Thus, there is a homomorphism
p*: Hq(U; r) -----+ Hq(V; r) for each q which is independent of the choice of re­
finement map. Since the collection of open covers of X and refinement maps
form a direct system, we get a direct system of cohomology groups Hq(U; f)
using homomorphisms induced by refinement.

DEFIl ITION 3.4.3. The q-th dimension Cech cohomology of X with
coefficients in f is defined to be the direct limit

Hq(X; r) = l~ Hq(U; f)

over open covers U and homomorphisms induced by refinement.

Note that if G is an abelian group, "ve can take f to be a constant presheaf
G as in 1.7.2 to obtain a cohomology theory with coefficients in G. It is easy to
see how the presheaf construction above corresponds to the nerve construction
in this case, since 0 must be assigned to any empty intersection of open sets
m a cover.
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CHAPTER 4

Derived Theories

4.1. Singular Cohomology

Singular cohomology is the dual notion to singular homology. Essentially,
we just use the Hom(-, R) functor on the singular chain complex and take
quotient groups. In the following discussion, let X be any fixed topological
space and let R be a ring. We include the development appearing in [8].

DEFINITION 4.1.1. The n-th singular cochain group is the group C n =
Hom(Cn(X), R) of homomorphisms from the singular n-chain group to the
ring R. The homomorphisms in cn are called singular n-cochains.

Since Cn is a free group generated by the singular n-simplices CJ: ~n ~
X, any homomorphism on Cn is determined by its values on the singular n­
simplices. Hence, each n-cochain corresponds uniquely to a function from the
set of n-simplices in X to the ring R. We can therefore view any n-cochain
as an assignment of elements in R to the n-simplices in X. Hence, there is
an obvious isomorphism from cn to the direct product IT R ,vhere Sn is

aES'l1

the set of singular n-simplices. This differs from the singular n-chains, which
could be viewed as a direct product or an assignment where only finitely many
n-simplices have a corresponding nonzero element of R.

DEFINITION 4.1.2. The n-th singular coboundary map 8n : cn ~ cn+l
is defined by sending each n-cochain ¢ to the (n + I)-cochain 8n (¢) = ¢On+l
where 0 is the singular boundary map. That is, 8n ¢ is the (n + I )-cochain
which assigns to an (n + I)-simplex CJ whatever the n-cochain ¢ assigns to
the boundary of CJ. We can explicitly write out 8¢(CJ) = 2::~Ol( -1)i¢(CJ f
(eo, ... e;" ... , en+l)) for (n + I)-simplices CJ.

Note that being a cocycle is equivalent to vanishing on boundaries. That
is, ¢ is in ker 8n iff ¢ maps all boundaries of (n + I)-chains to O.

EXAiVIPLE 4.1.3. Consider the following coboundary computation. Let X
be the triangulation of lR given above, let ¢ be the I-cochain which assigns the
element I E Z to each I-simplex in X, and let CJ be a map from ~2 to X. vVe
will determine what value is assigned by the coboundary of ¢ to the singular
2-simplex CJ. First, the boundary of CJ is CJ f (el' e2) - CJ f (eo, e2) + CJ f (eo, el)'
Next, ¢ assigns I to each term in the sum. So, ¢ assigns I - I + I = I to
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the boundary of (J. Since (J was an arbitrary 2-simplex, this shows that the
coboundary of ¢ assigns 1 to every singular 2-simplex in X.

It is clear that 6n+16n is the 0 map, since 6n+16n¢ = 6n+l¢On+l = ¢On+l0n+2
and we already know the 0 composition is the 0 map.

DEFINITION 4.1.4. The n-th singular cohomology group with respect
to the ring R is Hn(X; R) = ker 6n/ im 6n- l .

Similarly to singular homology, singular cohomology can be more easily
computed for C\iV-complexes. An analogous construction leads to the result
that the singular cohomology groups are obtained by using cochain groups
consisting of the algebraic duals of those for cellular homology. We will not
trace out the analogous construction, but we will make use of this fact in the
following example.

EXAMPLE 4.1.5. Let X be SI as a subspace of JR2
, and let Z be the target

ring for our cochains. First we will compute HO(X), and to do so we must
determine ker 60 . A O-cochain ¢ is in the kernel of 60 if its coboundary is the
o homomorphism I-cochain. That is, 60¢ must assign 0 to every singular
I-simplex. Let (J: 6.1 ------7 X be a singular I-simplex. Its image under 60¢ is
¢OOI ((J) = ¢( (J r (el) -(J r (eo)) = ¢( (J r (el)) -¢( (J r (eo))· Hence ¢ is in ker 60
iff ¢( (J r (el)) = ¢((J r (eo)) for every singular I-simplex (J. Since singular 0­
simplices are determined by their image, and each (J can have arbitrary points
in X = SI for (J(eo) and (J(el), this means that ¢ must be constant on the set
of I-simplices. Hence, the kernel of 60 is isomorphic to Z, since each constant
cochain is uniquely paired with its integer image. For the O-th dimension
cohomology, we simply take the kernel of 60 , so we have that HO(X) ~ Z. Now,
we will compute H l (X), utilizing the isomorphism between the singular and
simplicial theories. Consider the exact sequence of simplicial homology and

chain groups 0 ------7 HI ~ C l ~ Co .!!-. Ho ------7 0 ""here r maps the equivalence
class of the cycle a( (vo, VI) + (VI, V2) + (V2' Vo)) to the cycle a( (Vo, VI) + (VI, V2) +
(V2' vo)) in Cl for each a E Z, and q is the quotient map which mods out
boundaries. If we represent each I-chain a(vo, VI) +b(Vl, V2) +C(V2, vo) in C1 as

a column vector ( ~ ), then the houndary map 01 can he expressed as the

matrix ( - ~ - ~ ~ ) acting by left multiplication. If we apply Hom(-, Z)
o 1-1

q* 8
to the above sequence, we get the exact sequence 0 ------7 Hom(Ho) ------7 Co ~ C l

involving simplicial cochain groups and the coboundary operator which is given
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by the transpose ( - ~ - ~ ~ ) of the earlier matrix. We already know
1 0-1

what Ho, Co, and C l are isomorphic to, so we can write the exact sequence

o -t Z ~ Z EB Z EB Z ~ Z EB Z EB Z. Recall that the simplicial cohomology
group HI is ker fJ1/ im fJo. The matrix for fJo maps Z EB Z EB Z onto a subgroup
isomorphic to Z EB Z, and fJ l : C l

-t C 2 has kernel C l ~ Z EB Z EB Z since
there are no 2-simplices and so C 2 is trivial. Thus, we have the exact sequence

o -t Z -t Z EB Z EB Z ~ Z EB Z EB Z -t Z -t 0 where the right-most Z is
isomorphic to Hl(X). Because the simplicial and singular theories coincide,
this is the 1st cohomology group of 51.

Singular cohomology satisfies all of the Eilenberg-Steenrod axioms for con­
tinuous maps and pairs (X, A) with X a topological space and A a subspace of
X. There is a homomorphism from singular cohomology to Alexander-Spanier
cohomology, which we noted in 3.3.13. This homomorphism is an isomorphism
for spaces satisfying certain nice local properties.

4.2. Homology Based on Infinite Chains

In this section, we discuss the homology theory which is dual to the co­
homology theory of Section 3.2. Hence, this homology theory is defined for
locally compact Hausdorff spaces and has homomorphisms induced by contin­
uous, proper maps. In the following, we fix a locally compact Hausdorff space
X and an abelian group G. We" include the development which appears in
[14].

DEFINITION 4.2.1. The group of n-chains of X with coefficient group
G is the group Cn (X,G) = Hom(C~t(X,Z),G).

The boundary map is defined as the dual of the coboundary map fJ defined
in 3.2.10.

DEFINITION 4.2.2. The n-th boundary homomorphism an: Cn(X, G) -t

Cn-l(X, G) is defined by an(¢) = ¢fJn- l for each ¢ in Cn(X, G).

The collection of n-chains and boundary maps defined above forms a chain
complex, and so we can define homology groups.

DEFINITION 4.2.3. The n-th homology group (of X with coefficients
in G) based on infinite chains is H,/:(X, G) = ker ani im an+l .

DEFINITION 4.2.4. Let f: X -t Y be a continuous, proper map between
locally compact spaces X and Y. Let f#: C;:(Y, Z) -t C~t(X,Z) denote the
induced map from definition 3.2.13. Then the induced map f#: C1~(X,G) -t

C~(Y,G) is defined by f#(¢) = ¢f# for each ¢ in Cl~(X, G).
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DEFINITION 4.2.5. Let U be an open subset of X. Let 0" = O"u,x: C~(U, Z) ----7

C~(X, Z) be defined as it is above in definition 3.2.14. We define the map
0"# = O"#x,u: C~(X, G) ----7 C1c:'(U, G) by O"#(¢) = ¢O" for all ¢ in C1c:'(X, G).

Both of the above defined induced maps commute with the boundary oper­
ator, and hence they are chain maps. Thus, they both induce homomorphisms
on the homology groups.

DEFll ITION 4.2.6. The map induced by the chain map f# is denoted
f*: H~(X, G) ----7 H~(Y, G). The map induced by the chain map O"#x,u is
denoted p or Px,u: H1c:'(X, G) ----7 H~(U, G).

The statement of the properties of this homology theory will make use of
a map OX,A: H:M-l(U) ----7 H/r;'(A) between the homology groups of an open
subset U of X and its complement A = X - U. The definition relies on the
fact that the following is a split exact sequence of cochain complexes, ""here
i# is induced from the inclusion map i: A ----7 X .

.#

a ----7 C~(X, A, Z) ----7 C~t(X) ~ C~(A) ----7 a
By applying Hom(-, G) to this sequence and identifying the groups C~(X,A, G)
and C~(U,G), it is possible to show that the following is a short exact sequence
of chain complexes.

If we take homology groups of this sequence, the following long exact sequence
can be constructed.

••• ----7 H;:(A) ~ H;:(X) ~ H;:(U) ~ H';l(A) ----7 •••

The homomorphism 0 in this long exact sequence is the homomorphism we
want.

DEFINITIO 4.2.7. If U is an open subset of X and A = X - U, then we
denote by OX,A the connecting homomorphism that appears in the long exact
sequence above.

THEOREtvl 4.2.8. Let X, Y, and Z be locally compact Hausdorff spaces,
and let G be an abelian group.

(a) Hoo satisfies all EilenbeTg-Steenrod axioms for continuous, proper maps
and pai1's (X, A) where X is locally compact, Hausdorff and A is closed
'in X.

(b) If X is a single point, then Hgo(X, G) is G.
(c) Px,x: H;:(X) ----7 H/r;'(X) is the identity homom01'phism.
(d) If V ~ U ~ X with U and V open, then Px,v = Pu,vPx,u.

49



Md/laster University - Mathematics M.Sc. Thesis - Matthew Luther

(e) If U and V are open subsets of X and Y respectively, and if f: X ~ Y
is a continuous, pmper map such that f(U) ~ V and f(X - U) ~

Y - V, then the following diagram is commutative.

Hgo(X)~ Hgo(Y)

p1 1p

Hgo(U)~ H;o(V)

(f) Let U and V be open subsets of X and Y respectively, and let A = X ­
U and B = Y - 1/. Suppose f: X ~ Y is a continuous, proper map
such that f(U) ~ V and f(A) ~ B. Let II: A ~ Band 12: U ~ V
be the maps induced by restriction of f. Then the following diagram
is commutative.

H;o(U)~ Hgo(V)

alla
Hoo (A)~ Hoo (B)p-l p-l

(g) Let V and U be open subsets of X such that V ~ U. Let A = X - U,
let B = X - V, and let i be the inclusion map A ~ B. Then the
following diagram is commutative.

H p (U)~ Hgo(V)

a1 1a
H;::l (A)~ H/C::-l (B)

(h) Let U and V be open subsets of X such that U ~ V, and let A = X -U.
Then the following diagram is commutative.

(i) If X is the disjoint union of open subsets Xi, then each inclmion
map j: Xi ~ X induces an injective homomorphism j*: Hgo(Xi) ~
H;o(X), and Hgo(X) is equal to the caTtesian prod1Lct of the images
of these homomorphisms.
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(j) If A and B aTe closed subsets of X such that X = A u B, then the
M ayeT- VietoTis sequence

... -; H
1
c;o(A n B) -; H';(A) EB H

1
c;o(B) -; H

1
c;o(X) -; H/C::-l (A n B) -; ...

is exact.
(k) If A and B aTe open subsets of X such that X = Au B, then the

Mayer- Vietoris sequence

... -; H;:(A n B) -; H;:(A) EB H;:(B) -; H
1
c;o(X) -; H;l (A n B) -; ...

is exact.

4.3. Homology with Compact Supports

In this section we will discuss the homology theory which is dual to Alexander­
Spanier cohomology. This homology theory is defined for arbitrary Hausdorff
spaces. In the following, we fix a Hausdorff space X and an abelian group G.
We include the development which appears in [14].

DEFINITION 4.3.1. If X is Hausdorff and A is a subspace of X, then we
say that (X, A) is a Hausdorff pair. If X is compact Hausdorff and A is a
closed subset of X, then we say that (X, A) is a compact pair. We define
subset inclusion between any kind of pairs (X, A) ~ (Y, B) to mean that both
X ~ Y and A ~ B.

We will define homology groups of Hausdorff pairs (X, A) in this theory
as the direct limit over certain homology groups associated to compact pairs
contained in (X, A). Note that if (Y, B) is a compact pair, then Y - B is
locally compact Hausdorff and H/C:(Y - B, G) can be defined as in Section 4.2.
Furthermore, if (Y, B) ~ (X, A), then there is an inclusion map i: (Y, B) -;
(X, A) satisfying i(Y) ~ X and i(B) ~ A. This inclusion map induces a map
i* between H';(Y - B) and H::(X - A) as follows. Let U = i-1(X - A)
and let i l : U -; X - A be the restriction of i to U. Then U is a subset
of Y - Band p: H::(Y - B) -; Hp(U) is defined as in 4.2.6. The map
i*: H';(Y - B) -; H/C:(X - A) is defined as the composition pi l . Now, the
collection of compact pairs (Y, B) satisfying (Y, B) ~ (X, A) is directed under
this inclusion relation, and this induces a relation on the collection of homology
groups H';(Y - B) which makes it also a directed set. Taken with the maps i*
induced by inclusion between the compact pairs, this gives us a direct system
{H/C:(Y - B), i*}.

DEFINITION 4.3.2. Let (X, A) be a Hausdorff pair. Vie define the p-th
homology group with compact support of the pair (X, A) with coef­
ficients in G to be the direct limit

HC(X A) = lim H (Y B) = lim HCO(Y - B)
p -;P -;p
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over compact pairs (Y, B) ~ (X, A) and maps i* induced by inclusion.

Note that if (X, A) is a compact pair, then H~(X, A) as defined above
coincides with H;:'(X - A). If X is only locally compact, however, the groups
defined in these two sections can be distinct; for example, Hf'(IR) = G but
Hf(IR) = O.

v\ e will now define the homomorphisms on these new homology groups
induced from maps of Hausdorff pairs and inclusions maps.

Let f: (X, A) -t (Y, B) be a map of Hausdorff pairs. That is, f is a
continuous map from X to Y such that f(A) ~ B. Then, for each compact
pair (P, Q) ~ (X, A), we have that (J(P), f(Q)) is a compact pair in (Y, B).
Thus, f induces an order-preserving map from the direct system of compact
pairs in (X, A) to that of (Y, B). In turn, this induces a map between the direct
systems of homology groups HJc;o(P-Q) and H;:'(J(P)- f(Q)) of the compact
pairs. This map finally induces the map f* we are interested in between the
direct limits.

DEFINITION 4.3.3. If f: (X, A) -t (Y, B) is a map of Hausdorff pairs, then
we define the induced homomorphism f*: H~(X, A) -t Hg(Y, B) to be the
homomorphism described above.

We can obtain the exact sequence

... -t HC(A) ~ HC(X) ~ HC(X A) ~ HC . (A) -t ...n n n' n-l

for this homology theory for a Hausdorff pair (X, A) from the exact sequence
of the theory in Section 4.2, since direct limits preserve exactness.

THEOREiVI 4.3.4. Let (X, A) and (Y, B) be Hausdorff pairs, and let G be
an abelian group.

(a) HC satisfies all Eilenberg-Steenmd axioms for continuous maps and
paiTs (X A) wheTe X is HausdoTff and A is any subspace of X.

(b) If A and B aTe closed subsets of X such that X = A UB, then the
tTiad (X; A, B) is excisive fOT HC.

(c) Let U and V be open subsets of X such that X = U U V, then the
triad (X; U, V) is excisive fOT HC.

(d) (Strong Excision 1) Suppose that X is paracompact HausdoTff and
A is a closed subset of X. Let B be a closed subset of Y I and let
f: (X, A) -t (Y, B) be a closed, continuous function which maps X ­
A homeomorphically onto Y - B. Then f induces an isomorphism
f*: H~(X, A) -t H;(Y, B) fOT all p.

(e) (Strong Excision 2) Let A and B be closed subsets of X and Y
Tespectively. Let f: (X, A) -t (Y, B) be a pmpeT map of paiTs which
maps X - A bijectively onto Y - B. Then f induces an isomoTphism
f*: H;(X, A) -t H~(Y, B).
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(f) If X is the union of mutually disjoint subsets Xi with inclusion maps
j: Xi -----7 X, then the induced maps j*: H~(Xi,Xi n A) -----7 H%(x,A)
aTe injective, and H~(X, A) is the diTect sum of theiT images.

(g) Let (X, A) be a HausdoTff paiT with A closed in X, then H~(X, A) is
the diTect limit of the homology gTOUpS H;;a(p, P n A) wheTe P mnges
oveT compact subsets of X such that P - A is dense in P.

Note that excisive triads have exact homology sequences and fayer-Vietoris
sequences as in 2.1 since this homology theory satisfies the Eilenberg-Steenrod
aXlOms.

There is a natural homomorphism I-" from singular homology into homology
with compact supports. In the following, let H:(X, A, G) be the singular
homology of the pair (X, A). The definition of I-" relies on the following.

LEMMA 4.3.5. Let (X, A) be a paiT of spaces and let G be an abelian gTOUp.
Then, fOT any u E Hl~(X, A, G), theTe is a paiT (1(, L) with K a finite GW­
complex and L a subcomplex, a continuous map f: (1(,L) -----7 (X,A), and an
element u' E H:(K, L) such that f;(u') = u wheTe f; is the induced map on
singulaT homology gTOUpS.

One consequence of the Eilenberg-Steenrod axioms is that if two homology
theories satisfying the axioms have the same coefficient group G, then their
homology groups are isomorphic on any GW-complex. Now, let u be an el­
ement of H:(X, A, G). By the above lemma, there is a pair (1(, L) of finite
CyV-complexes, a map f: (K, L) -----7 (X, A), and some u' in H:(1(, L, G) such
that f;Cu') = u. By the uniqueness theorem just mentioned, H:(I<, L, G) and
H/;(1(, L, G) are isomorphic, so there is a unique u" in H%(1(, L, G) correspond­
ing to u'.

PROPOSITION 4.3.6. The map I-" = f*: H;(X, A, G) -----7 H/;(X, A, G) de­
fined by 1-"(u) = f* (u") is a homomoTphism. It is an isomorphism fOT manifolds
and spaces homotopy equivalent to a GW-complex.

The above definition is independent of the particular choices made in se­
lecting (1(, L), f, or the elements'LL and u'.

4.4. End Cohomology

End cohomology and homology are so named because of their relation to
the ends of a space, which can be found, for example, in [111. We will not
discuss these relations, but for consideration we give a definition of ends and a
few examples. For consideration, the end homology groups of these examples
are given in 4.5.6. We include the development of [14], but the reader is also
referred to [121.
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DEFINITION 4.4.1. Let Ko C K 1 C be a nested sequence of compact
sets whose interiors cover X. An end of X is a sequence Uo ::) U1 ::) ... where
Ui is a connected component of X - J(i'

Different choices of sequences {Kd lead to sets of ends which are in bijec­
tion with each other. This can be generalized to spaces which do not admit an
exhaustion by compact sets using an inverse limit over 7fo(X - K i ) for a direct
system of compact sets. There is a topology which can be placed on the ends
of a space, and there is a method of compactification where a point at infinity
is added for each end.

EXAi\llPLE 4.4.2.

(a) If X <:;;; ]R2 is the union of n distinct rays originating at the origin,
then X has n ends.

(b) ]R2 has one end.
(c) Let X <:;;; ]R2 be an "infinite ladder": for example, the union of the

rays {(O,y) I y 2:: O} and {(1,y) I y 2:: O} along with line segments
{(x, n) I 0 :::; :1: :::; 1} joining these rays for each n E {O, 1,2, ... }.
Then X has one end, despite 7fo(X - K) being infinite for any compact
K <:;;; X.

(d) If X is compact, then X has no ends.

End cohomology is defined for locally compact Hausdorff spaces. Its defi­
nition is stated in terms of the cochain groups cg and Cf of sections 3.2 and
3.3 respectively.

It is clear from their definitions that the group cg is a subgroup of Cf. V\e
will call the inclusion homomorphism Ip: cg -t Cf. Then the following is a
short exact sequence

o-t C~ ~ Cf ~ CUC~ -t 0

where 7f is the quotient homomorphism.

DEFINITION 4.4.3. The group Cf is defined to be the quotient group
CUCr

DEFINITION 4.4.4. The coboundary homomorphism 6~: C~ -t Cf+l is de­
fined to be the map induced by the coboundary map 6P : Cf -t Cf+l.

These coboundary maps clearly satisfy 6~+16~ = 0, so we have a new
cochain complex.

DEFINITION 4.4.5. The p-th end cohomology group is H~(X) G) =
ker 6~ / im 6~-1 .

vVe can fit the groups H~(X) into a long exact sequence with the groups
Hg(X) and Hf(X) by noting that the following is a short exact sequence of
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o---? C;(X) ~ C2(X) ---? C; ---? 0

Hence, we have a long exact sequence of cohomology groups

... ---? H~(X) ~ Hr(X) ---? H~(X) ~ H~+l(X) ---? •.•

THEOREM 4.4.6. The cohomology group H~(X) is isomorphic to the direct
limit of the groups Hr(X - U) where U ranges over all open subsets of X with
compact closure. The maps used for this direct limit are the maps i*: Hr(X ­
U1 ) ---? H£(X - U2 ) induced by the inclusion maps i: X - U2 ---? X - U1 when
U1 ~ U2 ·

Moreover) the exact sequence

" 8... ---? H~(X) ---? Hr(X) ---? HnX) ---? H~+l(X) ---? ..•

is the direct limit of the sequences
8 .•. 8

•.• ---? H~(X,X - U) ~ H~(X) ~ Hq (X - U) ---? H:f:l(X, X - U) ---? .•.

as U ranges over all open subsets of X with compact closure.

PROPOSITION 4.4.7. Let X be a compact Hausdorff space) let A be closed
in X, and let U = X - A. Then the following sequence is long exact.

• . . ---? H?x,(X, U) ~ H£(A) ---? H~(U) ~ H?x,+1(X, U) ---? •.•

Here Hg(A) = Ht(A) since A is compact.

4.5. End Homology

End homology is defined for locally compact Hausdorff spaces. Similarly to
end cohomology, it is defined using chain groups from other theories. However,
the homology theory in Section 4.3 was defined as a direct limit, without first
constructing a chain complex. So, we ,,,,ill be concerned with the chain groups
C

1
C;O(X) of 4.2 and the chain groups C~(.X, A), which we define to be the direct

limit of the groups C'(:'(P, Q) such that (P, Q) is a compact pair in (X, A). The
homology groups associated to these C~(X, A) are the groups defined in 4.3.
Note that the literature contains different constructions of end homology, some
of which (e.g., [12]) have a dimension shift and may have nontrivial groups
with negative indices. Here we have included the presentation which appears
in [14].

First we will see that Cl~(X) is isomorphic to a subgroup of C'(:'(X). Let
P be a compact subset of X. Then the inclusion map i: P ---? X induces a
monomorphism i#: C'(:'(P) ---? C'(:'(X). Thus, if Q is another compact subset
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of X such that P ~ Q, then the following diagram is a commutative diagram
of monomorphisms.

C;:(P) ) C;:(Q)

~ /
C* (X)

Hence, there is a monomorphism 'Yp from the direct limit C~(X) into the group
C;;C(X). Abusing notation, we will denote the quotient of C;:(X) modulo the
image of 'YP by C':(X)/C/;(X). Then the following is a short exact sequence.

o-t C;(X) ~ C;o(X) -t Cp (X)/C;(X) -t 0

DEFINITION 4.5.1. The group C~(.X) is defined to be the quotient group
C,:(X)/CJ;(X).

DEFINITION 4.5.2. The boundary homomorphism 0;: C;(X) -t CJ~-1(X)
is defined to be the map induced by the boundary map Op: C,:(X) -t C;::'-I(X),

Together, these homology groups and boundary maps form a chain com­
plex, so we may define homology groups.

DEFINITION 4.5.3. The p-th end homology group is defined to be the
quotient HJ~(X, G) = ker 0;/ im 8;+1'

Like the end cohomology groups, these homology groups fit into a long
exact sequence with the other homology groups. Since

o-t C~(X) ~ C~(X) -t C:(X) -t 0

is a short exact sequence of chain complexes, we get the long exact sequence
of homology groups

... -t H;(X) ~ Hp (X) -t H:(X) ~ H;_1 (X) -t ...

There is also a theorem expressing H~(.X) as a direct limit of homology
groups.

THEOREy! 4.5.4. The homology group H:(.X) is isomorphic to 1~1 H';'(X -
P) where P ranges over all compact subsets of X. The maps used for this direct
limit are the maps p: HJ;o(X - Pd -t H;:(X - P2 ) as defined in 4.2.6 when
PI ~ P2 and hence X - P2 is an open subset of X - PI'

]0,1[oreover, the exact sequence

... -t H;(X) ~ H/r:'(X) -t H:(X) ~ H;_l (X) -t ...

is the direct limit of the sequences

... -t H~(P) ~ H;:(P) ~ H;:(X - P) ~ Hq-1(P) -t ...
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as P ranges over all compact subsets of X.

PROPOSITION 4.5.5. Let X be a compact Hausdorff space, let A be closed
in X, and let U = X - A. Then the following sequence is long exact

•.. ----7 HI~(A) ~ Hl~(X, U) ----7 H;(U) ~ H;_l (A) ----7 •.•

Here H~(A) = H:;:'(A) since A is compact.

EXAMPLE 4.5.6.

(a) Let X s: JR2 be the union of n distinct rays originating at the origin.
Then, Hg(X, 7l) ~ 0 and Hf(X, 7l) ~ 7l2.

(b) Hg(JR2,7l) ~ 0, Hf(JR2, 7l) ~ 0, and Hf(JR2, 7l) ~ 7l.
(c) Let X be an infinite ladder, as in 4.4.2. Then Hg(X, 7l) ~ 0 and

Hf(X,71) is infinite.
(d) If X is compact, then H;(X, 7l) ~ 0 for all p.
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CHAPTER 5

Coarse Algebraic Topology

5.1. Locally Finite Homology

'When we define coarse homology later, we will make use of homology
groups of nerves. The homology theory we will use is that of section 4.2, but
we can make use of the fact that nerves are simplicial complexes in order to
compute these homology groups more efficiently. The simplification follows
from the more general result that when X is a locally compact Hausdorff
space which can be nicely decomposed into cells, then the cohomology groups
of section 3.2 and homology groups of section 4.2 can be computed directly in
terms of the cells.

It is ,vorth noting that locally finite homology is typically defined for sim­
plicial complexes by generalizing simplicial homology to allow chain groups
consisting of possibly infinite sums rather than just finite sums of simplices.
However, the following development, which appears in chapter 4 of Massey's
book [14], constructs both cohomology and homology groups for the more
general class of spaces with cellular decompositions. This is done as a special
case of cohomology with compact supports and homology based on infinite
chains, making use of the cellular structure of the space. The end result is the
same as the previously mentioned development when restricted to simplicial
complexes, which can be seen easily from the propositions below. Since we
will only be using locally finite homology for simplicial complexes, the devel­
opment below may seem to be a less direct way of reaching the same goal, but
it lets us immediately inherit properties as special cases of previous theories.

DEFINITION 5.1.1. Let X be a Hausdorff space. A cellular decomposi­
tion of X is a nested sequence of closed subspaces of X

KO ~ K 1 ~ ... ~ Kq ~ ...

such that UJ(i = X and the following hold:

(a) ](0 is a possibly empty discrete subspace of X. The elements of KO
are called the vertices or O-cells.

(b) For q 2:: 1, Kq - Kq-l is the disjoint union of open subsets, each of
which is homeomorphic to the open unit q-ball in IRq. The elements
of Kq are called the q-cells and Kq is called the q-skeleton.
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A cellular decomposition is finite if it consists of only finitely many cells. It
is finite dimensional if the dimension of the cells is bounded above. That
is, there is some q such that Kq = Kq' for all q' > q.

ate that this definition of cellular decompositions is more general than
that of GW-complexes in 2.4.1, in that it does not require the use of attaching
maps.

DEFINITION 5.1.2. Let X be a locally compact Hausdorff space, and let
K = {Kq} be a cellular decomposition of X. The q-cochains of K with
coefficient group G is denoted by Cq(K, G) and is defined to be H2(Kq ­
Kq-l, G). The q-chains of K with coefficient group G is denoted Cq(K, G)
and defined to be HOln(Cq(K, Z), G).

The following proposition states that the cochain and chain groups are
isomorphic to direct sums and direct products of the coefficient group indexed
by the cells of the decomposition.

PROPOSITION 5.1.3. Let X and K be as above. If {ed is the collection of
q-cells in K, then Cq(K, G) is isomorphic to the direct sum EBH2(ei) = EBG

i

and Cq(K, G) is isomorphic to the direct product TIH2(ei) = TIG.
i

PROOF. That H2(Kq - Kq-l) is isomorphic to the direct sum EBH2(ei)
i

follows from the direct sum theorem for cohomology with compact supports.
The equality of EBH2(ei) and EBG follows from

H~1 (ei) = {o n =1= q
G n = q

The rest of the proposition follows from properties of Hom. D

DEFINITION 5.1.4. The coboundary operator 6q: Cq(K, G) -t Cq+l(K, G)
is taken to be the operator 6(I(q I-Kq-l,Kq_Kq-I): H2(I{q-Kq-l) -t Hg+1(Kq+l­
Kq). The boundary operator 8q: Cq(K, G) -t Cq-1(K, G) is defined by 8(¢) =
¢6q-l.

The operator used in the above definition exists for cohomology with com­
pact supports since J(q - Kq-l is a closed subset of J(q+l - J(q-l with open
complement Kq+l - J(q.

PROPOSITION 5.1.5. Let J( = {I{i} be a cellular decomposition of a locally
compact Hausd07tJ space X. If Hn(K, G) is the n-th cohomology group of the
cochain complex {cq(K,G),6q}, then Hn(K,G) is isomorphic to H~t(X,G).

Similarly, if Hn(J(, G) is the n-th homology group of the chain complex
{Cq(K,G),8q}, then Hn(J(,G) is isomorphic to Hn (X, G).
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In combination with proposition 5.1. 3, this last proposition tells us that
we can compute the homology and cohomology of our space X directly from
the cells when vve have a cellular decomposition. The final observation we
should make is that when X is a simplicial complex, these homology groups
can be computed analogously to the simplicial homology groups of X, with the
only difference being that here we allow infinite chains of simplices, since our
chain groups are direct products over simplices. That the boundary operator
behaves as it does for simplicial homology can be seen from the definitions.
In the context of simplicial complexes, these homology groups are typically
denoted by H;( eX) and called the locally-finite homology groups of X.

5.2. Coarse Maps

In this section, we discuss the sorts of maps and notions from coarse ge­
ometry that will be needed later. The reader is referred to [21] and [20 j for
these definitions, theorems, and proofs, and for further discussion of coarse
geometry.

DEFINITION 5.2.1. Let X and Y be proper metric spaces. A function
f: X ---t Y is Lipschitz if there is a constant C such that cly(f(x), f(x l)) :s:
C· clx(x, Xl) for all X, Xl EX. vVe say that f is C-Lipschitz when we know the
constant to be C.

DEFINITION 5.2.2. Let X and Y be proper metric spaces. A function
f: X ---t Y is called a coarse map if

(a) for any bounded subset B ~ Y, the inverse image f-l(B) is bounded
in X, and

(b) for all R > 0, there is an S > 0 such that cl(Xl, :1;2) < R implies
cl(f(Xl) , f(X2)) < S for all Xl, X2 E X.

DEFINITION 5.2.3. Let X and Y be proper metric spaces. Two maps
f: X ---t Y and g: X ---t Yare called close if sup{cl(f(:r) , g(x))} is finite.

xEX

DEFINITION 5.2.4. A coarse map f: X ---t Y is a coarse equivalence if
there is a coarse map g: Y ---t X such that the compositions 9 0 f and fog
are close to the identity maps Ix and l y respectively. The map 9 is called a
coarse inverse of f.

EXAMPLE 5.2.5. Let i: Z ---t IR. be the inclusion map, and let j: IR. ---t Z
be the map which sends T E IR. to the greatest integer less than or equal to T.

Both i and j are coarse maps and each is a coarse equivalence.

EXAMPLE 5.2.6. Let a: IR. ---t IR.+ = [0,00) be defined by f(x) = lxi, and
let i: IR.+ ---t IR. be the inclusion map. Both a and i are coarse maps, but they
are not coarse equivalences. In fact, there is no coarse equivalence between IR.
and IR.+.
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DEFINITION 5.2.7. Let A ~ X. We say that A is coarsely dense in X if
there is some fixed finite distance R > 0 such that for all x EX, there is some
a E A with cl(x, a) < R.

LEMMA 5.2.8. Let A ~ X. The inclusion map i: A - X is a coarse
equivalence if ancl only if A is coarsely clense in X.

PROOF. Suppose i is a coarse equivalence. Then, i has a coarse inverse
g: X - A. We have that i 0 9 must be close to the identity on X, and hence
there is some uniform bound S such that cl(g(x), x) = cl(i 0 g(x), x) < S for all
x EX. But this implies that every x E X is at most S away from A. So, A is
coarsely dense in X.

Conversely, suppose A is coarsely dense in X. Then we can construct a
coarse inverse for i as follows. Since A is coarsely dense in X, there is some
R> 0 such that for each x E X, there is some ax E A with cl(x, ax) < R. vVe
select one such ax for each x E X - A. Vie then define the map g: X - A by

{

X
g(x) =

Yx

if x E A

if x E X - A

It is easily seen that 9 is coarse. We have that go'i = idA already, so they are
close. To see that i 0 9 is close to idx , note that cl(x,g(x)) < R for all x E X.
Hence, 9 is a coarse inverse for i, and so i is a coarse equivalence. 0

DEFINITION 5.2.9. Let X and Y be proper metric spaces, and let f, g: X ­
Y be coarse maps. A Lipschitz homotopy from f to 9 is a coarse map
H: X x IR+ - Y X IR+ of the form H(x, t) = (h(x, t) t) for some map h, such
that

(a) f = h(x,O) and 9 = limh(x,t) = h(x,oo),
t-.oo

(b) for each bounded B ~ X, there is some t B E IR+ such that h(x, t) is
constantly g(x) for t 2: tB and x E B, and

(c) for each bounded B ~ Y, the set {x E X I h(x, t) E B for some t E
IR+} is bounded.

If f and 9 can be linked by a chain of Lipschitz homotopies, we say that f and
9 are Lipschitz homotopic.

A straightforward translation of the usual notion of homotopy to a coarse
setting suggests the following definition.

DEFINITION 5.2.10. A coarse homotopy bet\veen two coarse maps f, g: X ­
Y between proper metric spaces is a coarse map H: X x [0,1] - Y such that
H(x,O) = f(x) and H(x, 1) = g(x) for all x E X.

However, it is not hard to see that such a coarse homotopy exists iff f
and 9 are close. In particular, the coarseness of H implies that the distance
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between H(x,O) = f(x) and H(x,l) = g(x) is uniformly bounded since the
distance from (x,O) to (x,I) is always 1.

5.3. Coarse Homology

In this section, we will define coarse homology for proper metric spaces.
Its definition requires the use of a homology theory which is defined on the
category of locally compact spaces and proper maps. Here we have chosen
to use homology based on infinite chains, which is locally finite homology on
simplicial complexes. The exposition that follows (except for the discussion of
the more general Mayer-Vietoris sequence and the coarse excision theorem) is
found in several lecture notes and texts by Roe [20, 19, 21], an article by Roe
and Higson [10], and an article and its correction by Mitchener [16, 17]. The
sources variously work in metric spaces and the more general class of coarse
spaces and so some notions have been developed below in less generality than
that in which they can be treated.

DEFINITION 5.3.1. Let X be a proper metric space, and let {Ui,Pi} be
an anti-Cech system for X. Let {JCi ,p;} be the associated system of nerves.
The n-th coarse homology group HCn(X) of X based on locally finite
homology is defined by the following direct limit, where 'i varies and the maps
between homology groups are induced by the maps pT.

If A ~ X, then the n-th relative coarse homology group HCn(X, A)
is defined to be the following direct limit.

vVe will see below that this definition does not depend on the choice of anti­
Cech system. The fact that coarse homology satisfies the Eilenberg-Steenrod
exactness and dimension axioms follows easily from the corresponding prop­
erties for homology based on infinite chains.

PROPOSITION 5.3.2. Let f: X -t Y be a coarse map. Then f induces a
homomorphism f*: HCn(X) -t HCn(Y) for all n.

PROOF. Let {Ui,pd and {Vj,qj} be anti-Cech systems for X and Y re­
spectively. Since the Lebesgue numbers of the Vj tend to infinity, f is coarse,
and the open sets in each Ui are uniformly bounded, we have that for each i
there is a ji such that if U E Ui , then f (U) is contained in some open set V
in Vj . Hence, for each i there is a proper map fi: JC(Ui ) -t JC(VjJ for some Ji.
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'vVe obtain the following commutative diagram for each i

where q* is induced by a composition of refinement maps starting from Vji and
ending at VjH1 . After taking locally finite homology groups, induced maps
on locally finite homology, and direct limits, we obtain the desired induced
map f*. If fi and fi are different choices of maps, then Ji(U) and fi(U) will
eventually be contained in a common element of some Un "vith n ~ i, so this
f* is independent of the choices made in defining the fi. 0

It can be seen from the construction of the induced maps above and the
analogous properties of induced maps for homology based on infinite chains
that this assignment of induced maps is functorial:

COROLLARY 5.3.3. FOT coaTse maps f: X ~ Y and g: Y ~ Z, we have
(g1)* = g*f*·

The identity map idx : X ~ X induces the identity homomorphism.

COROLLARY 5.3.4. The definition of HCn(X) is independent up to iso­
morphism of the choice of anti-Cech system for X.

PROOF. Let {Ui,Pi} and {Vi,qd be two anti-Cech systems for X. The
identity map idx : X ~ X induces a homomorphism fu from the coarse ho­
mology group defined using {Ui,Pi} to the one defined using {Vi, qi} and a ho­
momorphism fv the reverse way. Since the construction of these induced homo­
morphisms does not depend on the choice of maps K.(Ui) ~ K.(VjJ ~ K.(Ukj ),

we know that after taking direct limits, their composition must yield the iden­
tity map. Hence, the composition fv 0 fu is the identity map on the coarse
homology group defined using {Ui,Pi}. Similarly, fu 0 fv is the identity map.
So, the maps fu and fv are isomorphisms between the coarse homology groups
defined using the different anti-Cech systems. 0

COROLLARY 5.3.5. If f andg aTe close mapsfTOmX to Y, then the induced
homomorphisms f* and g* aTe the same.

PROOF. Since f and 9 are close and the open sets in any Ui are uniformally
bounded by some Ri, there is some Si > a such that for every U E Ui , the
union of the images f(U)Ug(U) is contained with a ball of radius Si' Since the
Lebesgue numbers of the coverings in an anti-Cech sequence must eventually
exceed Si, we have that for each i, there is a ]i such that fi and gi in the
construction of the induced maps can be selected as the same map K.(Ui ) ~

K.(Vj;). Thus, the induced maps on coarse homology groups are the same. 0
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In particular, if X and Yare coarsely equivalent spaces, then there are
maps J and 9 such that Jog and go J are close to the respective identity
maps, and hence induce identity maps on coarse homology groups. Thus, X
and Y have isomorphic coarse homology.

Before we state and prove the existence of a ~lIayer-Vietoris sequence for
coarse homology, we need to define a property that helps to identify the inter­
section term in the sequence.

DEFINITION 5.3.6. Let A and B be subsets of a proper metric space X.
vVe say that An B is coarsely dense in thickened intersections of A and
B in X if for all R > 0, An B is coarsely dense in DR(A) n DR(B), where
DR(A) = {x E X I d(x, A) < R} and similarly for DR(B).

DEFINITION 5.3.7. Let A and B be subsets of a proper metric space X.
vVe say that (X; A, B) is a coarsely excisive decomposition of X if

(a) AU B = X, and
(b) A n B is coarsely dense in thickened intersections of A and B in X.

The following lemma will be used.

LEMfvIA 5.3.8. Let A ~ X, let U be an open coveT oj X and let K be the
nerve oJU. Let UnA be the open coveT {U n A I U E U} oj A, and let H. be
its neTve. Then KIA and H. aTe isomorphic as simplicial complexes.

PROOF. vVe have that {Uo, , U7J is a simplex in K IA iff (n Ui ) n A =
n(UinA) is nonempty. So, {Uo, ,Un} E KIA if and only if {UonA, . .. ,Unn
A} E H.. The assignment {Uo, ,Un} 1---7 {Uo n A, ... , Un n A} thus gives a
bijective map which sends simplices to simplices. 0

THEOREM 5.3.9 (Coarse Mayer-Vietoris Sequence). Let A and B be subsets
oj the proper metric space X. IJ (X; A, B) is a coarsely excisive decomposition
oj X, then the Jollowing is a long exact sequence.

PROOF. The following proof is based on the one appearing in [16], which
seems to have overlooked some details. The idea of the proof is to use the
t-./fayer-Vietoris sequence for locally finite homology and take a direct limit.

Let {UiPd be an anti-Cech system for X, and let {Ki,pr} be the associated
system of nerves. For each i E I, let Ai = K lA, and let H = K lB.

vVe first verify that Ki = Ai U Hi for each i. If this were not the case, there
would exist a simplex {Uo, ... ,Un} E K i such that Uon ... n Un is nonempty,
yet both Uon· .. n Un n A and Uon· .. n Un n B are empty. Let x be an element
in Uon· .. n Un' Then x is not in AU B, which contradicts x being an element
of X = Au B.
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Now, for each i E I, we have K.i = Ai UBi' Since Ai and Bi are closed sub­
sets of K.i , by (j), \ve have a Mayer-Vietoris sequence of locally-finite homology
groups for each i E I .

. . . -+ Hlf(A· n B·) -+ Hlf(A·) ffi Hlf(B) -+ Hlf(K.) -+ HI! (A n 8-) -+pt·! P t IV P t P t p-l t t

When we take the direct limit of these sequences we obtain a corresponding
sequence for coarse homology. All that is left to show is that the direct limit
of the terms in these sequences give the claimed coarse homology groups.

We want to show that the direct limit of H~! (Ai nBi ) is the coarse homology
of An B. vVe do so by showing both that simplices in each Ai n Bi eventually
map to simplices in one of the nerves we obtain if we view each Uj as a covering
of A n B, and by showing that the converse of this holds. The elements
of Ai n Bi are simplices {Uo, ... ,Un} of K.·i such that nUa has a nontrivial
intersection with each of A and B. Thus, if nUa nAn B is nonempty, then
{Uo, . .. ,Un} E Ai n Bi already. Conversely, we will show that the refinement
maps eventually send every simplex of AinBi to a simplex {Va, ... , Vm } in some
K.j which satisfies nV13nAnB =1= 0. Let a EnUanA and let bEn UanB. The
diameters of the Ua are universally bounded by some Zi > 0 which depends
only on the index i of the nerve, so the distance between a and b is bounded
by Zi. Thus,

Since An B is a coarse intersection, DzJA) n Dz;(B) ~ Ds;(A n B) for some
Si > O. This establishes that for every simplex CJ = {Uo, . .. U,J in Ai n Hi,
there is some x E nUo: which is at most Si far from An B. It follows that
for any simplex CJ in Ai n Bi , there is a j > i for which the PJ-l ... P: (CJ) E K.j

is a simplex {VO, . .. ,V';n} such that nVi nontrivially intersects An B. This
ensures that the direct limit of H~f(Ai n Bi ) is the coarse homology of An B.

It follows from lemma 5.3.8 that li!r H~f(AJ = HC'p(A) and li!r H~f(Hi) =
HC'p(B). 0

In the coarse category, Mayer-Vietoris sequences exist for slightly more
general choices of A, B ~ X. It is not necessary that A U B = X; we only
need that the inclusion of Au B into X is a coarse equivalence. It is also not
necessary that A and B actually intersect; we only need that some thickenings
of A and B have an intersection \\ hich is dense in thicker intersections. This
leads us to the following definition.

DEFINITION 5.3.10. Let A and B be subsets of a proper metric space X.
vVe say that A and B coarsely intersect if there exists some T 2: 0 such that
for all R > T, D,.(A) n D,.(B) is coarsely dense in DR(A) n DR(B). Such a set
D,.(A) n DI'(B) is called a coarse intersection for A and B in X.
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Tote that the above definition is equivalent to the existence of thickenings
A' = Dr[(A) of A and B' = D1"2(B) such that A' n B' is coarsely dense in
thickened intersections of A' and B' in X.

The defining property of a usual intersection An B is that it is the smallest
set I such that if x E A and x E B, then x E I. Here we have defined coarse
intersections of A and B to be sets I where for every R there is an 8 such
that if x E DR(A) and x E DR(B), then x E Ds(I). This property is the key
feature that allows us to identify the intersection term in the coarse Nlayer­
Vietoris sequence. From the perspective of coarse homology, it appears that
the correct notion of intersection is obtained by relaxing set membership to
uniform closeness.

It is easy to see that if I(r) = Dr(A) n Dr(B) is a coarse intersection,
then so is I(r') = D1"I(A) n Drl(B) for every 1" > 1', since I(r) ~ I(r'). The
following proposition implies that all of these coarse intersections are unique
up to coarse equivalence.

PROPOSITION 5.3.11. Let A and B be subsets of a space X, and let l' 2:: O.
Then the following are equivalent:

(i) Dr(A) n Dr(B) is a coarse intersection for A and B in X.
(ii) For every 1" > T, D1·(A) n D1"(B) is coarsely dense in D1.1(A) n Dr,(B).

(iii) For every 1" > 1', the inclusion map i: D1"(A) n Dr(B) ---7 Drl(A) n
Drl(B) is a coarse equivalence.

PROOF. 'vVe have (i) ~ (ii) trivially from the definition of coarse
intersection. A. imple application of lemma 5.2.8 gives us (ii) ~ (iii). 0

In the following, we will exhibit examples and non-examples of coarse in­
tersections. We will also give examples of sets I which satisfy 'VR > 0,38 >
0, DR(A) n DR(B) ~ Ds(I) but are not coarse intersections and are not
coarsely equivalent to coarse intersections of A and B. Satisfying 38 >
0, DR(A) n DR(B) ~ Ds(I) is the definition of being coarsely dense if I ~

DR(A) n DR(B). Hence, these examples will show that we only have coarse
equivalence of coarse intersections because we have required them to be of the
form D1"(A) n Dr(B).

EXMvIPLE 5.3.12. Consider the subsets A = (-00,-1] and B = [1,(0) of

(a) Do(A) n Do(B) = An B = (/) is not a coarse intersection of A and B;
for example,(/) is not coarsely equivalent to D 2 (A) n D 2 (B) = [-1,1].

(b) D1(A) n D1(B) = {O} is a coarse intersection. Intersections of any
further thickenings of A and B are intervals, all of which contain {O}
as a coarsely dense subset.
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(0, -n)

(0, n)1-

(c) For every l' 2: 1, DT(A)nDr(B) = [-7'+ 1, 1'-1] is a coarse intersection
and the inclusion map i: {a} -7 [-1' + 1, l' - 1] is a coarse equivalence
with coarse inverse the amap.

(d) The set lR satisfies VR > 0,35 > 0, DR(A) n DR(B) ~ Ds(lR), but it
is not of the form Dr(A) n DT(B), and is not coarsely equivalent to
sets of the form DT(A) n D,.(B).

(e) Every nonempty subset Y of lR satisfies VR > 0,35 > 0, DR(A) n
DR(B) ~ Ds(Y).

Note that in the previous example, An B = 0, and yet A and B coarsely
intersect. The following is an example where there is no coarse intersection
of A and B, despite the fact that An B =1= 0. This example is essentially the
same as that given as example 4.6 in [7], where it serves as a space lacking a
bounded fixed set. Both there and here, the space fails the desired property
because a sequence of subsets fails to stabilize under coarse equivalence.

EXAiVIPLE 5.3.13. For each positive integer n, let An = ([0,00) X {-n}) U
({a} x [-n, OJ) and let Bn = ([0,00) x {n}) U ({a} x [O,nJ), and define X n ~

lR2 to be An U Bn·
(0, n)1---
(0,0)

(0,0)

1_--
(0, -n)

Let XI = U (Xn X {n}) ~ lR3
. Finally, construct X by rotating each embedded

X n in XI by n radians about the point (0,0, n). late that if n =1= m, then n-m
cannot be an integer multiple of 21f. Hence each embedded X n is rotated by
a unique angle. Let A ~ X be the union over all of the rotated An. Define
B ~ X similarly. This construction ensures that no DT(A) n DT(B) is a coarse
intersection, even though An B = (0, 0) X Z+. To see this, note that if h is the
greatest integer less than l' + 1, then DT+1(A) n Dr+1(B) contains elements in
the plane z = h which are arbitrarily far away from Dr(A) n DT(B).

vVe now give version of the Mayer-Vietoris sequence for the more general
case.

THEOREi'v[ A (Coarse Mayer-Vietoris). Let A and B be subsets of the proper
metric space X. If A U B is coarsely equivalent to X by inclusion and if A
and B coarsely intersect in X, then there is a long exact sequence

... -7 HCp(I) -7 HCp(A) ffi HCp(B) -7 HCp(X) -7 HCp_1(I) -7 ...

for every coarse intersection I of A and B in X.
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PROOF. Since AUB is coarsely equivalent to X by inclusion, it is coarsely
dense in X and we have that for some 1'1, X = Dr) (AUB) = Drl (A) UDrl (B).
Since A and B coarsely intersect, there is some 1'2 such that D1'2 (A) n Dr2 (B) is
coarsely dense in thickened intersections. Hence, taking l' to be the larger of 1'1

and 1'2, we have that (X; Dr(A), Dr(B)) is a coarsely excisive decomposition.
So, we have that the Mayer-Vietoris sequence

... --7 HCp(Dr(A) n Dr(B)) --7 HCp(Dr(A)) EB HCp(Dr(B)) --7

HCp(X) --7 HCp_1(A n B) --7 ...

is exact. Tow, since A is coarsely equivalent to Dr(A), we have that HCp(Dr(A))
is isomorphic to HCp(A). Similarly, HCp(Dr(B)) is isomorphic to HCp(B).
Finally, D1'(A) nDr(B) is coarsely equivalent to every other coarse intersection
I of A and B in X, so HCp(Dr(A) n Dr(B)) is isomorphic to HCp(I). 0

The following example shows how coarse homology can fail to satisfy the
Eilenb rg-Steenrod excision axiom.

EXAi'vIPLE 5.3.14 (Failure of the Eilenberg-Steenrod Excision Axiom). Let
X ~ IR2 be the union of {O, I} x [0, (0) and {O} x [0,1J. Let A ~ X be the
union of {I} x [0,(0) and {O} x [0,1], and let E be the subset {I} x [0,(0).
We have that the closure of E is contained in the interior of A. We will show
that HC1(X - E, A - E) is not isomorphic to HC1(X, A) by calculation.

First we will construct a sequence of open covers for X. For each integer
i 2:: 2, define Fi to be the collection {Bi(T,O) I l' E iZ} of open balls in
IR2

. For example, F 2 contains open balls of radius 2 which are centered at
(2n,0) for integers n. Note that each ball Bi(i· n, 0) in F i intersects only with
B i (i . (n - 1), 0) and B i (-i . (n + 1), 0) and that their intersections contain points
in A. All three-way intersection nBi(i· z, 0) is empty. Finally, each ball in :Fi

is contained in a ball in F 2i .

For each i 2:: 1, define Ui to be {B n X I B E F2i}. Each Ui is a locally
finite open cover of X, and it is clear that refinement maps Pi can be chosen
so that {Ui , pd is an anti-Cech system. Let {Ki , pr} be the associated system
of nerves.

Now we construct a sequence of open covers for X - E. Simply take Vi
to be {B n (X - E) I B E F 2d. Again, refinement maps qi can be chosen so
that {Vi, qd is an anti-Cech system for X - E. Let {Hi, qr} be the associated
system of nerves. Note that each Hi is homeomorphic to a single ray [0,(0).

First we calculate HC1(X, A). By definition, HC1(X, A) is the direct limit
l~Hinf(Ki-Ki IA). But, every simplex {Uo,Ud inKiisinKi IA since UOnU1

always contains a point in A. Thus, K i - K i IA is empty, and HCi (X, A) is
trivial.

Now we calculate HC1(X - E, A - E). By definition, HC1(X - E, A - E)
is the direct limit l~H~f(Hi'Hi lA-E). The nerve Li consists of a vertex
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(n) for each n E {O, 1,2, . .. } since Bi(i . n, 0) n (X - E) is nonempty, and a
2-simplex (n, n + 1) for each n E {O, 1,2, ... } since Bi(i . n, 0) n Bi(i . (n +
1),0) n (X - E) is nonempty. The subnerve Hi IA-E contains a vertex (n) iff
Bi(i . n, 0) n (X - E) n (A - E) I- 0. But, this only happens when i . n = 0,
since all other B i ( i . n, 0) are too far away from A. Hence Hi IA-E contains
only (0). ow, consider the locally finite I-chain c = 2:: (n, n + 1).

nE{O,1,2, ... }

Taken modulo Hi IA-E, the chain c has no boundary. Since there are no 2­
simplices in Hi, this means that c represents a locally finite homology class,
and in fact it is a representative of the generator of Hi! (Hi, Hi IA-E) ~ Z. It
can be checked that the refinement map Pi sends c to the a I-cycle in H i +1

satisfying analogous properties. Thus, the nontrivial homology persists in the
direct limit and HC1(X - E, A - E) ~ Z.

The failure of the previous example is caused by the existence of elements
in X - E which are uniformly close to E but arbitrarily far away from A - E.
The next proposition shows that we do have excision when such cases are
prevented.

THEOREM B (Coarse Excision). If A, E ~ X are such that E ~ A and for
all R > 0, the1'e is some S > 0 such that DR(E) - E ~ Ds(A - E), then the
inclusion map i : (X - E, A - E) ~ (X, A) induces an isomorphism.

PROOF. Let {UO',PoJ be an anti-Cech system for X, and let {KO',p~} be
the associated system of nerves. For each a, define VO' to be {U n (X - E) I
U E UO'}' and let qO' be the refinement map VO' ~ VO'+l induced by PO" vVe
have that {VO" qO'} is an anti-Cech system for X - E. Let {HO', q~} be the
system of nerves associated to {V0', qO'} .

We want to apply proposition 1.3.7. So, we must check that for each
a, there is some f3 > a and homomorphism hO',f3 which makes the following
diagram commute

H;!(Hf3,Hf3 lA-E)~ H;!(K f3 ,Kf3 IA)
t ~a,{3 t

Qa,{31 ~ Pa,{3\

Hf!(HO',HO' lA-E)~ H:!(KO', KO' IA)

where PO',f3 is the map induced on relative locally finite homology groups by
the composition Pf3-1 ... PO' of refinement maps, and similarly for qO',f3'

Let c be a representative of a relative locally finite homology class c E
H;!(KO',KO' IA)' Then c is of the form (2::0'//) + (2:: Til) with each O'v E
KO' - KO' IA and each T~i E KO' IA· A simplex 0'v E KO' - KO' IA is a finite set
{Uo, .. ·, Un} such that nUj n X I- 0 and nUj n A = 0. This means thatnUj n (A - E) = 0.
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if Uj n E i= 0 for any j

otherwise

If for every simplex (Jv = {Uo, ... , Un} E Ka - Ka fA we have Uj n E = 0
for each j, then we can let Vj = Uj n (X - E) = Uj E Va for each j, and we
will have that each Vj is distinct, nVj n (X - E) i= 0, and nVj n (A - E) = 0.
Thus, {Vo, ... , V:;J = {Uo, ... , Un} is a simplex in H a - H a fA-£. In this
case, we can define ho,o by linear extension of the inclusion map which sends
a simplex (Jv to itself as a simplex in H a - H a fA-E' The diagram above is
obviously commutative, since we have taken fJ = Q.

Suppose that there is a simplex (Jv = {Uo, ... ,Un} E Ka - Ka fA such that
Uj nE i= 0 for some j. We have that nUj n (X - E) is nonempty, since nUj n
X i= 0 but (J v (j. K a fA. Since the diameters of the Uj are uniformly bounded
by some Ra , each of the Uj E (J// is contained in D2Rc•(E). It follows from the
hypotheses of the proposition that there is some fixed Sa > 0 such that each
Uj E (Jv will satisfy Uj ~ D Sa (A - E). Again, since the diameters of the Uj are
uniformly bounded, it is not hard to see that this implies that there is a fixed
Xv E A - E such that d(xv,Uj ) < Sa + R a for each Uj E (JI/' Thus, for some
fixed fJo > Q, the composition of refinement maps P{3-1 ... Pa will send each Uj

to a vertex P{3-1 ... Po (Uj ) which contains Xv E A - E. But this means that
Xv E np{3-1 ... Pa(Uj ). Hence, if {P(3-1'" Pa(UO), ... ,P{3-1 ... Po(Uj )} is still
an n-simplex in K{3, then it is in K{3 fA' Thus, Pa,{3((Jv) is 0 E Hf!(K{3,K{3 fA)
either because P{3-1 ... Pa((J1/) collapses to an m-simplex of K{3 with m :s; n, or
because P{3-1" 'Pa((JI/) is an element of K{3 fA· vVe can now define ha,{3' Note
again that if no Uj E (J 1/ intersects E nontrivially, then (J 1/ is already a simplex
in H a - H a fA-E. We define ho ,{3 by linear extension of the map given by

(Jv = {Uo, ... , Un} f-? {O ( )
qa,{3 (J 1/

vVe will check commutativity of the diagram for relative locally finite homology
classes represented by a single simplex. Commutativity is clear when ha ,{3
coincides with qa,{3. Suppose some Uj does intersect E nontrivially. Then both
ha,{3((JI/) = 0 and Pa,{3((Jv) = 0, so i*ho,{3 = Pa,{3 trivially. If ho.{3i*(c) = 0 for
some c E H:f (Ha,Ha fA-E) represented by a simplex (J, then (J is of the form
{Uo n (X - E), ... ,Un n (X - E)} with each Uj E Ua and np{3-1'" Pa(Uj ) n
(A - E) i= 0. It follows that nq{3-1" ·qo(Uj n (X - E)) n (A - E) i= 0, and
hence qa,{3 maps c to O. So, ha,{3i*(c) = qa,{3(c). Commutativity of the diagram
for other homology classes follows. 0

The following property is stated as an axiom of relative coarse homology in
Mitchener's article, but he gives no construction of relative coarse homology
nor any verification that the axiom holds anywhere.

COROLLARY 5.3.15. If (X; A, E) is a coaTsely excisive decomposition ofX,
then the inclusion maps k1 : (E, AnE) ~ (X, A) and k2 : (A, AnE) ~ (X, E)
induce isomoTphisms,
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PROOF. Let E = X -B. Then X -E = Band A-E = AnB. The result
'will follow from coarse excision if we can verify that VR > 0,38 > 0, (X - E) n
DR(E) ~ Ds(A - E). Let R > 0, and suppose that x E (X - E) n DR(E).
Since X = AU B, we have that E = X - B ~ A. So, x E DR(E) implies that
x E DR(A). Thus, x E B n DR(A). Since An B is a coarse intersection, there
is some fixed 8 such that x E An B = A-E. So, coarse excision applies, and
we have that the map induced by the inclusion k1 : (B, A n B) -t (X, A) is an
isomorphism.

That k2 induces an isomorphism can be checked similarly, letting E
X-A. 0

Coarse homology trivially satisfies the Eilenberg-Steenrod homotopy in­
variance axiom, since there is a coarse map h: X x [0,1] -t Y exactly when
h(x,O) and h(x, 1) are coarsely equivalent. It is apparent that taking a prod­
uct with a compact space is not appropriate for coarse homology. However,
when we use the more general notion of Lipschitz homotopy, we see that coarse
homology satisfies a stronger property.

DEFINITION 5.3.16. A proper metric space X is flasque if it admits a
self-map s: X -t X such that

(a) s is coarsely equivalent to the identity map,
(b) for each compact K ~ X, there is some nK such that for all n ~ nk,

sn(x) n K = 0, and
(c) s is an isometry of X into itself.

The following is proven by a technique known as the Eilenberg swindle;
similar statements and proofs appear variously in the context of K -theory
and C*-algebras, as in [9] page 233. The general idea is that the conditions
required to be flasque ensure that any cycles can be pushed out to infinity by
telescoping sums.

LEi'v[]\!IA 5.3.17. If X is jiasque, then HC,lX) = 0 for all n.

PROPOSITION 5.3.18. If f, g: X -t Yare Lipschitz homotopic, then the
induced maps f* and g* are the same map HCn(X) -t HCn(Y) for all n.

PROOF. Let H(x, t) = (h(x, t), t) be the Lipschitz homotopy between f
and g. Let Z = {(x, t) I 0 :::; t :::; tBl(X)} where tBl(XO) E jR+ is the value
after which h(x, t) is constant in t on the bounded set B1(xo) ~ X. Let
Zo = {(x, t) E Zit = O} and let Zoo = {(x, t) E Zit = tB1(x)} be the
boundary pieces of Z. Projection to the first coordinate gives coarse maps 7fo

and 7f00 from Zo and Zoo respectively to X. Restriction of h gives coarse maps
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which factor through f and 9 respectively. Consider the diagram

where io is inclusion and p is projection such that 7fo = pio, We also have an
analogous map i and diagram for Z such that 7f00 = pioo ' We now argue
that it is sufficient to show that io and i oo induce isomorphisms on coarse
homology groups. Since 7fo is a coarse equivalence, it induces an isomorphism.
If in is an isomorphism, then it follows that p* is an isomorphism, and p* =
7fOi~-1. If i~ is also an isomorphism, then Vle have that p* = 7f~i;:;1 and 7f~ is
an isomorphism as well. Now, p does not have an inverse, but we can define an
inclusion map ]0: X ~ Z by ]0 = i07f0

1 and it follows that ]0 = p*-1. From
this we get that]o = (1l'~i;:;1)-1 = i* 7f;:;1. Hence,

Now we will verify that i ois an isomorphism; the argument for i~ is similar.
Note that Z can be viewed as a subspace of X x IR. Let W_ = {(x, t) It:::; O}
and W+ = {(x, t) I t ~ TB1(x)} be the parts of X x 1R to the left and right of Z.
Then, (X; IIV_, Z u VV+) and (X; W_ u Z, Z U H!+) are both coarsely excisive
decompositions of X. The IIayer-Vietoris sequences for these decompositions
fit into the diagram

1 1
HC((W_ U Z) n (Z U w+)) *'.--- HC(W_ n (Z U w+))

1 1
HC((W_ U Z)) EEl HC(Z U w+) • HC(W_) EB HC(Z U w+)

1 1
HC(X x R) • HC(X x R)

! 1
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where the horizontal arrows are induced by inclusion maps. Now, W_, vV_UZ,
and ZUW+ are all flasque by translation to the left, left, and right respectively.
So, their coarse homology groups are trivial. It follows that the middle and
right vertical arrows in the diagram above are isomorphisms. By the five
lemma, we have that the left vertical arrow is an isomorphism as well. But
l/V_ n (Z U W+) = vV_ n Z = Zo, and (W_ U Z) n (Z U W+) = z, so we have
that i;) : HCn(Zo) ~ HCn(Z) for all n. 0

Thus, coarse homology satisfies Eilenberg-Steenrod axioms 1, 2, 3, 4, 5,
and 7 for proper metric spaces and coarse maps. It inherits the exactness and
dimension axioms from homology based on infinite chains. The one axiom it
fails to satisfy is the Eilenberg-Steenrod version of the excision axiom; the hy­
pothesis requiring that the subset we intend to excise is '\\Tell contained" is not
appropriate for the coarse category. However, we obtain an coarse analogue
of excision when we appropriately modify the hypothesis. The Eilenberg­
Steenrod version of homotopy invariance for coarse homology (where a "homo­
topy" would be a map from X x [0, 1]) is trivially satisfied as a result of close
maps inducing equal maps. Additionally, coarse homology satisfies invariance
under Lipschitz homotopy, which is a more appropriate notion for the coarse
category.

5.4. The Map from Hoo to HC

There is a map from homology based on infinite chains into coarse ho­
mology which is an isomorphism when the space is locally nice. In order to
define this map, we will need the following definition. The development of this
material appears in [10].

DEFINITION 5.4.1. Given a topological space X and an open cover U =
{Ui}iEI of X, a partition of unity of X subordinate to U is a collection
of continuous functions {cPdiEI such that the following hold:

(a) cPi: X ~ [0,1] for all i,
(b) for all :r EX, there is a neighborhood of x where all but finitely many

of the cPi are 0,
(c) for all x EX, the sum of the functions satisfies LcPi(x) = 1, and

iEI
(d) for all i E I, the support of cPi is contained in Ui.

Given a proper metric space X and a sequence of nerves (Ki)iEI coming
from an anti-Cech sequence (Ui)iEI, we can define proper continuous maps
Ii: X ~ Ki as follows. A theorem of A. H. Stone states that any metric space
is paracompact, and it follows that it admits partitions of unity. For each i,
select a partition of unity {cPa} subordinate to Ui = {Un,}. Define the map
Ii by liC'!:) = LcPo:(x)(Uc,) for all x E X. The finitely many Uo: for which
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cP(;:(x) is nonzero define a simplex in Ki, and so the right-hand side of the
equation specifies a point in the nerve. Different choices of partitions of unity
subordinate to Ui give rise to properly homotopic maps "Ii and "I:. Thus, these
maps uniquely induce maps on homology groups 'Yi,*: HI~(X) ~ Hl~(Ki) ~

H~f(Ki) for every p.

DEFINITIO 5.4.2. Given a proper metric space X, the coarsening map
c: Hl~(X) ~ HCp(X) is the map received by taking the direct limit of the
above constructed 'Yi,*: H!:(X) ~ H~f(Ki) over all i.

Stating when the map c is known to be an isomorphism requires the fol­
lowing definitions.

DEFINITION 5.4.3. A metric space X is uniformly contractible if for
each R > 0 there is some S > 0 such that BR (x) is contractible within Bs(x)
for all x EX.

DEFINITION 5.4.4. A path metric space X is a metric simplicial com­
plex if it is a simplicial complex and its metric coincides on each simplex with
the usual spherical metric obtained by regarding 6.n as the set of points of
sn ~ jRn+l with nonnegative coordinates.

Note that any locally finite simplicial complex can be given a complete
metric which makes it a metric simplicial complex.

DEFI ITION 5.4.5. A proper metric space X has bounded coarse geom­
etry if there is some c > 0 such that for all R > 0 there is a C > 0 such that
the maximum number of points in an c-separated subset of any ball of radius
R is at most C.

PROPOSITION 5.4.6. Let X be a complete path metTic space. LetU = {UQ}
be a coveT of X with positive Lebesgue numbeT and consisting of sets with
bounded diameter, and let K be the nerve ofU. Let {cPQ} be a partition of unity
subordinate to U. Then the map T X ~ K defined by 'Y(x) = "'£cPQ(x) (UQ) is

a coaTse equivalence.

LEMMA 5.4.7. Let X be a finite-dimensional metTic simplicial complex and
let Y be uniformly contractible. Let f: X ~ Y be a coaTse map. Then there
is a continuous coarse map g: X ~ Y which is close to f . Moreover, if f is
continuous on a subcomplex X' of X, then we can take 9 = f on X'.

PROOF. The map 9 is constructed by induction on the ·n-skeletons xn of
X. Let go: X' U X O ~ Y be defined by go(x) = f(x). Suppose we have
constructed gi: X' U Xi ~ Y. To construct gi+l : X' U Xi+l, we have to
continuously extend gi to the (n + I)-simplices of X - X'. But, gi is already
defined on the boundary of each (n + I)-simplex 6.. Since f is coarse and
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each simplex in a metric simplicial complex has diameter at most 2, there is a
fixed upper bound R > 0 on the diameter of f (f"::l) for every simplex 6. in X.
Since Y is uniformly contractible, there is some S > 0 such that each f(6.)
contracts in an S-ball. Hence, there is some constant Cf > 0 such that for
each (n + I)-simplex 6., gi fM can be continuously extended across 6. to a
map whose image lies within a radius C ball containing f(86.).

Since X is finite-dimensional, we eventually obtain a map g: X ----7 Y which
is continuous everywhere, and as can be seen by its construction, it coincides
with f on X'uXo and there is a Cf > 0 such that d(g(x),g(x')) < Cf whenever
x E XO is a vertex of a simplex containing x'. Since XO is coarsely dense in a
metric simplicial complex, this means that 9 is close to f. Since 9 is close to
a coarse map, it is also coarse. 0

LEj'vIMA 5.4.8. Let X be a finite-dimensional metric simplicial complex and
let Y be a uniformly contractible space. Then if f, g: X ----7 Yare coarse,
continuous, and close, then they are properly homotopic.

PROOF. As noted before, since f and 9 are close, there is a coarse map
11,: X x [0,1] ----7 Y with 11, fxx{o}= f and 11, fXX{l}= g. We have assumed any
such 11, is continuous on the subcomplex X x {O, I} of X x [0, 1]. So, if we apply
the previous lemma to 11" we obtain a continuous coarse map H: X x [0,1] ----7 Y
which is close to 11" equal to f on X x {O}, and equal to 9 on X x {I}. Hence,
H is a proper homotopy between f and g. 0

COROLLARY 5.4.9. If two uniformly contractible, finite-dimensional metric
simplicial complexes are coarsely equivalent, then they are proper homotopy
equivalent.

PROOF. Suppose X and Yare two such spaces, and suppose f: X ----7 Y
is a coarse equivalence ,vith coarse inverse g. Then f and 9 are each close to
continuous, coarse maps l' and g' respectively. Since 9f is close to the identity,
so is g'1'. Hence, g'1' and idx are coarse, continuous, and close, so they are
properly homotopic. Similarly, l'g' and idy are properly homotopic. 0

Bounded coarse geometry has the following consequences. These allow us
to build an anti-Cech sequence whose nerves never become infinite dimensional.

PROPOSITION 5.4.10. Let X be a space with bounded coarse geometry.
Then X is finite dimensional, and for any R > 0 there is S > 0 such that
X has an open cover U satisfying the following properties.

(a) The Lebesgue number of U is at least R.
(b) U is of finite order. That is, the nerve of U is finite dimensional.
(c) The sets of U have diameter less than S.

vVe can now prove that locally finite homology and coarse homology coin­
cide for certain spaces.
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p=n

p-l=n

PROPOSITIO r 5.4.11. Let X be a uniformly contractible metric sim,plicial
complex with bounded coarse geometry. Then the map c: H~f(X) --+ HCp(X)
is an isomorphism for all p.

PROOF. The idea is to construct an anti-Cech system and use proper ho­
motopy invariance of HOO. V\ e begin with any finite-dimensional cover Ul with
positive Lebesgue number and universally bounded diameter, and let K l be
the nerve of Ul . Define II: X --+ K l by choosing a partition of unity subordi­
nate to U1 and using the formula II (x) = 2:-¢,:x(x) (Ua ). Then, II is a proper

a
continuous map and a coarse equivalence. As a coarse equivalence, it has a
coarse inverse gl: K 1 --+ X. Since Kl is a finite dimensional metric simplicial
complex and X is uniformly contractible, we can assume g1 is continuous as
well. Then gIll is a coarse, continuous map which is close to idx , and so gIll
and idx are proper homotopic. So, g1 is a left proper homotopy inverse for
II. Similarly, ftg1 is close to idKI · We do not know whether K1 is uniformly
contractible, so we do not know whether g1 is a right inverse. However, since
flg1 does not send points arbitrarily far away, we can find a second finite­
dimensional cover U2 with Lebesgue number exceeding the diameter of sets in
Ul and with universally bounded sets, and a refinement map can be selected
so that its induced map h: K2 --+ Kl is properly homotopic to hlIg1 by a
linear homotopy. Continuing on constructing an anti-Cech system and nerves
in this fashion leads to the following diagram.

X

f<j~
K l --'.>- K2 --'.>- . • • --'.>- Ki --'.>- • . .

12 13 Ii-I Ii

The diagram clearly commutes if we let the diagonal lines be hi: X --+ K i

defined by hi = Ii' .. II· Moreover, for each i we have that fi is continuous,
hi has a left proper homotopy inverse gi, and fi+1 and hHlgi are properly
homotopic. It follows from the proper homotopy invariance of HCO that the
direct limit of the induced maps (hi)*: Hlf(X) --+ HIf(Ki) is an isomorphism
H1f(X) --+ HC(X). 0

Noting that jRn is coarsely equivalent to a uniformly contractible met­
ric simplicial complex with bounded coarse geometry, we have HCp(jRn) CC:!

H~f(jRn).

COROLLARY 5.4.12. The coarse homology ofjRn for n ~ a is given by

H Cp(Ill.") ~ {~
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5.5. Relations between Coarse Homology and End Homology

End homology is essentially a version of homology based on infinite chains
which disregards local features of the space. Since coarse homology is also
defined using homology based on infinite chains (as locally finite homology)
and also disregards local features, one might suspect that there is a relation
between coarse and end homology. In this section, we explore this relation.

Recall that we have the following long exact sequence

... -+ H1~(X) -+ H::(X) -+ H1~(X) -+ H~_l(X) -+ ...

The proposition below shows that in dimensions greater than 0, homology with
compact supports cannot distinguish between a uniformly contractible proper
metric space and a contractible space. That is, H~ is a for n > aand so, given
the exact sequence above, H n and H~ coincide for n > 1.

PROPOSITION 5.5.1. If X is a uniformly contmctible pTOper metric space,
then

HC(X G) = {a n > a
n' G n=O

PROOF. By definition, H~(X) = 1~1 H~(Y) where Y is compact in X.
Let (YO.)o-EI be the collection of compact sets in X indexed by some set I. Let
c be an element of H~(X) represented by some c E H1c::'(Yo-).

Since X is a metric space and Yo- is compact in X, there is some R > a
such that Yo is contained in some ball B R of radius R. Since X is uniformly
contractible, there is some S > a such that B R is contractible within a ball
B s of radius S. Since X is proper, the closure of Bs is a compact set yo.
Now, Yo- ~ B R ~ Bs ~ YO and BR is contractible in Bs , so Yo- is contractible
in Ye. If n > 0, it follows that the image of c is in the same homology class
as a in H1c::'(X). Hence c A.J a in the direct limit, and so c = 0 in H1;(X). If
n = 0, we can select a base point Xo and use uniform contractibility on the
ball containing Xo and the support of c to sho\ov that c is in the same homology
class as a p-function defined by p(xo) = 9 E G and p(x) = a for all x =1= Xo in
X. In this case, it is apparent that the direct limit gives the same homology
group as that of a point. 0

COROLLARY 5.5.2. If X is a uniformly contmctible proper metric space,
then H':'(X) ~ H~(X) for n > 1.

EXAiviPLE 5.5.3. As a counterexample for the case n = 1, consider the
ray 1R+ = [0,00). This is a uniformly contractible proper noncompact metric
space. vVe have Hf(IR+) = 0, but Hf(IR+) = Z since we can exhaust 1R+
by the sequence of compact subsets [0, n] and each of Ho(lR+ - [0, n]) is Z.
The problem here is that the boundary of an infinite I-chain can be compact
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despite the nice properties of our space, so He may treat them as cycles when
Hcc does not.

As a counterexample for the case n = 0, take any compact space. vVe have
Hgo(X) = Hg(X) nontrivial, but Ho(X) trivial.

LE:VIMA 5.5.4. If X is a simplicial complex and every vertex in X is the
boundary of some infinite i-chain, then H6!(X) = Ho(X) = O.

PROOF. A cycle in H6! (X) is a potentially infinite sum of vertices Vi' Each
Vi is the boundary of some Wi· So, L: Vi is the boundary of L: Wi. Hence, all
cycles in H6! (X) are in the same class as O. The map induced by projection
on chain complexes is a surjection H6! (X) ~ Ho(X) in dimension 0, so we
have Ho(X) as well. 0

LEMMA 5.5.5. If X is a uniformly contractible proper metric simplicial
complex which is noncompact, then every vertex in X is the boundary of some
infinite i-chain.

PROOF. Let Vo be a vertex in X. Since X is noncompact, we can find an
infinite sequence (vo, VI,"') such that the distance d(vo, Vi) ~ i. Since X is
uniformly contractible there is a finite I-chain Wi with boundary Vi+l - Vi for
each i. Take W to be the I-chain which is the infinite sum over the Wi. Then
ow is a telescoping sum in which all vertices cancel except vo. 0

As a result, ,ve get isomorphism in dimension 0, but this is not very inter­
esting, since both groups are trivial.

Given 5.4.11, we now easily get the following.

COROLLARY 5.5.6. If X is a uniformly contractible metric simplicial com­
plex with bounded coarse geometry, then H

1
;(X) ~ HCn(X) for n > 1. If X

is also noncompact, then Ho(X) = HCo(X) = O.

The following example indicates that while the possible failure of Hf and
Hi! to coincide precludes an isomorphism between Hf and HCI , it is clearly
not the only obstruction; contractibility issues are still relevant.

EXAMPLE 5.5.7. Let X <;;;; ]R2 be the union of the lines y = 0 and y = 1.
Then Hf(X) ~ Hf!(X) ~ 71} but HC1(X) ~ Z since X is coarsely equivalent
to lR.

We have inherited our isomorphism from the isomorphism H C ~ Hlf when
it exists. Since end homology disregards homology classes coming from cycles
with compact support, and so disregards much more local information than
locally finite homology, one may wonder whether He ~ HC holds in cases
where the isomorphism HC ~ Hlf fails, in particular, for spaces failing to
be uniformly contractible. We obviously cannot simply drop all contractibil­
ity requirements, as the above example and higher-dimension analogues show.
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However, as the next example shows, HC and He can coincide in some oth­
erwise sufficiently nice spaces where uniform contractibility and HC ~ Hlf
both fail.

EXAMPLE 5.5.8. Let X be the subspace of 1R3 consisting of the plane z = 0
and the top half of a sphere of radius 1 centered at the origin. vVe have that
H~f(X) ~ Z2; locally finite homology detects both the hole at the origin
enclosed by part of the plane and the half-sphere, as well as the hole 'at
infinity" enclosed by the entire plane. However, Hi(X) ~ Z ~ HC2 (X).

We keep our isomorphism despite the lack of uniform contractibility in this
example because the problematic compactly supported chains are confined to
a single compact set. The next sequence of examples provides some general
sense as to what is needed.

EXAMPLE 5.5.9.

(a) Let X be the infinite ladder as in examples 4.4.2 and 4.5.6. We have
already noted that Hf(X) is infinitely generated. However, HCI(X) ~
osince X is coarsely equivalent to IR+.

(b) In general, for any dimension n 2: 1, a space Ln ~ IRn +1 analogous
to the infinite ladder can be constructed by isometrically embedding
sn-l X IR+ into IRn +1 so that the ray {o}n X IR+ passes through the
centers of each sphere, and attaching isometric copies of Dn at each
sn-l X {k} for k E {I, 2, ... }. For each Ln, H1~(Ln) is infinitely
generated and HCn(Ln) ~ O.

(c) For each n 2: 1, define Qn ~ IRn +1 similarly to Ln as above, except only
attach an isometric copy of Dn at each sn-l X {k2 } for k E {I, 2, ... }.
For example, QI is the union of the rays x = -1 and x = 1 for y 2: 0
and the horizontal line segments joining these rays at each y = k2 for
k E {I, 2, ... }. Then H1~(Qn) ~ H~(Ln) and is infinitely generated,
and HCI(Qn) ~ 0, since Qn is coarsely equivalent to IR+.

(d) For each n 2: 1, define En ~ IRn +1 to be {(T' Xl, T' X2, ... ,T' X n, T -1) I
(Xl, . .. , Xn,T - 1) E Qn}. Informally, En is obtained by rescaling Qn
so that it dilates perpendicularly to the axis {o}n x IR+ as one goes
farther in the space. The T - 1 shift is to avoid collapsing sn-l X {O}
to a point. For example, E 1 is the union of the rays y = x-I and
y = -x - 1 for y 2: 0, and the horizontal line segments joining these
rays at each y = n 2 for n E {O, 1,2,' .. }. Then, for each En, H~(En) ~
H1~(Qn) ~ H~(Ln) and is infinitely generated. For En with n =1= 1, we
obtain HCn(En) ~ H~(En) in a natural way. Informally, since an anti­
Cech sequence for En must consist of covers whose sets are uniformly
bounded, the nerves for En always have infinitely many holes, and
these holes correspond in an obvious way to the holes outside of some
compact set in En- So, there is an obvious mapping of cycles in C~(En)
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to corresponding locally finite chains of each nerve. For the case of
E I both Hf and HCI are infinitely generated, but the issued noted
in 5.5.3 prevents a natural isomorphism. As a side note, H;!(En) is
also infinite for all of these spaces, but contains "extra" compactly
supported cycles which do not map to unique cycles on the nerves.

(e) The above comments apply equally well to the space obtained by at­
taching En to its mirror reflection in the direction of {O} n X lR - .

These last examples are of particular interest since they indicate that He
and HC can coincide in a natural way despite a wild failure of uniform con­
tractibility. This strongly suggests that uniform contractibility is an unneces­
sarily stringent condition for the isomorphism He ~ HC.

Informally, we maintain the isomorphism H
7
;(En ) ~ HCn(En ) for n =I- 1

not because all of the holes of the space were contained in a single compact set
as in 5.5.8, but because the holes are controlled in a way that lets end homology
keep up with coarse homology. Any collection of holes that the nerves on X
collapse away after a finite number of steps is eventually svvallowed by a single
compact set in the direct limit definition of end homology. The idea we want
to capture is that for each R > 0, there is some compact set containing every
R-ball that witnesses failure of uniform contractibility. This is formalized in
the following definition.

DEFINITION 5.5.10. X is regimented if for all R > 0, there is some
compact J( ~ X and some S > R such that for all x EX, the ball of radius
R centered at x is either contained in J( or contracts in a the ball of radius S
centered at x.

It is not hard to see the following; just take J( = 0 for each R> O.

PROPOSITION 5.5.11. Let X be a pTOpeT metTic space which is unifoTmly
contmctible, then X is Tegimented.

EXAMPLE 5.5.12.

(a) The spaces L n and Qn above are not regimented: there are too many
balls of radius 2 which do not contract in larger balls.

(b) The spaces En are regimented.
(c) lRn is regimented.
(d) lR2 with the upper half of S2 attached along x2+y2 = 1 is regimented.
(e) If X ~ lR2 is the union of the lines y = 0 and y = 1, then X is not

regimented.
(f) If X ~ lR2 is the union of concentric circles of radius n2 for n E

{1, 2,3, ... }, then X is regimented.

Discussion of the proof of the following theorem is delayed until the end of
t.he next section.
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THEORE~I[ C. Let X be a regimented metric simplicial complex with bounded
coarse geometry. Then H7~(X) ~ HCn(X) fOT n > 1. If in addition IR+
coaTsely embeds into X, then H8(X) ~ HCo(X).

5.6. Coarse End Homology

'When we defined coarse homology, \ve chose to use locally finite homology
because we wanted a homology theory defined for the category of locally com­
pact spaces and proper maps. End homology is also such a theory, and so we
can ask what happens if we repeat the construction of coarse homology using
end homology instead.

DEFINITIO 5.6.1. The coarse end homology of X is the direct limit
H C7~ (X) = l~ H7~ (JCi) where {JCi ,p;} is a system of nerves associated to an

anti-Cech system for X.

A reasonable expectation is that HCe(X) and HC(X) coincide. If the
nerves associated to an anti-Cech system for X eventually become uniformly
contractible at some JCi , then we can apply 5.5.2 and have this isomorphism
on the level of Hff (JCi) and H;t (JCi), at least for n > 1, and it will persist in the
limit. However, even if the nerves do not become uniformly contractible, we
should still expect an isomorphism. End homology is essentially only different
from locally finite homology in that it ignores compact subsets. Since any
compact subset of X is eventually covered by an individual open set in any
anti-Cech system for X and thus becomes trivial from the perspective of coarse
homology, the distinction between Hlf and He seems irrelevant in the limit.

PROPOSITION 5.6.2. Let X be a pTOpeT metTic space. Then HCn(X) c:::!.

HC~(X) fOT n > 1.

PROOF. Let {JCi,p;} be a system of nerves associated to an anti-Cech
system for X. For each i, we have a long exact sequence· .. ----7 H7~(JCi) ----7

H;((JCi) ----7 H~(JCi) ----7 H7~_1(JCi) ----7 •••. vVe argue that 1~H7~(JCi) = 0 for
n > O. Since direct limits preserve exact sequences, the result will follow for
n>1.

Let c E H7~(JCi)' Then, since H7~(JCi) = l~ H7~(P) over P ~ JCi compact,
we have c represented by some c E H7~(P) for some P ~ J( compact. Now,
since X is a metric space, P is bounded, and so eventually is reduced to a
vertex in some JC j with j > i. It follows that c is sent to 0 in H~(JCj)' Since
no c survives the limit, we have l~ H7~(JCi) = 0 for n > O. 0

vVe fail to have an isomorphism in this general of a setting in dimensions 0
and 1. The spaces in 5.5.3 are counterexamples for similar reasons as to why
the isomorphism bet", een He and Hoo fails. The following example shows that
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requiring X to be noncompact does not ensure that the map we have been
working with is an isomorphism in dimension O.

EXAMPLE 5.6.3. Let X = {n2 I n = 1,2,3 ... } as a subspace of JR, and
let Ki be a system of nerves for X. We have that X is a proper metric space
which is noncompact. The group Hbf (Ki ) contains a nonzero homology class
c which is the O-simplex corresponding to an open set containing 1 EX. The
image of c in any Hbf (Kj ) continues to be nonzero, since there is never an
infinite I-chain in any K j . However, the map H~f(X) ~ Ho(X) sends c to O.
Hence there is a nontrivial kernel of H~f (X) ~ Ho(X) which persists in the
direct limit.

This makes it clear that if we want isomorphism in dimension 0, we need
some sort of requirement ensuring that we can push vertices out to infinity.
For these coarse theories, we can do this without forcing the O-dimensional
groups to be trivial.

PROPOSITION 5.6.4. Let X be a proper metric space and S1tppOse that JR+
coarsely embeds into X. Then HCo(X) ~ HCo(X).

PROOF. Let K i be nerves for X. 'lYe know that the map Hbf (Ki ) ~ Ho(Ki )

is surjective, so the map HCo(.X) ~ HCo(X) obtained in the direct limit is
surjective as well. vVe verify that it is injective.

Let c E HCo(X) be such that c f-+ O. vVe will show that cis O. We have
that c is represented by some c E Hbf (K i ) for some nerve K i . Furthermore, C

is represented by a cycle z which can be identified with an element of Co(X)
written as z= +Zc where Z= E Co - Co and Zc E Co' The image of this element
in Co(X) is represented by z=. Since c f-+ 0, it follows that z= must eventually
be in the same equivalence class as 0 in some Ho(Kj ). That is, the image of
z= is eventually the boundary of some Cf chain. This chain can be pulled
back to an element y of Cf, where its boundary in Co will be of the form
z= + z~ with z~ E Co' vVe now argue that Zc - z~ is eventually the boundary of
some element w of C1 as well. This will imply that 8(y + w) = z + Zc and
hence that z is equivalent to O.

Let j be the coarse embedding of JR+ into X. The support of Zc - z~ is a
compact set, and so it is contained inside some ball around j(O). Hence, if we
choose j large enough, we will have that in K j , the support of Zc - z~ maps into
a single vertex corresponding to an open set containing j(O). Furthermore, if
j is large enough, K j contains a I-chain consisting of a sequence of open sets
along j(O), j(I), .... respectively. So, the vertex is the boundary of an infinite
chain. 0

'lYe combine the above two propositions into a single theorem.

THEOREM D. Let X be a proper metric space. Then HCn(X) ~ HC~(X)

jorn> 1. Ij in addition JR+ coarsely embeds into X, then HCo(X) ~ HCo(X).
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EXAMPLE 5.6.5. We amend the earlier example of the subset X = {n2 I
n = 1,2,3, ... } by embedding it in ]R2 and adding a coarse embedding of ]R+.

Let Y = {I, 2, 3, ... } and set W = (X x {O}) U ({O} x Y). If we take nerves
associated to open covers "vith large enough open sets, we can clearly write
the vertex corresponding to an open set containing (0,0) as the boundary of
a chain corresponding to the positive y-axis. However, we still ha\ e nontrivial
O-dimensional homology coming from the x-axis.

So, Hce differs from He on proper metric spaces only in dimensions 0 and
1. This difference is manifested even in simple spaces: for example H C1 (JR+) =
owhile HCf(JR+) = Z and HCo(X) = Z while HCg(X) = 0 for compact X.

v\e now return to Theorem C. Vie will use the following lemmas.

LEIVIMA 5.6.6. Suppose X and Y aTe a pTOpeT metTic spaces and that A ~ X
is compact. If f, g: X ----7 Y aTe maps which aTe continuous and pTOpeT on
X - A and aTe pTOpeT'ly homotopic on X - A, then they induce the same map
He(X) ----7 He(y).

PROOF. The restrictions of f and 9 to X - A clearly induce the same map
He(X - A) ----7 He(y), but He(X - A) is naturally isomorphic to He(x). 0

LElvIMA 5.6.7. Suppose X and Y aTe pTOpeT metTic spaces, and that A ~ X
and B ~ Y aTe compact subsets. If X - A is pTOpeT homotopy equivalent to
Y - B, then Hl~(X) ~ H~(Y) fOT all p.

PROOF. He is proper homotopy invariant, so He(X - A) ~ He(y - B),
but He(x) ~ He(x - A) and He(y) ~ He(y - B). 0

The method of proof for Theorem C is essentially the same as that of 5.4.11.
The following are analogous to the lemmas involved in proving the Htf ~ HC
result.

LEIVIMA 5.6.8. Let X be a finite-dimensional metTic simplicial complex and
let Y be Tegimented. Let f: X ----7 Y be a coaTse map. Then theTe is a coaTse
map g: X ----7 Y which is close to f and is continuous except on some compact
set. MOTeoveT, if f is continuous on a subcomplex X' of X, then we can take
9 = f on X'.

P ROO F. The construction is similar to that of 5.4.7, except that we only
know f(6.) contracts in an S-ball if f(6.) is not contained in a fixed compact
subset K ~ Y. So, we can only extend gi continuously on (i + I)-simplices 6.
which are not contained in the preimage under f of K. Since f is coarse it is
proper, and so f-1(J() is a compact set in X. 0

LElvIIvIA 5.6.9. Let X be a finite-dimensional metTic simplicial complex and
let Y be Tegimented. Then if f, g: X ----7 Y aTe coaTse, continuous, close maps,
then they TestTict to pTOpeT'ly homotopic maps l' and g' on X - K fOT some
compact J( ~ X.
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PROOF. Let R j be the supremum over the diameters of f(6.) for all sim­
plices in X, which exists since X is a metric simplicial complex and f is coarse.
Similarly define Rg . Since Y is regimented, we can choose C ~ Y and S > °to
be the compact set and the radius such that every ball of radius ma.'C{Rj , Rg }

not contained in C is contractible in a ball of radius S. Let X' be the sub­
complex of X which is the complement of the interior of U- 1(C) U g-l(C)).
Let l' and g' be the restrictions of f and 9 to X'. Then l' and g' are coarse,
continuous, close maps, and there is a map h: X' x [0, 1] -7 Y which restricts
to l' and g' on its ends. Since all images of simplices under l' and 9' contract
in a ball of radius S, we can repeat the construction of a continuous map
H: X' x [0,1] -7 Y close to h unchanged from the proof of 5.4.7. The map H
is a proper homotopy between l' and g' on X'. These are not quite the maps
claimed to exist. To finish, we need to restrict X' to the complement of the
compact set f- 1(C) U g-l(C) rather than just its interior, and restrict 1', g',
and H as well. 0

COROLLARY 5.6.10. If X and Y aTe two Tegimentedjinite-dimensional met­
Tic simplicial complexes which aTe coaTsely equivalent, then theTe aTe compact
subsets A ~ X and B ~ Y such that X - A and Y - BaTe pTOpeT homotopy
equivalent.

PROOF. The proof is similar to the corollary of 5.4.8, but care has to be
taken to restrict to complements of compact sets. If f: X -7 Y is a coarse
equivalence with coarse inverse g, then f and 9 are close to coarse maps l'
and g' which are continuous on X - K i and Y - K 2 respectively. Hence, g'l'
is only continuous on X' = X - (1(1 U 1'-1(1(2)) and 1'g' is only continuous
on Y ' = Y - (K2 U g'-l(Kd). Since gf is close to idx , we get that g'1' is
close to idx'. Similarly, 1'g' is close to idy'. The preceding lemma then tells
us that for some other compact subsets ](3 ~ XI and ](4 ~ y l

, the restriction
of g'l' is proper homotopic to idx l _J(3 and the restriction of l'g' is properly
homotopic to id Y '_J(4' This gives a proper homotopy equivalence between
X - (1(1 U 1'-1(1(2) U K 3 ) and Y - (1(2 U g'-l(](d U ](4). 0

The proof of Theorem C was delayed until this section because it is easier
when the isomorphism between Hce and HC is used.

PROOF OF THEOREM C. The proof is analogous to the proof of 5.4.11.
The difference is that in this case, we can only assume that the maps gi are
continuous on the complement of a compact subset of K i . As a result, we only
obtain a proper homotopy between a restriction of gihi to some X - A with
A ~ X compact. So, only some restriction of gi is a left proper homotopy
inverse. Likewise, the maps fi+1 and hi+1gi are not necessarily properly ho­
motopic, only some restrictions of them are. However, because of 5.6.6, this is
sufficient. Vve can make use of this more general proper homotopy invariance
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of He to get that the direct limit of the induced maps (hi )*: He(x) --t He(Ki )

is an isomorphism He(x) --t HCe(X) to coarse end homology. Then, compo­
sition with the isomorphism HCe(X) ~ HC(X) gives us the claimed isomor­
phism. 0

5.7. Coarse Cohomology

There is a corresponding cohomology theory for the coarse category. Sim­
ilarly to coarse homology, it can be developed for general spaces admitting
coarse structures, but we focus here on metric spaces. The material here can
be found in [19] and [21].

DEFINITION 5.7.1. Let E be a subset of XP+l. We say that E is controlled
if the coordinate projections 1fo, ... ,1fp : E --t X are all close to each other.

It is easy to see that if E ~ XP+l is bounded, then it is controlled.

PROPOSITION 5.7.2. Let j: X --t Y be a coarse map. Let E be a controlled
subset oj XP+l and let B be a bounded subset oj yp+l.

(a) The image j(E) = {(J(xa), ... , j(xp)) I (xa, ... , x p) E E} is con­
tTOlled in yP+l.

(b) The preimage j-l(B) = {(xa, ... ,xp) EEl (J(xa), ... ,j(xp)) E B}
is bounded in Xp+l.

DEFINITION 5.7.3. A subset D ~ XP+l is cocontrolled if, for every con­
trolled E ~ Xp+l, the intersection D n E is bounded.

PROPOSITION 5.7.4. Let f: X --t Y be a coarse map. Let D ~ yp+l be
cocontrolled. Then, the preimage j-l(D) is cocontTOlled in XP+l.

PROOF. Let E ~ Xp+l be controlled, and let B = j-l(D) n E. Vve show
that B is bounded. Note that J(B) ~ D n J(E). Since E is controlled, its
image j(E) is controlled. So, D n}(E) is bounded. Thus, J(B) is bounded.
It follows that the preimage j-lj(B) is bounded as well. Since B ~ j-l j(B),
this completes the proof. 0

DEFINITION 5.7.5. Let G be an abelian group. The p-th coarse cochain
group of X with coefficients in G is denoted C(X, G) and is defined to be
the collection of p-functions ¢: Xp+l --t G with cocontrolled support.

Using the usual coboundary map when dealing with p-functions as in the
Alexander-Spanier theories, the collection of coarse cochain groups forms a
cochain complex.

DEFINITION 5.7.6. The n-th coarse cohomology of X with coefficients
in G is denoted Hcn(x, G) and defined to be the n-th cohomology group of
the coarse cochain complex of X
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DEFINITION 5.7.7. The character map c: HCn(.X, G) ~ H:;(X, G) is
defined by sending each equivalence class of a cocycle 1; to a restriction of 1; to
some controlled neighborhood of the diagonal {(x, ... ,x) E xn+l I x EX}.

The following theorem is stated in more generality than that in which we
have been working. Just note that metric spaces are coarse spaces.

THEORElvI 5.7.8. If X is a uniformly contmctible proper coarse space, then
the chamcter map c: HCn(X) ~ H~1(X) is an isomoTphism for all n.

Coarse cohomology can also be expressed using a direct limit construction
involving nerves, but it is not as easily obtained as coarse homology in this
way.

PROPOSITION 5.7.9. Let X be a proper metric space and let {Uj } be a
cofinal sequence in an anti- Cech system for X. Let {K j } be the associated
sequence of nerves. Then we have the following Milnor exact sequence for
X.

5.8. Asymptotic Dimension

Asymptotic dimension is the coarse analog of topological covering climen­
sion. In this section, we describe how it relates to coarse homology. The
definitions, theorems, and proofs below can be found in [21].

DEFINITIO . 5.8.1. Let D ~ X and r > O. vVe say that D is r-disconnected
00

if D is a disjoint union D = U Di where there is a uniform bound on the
0'=0

diameter of each DO' and each DO' is at least distance r from each D(3 for
ee:/= (3.

DEFINITION 5.8.2. We say that X has asymptotic dimension:::; n if
for every r > 0, X can be written as the union of at most n + 1 many r­
disconnected subsets. If X has asymptotic dimension :::; n but not :::; n - 1,
we say that X has asymptotic dimension n and write asdim X = n.

PROPOSITION 5.8.3. If X and Y aTe coarsely equivalent, then asdim X :::; n
iff asdim Y :::; n.

PROOF. Let! be a coarse equivalence between X and Y. Let r' > O. Then
since! is a coarse equivalence, there is some r > 0 such that if cl(Xl, X2) > r,
then d(f(xl), f(x2)) > r' for every Xl, X2 EX. Now, if asdim X :::; n, X
can be written as the union of at most n + 1 many r-disconnected subsets
Db' .. , D n , each being a disjoint union of sets which are at least r away from
each other and 'with diameters uniformly bounded by some 14. Since there are
only finitely many 14, we can select the largest and call it R. Since f is a coarse
map, there is some R' such that d(xI, X2) < R implies cl(f(XI), !(X2)) < R'
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for all Xl, X2 E X. It follows that the images f(Do), ... , f(D n ) are each 1'1­

disconnected, since the sets Di,o: are each at least 1'1 apart and have diameter
uniformly bounded by R I

.

We "vill prove that asdim Y ::; n implies asdim X ::; n. The converse
is similar. Let f: X _____7 Y be a coarse equivalence, and let l' > O. Since f is
coarse, there is some 1'1 > Osuch thatd(xI,X2) < l' implies d(f(xI),f(x2)) < 1'1;

that is, d(f(xd, f(x2)) ~ 1'1 implies d(XI, X2) ~ r. It is easily checked that since
f(X) <:;;; Y, we have asdim f(X) ::; n as well. Thus, f(X) can be written as the
disjoint union of at most n + 1 many rl-disconnected subsets DI, ... , D n , each
being a disjoint union of sets which are at least 1'1 away from each other and
with diameters uniformly bounded by some R~. Since there are only finitely
many R~, we can select the largest and call it RI

. Since f is a coarse equivalence,
there is some R such that d(f(XI), f(x2)) < R I implies d(xl, X2) < R. Thus,
f-I(Dd, ... , f-I(Dn ) are each r-disconnected, since each is a disjoint union
of sets Di,o: which are at least l' apart from each other and uniformly bounded
by R. 0

The following appears as Theorem 9.9 on page 131 of [21].

PROPOSITION 5.8.4. Let X be a proper 17'/'etric space. Then, the following
are equivalent.

(a) X has asymptotic dimension::; n.
(b) For each d > 0, X admits a bounded covering U such that no more

than n + 1 members of U meet any ball of radius d.
(c) X admits an anti- Gech sequence made up of coverings of degree ::;

n+1.
(d) For each c > 0 there is an c -Lipschitz and uniformly cobounded map

from X to an n-dimensional nerve of some simplicial complex, with
the affine metric.

If X is a geodesic space, then these are also equivalent to
(e) For each c > 0 there is an c-Lipschitz and effectively proper map from

X to an n-dimensional nerve of some simplicial complex, with the
intrinsic geodesic metric.

In the above, uniformly cobounded means that there is some R > 0 such
that the preimage of any open star of a vertex in the simplicial complex is
contained in an R-ball. A map is effectively proper if for all R > 0 there is an
S > 0 such that the preimage of any S-ball is contained in some R-ball.

COROLLARY 5.8.5. If q ~ asdimX + 2, then HCC/(X) = HCq(X) = O. If

l~
1

Hg- I(K j) = 0, then q ~ asdim X + 1 is sufficient.

PROOF. Consider the Milnor exact sequence

o _____7l~1 H~-l(Kj) -----7 HCq(X) _____7l~H~(Kj) -----7 0
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Whenever asdim X :::; q - 2, there is an anti-tech sequence for X made up of
coverings of degree:::; q - 1. The nerve of any such cover has simplices only of
dimension:::; q - 2. Hence H~(Kj) = 0 for n > q - 2.

If l~
1

Hg- 1(Kj ) = 0, then asdim X :::; q - 1 is sufficient since we still have

I~Hg(Kj) = 0 by the above argument.
In both cases, the Milnor exact sequence reduces to

o~ 0 ~ H Cq(X) ~ 0~ 0

and the result follows.
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CHAPTER 6

Duality

6.1. Cup and Cap Products

Cohomology with compact supports and Alexander-Spanier cohomology
have a multiplicative structure called the cup product. This extra structure
is lacking from the homology theories we have discussed, and it makes these
cohomology theories more valuable in some cases. For example, by computing
certain cup products, one can distinguish between the homotopy types of some
spaces despite their cohomology and homology groups each being identical.
Here we include the development which appears in [14]. '

The existence of the following homomorphism accounts for the extra struc­
ture in the cohomology theories.

DEFINITION 6.1.1. If K and L are cochain complexes of modules over a
commutative ring R, then we define the natural homomorphism a : HP(K) ®
Hq (L) ~ Hp+q(K ® L) by sending u ® v to the cohomology class in K ® L
which contains the cocycle u' ® v' in for representatives u' of u and v' of v.

This homomorphism a can be exploited to develop a product map on
the level of cohomology groups, for example x : H~(X, Gd ® Hg(X, G2 ) ~

Hg+Cf(X x Y, G1 ®G2 ). By further composition with.6*, where.6: X ~ X x X
is the diagonal map x I-----t (x, x), a product map "'-": H~(X, G1) ® Hg(X, G2 ) ~

Hf+Cf(X, G1 ® G2 ) can be obtained. This map can be shown to result from
the following map on the level of cochains. This allows us to use the following
direct definition rather than the above construction.

DEFINITION 6.1.2. We define the cup product of cochains "'-": <I>P(X) ®
<I>Cf(X) ~ <I>P+Cf(X) by (f "'-" g) (xo, ... ,xp+Cf ) = f(xo, ... , xp) . g(xp, ... ,xp+q).

PROPOSITION 6.1.3. The cup product of cochains is a homomorphism and
satisfies the following properties for any ¢ E <I>P(X, Gd and'l/J E <I>Cf(X, G2 ).

(a) The support I¢ "'-" 'l/JI is contained in the inter-section I¢I n l·ljJl·
(b) It satisfies the coboundary fonnula 6(¢ "'-" 'l/J) = (6¢) "'-" 'l/J + (-l)P¢ "'-"

(6'ljJ) .

The above properties allow one to show that "'-" induces cochain maps on
the appropriate cochain complexes for the different theories, and hence that
it induces homomorphisms on cohomology groups for both theories. The first
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property implies that if at least one of ¢ or 7/; has compact support, then
so does ¢ '-../ 7/;. Hence, '-../ also induces a homomorphism between "mixed"
cohomology groups, which 'vve note for future reference.

DEFINITION 6.1.4. Let X be a locally compact Hausdorff space, and let G1

and G2 be R-modules for a commutative ring R. Then the mixed cup prod­
uct is the induced homomorphism '---": Hbo(X, Gd®Hg(X, Gd ~ Hg+q(X, G1®
G2 ) discussed above.

vVe now turn our attention to cap products. A cap product is a homo­
morphism which joins a (p + q)-chain and a p-cochain to form a q-chain. A
cap product induces a map which mixes homology and cohomology classes.
We will focus in particular on a cap product n : C~q(X, Gd ® C~(X, G2 ) ~

C;(X, G1 ® G2 ) on the chain and cochain groups from homology based on
infinite chains and cohomology with compact supports respectively. This is
the product that is used to obtain the Poincare duality theorems we discuss
below.

DEFINITION 6.1.5. The cap product on chains and cochains is the
map /"""',: CP+q(X, Gd ®C~(X,G2 ) ~ Cq (X, G1 ®G2 ) which sends (J, u) to the
homomorphism f /"""', U E C';(X, G 1 ® G2 ) = Hom(Cg(X, Z), G 1 ® G2 ) defined
by (J /"""', u)(v) = (J ® idc2 )(u '---" v) where '-../ is the mixed cup product.

PROPOSITION 6.1.6. The cap pmduct on chains and cochains is a homo­
morphism and satisfies the following properties.

(a) It satisfies the boundary fonnula a(J /"""', u) = (-l)P ((af /"""', u - f /"""', ou).
(b) If either f E CP+q(X, GI) or u E CP (X, G2 ) has compact support, then

f /"""', u does as well; that is, if f E cg+q(X, Gd or u E cg(X, G2 ),

then f /"""', u E cg(X, G1 ® G2 ).

It follows that /"""', induces four different homomorphisms on the level of
homology and cohomology groups. On compact X, all of these cap products
coincide.

DEFINITION 6.1.7. The cap products on homology and cohomology
are defined are the homomorphisms induced by the cap product on chains and
cochains. vVe give each type of cap product a name here to distinguish them.

Type A: H:'t-q(X, G1 ) ® Hbo(X, G2 ) ~ H';(X, G 1 ® G2 )

Type B: H/~q(X, G 1 ) ® H~(X, G2 ) ~ Hg(X, G1 ® G2 )

Type C: H/;+q(X, Gd ® H~(X, G2 ) ~ Hg(X, G 1 0 G2 )

Type D: H~+q(X, Gd ® Hg(X, G2 ) ~ Hg(X, G1 ® G2 )

We are specifically concerned with types A and B, as these are the ones
which are important for Poincare duality. We summarize the main properties
of these types of cap products below. First, we extend the definition of the
type A cap product.

90



McMaster University - Mathematics M.Sc. Thesis - Matthew Luther

DEFINITION 6.1.8. Let Rand 5 be subsets of a Hausdorff space such
that 5 is locally compact, and R n 5 is a closed subset of 5. Let A be a
closed subset of R. Then we define the extended type A cap product
~: Hp+q((R n 5) - (A n 5)) 0 Hbo(R, A) -7 H';(5) by the formula u ~ v =
i*(u ~ j*v) where i: R n 5 -7 5 and j: (R n 5, An 5) -7 (R, A) are inclusion
maps.

Note that the hypotheses imply that R n 5 is locally compact and A n 5
is a closed subset of R n 5. This extension is chosen so that the following
diagram is commutative.

Hp+q((R n 5) - (A n 5)) 0 H!:o(R, A) H';(5)

id@j'l 1i.

H':+-q ((Rn 5) - (A n 5)) 0 Hbo(Rn 5,A n 5)~ Hq (Rn 5)

This cap product can be shown to result from a generalized cap product on
the chain-cochain level as well.

PROPOSITION 6.1.9. The type A cap product satisfies the following prop­
erties.

(AI) Naturality under proper continuous maps. Let f: (X, A) -7 (Y, B) be
a proper continuous map of locally compact pairs. Then the following
diagram is commutative.

C,:+-q(X, A) 0 C!:o(X, A)~ C';(X)

1#1 1#1 11#
Cl~q(Y, B) 0 Cbo(Y, B)~ C';(Y)

SimilaTly, the above diagram with homology and cohomology groups is
also commutative.

(A2) Naturality under inclusion of open subsets. Let U be an open subset
and A a closed subset of X. Then the following diagram is commuta­
tive.

Cl~q(X, A) 0 C!:o(X, A) C';(X)

ar1 1j# 1a#

C':+-c/U' UnA) 0 C!:o(U, UnA)~ C';(U)

Here, 0'1 is induced by 0', and O'r and 0'# are their algebraic dual
maps. The above diagram with homology and cohomology groups is
also commutative.
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(A3) Existence of a unit. There is a unit 1 E C~JX, Z) such that for
any u E C;;o(X, G), u ~ 1 = u. The class of this unit is a unit
1 E H~,(X, Z).

(A4) Relationship with the boundary operator. Let B be a closed subset
of X, and U = X - B its open complement. Then 8(u ~ v) =
(-1)P(8u) ~ v.

(A5) Relation with the boundary and coboundary operators. Let A and B be
closed subsets of X. Then we have the following commutative diagram.

o 0

1 1
Cl~q(A U B, A) ® C~,(A U B, A)~ C;;o(A U B)

i#li#1 1i#

C~q(X,A) ® Cbo(X, A) , C;;o(X)

J#l j#1 l~
CM-q(X, A U B) ® Cbo(X, A U B) > C;;o(X)

1 1
o 0

Passing to homology yields the following commutative diagram.

Hp+q(X - (A U B)) ® H~(X, A U B) -~) H;;o(X)

e1 01 i'l
Hl~q-l(B - A) ® Hbo-1(A U B, A)~ H;;o(A U B)

If the triad (AUB; A, B) is excisive for Alexander-Spanier cohomology,
we also obtain the following commutative diagram.

H~q(X - (A U B)) 0 Hbo(X, A U B)~ H;;o(X)

e1 01 i'l
H~q_l(B-A)®H~-l(B,AnB) ) H;;o(B)

(A6) Duality. Let (X, A) be a locally compact pair, u E H~lX - A, G1),

x E Hbo(X, A, G2 ), and y E H2(X, G3 ). Then u(x '-..-/ y) = (u ~
x)(y) E G1 ® G2 ® G3 .

PROPOSITION 6.1.10. The type B cap product satisfies the following pTOp­
erties.
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o

(Bl) Naturality undeT pTOpeT continuous maps. Let f: (X, A) -----; (Y, B)
be a continuous pTOpeT map of locally compact paiTs. Let V be an
open subset of Y and let U = f- 1 (V). Then the following diagram is
commutative.

C~(/X,A) 0 ~ji~~ ~ C~(X, U U A)

f# 1 f# r 1f#

C~q(Y,B) 0 g~in ~ C~(Y, V U B)

The above diagram using homology and cohomology gTOUpS is commu­
tative as well.

(B2) Natumlity undeT inclusion of open subsets. Let U and V be open
subsets of X, and let A be closed in X. Then the following diagram
is commutative.

(B3) Existence of a 'unit. If X is compact, then theTe is a unit 1 E CO(X, Z)
such that fOT all u E C~(X, A, G) = C~(X, A, G), u ~ 1 = u. The
class of this unit is a unit 1 E HO(X, Z).

(B4) Relationship with the boundaTy opemtoT. Let A and B be closed subsets
of X. Let U be an open subset of X. Then the following diagram is
commutative.

o

1 . 1
C (A B B) Cg(AUB) ~ J# CC(U ABU B)

p+q U , 0 cg(Un(AUB))~ W~ q U U , U

1 ri# 1
Cl'( )()

C~q(X, B) 0 ch'u) -------~> C~(X, U U B)

1 II 1
C~q(X, A U B) 0 ~ji~~ ------"*. C~(X,U U A U B)

1 1
o 0
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o

Where IIV is cg(A U B, B U (U n A)). The two columns are short
exact sequences. Passing to homology yields the following commutative
diagram.

H':!t-q(X - (A U B)) ® H%(X - U) ~ Hg(X, U U A U B)

a1 l(-l)Pi* . 1a
H':!t-q-l(A - B) ® H%((A U B) - U) --=-. WI~ Hg_1(U U A U B, U U B)

Where v\f l is Hg_1(AUB, BU(UnA)). When (UUAUB; AUB, UUB)
is an excisive triad, the diagram can be further simplified.

(B5) A relation with the boundary and coboundary operators. ffu E Hp+q(U)
and v E H~-l(X -U) for U open in X, then i*(u .--.. 6v) = j*(ou.--.. v),
where i*: Hg(U) --7 Hg(X) and j*: Hg(X - U) --7 Hg(X) are induced
by inclusion, and 0 and 6 are the boundary and coboundary operators
for the pair (X, X - U).

(B6) Another relation with the boundary and coboundary operators. Let U
be open in X and let A be closed in X. Then the following diagram is
commutative.

o

1 . 1
Ci~_q(U, UnA) ® C~(U) ~ cg(U, UnA)~ cg(U U A, A)

ia# 1a 1
C':!t-q(X, A) ® C%(X) ~ cg(X, A)

II 1 1
cgunCp+q(X, A) ® cg(U) --------~) cg(X, U U A)

1 1
o 0

The two columns are short exact sequences. Passing to homology yields
the following commutative diagram.

Hp+q(X - A) ® H~(X - U) -------~) Hg(X, U U A)

p1 1(-1)P+ 18 . 1a

H':!t-q(U - A) ® H~+l(U) • Hg_ 1(U, UnA)~ Hg_ 1(U U A, A)

When (U U A; U, A) is excisive, the diagram can be further simplified.
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(B7) Another naturality condition. Let U be open in X and let A be closed
in X. Then the following diagram is commutative.

H~q(X,A) ® HnX) ) Hg(X, A)

II 1i' 1j.

H'M-q(X, A) ® H~(X - U)~ Hg(X, U U A)

(B8) Duality. Let (X, A) be a locally compact pair, u E H'M-q(X - A, G1),

x E H~(X, G2 ), and y E H~(X, A, G3 ). Then u(x '-' y) = (u ~
x)(y) E G1 ® G2 ® G3 ·

6.2. Poincare Duality

The Poincare duality theorems assert that for certain pairs of homology
and cohomology theories, the q-th homology group of an orientable n-manifold
lVI is isomorphic to the (n - q)-th cohomology group. The isomorphisms we
consider are defined in terms of cap products and a chosen generator /-LJ"I of the
group H':(M, Z) ~ Z. The generator /-LM is called the fundamental homology
class of lVI. Also note that if lVI is an oriented n-manifold and U is a nonempty
open subset, then PtvI,U(/-LtvI) is a fundamental homology class of U.

In the statements below, the homology theory HOO is that of Section 4.2,
HC is that of Section 4.3, the cohomology theory Hc is that of Section 3.2, and
H is that of Section 3.3. vVe include the development which appears in [14].

THEOREM 6.2.1 (Poincare Duality). Let iIII be an oriented n-manifold
without boundary, and let G be an abelian gTOUp. Then the homomorphism
Hi(M, G) --t H1~_q(lVI,G) given by x --t /-LM ~ x is an isomorphism for all q.

If M is paracompact, then the homomoTphism H~(M,G) --t H1~q(JvI,G)
given by x --t /-LM ~ x is an isomorphism.

PROOF. We include the proof of the first part of the theorem. The proof
is broken down into 6 cases depending on the structure of M; the last is the
general case. VVe will make use of the properties (e.g., B2) of cap products
listed in the previous section.

Case 1: Let Jv! = sn. In this case, it suffices to show that the homomor­
phisms /-LA.! ~: H~(S11, G) --t H8(S11, G) and /-Lm ~: H~(sn, G) --t H1~(S11,G)
are isomorphisms. It can be shown that the type B cap product commutes
with the homomorphisms involved in the universal coefficient theorem and ex­
pressing Hoo in terms of integral cochain groups, from which the result follows.

Case 2: Let iVI = jR11. In this case, it suffices to show that /-LM ~: H;:(jR11, G) --t

H8(jR11 , G) is an isomorphism. Consider jR11 as an open subset of its I-point
compactification, which is homeomorphic to S11. Applying property B2 with
X = S11, U = jRn, p = n, q = 0, and A = V = 0 and passing to homology
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groups yields a commutative diagrams where the vertical arrows are the iso­
morphisms Hgo(Slt) -7 Hl~(IRn), H;;(IRn) -7 H;;(sn), and Ho(IRn) -7 Ho(sn).
This reduces this case to case 1.

Case 3: U = U U V where U and V are open sets and suppose that we
have already proved the theorem for U, V, and U n V. The triad (1\11; U, V) is
excisive for both H c and H C

• There are long exact Mayer-Vietoris sequences
for this triad in both Hc and HC. These sequences are joined by the homomor­
phisms obtained by capping with fundamental classes; for example, there is
f-LM .....---: H~(j\lI) -7 H~_p(j\lI). Commutativity of the capping homomorphisms
with the homomorphisms appearing in the I'v'Iayer-Vietoris sequences apart
from the homomorphisms t::.. follows from properties B2. The commutativity
with t::.. can only be verified up to sign, which can be done by considering
the definition of t::.. along with properties B2 for commuting with equality
and e*, B7 for commuting with inclusion maps, and B6 for commuting with
connecting homomorphisms [) and 6. The result for this case then follows
from the Five Lemma applied to the Mayer-Vietoris sequences and the cap­
ping homomorphisms, which are assumed to be isomorphisms for all but the
H~(j\lI) -7 H

1
;_p(M) terms.

Case 4: Let j\lf be the union of a nested family of open subsets {Un,},
and suppose that we have already proved the theorem for each Ua:' Then
H~(j\lf) = l~H%(Ua:) and H1;_p(M) = l~H~_p(UQ)' Furthermore, for each
Ua: ~ U{3 we have the following diagram.

Here, the maps T and i* are induced by inclusion, and the vertical arrows are
the maps obtained by capping with fundamental classes. We have assumed
these vertical arrows are isomorphisms except for HnM) -7 H~_p(M). The
diagram is commutative by property B2. The result follows after taking direct
limits.

Case 5: Let 111 be an open subset of IRn. First, cover !vI with a sequence of
convex open sets Ui . Since each Ui is homeomorphic to IRn, it follows from case
2 that the theorem holds for each Ui . It follows from case 3 and an induction
argument that the theorem holds for each finite union U1 U U2 U ... U Uk. It
then follows from case 4 that the theorem holds for the direct limit of these
unions, which is j\lf.

Case 6: Let 111f be any manifold satisfying the hypotheses of the first part
of the theorem. Let F = {Ua:} be the family of open subsets of 1\If for which
the theorem holds. The family F is partially ordered by subset inclusion, and
every chain has its union as an upper bound. By case 4 and Zorn's lemma,
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there is a maximal open subset U S;;; M for which the theorem holds. Suppose
U =1= NI. Let V be an open subset of /\11 which is not contained in U but which
is homeomorphic to an open subset of jRn. By cases 3 and 5, the theorem
holds for U U V, and so U U V E F. But U ~ U U V, so this contradicts the
maximality of U. 0

THEOREM 6.2.2 (Poincare-Lefschetz Duality). Let NI be an oriented n­
manifold with boundary B, and let G be an abelian group. Then the homo­
morphism Hg(NI, G) ----7 H1~_q(M, B, G) given by x ----7 /-LM ,--... x and the ho­
momorphism Hg (NI - B, G) ----7 H1~_q(JI/I, G) given by y ----7 i* (/-LM ,--... y) are
isomorphisms, where i*: H1~__ q(M - B, G) ----7 H~_q(NI, G) is induced by inclu­
szon.

If M is paracompact, then the homomorphism Hq (NI, B, G) ----7 H~q(NI, G)
given by x ----7 /-LM ,--... x and the homomorphism H:!c(M, G) ----7 Hn _ q( i\;I - B, G)
given by y ----7 /-LA! ,--... i*(y) are isomorphisms, where i*: Hq (NI, G) ----7 H:!c( i\;I ­
B, G) is induced by inclusion.

The end homology and end cohomology theories also satisfy Poincare­
Lefschetz duality. This is shown in [121 for piecewise linear manifolds (note
Laitinen's dimension shift). Laitinen references [181 for general topological
manifolds.

THEOREM 6.2.3. Let NI be an oriented n-manifold without boundary. Then
the following is a commutative diagram with exact rows, where the vertical
arrows are isomo1'phisms induced by taking the cap product with a fundamental
class in H': (NI) .

. . .~ Hg(M) ) H:!c(M) ) Hi(NI) 8) Hg+1(NI)~ ...

1 1 1 1
••• -------?- H1~_q(NI) -------?- H1~q(jVI) -------?- H~_q(jVI)~ H~_q_l(NI) -------?-'"

The results of Chapter 5 allow us to substitute coarse homology groups
for H,~q or H~_q in some conditions. In particular, this implies an isomor­
phism between Hi(M) and HCn _ q( ~;J) under the additional hypotheses of
Theorem C. Investigation into the relations between coarse cohomology and
end cohomology may yield results complementing these.

6.3. Alexander Duality

An important consequence of Poincare duality is Alexander duality. The
Alexander duality theorems provide isomorphisms bet\veen cohomology groups
of open subsets U of an oriented n-manifold ~;J and homology groups of the
complement ~(I - U. vVe include the development which appears in [14].
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THEOREf\/[ 6.3.1 (Alexander Duality for homology and cohomology with
compact support). Let NI be an oriented n-manifold, let A be a closed sub­
set of ~1, let U = !vI - A, and let G be an abelian group. If Hi(i\!I, G) =

Hr1(i\!I, G) = 0, then H~(A, G) ~ H,~_q_l(U, G).

PROOF. The proof establishes a slightly stronger result. Recall from sec­
tions 3.2 and 4.3 that there is an exact cohomology sequence for the pair
(1\1, M - U) and an exact homology sequence for the pair (M, U). By the prop­
erties of the cap product, the following diagram containing these sequences is
commutative.

...~H~(M)~ H~(1\!I - U)~H~+l(U) ) H~+l(l\!f)~ ...

ll-'M~ 11.LM~ llLu~ lJL,\/n
...~H~_q( ~1) ~ H~_q( rvI, U)~H7~-q-l (U)~H7~-q-l (A1)~ ...

The maps J-LM r---.: Hg(i\!1) ~ H~_q(M) and J-Lu r---.: Hg(U) ~ H7~_q(U) are
isomorphisms for each q by the Poincare duality theorem. It follows from the
five lemma that the remaining vertical arrow H~(iVJ - U) ~ H~_q(M, U) is
an isomorphism as well. This establishes that the two sequences are isomor­
phic. It is then easy to see that if Hg(M) and Hr1 (A1) are both 0 as in the
hypothesis of the theorem, then we have the following commutative diagram
with exact rows.

o~H~(1\1 - U) u 6 u .. >- Hr1(U)~ 0

"": IL.~/~···. : I-'u~+ .....~ +
o~H~_q(A1, U) .8>- H7~_q_l(U)~ 0

Here, every dotted anow is an isomorphism, and the diagonal arrow gives the
isomorphism asserted in the statement of the theorem. 0

PROPOSITION 6.3.2 (Alexander Duality for homology and cohomology with
arbitrary support). Let NI be a paracompact, oriented n-manifold, let A be
a closed subset of 1\1, let U = A1 - A, and let G be an abel-ian group. If
H~(AI,G) = H~+l(NI,G) = 0, then H~(U,G) ~ H:::-q_1(A, G).
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