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Abstract

Large enterprise level systems often have their own application software layer

wrapped over large software tools or products from commercial vendors. From

time to time, vendors release patches which update or enhance the products

to meet various requirements. However, applying the patches often introduces

risk that the wrapper software layer might behave incorrectly, especially if

the customer has little knowledge of the linkage between the application layer

and the vendor provided system (for example, because the application itself

is a legacy system). So there is always the need for analyzing the impact

of patches and reducing the risk in applying them. Impact analysis depends

on two sources of knowledge - the physical modifications made by a patch

and a dependency graph of the entities in the system. This thesis provides an

empirical approach to finding modifications and generating dependency graphs

that can be used for impact analysis.

The work presented here is actually part of a large reverse engineering

project, which deals with a huge system consisting of a legacy customer appli­

cation layer, Oracle E-Business Suite and Oracle database. To reduce the risk

introduced by Oracle patches, the customer currently executes all tests of their

current test suite, which is extremely expensive in terms of money and time,

with the added drawback that the testing that is performed is not targeted

in any way at the entities that have been changed or that depend on entities

that have been changed. The ultimate goal of the project is to provide the

customer with a reduced and focused test suite after analyzing the impact of

patches. Although a lot of work has been carried out to date regarding impact

analysis, program dependency graph generation and regression test selection,

none of them deals with such a huge domain as involved in the E-Business
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Suite. Nloreover, none of them was applied to a system where one component

is a legacy layer.

We restrict ourselves only to Java class (bytecode) files for the sake of this

thesis. 'vVe use static analysis on XML representation of class files produced

by off-the-shelf bytecode analysis tools. For finding modification between two

successive versions of a class file, we compare the two XML representations

and generate the output in XML format. For generating a dependency graph

among the entities in the Java environment, we analyze all the XML files, ex­

tract dependency information using an empirical technique which we call access

dependency analysis, and finally store all this information in a database for

use in the impact analysis process. Both of these processes are fully automated

without any human intervention.
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Chapter 1

Introduction

1.1 Overview

Large business organizations spend a huge portion of their resources and bud­

get in maintaining existing software, upgrading it with new features and adapt­

ing it to new environments and platforms. A common perception of mainte­

nance is that it is merely fixing bugs. However, studies and surveys over the

years have indicated that the majority, over 80%, of the maintenance effort is

used for non-corrective actions [Pig97]. This perception is perpetuated by users

submitting problem reports that in reality are functionality enhancements to

the system. In the software lifecyc1e, in addition to bug fixing, maintenance

is inevitable for reasons like new customer or business requirements or intro­

duction of new platforms etc. besides fixing bugs [Cho05]. Maintenance can

be defined as the set of activities that occur after the software has been de­

ployed [GJM03]. A substitute for maintenance may be the development of

completely new software from scratch. However, that is usually quite imprac­

tical and may be even infeasible considering the limitations of time, resources

and budget of the organization; keeping in mind that companies make large

investments in developing software, creating infrastructure and organizational

practices around the software and in training users [Cho05]. So, existing soft­

ware applications are always important assets for these organizations, and they

need to be maintained over the course of time.

However, many of the existing systems were developed years ago, some

1



2 1. Introduction

written in older languages while some others are no longer maintained by

the developers who originally developed those. These legacy software systems

are therefore extremely difficult to maintain and modify. Vlhile most software

engineering approaches focus on the forward engineering - that is, the forward

development process in which we move from initial requirements to logical

design and from design to implementation, this thesis, instead, analyzes the

implemented software system and extracts useful information from it to aid

our customers in maintaining their systems.

With the help of extracted information and the continuous process of main­

tenance, in the course of time, it may be possible to re-engineer the whole

system. Re-engineering is the process of through which an existing system

undergoes an alteration, to be reconstituted in a new form [GJM03]. The

re-engineering process generally consists of two phases. In the first phase, the

existing software system is analyzed to extract useful information, patterns,

dependency among components and high level design. which will aid under­

standing how the system works. This is usually called reverse engineering. In

the second phase, the information extracted in the reverse-engineering phase

is used to build up the whole system or parts of the system from scratch. For

the second phase to be carried out successfully, the reverse engineering phase

needs to be able to extract information in a comprehensive manner. Complete

documentation consistent with implementation aids the reverse engineering

process to a great extent. Unfortunately, in most of the legacy systems, com­

plete documentation is not available. So the software engineer often needs to

go through the tiresome process of recovering the design from the code and

rebuilding the design from low level code [Cho05]. Lack of proper documen­

tation often turns out to be be one of the main factors affecting the cost and

efforts of reverse engineering. To make matters worse, during the development

of many legacy software systems, documents were not properly updated dur­

ing maintenance of the software; leaving them in an inconsistent state with

respect to the implementation [Cho05].

Our project is a bit different. We have a large system with the customer

application layer sitting upon the Oracle E-Business Suite and Oracle database

(Figure 1.1). Patches released from Oracle corporation are periodically ap-
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Customer's Application

E-Business Suite
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Figure 1.1: Customer's System
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plied to enhance or upgrade the Oracle products, Le., the E-Business Suite

and the database. However, there is always the possibility of some change

in behaviour in the customer application layer there after the application of

a patch. We assume that the customer (who owns/developed the customer

application) has a huge test suite consisting of thousands of tests and the

customer executes all those tests each time a patch is applied for finding the

potential changed behaviour. Obviously, executing all the tests is extremely

expensive in terms of both money and time. Companies spend weeks and mil­

lions of dollars in executing those tests. So they are in need of a better way of

determining which functions in the customer application may be affected by

the changes to the Oracle system. The problem is made even more difficult

by the lack of proper documentation of the legacy application. The reverse

engineering project (what we call the impact analysis project) undertaken at

McMaster has been designed to identify functions in the customer application

layer, which are potentially affected by application of a patch to the Oracle

system. The outcome of this research is that we will know more precisely what

tests in any existing test suite could potentially be used to test the changes,

and also whether there are no tests in the current suite that are applicable

to testing changes caused by the current patch. In addition, the failure of a

particular test case for certain inputs, and the absence of necessary test cases

can also reinforce future re-engineering of the legacy application layer, i.e., the
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forward development.

Impact analysis (or change impact analysis) is defined by Bohner and

Arnold as "identifying the potential consequences of a change, or estimat­

ing what needs to be modified to accomplish a change" [BA95]. Pfieeger and

Atlee focus on the risks associated with changes. They state that impact anal­

ysis is: "the evaluation of the many risks associated with the change, including

estimates of the efl:'ects on resources, efl:'ort, and schedule". In our case, the

consequence or the risk is the potential changed behaviour in the customer's

application layer after patching; and we need to find the affected functions.

In this impact analysis project we set out to create a suite of automated

tools which can be used to analyze the impact of patches on the customer

application layer and derive a much reduced test suite based on the impacted

parts of the system. First, it determines to the parts of the Oracle database

and E-Business Suite that are physically changed by a patch. Then it finds the

functions in the customer'a application layer that directly or transitively access

the physically changed places. These are the potentially afl:'ected functions in

the customer application. Based on these functions, it reduces the size of the

test suite because it will only select tests relevant to the afl:'ected functions.

As a side benefit, it may also suggest that necessary test cases are missing

because there might be some afl:'ected functions with no test cases associated

with them.

However, notice that for the process to be carried out successfully, we first

need a knowledge base that stores the dependency relation among components

of the system. Also, to begin impact analysis, we need the information regard­

ing what actually was changed by a patch. For example, say function 11 calls

(depends on) function h. Now if a patch makes some change inside h and we

want to evaluate its impact, then we have to have two pieces of information

at hand: the fact that h is changed and the fact that 11 is dependent on h·
Finding the changes (modifications) and building up a dependency knowledge

base are the two main foci of this thesis.

In computer science, program dependency graph generation is a very classic

topic and substantial work has been carried out in this regard. However most

of the research was confined to pure academic domains and even though many
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of them resulted in some empirical success, none of them seems to have been

applied to the kind of huge enterprise level system we are dealing with. Also,

none of them dealt with a system in which a portion is legacy. In this thesis,

we do not intend to propose any novel idea for finding a program dependency

graph. Rather we do an empirical analysis on part of the real system (E­

Business Suite) to build up a dependency graph (or relation) that would aid

us in impact analysis; facing a number of practical challenges. In order to start

the impact analysis, we also built a tool for detecting changes (modifications)

between two successive versions of Java bytecode (class) 1 files. Our whole

analysis process is static [Ern03] in nature, meaning that we will perform a

worst case dependency analysis regardless of any particular execution trace..

1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2, we present the overvie"" of

the problem dealt with in this thesis. The foundation of the impact analysis

project and a discussion of legacy systems are included. Vve also include our

proposed solution approach and an overview of the tools we intend to build.

Finally we describe, briefly, the specific subject matters of this thesis, namely

modification finding and dependency graph generation.

In Chapter 3, we begin our discussion with some tools, concepts and tech­

niques behind the generation of our dependency graph. This includes graphs

and call graphs. We also discuss the notion of access dependency graph in

an abstract manner. In addition, we discuss existing analysis techniques, like

static and dynamic; and argue why we chose static analysis in our case. vVe

finish the chapter by discussing some of the tools and storage techniques we

used during the implementation of our tools.

In Chapter 4, we discuss much of the related work carried out in the fields

of program dependency graph generation, impact analysis and modification

detection. At the same time, we also argue why, despite being excellent ideas,

we cannot apply most of those approaches in our empirical problem domain.

1Among the dozens of types of files in Oracle patches, we keep only class files in the
scope of this thesis
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Chapter 5 gives the process overview of our tools in short and also discusses

some of the software engineering principles that we have followed during the

design and implementation of our tools.

The next two chapters, Chapter 6 and Chapter 7, discusses the main sub­

ject matters of this thesis in detail. Chapter 6 discusses the process of finding

modifications between two successive versions of Java class files. First we give

a conceptual description of the possible kinds of modification and then we

describe the implementation process we have followed in our tool.

Chapter 7 describes our dependency graph generation process in detail.

We first discuss the concept of dependencies in the Java environment, keeping

future impact analysis in mind. We also present a formal notion of access de­

pendency analysis with an emphasis on Java. Then we go on and discuss the

detailed implementation process of the dependency graph generation, along

with many empirical challenges faced and some empirical software engineering

decisions we had to make on our way. Vye furthermore discuss some perfor­

mance statistics of the process as well. Finally we argue how many of the

interesting impact analysis issues have been handled by our work presented

in Chapter 6 and Chapter 7. Some parts of our implemented programs (with

Java, PLjSQL) have been explained along with the discussion in Chapters 6

and 7. The complete code-base is proprietary to our project.

Chapter 8 is not directly a main subject matter of this thesis. Rather,

it gives us some insight about maintaining the dependency graph over the

course of time, as patches are applied. The information presented in this

chapter is basically a reflection of what we have thought and planned regarding

maintenance of the graph.

To conclude, in Chapter 9, we discuss the contribution and limitation of

our work and suggest related future work that can be undertaken.



Chapter 2

Problem Definition

In this chapter we give an overview of the problem we deal ,vith in this the­

sis. First we provide the background of the problem within the context of

legacy systems, Oracle E-Business Suite and the hypothetical software testing

approach of a typical customer whose system we are dealing with. ext we

include a brief introduction of the impact analysis project (of which this thesis

is a part) and the hierarchical structure of the project components. Finally,

we present a brief description of the specific subject matter of this thesis.

2.1 Background

For the last 2 decades, computer technologies have been evolving quite rapidly.

New technologies are being introduced very frequently. Very often a software

system developed in one technology (or an older version of a certain tech­

nology) may find itself inefficient within a short span of time due to the in­

troduction of new efficient technology (or a new more maintainable version

of the same technology). Continuous technological advancement often lowers

the business value of systems which had been developed over years through

huge investments. For example a monolithic (single tier) system might have

very little value compared to a three tier version of the same system. Also

as [Cho05] mentions, the advancement in hardware technologies is much faster

than that of software. So many software systems cannot take full advantage

provided by newer hardware. Going back to the example just mentioned, a

7



8 2. Problem Definition

monolithic system might not be able to take advantage of a three tier hard­

ware system because the monolithic code might not have been written in such

a way as to retain the possible presence of three tier technology in the future.

Although more cost effective technologies are available, it is estimated that

most systems in the IT industry either use legacy hardware platform or have

one or more legacy software layers in the software system. Changing these

systems into newer technologies would gain more efficient performance while

keeping their functionalities intact. A study [Pig97] has indicated that most

of these transformation cost a lot of money and hard work. \Ale can define

the systems which are running on older platforms or using an older software

technology as legacy systems.

2.1.1 Legacy Systems

The Free On-Line Dictionary Of Computing (FOLDOC) defines a legacy sys­

tem as, "A computer system or application program which continues to be

used because of the prohibitive cost of replacing or redesigning it and often

despite its poor competitiveness and compatibility with modern equivalents.

The implication is that the system is large, monolithic and difficult to mod­

ify." [How98]. Wikipedia says, "A legacy system is an old method, technology,

computer system, or application program that continues to be used, typically

because it still functions for the users' needs, even though newer technology

or more efficient methods of performing a task are now available. A legacy

system may include procedures or terminology which are no longer relevant in

the current context, and may hinder or confuse understanding of the methods

or technologies used." [wik10a]. According to [Cho05], Bennett [Ben95] also

gives some more more detailed characteristics of legacy systems:

• it may be written in assembly or an early version of a third generation

language.

• probably developed using state-ofthe -art software engineering (program­

ming pre 1968) techniques.

• many perform crucial work for the organization.
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• generally large.

• generally hard to understand hence hard to maintain.

9

Many IT companies have legacy systems which (or part of which) were

developed many years ago. From the definitions and characteristics of legacy

systems, it is apparent that the software needed for those systems were de­

veloped in a time when modern sophisticated software engineering techniques

were not available. These software were written taking efficiency as the main

goal without considering concepts like modularity, low coupling, high cohesion

that are an essential part of good large scale software development. So they

are not easily portable into newer systems.

Besides, as pointed out in [Cho05], any legacy software systems are not

properly documented. Over the years, coding style and documentation have

changed in the area of software engineering. The style that was followed in

legacy software might convey little meaning today. During the development

of the legacy software, as the software was augmented with new features, im­

proved for better performance, the documentation was not adjusted properly.

To add insult to injury, in many of such systems we do not even have the

source code of the software. We only have the compiled binaries. To make

the situation even worse, the developers of the software might be unavailable

(retired or moved somewhere else), so it becomes incredibly difficult to get

proper understanding of the functionality of the code.

Software systems with a legacy layer may work fine for many years. But

problems begin to occur when a change occurs inside the non-legacy layer(s).

That change might be in the form of enhancing the non-legacy part by cur­

rent developers, introduction of a new part (or a new layer) purchased from

a third party vendor or applying patches to an already purchased portion to

fix problems or cope with a changed requirement. These changes can cause

serious wrong behaviour in the system, the lack of knowledge about the legacy

layer being the prominent cause of this. As time evolves, this kind of problems

becomes more and more prominent. Although very costly as mentioned ear­

lier, eventually the system will need to be re-engineered the legacy layer with
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newer technologies or with newer version and enhanced feature of the same

technology.

But before the re-engineering process can be started, it needs to be known

which functionalities in the legacy layer showed wrong or faulty behaviour af­

ter the changes to the non-legacy layer had been made. And to find those

functionalities, companies having such systems usually have a test suite con­

sisting of a huge number of test cases which are used to determine if anything

goes wrong after a change in the non-legacy portion is made. But running

that huge number of test cases needs a huge amount of investment because

they might take weeks to complete. Also there is always a potential risk of

missing a wrong behaviour, which is actually present in the system after the

change has been made, because those tests are executed blindly. So a more

efficient way of finding the potential wrong functionalities is necessary.

Before we move into further discussion about the problem, we present a

brief overview of the Oracle E-Business Suite and a typical customer's system.

2.2 Oracle E-Business Suite

One of the significant parts of the customer's system that we are working with

is the Oracle E-Business Suite. The E-Business Suite is a suite of Oracle's

financial and various other applications to provide enterprise level solution

for large scale customers. The following quote from [PAlO] describes the E­

Business suite in short:

Oracle E-Business Suite is a software package that allows orga­

nizations to manage key business processes; it is known on the

market by various names such as Oracle Enterprise Resource Plan­

ning (ERP) , Oracle Apps, Oracle Applications, Oracle Financials,

e-Biz and EBS (E-Business Suite). In this book we refer to it as

either E-Business Suite, or Oracle Applications.
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In the past, it was a common practice for businesses and organiza­

tions to develop in-house software to automate their business pro­

cesses. lvIost of the software that was developed in-house largely

matched the precise needs of the business. However, the funda­

mental business flows and processes such as accounting, procure­

ment, human resource/employee management, and order manage­

ment are based on common principles across all organizations. For

example, most organizations require a system to make purchases

from suppliers and a system to make payments to the suppliers,

events known as transactions that need to be accounted for in the

financial reporting. Enterprise Resource Planning (ERP) software

prepackages different types of these functionalities into out-of-the­

box software package, so that customers who purchase such soft­

ware packages do not have to develop the same software applica­

tions time and again.

2.3 Customer's System

A typical customer has a large system consisting mainly of 3 parts:

• Customer's Legacy Application Layer

• Oracle E-Business Suite

• Oracle Database

11

Figure 2.1 shows the pictorial view of the customer's system.

At the very bottom, we have the Oracle database that consists of thousands

of tables, views, stored procedures, functions, triggers etc. On top of that we

have the Oracle E-Business Suite described in the previous section. Finally,

on top of the E-Business Suite we have the customer's legacy application layer

which might consist of forms, report generators, web pages etc.

From time to time, the customer receives patches from Oracle. Applying

a patch can cause changes in the E-Business Suite and the Oracle database.
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Customer's Application

E-Business Suite

- -- - ---.( 1g
Figure 2.1: Customer's System Revisited

These changes might in turn cause the customer's application to behave dif­

ferently which may be undesirable. So the parts of the customer's application

which may give rise to such undesirable behaviours need to be detected. And

detecting those parts is, in fact, the main goal of our project. Before pro­

ceeding further, we should discuss patches in general and Oracle patches in

particular.

2.4 Patches

In computing, a patch is basically a piece of software to fix some problem

or add some new functionalities to an existing software system. Wikipedia

says, "A patch is a piece of software designed to fix problems[1] with, or up­

date a computer program or its supporting data. This includes fixing security

vulnerabilities and other bugs, and improving the usability or performance.

Though meant to fix problems, poorly designed patches can sometimes in­

troduce new problems." [wiklOb]. FOLDOC says, "A temporary addition to

a piece of code, usually as a quick-and-dirty remedy to an existing bug or

misfeature. A patch mayor may not work, and mayor may not eventually

be incorporated permanently into the program. Distinguished from a diff or

mod by the fact that a patch is generated by more primitive means than the

rest of the program; the classical examples are instructions modified by using
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the front panel switches, and changes made directly to the binary executable

of a program originally written in an HLL. Compare one-line fix." [How05J.

One more definition from WiseGeek says, "As people begin to use a software

program with frequency, they may note glitches or problems that were not

observed during beta testing of the program. Alternately, older software can

have compatibility issues with newer systems, or newer software may be in­

compatible with older systems. In these cases, and often to increase sales or

use of software, programmers may create what is called a software patch, de­

signed to fix small bugs, glitches, or address software-to-hardware or operating

system compatibility issues." [ECI0].

Since proprietary software authors withhold their source code, patches are

usually distributed as binaries. Large patches may sometimes be called service

packs or software updates [wikl0b]. Software customers receive patches from

the vendors and apply them to the system with the help of IT specialists in

that particular fields and with the patch installation instructions as supplied

by the vendors.

2.5 Oracle Patches

Oracle corporation periodically releases patches for their customers. In our

case, we are only interested in patches related to the Oracle E-Business Suite.

The detailed concept and process of patching procedures is described in [ora~g].

The following subsections present a brief description of the patching concept

and provide the gist of our findings from patch analysis, which has been done

by my colleague Akbar Abdrakhmanov 1.

2.5.1 Reasons for patching

According to [oraGg], throughout the course of an Oracle E-Business Suite life

cycle, patches are applied for maintenance of the system. The reasons for this

1(in progress)
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maintenance process include:

• Fixing an existing issue

• Adding a new feature or functionality

• Updating to a higher maintenance level

• Applying the latest product enhancements

2. Problem Definition

• Providing interoperability to new technology stacks

• Determining the source of an issue

• Applying online help

2.5.2 Contents of a patch

Oracle patches are released in packaged bundle (zip) format. The details of

the contents of a patch is described in [ora09]. What "ve are interested in is

what sort of files a patch contains and how they can impact the system. My

colleague Akbar Abdrakhmanov did some analysis on some sample patches

after downloading them from metalink [Cor10]. His analysis revealed that

files with the extensions mentioned in Table 2.5.1 can be present in a patch

(of course not all them are present in one single patch) .

.class .dtd .let .pdf .pll .sh .xdf

.cmd .fmb .ldt .pkb .pls .sql .xgm

.ctl .h .mk .pkh .prop .txt .xml

.drv .ildt .0 .pl .rdf .wft .xsl

.drvx .jsp .odf .plb .rtf .wfx

Table 2.5.1: Top 10 classes with highest number of transitive subclasses

Some of the file extensions mentioned here may be familia.r to many, some

other may be not. It is beyond the scope of this thesis to explain and analyze

all of these file extensions. In this thesis, we will specifically deal with. class
files, which will be the subject matter of the subsequent chapters.
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2.6 Customer's Problem
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As mentioned in section 2.3 our customer has a legacy application layer which

is effectively a wrapper over the E-Business Suite and Oracle database. When­

ever they apply a patch, it makes some changes or modifications to the E­

Business Suite and/or to the database. And these changes can cause some of

the functiona.lities of the legacy application layer to go wrong. To identify those

wrongly behaving functionalities, they have a huge test suite which effectively

covers all parts of the E-Business Suite and possibly also the database. Per­

forming these tests have some drawbacks that were mentioned in section 2.1,

but here is a quick recap:

• Executing all those tests are expensive both in term of money and time.

• Testing this way is essentially blind.

• Despite extensive testing, risk remains that an application will change

or fail. Hence there is no guarantee of success.

So in order to save money, time and increase accuracy, they need a better

and much more precise test suite, which mayor may not be a proper subset of

the much larger test suite that they are currently using. Vie are naming this

project the impact analysis project.

The ultimate objective of the impact analysis project is to come up with

the precise test suite. And this thesis is a one step advancement towards the

goal of the project.

2.7 The Impact Analysis Project

In this section we give a brief overview of the impact analysis project and the

tools to be developed in this project. The work presented in this thesis is

a part of the tool suite architecture of the impact analysis project. A brief

overview of our work is also presented in the next section.
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2.7.1 Overview

As we stated earlier our customer has a legacy application layer which is a kind

of wrapper over the E-Business Suite and Oracle database. And a modifica­

tion in the E-Business Suite or in the database can cause some functionalities

in the legacy layer to behave abnormally. Our ultimate goal is to provide the

customer with suitable a test suite by which they can catch those abnormali­

ties easily.

An important thing to note here is that unlike many other reverse en­

gineering projects, we are not really interested in requirement extraction or

producing a high level language equivalent of a system developed with a low

level language. '''Te are rather interested in finding the places of the legacy

layer that can behave abnormally after the system has been patched. But for

that we need to do a detailed impact analysis starting from a change (by a

patch) in the non-legacy portion (E-Business Suite and Oracle database) and

ending somewhere in the legacy portion of the system.

The impact analysis project basically does this detailed analysis in a static

manner, with a view to ultimately finding the malfunctioning regions of the

legacy layer of the customer's system and hence providing them with a much

more concise and precise test suite than the one they are currently using.

The abstract steps of the impact analysis project are as follows:

• Identify those places in the database and the E-business Suite changed

by a patch.

• Identify those places in the Customer's Application software that may

access the changed places found by patch analysis.

• Select only tests relevant to those places.

Consider Figure 2.2 that shows the current testing approach of our cus­

tomer. The test suite consists of lots of test cases and the coverage of the

tests are shown by dotted lines. As can be understood, no specific criteria is

applied to choose certain test cases or to exclude others.
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Test Suite

E·Business Suite

Oracle Database

Legend l* Application Functions

• E·Business Suite Functions

• Database Objects

Test Coverage

Test Case

Figure 2.2: Current Testing Approach

Figure 2.3 shows the testing approach we plan to propose. The black­

ened squares and circles represent physically changed (by a patch) portions of

the database and the E-Business Suite, respectively. And the grayed squares

are circles represents the portions of the database and E-Business Suite that

themselves didn't change, but are directly or transitively access those physi­

cally changed portions. So starting from the changed parts, if we can trace

back to the customer's application layer (following the solid arrows in a re­

verse way) we can find those portions of the application layer that we need to

worry about. These are indicated by the grayed stars in the figure. Note that

the number of stars we need to be concerned about has reduced and so has

the number of test cases. Also note that the second star from the left didn't

previously have any test case associated with it. This indicates that we may

also suggest new test cases along with reducing the size of the existing test

suite.

Now for the tracing back task to be carried out successfully, we need to

build up a dependency relationship, which is actually a caller-callee, or more

precisely, an accessor-accessee relationship among the entities (methods, fields,

database objects) of the system. In addition, we also need to be able to find

out the physically changed parts of the system after patching so that the back
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Focused Test Suite

E-Business Suite

Oracle Database

Customer's Application
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Legend
• Changed Database Objects

• Changed EBS Functions

o Affected Database Objects

o Affecled EBS Functions

Figure 2.3: Proposed Testing Approach

tracing task can be started. These two issues are actually parts (among others)

of our impact analysis project tool hierarchy discussed next.

2.7.2 Tool Hierarchy

The impact analysis project will generate a tool suite which will be used to

find the precise test suite to apply after a patch. Figure 2.4 shows the tool

hierarchy and interaction among the tools where arrows indicate a "used by"

relationship.

It is beyond the scope of this thesis to describe what each component of

the tool hierarchy does in detail. This thesis is mainly concerned with parts of

the shaded regions in Figure 2.4 namely "Dependency Analyzer (Application)"

and "Modification Finder (Application)". The following a short overview of

each of the components of the tool hierarchy:

• Patch Analyzer is the tool for analyzing Oracle patches to find out

which files would be modified or newly introduced by a patch. It in­

ternally consists of Oracle's adpatch command line tool and then our

wrapper tool over it.
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Patch Analyzer

Legend

---1~~ Input to the Next

Figure 2.4: Tools Hierarchy
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• Modification Finder is the tool that uses patch analyzer's output in­

formation to look for changes or modifications at an even finer grain

(e.g., methods inside a Java class file), rather than at file level.

• Dependency Analyzer (Application) is the tool for analyzing de­

pendencies among the entities of the application, and for building up a

dependency relationship in a static manner. By application, we refer to

both the E-Business Suite and the customer's legacy application layer.

• Dependency Analyzer (Database) is the tool for analyzing depen­

dencies among the entities of the oracle database and building up a

dependency relationship in a static manner.

• Dependency Analyzer (Global) will basically combine the depen­

dency information from the above two dependency analyzers' output.

• Impact Analyzer is the tool for tracing back from the changes found

from modification finder's output to the legacy application layer level

using the dependency information from the global dependency analyzer.

• Test Suite Selector is the tool for finding a precise test suite based on
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the information from the impact finder. It basically reduces the size of

the huge test suite of the customer that they are currently using.

2.7.3 Dependency Analysis in the Application

Oracle's E-Business Suite is a huge application suite built using Java (and tools

built on Java) as a front end and an Oracle database as the back end. The

customer's legacy application layer, which is a wrapper over the E-Business

Suite, is also supposedly developed in Java. In a system developed "vith an

object oriented language like Java, there are entities like classes, methods,

fields etc. And there exist complex dependencies among these entities. 'When

a patch modifies any of these entities, we need to trace back in a bottom up

fashion up to the legacy layer to find out what classes, methods or fields can

be potentially affected by the changes. But for that we first need to build up

a dependency relation among the entities of the system.

Since in the system, we only have the compiled binaries (in this case, Java

bytecode files or class files) we need a way to analyze the bytecodes and build

up that dependency relation. Since we don't know any execution sequence(s)

conducted by the customer, dynamic analysis is not possible in our case. We

have to stick to static worst case analysis. The details of all these has been

described in subsequent chapters. Also, in many ways a static analysis is more

suitable, since it provides a safe solution, and is not dependent on coverage

questions inherent in a dynamic approach.

As stated earlier, an oracle patch can contain files with a whole variety

of different extensions and it is beyond the scope of this thesis to analyze all

those. In this thesis, we restrict ourselves to analyzing only class files.

2.7.4 Finding Modifications

Aside from finding the dependencies, another relatively small focus of this

thesis is in finding the modifications made by a patch. The patch analysis

tells us which files have been modified. But for finding the modifications at

even a finer level than a file (e.g. a method inside a class file) we need to

perform additional work which is described in Chapter 6.
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Just like the case of dependency analysis, it is beyond the scope of this

thesis to find modifications in all kinds of files. We restrict ourselves only to

class files.

2.8 Summary

In this chapter, we discussed our problem background, our proposed solution

approach within the complete impact analysis project, and a brief overview of

the specific subject matters of this thesis.

The next chapter presents the concepts, techniques and tools that we use

in our work.



Chapter 3

Tools and Techniques

There has been increasing interest in the application of sophisticated program

analysis techniques to software development and maintenance tools. Such tools

include those which are used for program understanding, verification, testing,

debugging reverse engineering etc. In this chapter we present and describe

some analysis tools and techniques which are relevant to our impact analysis

project.

3.1 Graphs

Graphs have been used extensively to model many problems that rise in the

fields of computer science and software engineering. Specially in software en­

gineering, Call Graph, Control Flow Graph, Data Flow Graph, Component

Graph etc. give a better analytical approach to understand and characterize

software architecture, static and dynamic structure and meaning of the pro­

grams [Cho05]. A diagrammatic view (by graphs) of the structure of the code

is always an excellent way present the issues related to software engineering

analysis. That is why graphs are always preferred by software engineers and

researchers to understand, re-engineer and analyze codes.

A number of graph analysis techniques are available for software engineer­

ing applications. Control Flow Analysis, Data Flow Analysis, Call Graph

Analysis, Analysis using Component Graph are some of them. In Control

Flow Analysis, a Control Flow Graph is used to analyze and understand how

22
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the control of the program is transferred from one point to another. Similarly

Data Flow Analysis uses Data Flow Graphs to show and analyze data depen­

dencies among the instructions of the program. Component graphs identifies

the components of a program, shows the use relations among those compo­

nents are very useful in software architecture identification and recovery. Call

Graph Analysis uses call graphs to detect calling dependency relations among

entities of the environment.

For reasons discussed in subsection subsection 3.1.3, we use a new notion

which we name Access Dependency Analysis, which is based on an Access

Dependency Graph (an Extension of a Call Graph), for analyzing the depen­

dency relationship among entities in the Java environment. In the following

subsections, we describe Call Graph and Access Dependency Graph in detail.

3.1.1 Call Graph

A call graph is a directed graph G = (N, E) 'with a set of nodes N and a set

of edges E ~ N x N. A node u E N represents a program procedure and an

edge (u, v) E E indicates that procedure u calls procedure v. Consider the call

graph in Figure 3.1. It has a set of nodes N = {a, b, c, d, e} and e set of edges

{(a,b),(a,c), (b,d), (c,d), (c,e)}.

Figure 3.1: Call Graph
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3.1.2 Access Dependency Graph

The simple notion of call graph described in the previous subsection works well

in traditional non-object oriented languages like C. But in an object oriented

language like Java, where methods (procedures) are encapsulated inside classes

and those classes can have fields in addition to methods, the notion of a call

graph is far more complicated. Also features like inheritance, dynamic binding

etc, can introduce implicit dependencies on methods or fields which are not

explicitly present in the source code or even in the compiled binary bytecode.

For example, consider class B which extends class A and overrides A's method

mO. ow there is an explicit call from class C's method cO to class A's method

mO, and due to dynamic binding this call might actually result in a call to

class B's method instead of class A's method mO.
Due to empirical issues that will be discussed in detail in Chapter 7, we

introduce a new notion called Access Dependency Graph and define it as fol­

lows: An access dependency graph is a directed graph G = (Nm , Nf , E)

with a set of method nodes Nm , a set of field nodes N f and a set of edges

E ~ (Nm U Nf ) x (Nm U Nf). A node m E Nm indicates a method node and

is of the form ClassName: MethodName. A node f E N f indicates a method

node and is of the form ClassName: MethodName. An edge (m, e) in E (where

m E Nm ) may indicate one of two kinds of dependency:

• An explicit method call from method m to method e if e E Nm , or an

explicit access of a field e from method m if e E Nf .

• An implicit dependency from method m to method e where an explicit

call from somewhere to method m may actually result in a call to method

e due to dynamic binding.

In Chapter 7, we will discuss the notion of call graph in Java context, the

empirical reasons why we switched from call graph analysis to access depen­

dency analysis and the details of access dependency analysis itself. We will

also show that for static fields there is a further kind of edges we include in

the graph.

Consider the access dependency graph in Figure 3.2. It has a set of method

nodes N m = {D : dO, C : cO, E : eO, A : mO, B : mO}, a set of field nodes
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A

B

(a) (b)

legend
---{;> Inheritance

~ Explicit Dependency

------;> Implicit Dependency

(c)

Figure 3.2: (a) Inheritance of class B from class A. (b) Access Dependency Graph.
(c) Meaning of the arrows.

N f = {C: g,E: f} and aset of edges {(D: dO,C: c()),(D: dO,E: e()),(C:

cO, A : m()), (C : cO, C : g()), (E : eO, B : m()), (E : eO, E : f), (A : mO, B :

mO)}. The first six edges are due to explicit dependency and the last one is

due to implicit dependency.

The reader might wonder why in Figure 3.2 there is an edge A : mO ---+
B : mO instead of C : cO ---+ B : mO. The reason for this will be discussed in

detail in Chapter 7.

3.1.3 Reasons for Choosing Access Dependency Analy-

SIS

Although conducting a detailed control flow and data flow analysis seems more

appropriate for our problem, we stick to access dependency analysis for the

following reasons:

• Oracle's E-Business Suite has a huge file system consisting of almost

170,000 class files and thousands of jar files (which contain thousands of

class files in themselves), along with other files. Conducting a detailed

control flow or data flow analysis is currently not feasible in such a large

domain. Moreover, since "Vve do not have access to a customer's test suite

or any particular execution sequence, conducting the control or data

flow analysis dynamically is not feasible either. As will be discussed in
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Chapter 4, the related works in this area that uses control or data flow

analysis focuses on much smaller domains than ours .

• Since the test suite we are concerned with consists of tests at the integra­

tion level and not at the unit testing level, the test suite is presumably

very sparse. That is, it is very unlikely that multiple tests will cover one

single procedure (Java method) in the E-Business Suite. So a control

flow or data flow analysis does not seem to bring us much better results

than an access dependency analysis .

• In future, however, when we have a much better knowledge about our

problem domain and have access to a customer's test suite, we might be

able to conduct control flow or data flow analysis on parts of the system

anyway.

3.2 Static versus Dynamic Analysis

Static and dynamic analyses arose from different communities and evolved

along parallel but separate tracks [Ern03]. Traditionally, they have been

viewed as separate domains, "vith practitioners or researchers specializing in

one or the other. Furthermore, each has been considered ill-suited for the tasks

at which the other excels.

Static analysis examines program code and reasons over all possible be­

haviours that might arise at run time [Ern03]. Compiler optimizations are

standard static analyses. Typically, static analysis is conservative and sound.

Soundness guarantees that analysis results are an accurate description of the

program's behavior, no matter on what inputs or in what environment the

program is run. Conservatism means reporting weaker properties than may

actually be true; the weak properties are guaranteed to be true, preserving

soundness, but may not be strong enough to be useful. For example, in our

access dependency graph, the conservative analysis might report dependencies

(calls in this case) from methods a, b, c to method d whereas for a particular

user, only the dependency from method a to method d might be relevant, the

other two are not.
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Static analysis operates by building a model of the state of the program,

then determining how the program reacts to this state [Ern03]. Because there

are many possible executions, the analysis must keep track of multiple different

possible states. It is usually not reasonable to consider every possible run-time

state of the program; for example, there may be arbitrarily many different user

inputs or states of the runtime heap. Therefore, static analyses usually use

an abstracted model of program state that loses some information, but which

is more compact and easier to manipulate than a higher-fidelity model would

be. In order to maintain soundness, the analysis must produce a result that

would be true no matter the value of the abstracted-away state components.

As a result, the analysis output may be less precise (more approximate, more

conservative) than the best results that are in the grammar of the analysis.

Dynamic analysis operates by executing a program and observing the ex­

ecutions [Ern03]. Testing and profiling are standard dynamic analyses. Dy­

namic analysis is precise because no approximation or abstraction need be

done: the analysis can examine the actual, exact run-time behavior of the

program. There is little or no uncertainty in what control flow paths were

taken, what values were computed, how much memory was consumed, how

long the program took to execute, or other quantities of interest. Dynamic

analysis can be as fast as program execution. Some static analyses run quite

fast, but in general, obtaining accurate results entails a great deal of compu­

tation and long waits, especially when analyzing large programs.

The disadvantage of dynamic analysis is that its results may not generalize

to future executions [Ern03]. There is no guarantee that the test suite over

which the program was run (that is, the set of inputs for which execution of

the program was observed) is characteristic of all possible program executions.

Whereas the chief challenge of building a static analysis is choosing a good

abstraction function, the chief challenge of performing a good dynamic analysis

is selecting a representative set of test cases (inputs to the program being

analyzed). (Efficiency concerns affect both types of analysis.) A well-selected

test suite can reveal properties of the program or of its execution context;

failing that, a dynamic analysis indicates properties of the test suite itself, but

it can be difficult to know whether a particular property is a test suite artifact
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or a true program property.

3. Tools and Techniques

3.3 Why We Chose Static Analysis

Despite the fact that dynamic analysis is gaining increasing popularity as many

research papers like [Ern03] pointed out, for the impact analysis project we

restrict ourselves to conservative static analysis for the following reasons:

• Dynamic analysis is not possible unless the full domain, on which pro­

grams are run to gather execution sequences, is available. As mentioned

in Chapter 2, currently we only have access to the compiled Java byte­

code files of the E-Business suite, neither to the customer's test suite

nor to any real execution sequence. So for the moment and possibly for

a good amount of time in the future, dynamic analysis is beyond our

scope.

• As mentioned in the previous section, one of the disadvantages of dy­

namic analysis is its inability to generalize to future executions. Since

our customer's system is periodically modified by patches, it is more and

more likely to change its behaviour over the course of time. So the test

cases need to be run again and again in order to make sure that the

system is behaving properly. Static analysis, on the other hand, being

sound, as we show later in Chapter 8, is easy to conduct over changes

made by patches.

• fost importantly, since our ultimate goal is to reduce the customer's test

suite size and to propose additional tests if necessary, dynamic analysis

would practically be equivalent to executing all their tests, which defeats

our whole long term purpose.

In future, however, we may apply dynamic analysis as we gain access to

the customer's test suite. Also we may combine static and dynamic analysis

for getting better results. As [Ern03] pointed out, Static or dynamic analy­

ses can enhance one another by providing information that would otherwise

be unavailable. Performing first one analysis, then the other (and perhaps

iterating) is more powerful than performing either one in isolation.
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3.4 Implementation Tools
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The tool suite architecture of the impact analysis project is hierarchical (mean­

ing that there are sub-tools with one's output serving as another's input), and

will become more complex as it grows. That is why it is important to structure

it well. In our project we have to deal with Java bytecode a lot because the

E-Business Suite and the patches contain Java bytecode files (class files). To

analyze them, we use the Java language itself for a number of reasons:

• Java is a well structured and extensively used Object Oriented Pro­

gramming language. It is easier to cope with many software engineering

related issues with Java rather than lower level languages like C or C++.

• There is good open source project support and many forums related to

Java available on the web.

• There are a number of existing bytecode analysis tools written in Java

itself.

As part of our work, we also use Oracle database to handle some critical

issues which will be discussed in Chapter 8. In the next two subsections we

briefly describe two of the bytecode analysis tools that we have used (only the

second one was used in the final version).

3.4.1 Dependency Finder

Dependency Finder [TeslOa, TeslOb] is a suite of tools for analyzing compiled

Java code. At the core is a powerful dependency analysis application that

extracts dependency graphs and mines them for useful information. This ap­

plication comes in many forms promoting ease of use, including command-line

tools, a Swing-based application, a web application ready to be deployed in

an application server, and a set of Ant [FoulO] tasks.

Among the suite of tools, the specific tools that we used for our purpose

are ClassReader and DependencyExtractor. Both of these tools generate XML

files that can be used for next order analysis. ClassReader's XML is a one to
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one XML representation of a certain class file, whereas DependencyExtrac­

tor's XML specifically encompasses the dependency information. However, al­

though DependencyExtractor is an excellent tool for extracting depencdency

relationships from class (and jar, zip as well) files, again, due to some empiri­

cal issues (which are discussed in Chapter 7), we decided to use ClassReader's

XML to build the repository for our analysis.

3.5 Advantage of Using XML and Database

Having an XML representation of a certain java class file has a number of

advantages over having any other kind of representation (e.g. Java source file).

XML can always be used as a well formatted input for next order processing.

XML is also a kind of data repository for useful information. And in almost all

widely used programming languages like Java, there is a rich built in facility

to parse and play with XML.

We use the Oracle database as a repository for the extracted required

information from the XML. Technically, we could have used any other database

system instead of Oracle; but we have good access to our university's Oracle

server, and decided to use it. Storing the information in the database also has

a number of advantages. For example, we can apply intelligent queries on the

database tables to extract certain information. In the future, the data might

also be mined for extracting hidden patterns in the dependency relationship.

3.6 Summary

In this chapter, we presented the theoretical concepts, analysis techniques and

implementation tools used in our impact analysis project. Their empirical

application will be discussed in detail in Chapters 6 and 7.

The next chapter presents much of the related work in the fields of program

dependency graph generation, impact analysis and test selection; along with

their their applicability issues in our problem domain.
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Related Work

There has been extensive work in the area of program dependence graph

construction, interprocedural analysis and impact analysis over the last two

decades. In this chapter we discuss the main focus of some of the related works

and their applicability issues in our specific problem domain. For the sake of

clarity we divide the related work into three categories:

• Works related to program dependence graphs and interprocedural anal­

ysis

• Works related to impact analysis and test case selection

• Works related to finding differences between subsequent versions of pro­

grams

In the next three sections we discuss each of the above.

4.1 Work Related to Program

Dependence Graphs and Interprocedural

Analysis

The notion of dependence graphs (call graphs, control flow graphs, data flow

graphs) was introduced in Chapter 3. As a recap, a call graph is a directed

graph that represents the calling relationship among procedures in a computer

31
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program. Interprocedural analyses enable optimizing compilers to more pre­

cisely model the effects of procedure calls, potentially resulting in substantial

increases in application performance. Applying interprocedural analysis to

programs written in object-oriented or functional languages is complicated by

the difficulty of constructing an accurate program call graph. Vlork related to

these areas dates back to the 70's.

Ryder [Ryd79] introduced the notion of call graph as an acyclic graph to

reduce the dynamic relation among procedures to a static data representa­

tion. Its main application domain was in FORTRAN. Callahan's extension

to Ryder's work [CCHK90] was to support recursion. However, these works

were not carried out in object oriented domains and so they did not face many

challenges that arise in an object oriented context.

Grove et at. [GDDC97,GCOI] presented a parameterized algorithmic frame­

work for call graph construction in the presence of dynamic binding. They used

this framework to describe and to implement a number of well-known and new

algorithms. They then empirically assessed these algorithms by applying them

to a suite of medium-sized programs written in Cecil [cec] and Java, reporting

on the relative cost of the analyses, the relative precision of the constructed

call graphs, and the impact of this precision on the effectiveness of a number of

interprocedural optimizations. Their work, however, was basically concerned

with comparing the precision of existing interprocedural analysis algorithms.

Many of those algorithms [CC77, AM95, Ste] dealt with complex issues like

recursion and mutually recursive definitions and the possible infinitely nested

calling sequences in them etc, which is not really relevant to our case. Also,

these works were rather generic approaches for call graph generation and inter

procedural analyses and were not carried out keeping future impact analysis

in mind. In addition, the application in the domains in which they assessed

their work were several orders of magnitude smaller than ours.

Ferrante et at. [FO\iV87] represented an intermediate program representa­

tion, called the program dependence graph (PDG), that makes explicit both

the data and control dependences for each operation in a program. Harrold et
at. [HMR93, SinOI] presented techniques for constructing program dependence

graphs using control flow and data dependence information. However as we
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mentioned in Chapter 3, due to empirical issues, a detailed control or data

flow analysis is not currently feasible in our problem domain.

Harrold et al. [HLL+95] developed a system called Aristotle that supports

program analysis information and supports the development of software en­

gineering tools. They implemented parsers for C and C++ that gather con­

trol flow, local data flow and symbol table information. This system, though

promising, is not suitable for our case because it doesn't have support for Java

and we are not doing a detailed control or data flow analysis.

One point worth mentioning here is that the dependency graph we intend to

generate has to be such that impact analysis can be carried out successfully.

We don't really care about how generic or how complex the graph is. For

example, there might be mutually recursive definitions that might produce

infinite call sequences between them but all we need to know in our case is

that they call each other, so that if any of them is changed we can track the

change backwards up to the callers. So, many of the above ideas, despite

being excellent in general or for other specific problem domains, is not quite

suitable in our case; because they were carried out for other purposes rather

than keeping possible future impact analysis in mind. Also notice that none

of them deals with a domain where a portion of the system is legacy.

The Soot framework [LBL+10], is a set of Java Application Programming

Interfaces (API) for manipulating Java code in various forms. It analyzes com­

plete applications, by first reading all class files that are required by an appli­

cation, starting with the main root class and resursively loading all classes used

in each loaded class. As each class is read it is converted into the Jimple inter­

mediate representation. After conversion each class is stored in an instance of

a SootClass, which in turn contains information such as its name, its super­

class, a list of interfaces that it implements, and a collection of SootFields

and SootMethods. Vijay et at. [SHR+OO] show how they used Soot to conduct

different kinds of analysis like Class Hierarchy Analysis (CHA), Rapid Type

Analysis (RTA) , Variable Type Analysis (VTA) etc. to resolve the virtual

method calls and to construct a call graph with minimum possible number of

edges. We will discuss more about the virtual method call problem (what we
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also call inheritance problem) in Chapter 7. We will also discuss this tech­

nique and show with some empirical studies, why all these techniques are not

suitable for our specific problem domain.

JAnalyzer [Bod03], developed by Eric Bodden aids program development

by construction of call graphs by state of the arts analyses, visual represen­

tation of interdependencies among methods and comprehensible view of even

very large call graphs. It uses Class Hierarchy Analysis (CHA) and Variable

Type Analysis (VTA). The set of static types of the possible call targets are

retrieved in order to perform the appropriate query on the call graph using

internal SOOT mechanisms. However, up to now, JAnalyzer could only give

us static call graphs in a graphically visual form, i.e., its output is not suitable

for higher order analysis.

Profile Viewer [Whi09] reads profiling information produced by the Java

interpreter and various flavours of the gprof tool and displays it for easy in­

terpretation. But the problem of Profile Viewer is it can only give us dynamic

call graphs. Since we are doing static analysis this is not suitable for our case.

Dependency Finder [TeslOa] is a suite of tools for analyzing compiled Java

code. At the core is a powerful dependency analysis application that extracts

dependency graphs and mines them for useful information. This application

comes in many forms, including command-line tools, a Swing-based applica­

tion, a web application ready to be deployed in an application server, and a

set of Ant [FoulO] tasks. This tool (actually two subtools inside the tool suite)

can give us two kinds of XML files - one is a one-to-one XML representation

of a class (bytecode) file and the other is specific to dependency information

only. We use the former for our analysis and that is the heart of Chapter 7.

4.2 Work Related to Impact Analysis and Test

Case Selection

Although impact analysis and test case selection is not the main subject matter

of this thesis, they are heavily dependent on how we construct the access

dependency graph. While constructing the dependency graph, we have to

keep in mind how the impact analysis and test case selection will be carried



4. Related Work 35

out later on. Below we describe some of the works related to impact analysis

and test case selection.

Over the last two decades, there have been a good number of works and

articles published on software change impact analysis (IA). Bohner and Arnold

[BA95] identify two classes of lA, traceability and dependency IA. In traceabil­

ity lA, links between requirements, specifications, design elements, and tests

are captured, and these relationships can be analysed to determine the scope

of an initiating change. In dependency lA, linkages between parts, variables,

logic, modules etc. are assessed to determine the consequences of an initiating

change. Dependency IA occurs at a more detailed level than traceability IA.

From their definition it is clear that it is dependency IA that applies to our

problem domain where our logical modules are methods and fields inside Java

classes.

Just like program dependence graph generation techniques, dependency

impact analysis can also be either static or dynamic. In our case only static

impact analysis is possible. We discuss some of the works related to both of

these techniques, below.

Static impact analysis techniques (e.g. [BA95,LMS97,PA06,RST+03,TM94])

identify the impact set - the subset of elements in the program that may be

affected by the changes made to the program. Apiwattanapong et at. [Api05]

pointed out that static impact analysis algorithms often come up with too

large impact sets due to their over conservative assumption and might turn

out to be effectively useless. For example, regression testing techniques that

use impact analysis to identify which parts of the program to retest after a

change would have to retest most of the program. [Api05] also points out a

two fold problem with sound static impact analysis. First, they consider all

possible behaviors of the software, whereas, in practice, only a subset of such

behaviours may be exercised by the users. Second, and more importantly,

they also consider some impossible behaviours, due to the imprecision of the

analysis. Therefore, recently, researchers have investigated and defined im­

pact analysis techniques that rely on dynamic, rather than static, information

about program behaviour [LR03a, LR03b, OAH03, BDSP04]. The dynamic in­

formation consists of execution data for a specific set of program executions,
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such as executions in the field, executions based on an operational profile, or

executions of test suites.

[Api05] defines dynamic impact set to be the subset of program entities

that are affected by the changes during at least one 0 the considered program

executions. Coverage Impact [OAH03] and PathImpact [LR03a, LR03b] are

two well known dynamic impact analysis techniques that uses dynamic impact

sets. PathImpact works at the method level and uses compress execution

traces to compute impact sets. Coverage Impact also works at the method

level but it uses coverage, rather than trace, information to compute impact

sets. The coverage information for each execution is stored in a bit vector

that contains one bit per method in the program. If a method is executed

in the execution considered, the corresponding bit is set; otherwise it remains

unset. In [OAL+04], the precision and performance of Coverage Impact and

PathImpact have been compared. PathImpact turns out to be more precise

but more costly in terms of time and space.

[Api05] made some fundamental observations about the essential infor­

mation that is required to perform dynamic impact analysis. Using those

observations, they introduced a notion of Execute After sequences (EA) which

is based on the principle that to identify the impact set for a changed entity e

we must include all program entities that are executed after e in the considered

program execution.

Now considering our problem domain, as we mentioned earlier, since we

don't have access to our customer's test suite or any execution sequence at this

moment, dynamic analysis and hence dynamic impact analysis is not possible

in our case. Also another subtle difference of our work with the work presented

above, is that we are not really interested in finding the total impact set. We

are only interested in finding the functions in the customer's application layer

that may lead to a changed behaviour after a change has been made by the

patch somewhere in the Oracle's E-Business Suite. Considering long term

issues, doing a static impact analysis has certain advantages; for example,

tracing back from the changes, some function might be found in the customer's

application layer that does not show changed behaviour for certain executions

but may be in the future show changed behaviour. Keeping in mind that we
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want to minimize the customer's risk of patching, this kind of conservative

analysis should bring us good results in the long run. Moreover, in the future,

when we might have access to a customer's test suite and execution sequences,

we will be able to conduct dynamic impact analysis as well and the outcome

from the static analysis can be a good source of information at that time.

Chianti [RST+03, RST+04] is a tool for change impact analysis for Java

that is implemented in the context of the Eclipse [ecl] environment. Chianti

analyzes two versions of an application and decomposes their difference into

a set of atomic changes. Change impact is then reported in terms of affected

(regression or unit) tests whose execution behaviour may have been modified

by the applied changes. For each affected test, Chianti also determines a set of

affecting changes that were responsible for the test's modified behaviour. This

latter step of isolating the changes that induce the failure of one specific test

from those changes that only affect other tests can be used as a debugging

technique in situations where a test fails unexpectedly after a long editing

session. Their analysis comprises the following steps [RST+04]:

1. A source code edit is analyzed to obtain a set of interdependent atomic

changes A, whose granularity is (roughly) at the method level. These

atomic changes include all possible effects of the edit on dynamic dis­

patch.

2. Then, a call graph is constructed for each test in T . In [RST+03], they

use static call graphs and in [RST+04] they use dynamic call graphs.

3. For a given set T of (unit or regression) tests, the analysis determines

a subset T' of T that is potentially affected by the changes in A, by

correlating the changes in A against the call graphs for the tests in T in

the original version of the program.

4. Finally, for a given test t i E T, the analysis can determine a subset A' of

A that contains all the changes that may have affected the behaviour of

k This is accomplished by constructing a call graph for ti in the edited

version of the program, and correlating that call graph with the changes

in A.
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Once again, since we do not have to the customer's test suite, we can­

not follow the Chianti approach. Also since we also want to suggest addi­

tional test cases in addition to finding a subset of existing tests that needs

to be rerun, only using call graphs for the tests is not sufficient for our

case either. Another major issue is that the size of the domain over which

they tested their techniques is less than 1000 classes, whereas ours has al­

most 230,000 classes. Chianti, however, encompasses information about types

of atomic changes that were extremely useful to us. They pointed out 16 kinds

of atomic changes that we had to think about. In Chapter 7, we will show

how we build our access dependency graph keeping in mind all these kinds of

changes.

As far as test selection is concerned, a fair amount of work have been done

in that area too. By test selection, here we mostly mean regression test se­

lection. Regression testing is the process of validating modified software to

provide confidence that the changed parts of the software behave as intended

and that the unchanged parts of the software have not been adversely affected

by the modifications. Because regression testing is expensive, researchers have

proposed techniques to reduce its cost. One approach reduces the cost of re­

gression testing by reusing the test suite that was used to test the original

version of the software. Rerunning all test cases in the test suite, how- ever,

may still require excessive time. An improvement is to reuse the existing test

suite, but to apply a regression- test-selection technique to select an appropri­

ate subset of the test suite to be run. If the subset is small enough, significant

savings in time are achieved. To date, a number of regression test selec­

tion techniques have been developed for use in testing procedural languages

(e.g., [BaI98, CRa94, LW91, RH97, PP97, LW92]) and for use in testing object­

oriented languages (e.g., [HLK+97, KGH+94a, KGH+94b, RHDOO, AK97]). A

safe regression test selection technique is one that, under certain assump­

tions, selects every test case from the original test suite that can expose faults

in the modified program [RH96]. Several safe regression test selection tech­

niques (e.g., [Ba198, CRa94, RH97, PP97, RHDOO]) exist. These techniques
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use some representation of the original and modified versions of the soft­

ware to select a subset of the test suite to use in regression testing. Em­

pirical evaluation of these techniques indicates that the algorithms can be

very effective in reducing the size of the test suite while still maintaining

safety [BRROl, GHK+01, KPROO, RH98, RHDOO, FF97].

In case of object oriented languages, a number of regression test selection

techniques have been developed [RHDOO,AK97,HJL+01]. Rothermel, Harrold

and Dedhia's algorithm [RHDOO] was developed for only a subset of C++,
and has not been applied to software written in Java. White and Abdullah's

approach [AK97] also does not handle certain object-oriented features, such

as exception handling. Their approach assumes that information about the

classes that have undergone specification or code changes is available. Using

this information, and the relationships between the changed classes and other

classes, their approach identifies all other classes that may be affected by the

changes, and it is these classes that need to be retested. White and Abdullah's

approach selects test cases at the class level and, therefore, can select more

test cases than necessary.

Harrold et ai. [HJL+01] presents the first safe regression test selection tech­

nique for Java that efficiently handles the features of Java language. Our

technique is an adaptation of Rothermel and Harrold's graph-traversal algo­

rithm [RH97, RHDOO], which uses a control-flow-based representation of the

original and modified versions of the software to select the test cases to be re­

run. They use the notion of coverage matrix and dangerous entity. Assuming

p and pi to be the actual and modified version of a program, respectively, the

coverage matrix records which entities of P are executed by each test case in a

test suite T. A dangerous entity is a program entity e such that for each input

i causing P to cover e, P(i) and PI(i) may behave differently due to differences

between P and P'. Rothermel and Harrold describe a regression test selection

technique that uses a control flow graph (CFG) to represent each procedure in

P and pi and uses edges in the CFGs as potential dangerous entities [RH97].

Dangerous entities are selected by traversing in parallel the CFGs for P and

the CFGs for pi; whenever the targets of like-labeled CFG edges in P and pi

differ, the edge is added to the set of dangerous entities. After dangerous edges
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have been identified, the system uses the dangerous entities and the coverage

matrix to select the test cases in T to add to T I
•

Although [HJL+01] seems to be pretty strong technically, their approach

is not suitable for us because we are using static analysis and do not have

access to the test suite now. Also, we are not executing a customer's program

ourselves, and the sizes of the applications in the domain in which they carried

out their empirical studies are pretty small compared to ours. They used

JEdit which has less than 4,000 methods whereas ours has almost 3 million

methods. Moreover, their main focus was the control flow inside procedures

which pertains more to unit tests rather than unit tests. As mentioned in

Chapter 2, a customer's test suite is presumably an integration test suite and

is pretty sparse. Due to the huge size of our problem domain, we are not doing

a detailed control flow inside each procedure (method), rather we are building

an access dependency relationship whose granurality is at the method level.

However, we can use the notion of dangerous edges from [HJL+01] in a slightly

different manner in our case as will be described in Chapter 6.

Orso et at. [OSH04] presented a new regression test selection algorithm for

Java programs that handles the object-oriented features of the language, and

is safe and precise. The algorithm consists of two phases: partitioning and

selection. The partitioning phase builds a high-level graph representation of

programs P and pi and performs a quick analysis of the graphs. The goal of the

analysis is to identify, based on information on changed classes and interfaces,

the parts of P and pi to be further analyzed. The selection phase of the

algorithm builds a more detailed graph representation of the identified parts

of P and pi, analyzes the graphs to identify differences between the programs,

and selects for rerun test cases in T that traverse the changes. Their base idea

is effectively the same as in [HJL+01] but due to the two phases, they claim

and show with some empirical studies that this technique scales up to large

software systems. However, the largest domain they applied their technique

to has over 2,400 classes which is still way beneath the number of classes in

our domain - almost 230,000. And also, due to the same reasons mentioned in

the previous paragraph, [OSH04] is not quite suitable for our problem domain

now.
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[OSH04], however has the idea of partitioning the program in components

according to inheritance hierarchy and applying edge-level test selection. In

Chapter 7, we are going to show why this idea is not quite suitable for tackling

the inheritance problem (virtual method call problem) in our problem domain.

4.3 Work related to finding differences

between subsequent versions of programs

Finding differences between two successive versions of a program (although in

our case, just class files) is one of the subject matters of this thesis because

the difference information is one of the two inputs to the impact analysis, the

other being the dependency graph. A number of works have been conducted

in this area as well.

Impact analysis identifies the parts of a program that are affected by

changes and, thus, requires knowledge of the location of such changes. Many

regression test selection techniques (e.g., [OSH04,RH97]) use change informa­

tion to select test cases to be rerun on modified versions of the software.

There are a number of existing techniques and tools for computing tex­

tual differences between files (e.g., the U1 IX diff utility [Mye86]). However,

these techniques are limited in their ability to detect differences in programs

because they provide purely syntactic differences and do not consider changes

in program behaviour indirectly caused by syntactic modifications.

Other existing differencing techniques are specifically targeted at compar­

ing two versions of a program (e.g., [Hor90, JL94, MPWOO]), but they are not

suitable for object oriented code.

Apiwattanapong et al. [AOH04] presented a technique for comparing object

oriented programs that identifies both differences and correspondences between

two versions of a program. The technique is based on a representation that

handles object oriented features and, thus, can capture the behaviour of object

oriented programs.

Despite containing good ideas, the above techniques are not suitable in our

case. As mentioned in Chapter 1, an oracle patch comes in a zip bundle format

containing new versions of modified class files and new class files (along with
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other files). And because of the huge size of the E-Business Suite, keeping

two versions of the entire system is not feasible for us (one with the older

version of files and the other with the newer version). Also, we are not really

interested in finding the modified behaviours because we are not executing the

customer's program ourselves. The thing that we are interested in is to find

the functions in the customer's application layer that may initiate a changed

behaviour, i.e., that leads a call path to a changed function (method). So

we actually need to find what methods have been modified, added or deleted

between two successive versions of a class file.

JDiff [Doa07] is a Javadoc doclet which generates an HTML report of all the

packages, classes, constructors, methods, and fields which have been removed,

added or changed in any way, including their documentation, when two APIs

are compared. This is very useful for describing exactly what has changed

between two releases of a product. Only the API (Application Programming

Interface) of each version is compared. Also it needs the whole API information

as input; so this is not suitable for us.

Jar Compare Tool [dif] is another good tool that allows comparing of classes

inside Java JAR archives and displaying specific differences in class files. The

tool performs deep comparison - it decompiles the class files and displays

differences in specific code lines. However, since it has to work with jar files

and we are dealing with class files, we cannot use this tool for our purpose as

well.

ClassClassDiff is a tool inside the Dependency Finder toolset [TeslOa] that

almost does what we need, but not quite. Its limitation is that it can only

show API differences between 2 classes, but cannot report any change in case

of any modified classes.

Considering all these, we decided to write our own tool for determining

difference between two class files according to our need. We basically use the

XML representation of class files, generated by the ClassReader tool of the

Dependency Finder toolset [TeslOa] and then compare the XML files of two

versions of a class file and report the differences.
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4.4 Summary

43

In this chapter we discussed many of the related works and their applicability

issues in our problem domain. Some of them like [TeslOa], [LBL+10] and

[RST+04] will be discussed in Chapters 6 and 7.

The next chapter presents an overview of our work processes and also

discusses some of the software engineering principles we have followed to make

our tools more robust.



Chapter 5

Process Overview

In this chapter, we present a brief overview of finding modifications in class

files, and of the dependency graph generation process. We also discuss, briefly,

all the tools and their interaction. Later, we discuss different software engi­

neering principles and their application throughout our software development

process.

5.1 Major Steps in Our Process

As mentioned in Chapter 2, the modification finding and access dependency

graph generation process are fully automatic without any human intervention.

In this section we briefly describe the major steps that we follow in accom­

plishing these two tasks. For each consecutive step, output of one step will

be the input of the next step. We call these major steps because each step

may actually consist of internal sub-steps which will be discussed in detail in

subsequent chapters.

Figure 5.1 shows the major steps of the modification finding process. More

specifically, these are:

• We have the original and modified versions of the set of class files that are

associated with a patch. (This information is obtained from the Patch

Analyzer tool introduced in Chapter 2).

• The XML Generator uses the ClassReader tool of Dependency Finder

44
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[TeslOa] toolset to generate one-to-one equivalent XML files of the class

files (both original and modified).

• Finally the difference generating tool (Comparer) generates XML files

containing difference (modification) information comparing the original

and modified versions of the XML files.

Difference Generator
(Comparer)

Legend:

G ~Step

Figure 5.1: Major Steps in Modification Finding

Figure 5.2 shows the major steps of the dependency graph process. More

specifically, these are:

• Using the classpath1 information the File Manager detects which directo­

ries (containing class, jar, zip files) need to be processed and also unjars

and unzips jar and zip files, respectively, to class files.

• The XML Generator use the ClassReader tool of Dependency Finder

[TeslOa] toolset to generate one-to-one equivalent XML files of the class

files.

• The Entity Handler uses the XML files to build the entity list, i.e., the

list with all the methods and fields, as well as the inheritance information

that exists among classes and interfaces.

lclasspath is the collection of directories where Java runtime looks for classes
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• The Dependency Handler uses the same XML files to build the access

dependency graph. This is a complex step because it has to handle some

of the side issues like dynamic binding.

• The entity list, access dependency graph and inheritance information are

all inserted into database tables.

The output from both of these processes, namely, the the XML files con­

taining the modification information and the access dependency graph serves

input as input to the Impact Analyzer tool as mentioned in section 2.7.

5.2 Software Engineering Principles

In this section, we discuss some important software engineering principles

which are essential to successful software development [GJM03] and their role

and impact on our effect analysis project; in particular, the work done in this

thesis. Although these principles appear to be strongly related, we prefer to

describe them separately and in general terms.

5.2.1 Rigor and Formality

Rigor [GJM03] stands for precision and exactness - which is an intuitive quality

and cannot be defined in a rigorous way in software development. Various

degrees of rigor can be achieved; the highest among them being formality

where the whole software process is driven and evaluated by mathematical

laws. The whole software design and development need not be formal (and

this is often impossible or very difficult) but we must be able to identify the

level of rigor and formality that should be achieved.

In our process, we try to maintain formality by representing the access

dependency graph as a set of nodes and edges; which is a typical formal repre­

sentation of any mathematical relation. Also, we store everything in relational

database (Oracle) tables, which is another way of formally storing information.

Rigor and formality also apply to the whole software development process.

During programming (a traditional formal approach in the software develop­

ment process), we directly translate the dependency relationship into the Java
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programming objects which are automatically checked and verified for correct­

ness by the Java compiler. Also, as the source of our work and as a way of

representing modification between successive versions of class files, we are us­

ing XML format, which is a well known formal representation for transferring

data from one medium to another.

5.2.2 Separation of Concerns

Separation of concerns helps us deal with different aspects of the problem while

concentrating on each independently at a time. Different type of separation

of concerns are in practice during software development process [GJM03]. In

our case, most of them deal with the higher level design of the impact analysis

project tool suite architecture shown in Chapter 2. One important type of

separation of concerns is to work with different parts of the problem separately.

Using modular development strategy, we have divided the dependency graph

generator and modification finder software into several steps. At each step,

we are not concerned with the next steps. Necessary adjustments in both

the design and the previous steps are made depending on the current step

of development. In this way, we can easily concentrate on the current step.

For example, while generating XML files from class files, we do not worry

about the dependency graph generation process; thus cutting the problem

into subproblems.

5.2.3 Modularity

A modular system is a system that is composed of modules. Modularity is

essential to build a well structured, layered and maintainable software. As

shown in Figure 5.2, we divide our whole process into modules where each

module takes care of a different part of the process; thus implementing the

principle of separation of concerns. First, the whole process is divided into

smaller modules. Then we concentrate on individual module design; following

a top down design process.

'/lle use Java language that comes with extensive modularity support with

classes and packages. Each major module in our process uses the output of only
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a few previous modules; thus indicating low coupling. However, the functions

(methods) inside the modules are related strongly to give high cohesion. We

keep all the common codes of different modules (in our case, classes) in separate

modules (classes) to reduce coupling and also to eliminate repetition of codes

from the program.

5.2.4 Abstraction

Abstraction is a basic technique for understanding and analyzing complex

problems [GJM03]. By abstraction, we can ignore the complex details of an

object and concentrate on the facts that we think relevant. We use Java as

our implementation which has a huge collection of abstract data types. Using

abstract data types like ArrayList, HashMap we hide much of the internal

details of the in memory data storage. This provides us with better program

understanding and easily maintainable software.

5.2.5 Anticipation of Change

Software may undergo changes constantly. These changes may be due to

elimination of errors or future adaptation in different platforms. Basically,

incorporating anticipation of change in the design strategy means to isolate

the likely changes in specific portions of the software so that future changes

will be restricted to those portions only [GJM03].

We have represented the common data (data that is used by several mod­

ules) in one separate Java module (class). We can just make minimum neces­

sary amendments in that module whenever any common data (e.g. a directory

path) needs to be changed either for a change in the file system or for use of

the software in a different platform. Also, the major tasks are represented

through different modules, which ensures that a change or modification can

be carried out by making minimum necessary amendments inside one mod­

ule (class) or a function (method) without drastically changing the API's of

individual modules.
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Reusability

5. Process Overview

Reusability is a software quality which is strongly affected by the anticipation

of change. The use of Java as the implementation language facilitates reusabil­

ity of our code. For example, the code of the XMLGenerator and XMLHelper

classes in the modification finder tool was reused in the dependency graph

generation tool. Similarly, the code for the ConnectionManager class can be

reused in any tool where there is a need for creating and closing database

connections.

5.2.6 Generality

The principle of generality may be stated as follows: "Every time you are asked

to solve a problem, try to focus on the discovery of a more general problem that

may be hidden behind the problem at hand" [GJM03]. Although the system

we are currently working on is Java based, there is a good probability that we

may have to deal with systems based on other languages. So while designing

the tool suite, a prime concern was to ensure that different architectures can

be represented with minimal changes in the tools. Also another concern was

to make the tool suite executable on different platforms. This increases the

portability of the tools on different architectures.

Portability on Different Architectures

As far as handling systems based on languages other than Java are concerned,

our tools are designed in such a way that they can be handled with little extra

effort. For example, we are using XML representation of Java bytecode. Had

it been any other language, we could similarly represent the compiled binaries

of that language source code in XML representations and then use those in

the same fashion. Of course, we might need to write tools for converting

the binaries into XML first (which we didn't need in this case, because the

existence of some off the shelf bytecode analysis tools). However, because of the

modular nature of our design, that extra tool would be easily pluggable into our

toolset without violating the original design hierarchy. And the relationship

among entities can be represented with Java's abstract data types (just as we
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do in our case) anyway.

As for the platform independence issue, Java runs on almost all platforms

because of the Java Virtual Machine (JVM); so our tools should be executable

on all platforms as well, with the probable changes in some places like the

directory naming convention (for UNIX frontslash 'I', for Windows backslash

'\') etc. Again, due to the modular nature of our tools, these changes take

little effort to be incorporated into our tools.

5.2.7 Incrementality

Incrementality applies to a process that proceeds in an incremental fashion

[GJM03]. We can add different features of a process in increments. A good

software design must incorporate provision to add new features easily. In our

dependency graph generation process, our first goal was to find the entity

(method, field) list and then we went on finding the dependency graph itself.

In future it is possible to add new features (like augmenting the dependency

edges with meta information if necessary) to our process.

5.3 Summary

In this chapter, we discussed the overview of our work processes and also

discusses some of the software engineering principles we followed in our way

of building the tools.

The next chapter is one of the main subject matters of this thesis - the

process of finding modifications between two successive versions of a class file.



Chapter 6

Finding Modifications in Java

Bytecode

In this Chapter, we discuss in detail the way we carry out the modification

finding step introduced in Chapter 2. Since in this thesis, we are only con­

cerned with the Java application and not the database, we will only discuss

how we detect changes between subsequent versions of Java bytecode (class)

files. First we introduce Java bytecodes and possible kinds of modifications.

Then we discuss the modification detection process in detail. Finally we dis­

cuss the connection with impact analysis of the work discussed in this chapter.

6.1 Java Bytecode

The Java bytecode (class file) format has been described in detail in Sun

Microsystem's Java Virtual Machine (JVM) Specification [jvm99]. Here we

describe in short the parts that are relevant to our analysis. Each class file

contains the definition of a single class or interface. A class file consists of a

single ClassFile structure1
:

1In these data structures, ul and u2 represents 2-byte and 4-byte data quantities, re­
spectively

52



6. Finding Modifications in Java Bytecode

ClassFile {

u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool [constant_pool_count-1] ;

u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces [interfaces_count] ;

u2 fields_count;

field_info fields [fields_countJ ;

u2 methods_count;

method_info methods [methods_count] ;

u2 attributes_count;

attribute_info attributes [attributes_count] ;
}
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[jvm99] describes all the individual members of this structure in detail.

We describe below, briefly, the specific members that we have used in our

analysis:

• this_class denotes the name of the class/interface.

• super_class denotes the name of the super class of the class/interface

under consideration. It is worth mentioning that if a class/interface

has no super class explicitly mentioned in the source file code, then the

default super class is java.lang.Object.

• interfaces denotes the set of interfaces that the class implements.

• acessJlags is a 16-bit value that contains the various access related

information about the class (e.g., whether it is public or private whether

it is actually a class or an interface, whether it is abstract or not etc.)
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• constant-pool is a table of structures representing various string con­

stants, class and interface names, field names, and other constants that

are referred to within the ClassFile structure and its substructures.

• fields are the set of fields in the class.

• field_info contains detailed information about individual fields.

• methods are the set of methods in the class.

• method_info contains detailed information about individual methods.

The field_info and method_info are themselves structures [jvm99]:

field_info {

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes [attributes_count] ;

}

method_info {

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes [attributes_count] ;

}

We describe these below:

• access_flags is a 16-bit value describing all the access related properties

(e.g. whether it is public, private or protected; static or non-static) of a

field or method. For example, in the case of both a field and a method,

if bit 1 is set, then the field or method is public.
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• name_index is an index to the constant_pool data structure that

would give us the name of the field.

• descriptor_index is an index to the constant\_pool data structure

that would give us several information about the field or method. In

case of a field, our desired information is the type of the field. In case of

a method, our desired information is the method's signature and return

type.

• attributes is the data structure that contains other useful information

about the fields and methods. Regarding our analysis, we are interested

in the code attribute, local variable attribute and exception handler at­

tributes that represent the code (instructions), local variables and a list

of handled exceptions, respectively, of a method.

Although all this information is present in the bytecode, the bytecode is in

binary format and we need to decode it for extracting this information from

it. However, some off the shelf bytecode analysis tools already exists that can

give us the XML equivalent of class files. The one we use is the ClassReader

tool of the Dependency Finder [Tes10a] toolset. Below we describe the XML

representation with an example.

6.2 The XML Representation

The ClassReader tool converts the class file into a human readable XML for­

mat. By parsing this XML, we can get all the required information described

in the previous section. Consider the class TestClass in Listing 6.1

public class TestClass {

public int i = 1;

private String str;

public void test(int b){

System.out.println(incO + b);

}
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}

private int inc () {

return i++;

}
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Listing 6.1: Sample Class

The XML file generated by ClassReader for this class is shown in List­

ing 6.2, with some of the details hidden as ellipses.

<classfile magic-number="OxCAFEBABE" minor-version="O" major­

ve r sion=" 49" access -£1 ag=" 00000000 00100001">

<constant-pool>

</constant-pool>

<publici>

<super/>
<this-class>TestClass </this-class>

<superclass >java .lang. Object</superclass >

<fields>

< fi e 1d -i n fo access -£1 ag=" 00000000 00000001">

<publici>

<name>i </name>
<type>int </type>

</field -info>

< fi e 1d -i n fo access -£1 ag=" 00000000 00000010">

<private/>

<name>str </name>

<type>java. lang. String </type>

</ field -info>

</fields>

<methods>
<method-info access -£1ag=" 00000000 00000001">

<publici>

<name>&l t ; in i t&gt; </name>

<signat ure >TestClass () </signa ture >

<attributes>

<code-attribute>

<length >10</length>

<instructions>

</instructions>
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<attributes>
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<local-variable -table-attri bu te >

< 10 cal-v ar i able pc=" 0" length=" 10"

index=" O"><name>this </name><

type>TestClass </type></local­

variable>

</local-variable -table-attri bu te >

</attributes>

</code-attribute>

</attributes>

</method-info>

<method-i nfo access -flag=" 00000000 00000001">

<publici>

<name>test </name>

<return-type>void</return-type>

<signature>test (int )</signature>

<attributes>

<code-attribute>

<length >13</length>

<instructions>

</instructions>

<attributes>

<local-variable -table -attri bu te >

<local-variable pc="O" length=" 13"

index=" O"><name>this </name><

type>TestClass </type></local­

variable>

<local-variable pc="O" length=" 13"

index=" 1"><name>b</name><type

>int </type></local-variable >

</local-v aria ble -table -at tri bu te >

</attributes>

</code-attribute>

</attributes>

</method-info>

<method-i nfo access -flag=" 00000000 00000010">

<private/>
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<name>inc </name>

<ret urn-type>int </return-type>

<signature>inc O</signature>

<attributes>

<code-attribute>

<length >12</length>

<instructions>

</instructions>

<attributes>

<local-variable -table -attri bu te >

<local-variable pc="O" length="12"

index=" O"><name>this </name><

type>TestClass </type></local­

variable>

</local-variable -table-attri bu te >

</attributes>

</code-attri bu te >

</attributes>

</method-info>

</methods>
<attributes>

</attributes>

</classfile>

</classfiles>

Listing 6.2: XML File for TestClass

Although the XML format is quite messy to look at, it is at least human

readable. A careful inspection of the file quickly reveals that this is actually a

one-to-one representation of the Java binary bytecode and all the information

we could get from the bytecode (details on class, methods, fields) is a also

present in the XML which can easily be parsed by any standard XML parser

(e.g. DOM parser).
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6.3 Types of Changes Between Two Versions

of Bytecode

Changes can occur in a number of ways between subsequent versions of a class

file. The possible types of changes we figured out are given below:

• Changes in in the super class. This may mean deleting an existing

super class, or adding a super class to a class that previously didn't have

one, or replacing a super class by a new one.

• Changes in the interfaces the class implements. This may mean

deleting an interface or adding a new one.

• Changes in the access flag of the class. This may mean any kind

of change in the access related information of that class.

• Changes in the methods. This may mean addition of new methods

to or deletion of old methods from the class. More importantly, it may

also mean any kind of changes in an existing method. This includes:

1. Changes in the code (instructions) of the method, including local

variables and exception handlers.

2. Change in the return type of the method.

3. Changes in the access flags (e.g. from public to private) of the

method.

ote that changes in a method do not include a change in the method

signature. This is because we consider change in the signature as deletion

of a method with the old signature and addition of a method with the

new signature.

• Changes in the fields. This may mean addition of new fields to or

deletion of old fields from the class. It may also mean any kind of changes

in an existing field. This includes:

1. Change in the type of the field.

2. Change in access flags.
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6.4 Some Points to Note

The reader might wonder why we have not included change in a field's initial­

ization in the types of changes listed in the previous section. Also, how are

we dealing with the constructors, instance initalizers (which are technically

not methods) and static initializers? To understand these issues, it is worth

mentioning some points about the class file and the types of changes men­

tioned in the previous two sections. First of all, any constructor, along with

the instance initializers in a class would be represented as a method named

<init> in the class file. Even if a class has no explicit constructor mentioned

in the source code file, the <init> method will be there in the class file. If a

class has multiple constructors then there is one <init> method generated for

all of them with different signatures. Thus the issue of constructors and static

initializers are safely taken into account by handling the methods in the class

file.

The initialization of any non-static field is incorporated in the <init>

method. Likewise, if a class has static fields and static initialization blocks,

then all those blocks and static field initializations are encompassed as a single

method called < clinit> in the class file. So, if the initializing value of a field

is changed in a subsequent version of a class file, this change is reflected in the

<init> method (if the field is non-static) and in the <clinit> method (if the

field is static), but not in the field itself. Only in the case of a change of type

or change in the access flags, is the change reflected in the field itself. Thereby

the changes in fields initialization are also taken into account by handling the

methods in the class file.

Another important point is that a method is differentiated from another

by its signature, not by just its name, because overloaded versions of methods

with different signatures have the same name. So in the case of modification

detection, if the signature of a method changes, we consider it as deletion

of a method with the old signature and addition of a method with the new

signature.

In section 6.6 and in Chapter 7, we will discuss more about the types

of changes and their correlation with the dependency graph generation and

impact analysis.
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6.5 Modification Detection Process
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Now that we have described the basic structure of class files and also mentioned

the possible kinds of changes that might occur between subsequent versions of

class files, let's get into the details of how we actually detect the modifications.

A short overview of the steps of the process was given in Chapter 5. Here we

discuss the steps in detail. We have implemented our tool ClassDiff in Java

for carrying out these steps. Along with what we have done, we also describe

which class and which method of our program is used for what functional­

ity. Just to mention, we have two reusable utility classes ConnecionManager

and XmlHelper that helps us managing database connection and creating and

writing to XML documents.

6.5.1 Getting Two Versions of a Class File

As shown in Figure 2.4, we get the information about which files changed

from the Patch Analyzer toolset implemented by Akbar Abdrakhmanov 2.

This toolset saves the necessary information (file name, absolute path etc.) III

a database table that has the following columns:

Name

Original_Path

Patch_Path

Extension

Here OriginaLPath is the path of the original (before patching) file and

Patch_Path is the path of the modified path (after patching). In our program,

we have a class DatabaseHelper whose method getChangedFilePaths gets

us the paths of the original and modified class files using a database function

FN_GET_CHANGED_FILES_PATHS. For storing the information in memory, we

use instances of a class FilePath that records the file name and the absolute

paths of the original and modified files.

2(in progress)



62 6. Finding Modifications in Java Bytecode

6.5.2 Common Data Holder

Before we move further, we should mention that for sharing some common data

and constants across the programs such that directory names where the XML

files would be stored, names of database functions and procedures etc., we

have a class Data. For example, the directory paths where the corresponding

XML files for original and modified versions of the XML files would be placed

are stored in the following two fields of that class, respectively:

newXmlPathPrefix

oldXmlPathPrefix

As the reader can guess, this kind of storage facilitates reusability, like for

example, if any path need to be changed, we can just change the value of the

corresponding field of this class that holds that path. In Chapter 7, we will

see that we use similar kind of common data file for our dependency graph

generation process as well.

6.5.3 Converting the Class File into XML Format

Using the ClassReader tool of the Dependency Finder [TeslOa] toolset we

convert both versions of the class file to equivalent XML format. We have a

class XMLGenerator whose method generateSingleXmlFile does this job for

us.

6.5.4 In-Memory Data Structure For Classes

Having generated the XML equivalent for both versions of a class file, we

parse the XML files and represent both of them as in-memory data structure

representing classes:

public class Class {

String name;

String superClass;

ArrayList<String> interfaces;

String access;
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HashMap<String,Methodlnfo> methods;

HashMap<String,Fieldlnfo> fields;
}
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The members name, superClass and access represents the class's name,

super class and access flag, respectively. Since a class can implement more

than one interfaces, we use Java's ArrayList data type for representing the

list of interfaces and. For representing methods, we use HashMap where the key

is the method's signature and the value is another data structure Methodlnfo.

Similarly for fields also, we use HashMap where the key is the field's name and

the value is another data structure Fieldlnfo. The classes representing these

two data structures are below:

public class Methodlnfo {

String returnType;

String access;

String code;
}

public class Fieldlnfo {

String type;

String access;
}

The access is the access flag of the method or field. The returnType is

the return type of the method and code represents the collection of instruc­

tions, local variables and exception handlers of the method. In the case of

a field, type represents the type of the field. These explanations are analo­

gous to the ones made in section 6.1 where we discussed the bytecode struc­

ture. The in-memory representations of the class files are built up using the

buildStructureFromXml method of class ClassBuilder in our program.

Reasons for Using HashMaps

The reader might wonder why we are keeping hashmaps for storing the meth­

ods and fields, and not a mere list (like ArrayList). The reasons that we need
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a kind of data structure that can map a method signature to its informa­

tion or a field's name to its information. A list structure wouldn not help us

much in this regard. Also by keeping hashmaps, it is very easy to compare

method-to-method or field-to-field between subsequent versions of class files.

6.5.5 XML Representation of the Modifications

Since the modification information is needed for the impact analysis (which is

not in the scope of this thesis, but is a part of the impact analysis project),

we have decided to represent the modification information in XML format, so

that during impact analysis, it can be easily parsed and the information can

be easily extracted.

For building up the XML, we first need to define the XML format. The

full DTD (Document Type Definition) file defining the XML format is a part

of our proprietary code-base. Here we explain the steps of how we build up

the XML and then we demonstrate the process with an example.

Algorithm 6.1 lists a high level representation of our modification detection

process. It compares the super class, interfaces, access flags, methods and

fields and records any change, addition or deletion of any of these things in

the output XML file.

Since Algorithm 6.1 is ata very high level of abstraction, below we describe

the process in detail.

The in-memory representation of the two versions of the class files discussed

in the previous subsection are compared member-to-member and if there is any

difference between the two members, a DOM (Document Object Model) node

is created and the difference is recorded in that node, possibly with the help of

XML attributes. For example, if the super class of a class A is changed from

B to C, the corresponding DOM node will be:

<superclass old="B" new ="C">

Tvlore formally, the steps for building up the XML is as follows:

1. Create an XML Document.
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Input: original class file 0
modified class file 0'
Output: an XML file D
Data: s = superclass of class 0

s' = superclass of class 0'
I = interfaces of class 0
I' = interfaces of class 0'
a = access flag of class 0
a' = access flag of class 0'
M = set of methods of class 0
M' = set of methods of class 0'
F = set of fields of class 0
F' = set of fields of class 0'
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1 begin
2 compare sand s' and record superclass difference in D if s i= s';
3 compare I and l' and record any added or deleted interface in D if

I i= 1';
4 compare a and a' and record any difference in flags in D if a i= a';
5 compare M and M' and record any added, deleted or changed

method in D if M i= M';
6 foreach added method c do
7 record the dependency (to other methods and fields) information

in D;
8 end
9 foreach changed method c do

10 record the details of changes (return type, access or instructions)
in D;

11 record the dependency (to other methods and fields) information
changes in D;

12 end
13 compare F and F' and record any added, deleted or changed field in

D if F i= F';
14 foreach changed field c do
15 record the details of changes (type, access) in D;
16 end
17 end

Algorithm 6.1: The High Level Algorithm for Finding Modifications in
bytecode
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2. Create a DO 1 node called <classdiff> with an attribute name. The

value of this attribute is the fully qualified name3 of the class. This node

is the root element of the XML.

3. Compare the super classes.

• If the super class of the class has changed, create a DOM node called

<superclass> with two attributes, new having the new super class

name as value and old having the old super class name as value.

Add this node as a child of root.

4. C mpare the interfaces.

• For each added interface create a DOM node called <added> with

the new interface name as text value.

• For each deleted interface create a DOM node called <deleted>

with the deleted interface name as text value.

• If there is any added or deleted interfaces found from the previous

two steps then create a DOM node called interfaces and add the

nodes from the previous two steps as children of this node. Add

this node as a child of root.

5. Compare the access flags.

• For each newly set access bit, create a node called added with the

with the type of access as text value.

• For each newly unset access bit, create a node called deleted with

the with the type of access as text value.

• If there is any newly set or unset flag bit found in the previous two

steps, create a DOM node called access and add the nodes from

the previous two steps as children of this node. Add this node as a

child of root.

6. Compare the methods.

3The fully qualified name of a class is the class name preceded by its package hierarchy
separated with dot (.)
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• For each deleted method, create a DaM node called deleted with

the method signature as text value.

• For each newly added method, create a DaM node called added

with two attributes, access having the access flag and signature

having the signature of the method. Record the dependency infor­

mation of this method.4
.

- For each field dependency create a DaM node called

field-dependency with an attribute static whose value will

be yes if that field is static and no if that field is non-static.

The text value of this node is the field name.

- For each method dependency create a DOM node called

method-dependency whose text value will be that method's

signature.

If any dependencies were found in the previous two steps, create

a DOM node called dependencies and those dependency nodes

as its children. Add this node as a child of added.

• For each method whose signature hasn't changed compare them.

- If the return type has changed create a DaM node called

returntype with two attributes, new having the new return

type and old having the old return type.

Compare the access flags.

* For each newly set access bit, create a node called added

with the with the type of access as text value.

* For each newly unset access bit, create a node called deleted

with the with the type of access as text value.

* If there is any newly set or unset flag bit found III the

previous two steps, create a DaM node called access and

add the nodes from the previous two steps as children of

this node.

4We do not go into detail here about how we find the dependencies. Chapter 7 will
discuss the dependency issues in grater detail
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• If the instructions, local variables or exception handlers have changed

then create a DOM node called instructions. Record the depen­

dency information change as well.

For each added method dependency create a DOM node called

addedcall with that method signature as text value.

For each removed method dependency create a DOM node

called removedcall with that method signature as text value.

For each added field dependency create a DOM node called

addedaccess with that field signature as text value. This node

will have an attribute static with value yes if that field is

static and no if that field is non-static.

- For each removed field dependency create a DOM node called

removedaccess with that field signature as text value. This

node will have an attribute static with value yes if that field

is static and no if that field is non-static.

- If any dependency information is found in the previous steps,

then create a DOM node called dependencies and and those

dependency nodes as its child. Add this node as a child of the

instructions node.

• If any changed information has been found in the previous steps,

create a DOM node called methodinfo and and all those change

information nodes as its child.

• If the methodinfo node has been created then create a DOM node

called changed with an attribute signature having the method

method signature as value. Add the methodinfo node as a child of

this node.

7. Compare the fields.

• For each deleted field, create a DOM node called deleted with the

field name as text value.

• For each newly added field, create a DOM node called added with

three attributes, access having the access flag, name having the
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name of the field and type having the type of the field .

• For each field whose name hasn't changed compare them.

If the type has changed create a DOM node called type with

two attributes, new having the new type and old having the

old type.

Compare the access flags.

* For each newly set access bit, create a node called added

with the with the type of access as text value.

* For each newly unset access bit, create a node called deleted

with the with the type of access as text value.

* If there is any newly set or unset flag bit found in the

previous two steps, create a DOM node called access and

add the nodes from the previous two steps as children of

this node.

If any changed information has been found in the previous

steps, create a DOM node called fielddinfo and and all those

change information nodes as its child.

If the fieldinfo node has been created then create a DOM

node called changed with an attribute name having the method

method signature as value. Add the fieldinfo node as a child

of this node.

In our program, we have a class Cornparer which has different methods for

comparing superclass, interfaces, methods, fields for carrying out the above

steps. As a driver class of all the Java classes in our program mentioned so

far, we have a class ClassDiff .

Let's get into the example. Consider the two versions of the class C shown

III

public class C extends A implements D{// extends B{

private String str = "hello";

private int count = 0;

String place = "hell" ;
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public void printMessage(String name){

System. out. println (str + " " + name);

System.out.println("Welcome to" + place);

count++;
}

private void changeStr () {

if (str . equals (" hello")){

str = "hi";

}

}
else {

str

}
"hello" ;

private void changePlace () {

if (place. equals (" heaven")) {

place = "hell";

}

}

}
else {

place

}
"heaven" ;

Listing 6.3: Original Version of Class C

public class C extends B implements D, E{// extends B{

private String str = "hello";

private short count = 0;

String place = "heaven";

int max = 100;

pu blic void prin tMessage ( S tr ing name) {

System.out.println(str +" "+ name);

System.out.println("Welcome to" + place);

increment () ;

}
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private void increment () {

count++;

if (count < max){

count++;

}
}

private void changeStr () {

if( str. equals (" hello")){

str = "hi";
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}

}
else {

str

}
"hello" ;

public void changePlace () {

if(place.equals("heaven")){

place = "hell" ;

}

}

}
else {

place

}
" heaven" ;

Listing 6.4: Modified Version of Class C

A careful inspection of these two version of Class C reveals the following

differences between the two:

1. Change in the super class, A in the original (old) version, B in the

modified (new) version.

2. Addition of an extra interface implementation - E.

3. Addition of the new field max.

4. Initialization of the new field max to the value 100.
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5. Change of type of the field count from int to short.

6. Change in initialization value of the static field count.

7. Change in initialization value of the non-static field place.

8. Change inside the printMessage method - addition of a call to the

increment method.

9. Addition of the increment method.

10. Change of the private access of method changePlace to public.

Let's see how our XML output represents these differences. As described

above, both versions of the class file (in this example, C.class) are first con­

verted into the XML format generated by ClassReader. ( We are not showing

those class-equivalent XML format here because they won't help too much

in understanding this example ). Then they are parsed and converted to

in-memory data structures. By programmatically comparing the two data

structures, we get the XML snippets below (created using DOM) for the mod­

ifications (changes) listed above:

Change 1 is handled by the following snippet.

<superclass new="B" old="A"/>

Change 2 is handled by the following snippet.

<interfaces>

<added>E</added>

</interfaces>

Changes 3 and 5 are handled by the following snippet.

<fields>

<changed name="count">

<fieldinfo>

<type new="short" old="int"/>

</fieldinfo>

</changed>

<added access="OOOOOOOOOOOOOOOO" name="max" type="int"/>

</fields>
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In fact, any kind of access or type change of the fields would be represented
inside the <fields> tag. Finally, changes 4, 6, 8, 9 and 10 are handled by the
following snippet.

<methods>

<changed signature="printMessage(java.lang.String)">

<methodinfo>

<instructions new="new" old="old">

<dependencies>

<addedcall>C:increment()</addedcall>

<removedaccess>C:count</removedaccess>

</dependencies>

</instructions>

</methodinfo>

</changed>

<changed signature="<clinit>O ">

<methodinfo>

<instructions new="new" old="old"/>

</methodinfo>

</changed>

<changed signature="CO ,,>

<methodinfo>

<instructions new="new" old=" old">

<dependencies>

<removedcall>A:A()</removedcall>

<addedcall>B:B()</addedcall>

<addedaccess static=lno ">C:max</addedaccess>

</dependencies>

</instructions>

</methodinfo>

</changed>

<changed signature=" changePlaceO ,,>

<methodinfo>

<access>

<added>public</added>

<deleted>private</deleted>

</access>

</methodinfo>

</changed>

<added access= l 0000000000000010" signature="increment()">

<dependencies>
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<field-dependency static=l no ">C:max</field-dependency>

<field-dependency static=l yes ">C:count</field-dependency>

</dependencies>

</added>

</methods>

In fact, any kind of changes related to methods and changes in the fields

(static or non-static) initialization would be reflected inside the <methods>

tag. As mentioned earlier, in Java bytecode, any initialization of a non-static

field is incorporated inside the instance initializer <init> method, which rep­

resents the constructor; and any static initialization is incorporated inside the

<clinit> method. That's why changes 4 and 7 are enclosed inside the changed

method with signature C(), which is the constructor, because these changes

are the changes in non-static initialization. Similarly change 6 is enclosed in­

side the changed method with signature <clinit> (), because these changes

are changes in static initialization.

6.6 The Impact Analysis Connection

In the previous section, we discussed detecting changes between class files in

general. However, considering the level of abstraction at which our change

impact analysis will be carried out, it is important to note that not all kinds

of changes are important for us. For the impact analysis, as described in

Chapter 2, we need to know what methods or fields have undergone changes,

but we are not really interested in knowing the changes at a finer grain, for the

time being. For example, in case of a modification inside a method, our change

detection process reports what kind of change the method actually encountered

- return type, instructions or access. But for our proposed impact analysis,

all we need to know is the fact that something was changed in the method.

Again, in case of changes in the instructions, our change detection process also

reports whether the change includes change in dependency to other methods

or fields or not. This information, although not needed in the proposed impact

analysis, would be needed in the maintenance of the access dependency graph

as will be discussed in Chapter 8.
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Another point worth mentioning is that some changes are complementary

to others. For example, in the example shown in the previous section, the

change in the method increment cannot be done without introducing the

new field max. As another example, if the public access of a method or field is

changed to private, that might also indicate subsequent changes in other meth­

ods from other classes; because the methods that were previously accessing a

public field or method directly, can no longer do that because that method

or field has now gone private. In this kind of case where two changes are

complementary, the one that comes ahead in a control flow might be sufficient

for impact analysis. In Chapter 7, the correlation of changes with the impact

analysis and dependency graph generation will be discussed in greater detail.

In general, despite the fact that our proposed impact analysis does not

use all the information generated by our modification finding process, keeping

in mind that in future we might want to work at a more finer grain, the

informative output serves as a good source for use in any next order processing.

In addition, from the software engineering viewpoint, it is always a good idea

to make a tool more general, and considering future reuse.

6.7 Other Information Related to Modifica­

tion

In addition to the information related to the change in subsequent versions of a

class file, there can be new class files introduced by a patch, as well as deleted

class files, which are also needed for the impact analysis phase. Information

about new or deleted files are directly available from the patch analysis and

has nothing to do with the modification finding process. This information will

be directly used in the impact analysis process.

6.8 Summary

In this chapter, we discussed the process of finding modification between two

versions of java bytecodes in detail. This information is one of the inputs that

will be used for impact analysis.
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The next chapter will discuss another major subject matter of this thesis

- building the dependency graph among the entities in the Java environment.



Chapter 7

Building the Access

Dependency Graph

In this chapter, we discuss how we build up the access dependency graph

among the entities in the Java environment. This work refers to the Depen­

dency Analyzer (Application) tool of the toolset shown in Figure 2.4. Before

we proceed with details, we need to keep in mind that we have to build the

graph in such a way that the impact analysis (which is the next phase in our

project toolset) phase can be successfully carried out. So, first we discuss the

need for the dependency graph from the impact analysis point of view. We

then present the notion of call graph and discuss some factors that affect it

which leads us to access dependency analysis. Then we discuss the empiri­

cal problems we faced while trying to generate the dependency graph using

Soot [LBL+10]. After that, we discuss our complete process of generating

the dependency graph. Finally we will get back to how some critical impact

analysis issues are handled in our case.

7.1 The Need for the Dependency Graph ­

Impact Analysis Point of View

Since the ultimate goal of our impact analysis project is to provide the cus­

tomer with a reduced test suite (and suggest new test cases also if possible),
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and finding that reduced test suite depends on a successful impact analysis,

we need to keep in mind how the impact analysis will be done while building

the access dependency graph.

From our modification finder tool (Chapter 6) we get information about

changes among successive versions of class files. Along with this, we also

have information about added and deleted class files directly from the patch

analysis tool. In the impact analysis phase, we trace back from the changes

(or added entities) to the functions in the customer's application layer to find

out which functions there leads to a call-path upto those changed (or added)

entities.

Now the big question is: what kind of changes do we want to start our

impact analysis from? In [RST+04], as discussed in Chapter 4, Ren et ai.

implemented a tool for change impact analysis in Java. They pointed out 16

kinds of atomic changes shown in Table 7.1.1.

AC Add an empty class
DC Delete an empty class
AM Add an empty method
DM Delete an empty method
CM Change body of a method
LC Change virtual method lookup
AF Add a field
DF Delete a field
CFI Change definition of an instance field initializer
CSFI Change definition of a static field initializer
AI Add an empty instance initializer
DI Delete an empty instance initializer
CI Change definition of an instance initializer
ASI Add an empty static initializer
DSI Delete an empty static initializer
CSI Change definition of a static initializer

Table 7.1.1: Categories of Atomic Changes [RST+04]

Out of these 16 kinds of changes, AC, DC, AM, DM, CM, AF and

D F are directly handled by our modification finder and patch analyzer tool.

Since in the bytecode, the instance initializers, instance field initializers and
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the constructor are incorporated together in a method called <init> , and

the static initializers and static field initializers are incorporated in a method

called < clinit> , our modification finder (along with the patch analyzer) also

handles the CFI, CSFI, AI, DI, CI, ASI, DSI and CSI changes. The only

change that is not directly handled by our modification finder tool is the LC

change, which is the change in virtual method lookup.

First we talk about the LC change. According to [RST+04], " LC repre­

sents changes in dynamic dispatch behaviour that may be caused by various

kinds of source code changes (e.g., by the addition of methods, by the addi­

tion or deletion of inheritance relations, or by changes to the access control

modifiers of methods). LC is defined as a set of pairs (C, A : m()) indicating

that the dynamic dispatch behaviour for a call to A : m() on an object with

run-time type C has changed", where C is a sub-class of A. Later on in this

Chapter, we will show that we build our dependency graph in such a way that

the LC changes will be incorporated safely by the impact analysis phase.

Besides those 16 kinds of changes, another kind of change we take into

account is the change of type in fields. We will discuss this in detail later on

in this chapter when we talk more about including fields in our dependency

graph.

Considering everything, we need a graph consisting of nodes and edges that

incorporates the dependency relationship among the entities (methods, fields)

in the Java environment. This graph structure will be used as a knowledge

base during the impact analysis. During the design of our project, our first

thought was to build a call graph and use that as a knowledge base. In the

next sections, we discuss the notion of call graphs in Java context, factors

affecting the call graph, why we chose to switch from call graph analysis to an

access dependency analysis and the formal notion of access dependency graph.

7.2 Call Graph in Java Context

Back in Chapter 2, we discussed the concepts of the call graph and access

dependency graph in a very short span. Before we move on, we take a look at

the notion of call graph in the context of Java.



80 7. Building the Access Dependency Graph

For any 2 classes A and B, if A's method a() calls B's methods

b10,b2 0, ... bn 0 then we consider each of these class-method pairs,

A : aO, B : b10, B : b2 0, ... B : bnO, as nodes of the call graph and

the following as edges:

A : aO -+ B : b10
A : aO -+ B : b20

A : aO -+ B : bnO

where each class-method pair on the left of the arrow is the caller node and

the one on the right is the callee node.

7.3 Factors Affecting the Call Graph

In this section we discuss some important factors that affect the call graph

especially in an OOP context like Java.

7.3.1 Calling of Methods

According to the Java Virtual Machine Specification [jvm99], a method can

be called in 4 ways:

• invokeinterface

• invokespecial

• invokestatic

• invokevirtual

invokeinterface is used to invoke a method declared within a Java interface.

For example, consider the Java code:

void test(Enumeration enum) {

boolean x = enum.hasMoreElements();
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}
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Here, in the compiled bytecode, invokeinterface will be used to call

the hasMoreElements() method, since Enumeration is a Java interface, and

hasMoreElements() is a method declared in that interface. Which particular

implementation of hasMoreElements() is used will depend on the type of

object at runtime.

invokespecial is used in certain special cases to invoke a method Specifically.

It is used to invoke:

1. the instance initialization method, <init>

2. a private method of the calling class itself

3. a method in a superclass of the calling class

The main use of invokespecial is to invoke an object's instance initialization

method, <init> , during the construction phase for a new object. For example,

the following code in Java

new StringBuffer()

will generate bytecode like the following:

invokespecial java/lang/StringBuffer/<init>()

invokespecial is also used by the Java language by the 'super' keyword to

access a superclass's version of a method. For example, in the class:

class Example {

II override equals

public boolean equals(Object x) {

II call Object's version of equals

return super.equals(x);
}

}
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the super. equals(x) will generate bytecode like the following:

invokespecial java/lang/Object/equals(Ljava/lang/Object;)

Finally, invokespecial is used to invoke a private method, since private

methods are only visible to other methods belonging to the same class as the

private method.

invokestatic calls a static method (also known as a class method). For

example, the code

System. exit (1) ;

would generate the following bytecode:

invokestatic java/lang/System/exit(l)

invokevirtual dispatches a Java method. It is used in Java to invoke all

methods except interface methods (which use invokeinterface), static methods

(which use invokestatic) , and the few special cases handled by invokespecial.

For example, consider the following code snippet:

Object x;

x.equals("hello");

will generate bytecode like the following:

ldc "hello"

invokevirtual java/lang/Object/equals(Ljava/lang/Object;)

The actual method run depends on the runtime type of the object invoke­

virtual is used with. So in the example above, if x is an instance of a class

that overrides Object's equal method, then the subclass's overridden version

of the equals method will be used.

To handle these four kinds of method call, we have to include in our call

graph edges representing calls to methods whenever we encounter any of these

four kinds of invocation in the bytecode1 .

1Actually, we use the XML equivalent of bytecode, as discussed in Chapter 6
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The dynamic binding problem (also known as the dynamic dispatch or vir­

tual method problem), introduced in Chapter 2 and discussed briefly in the

context of some related work, is the process of mapping a message to a spe­

cific sequence of code (method) at runtime. This is done to support the cases

where the appropriate method cannot be determined at compile-time (i.e.

statically) [wikll]. Dynamic dispatch is needed when multiple classes contain

different implementations of the same method. This can happen because of

class inheritance and interface implementation. Consider Figure 7.1 where

class B extends A and C extends B.

A

Legend

--t> Inheritance

B

c

Figure 7.1: Class Inheritance

Suppose that class A has a method mO that is overriden by class Band

class C. 1 ow consider the code snippet in Listing 7.1:

class A{
public void mO {

System. out. prin tIn (" welcome") ;

}
}
class B extends A{

public void mO {
System. out. print In (" hi") ;
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}
}
class C extends B{

public void m() {
System. out. prin tln (" hello") ;

}
}
class D{

public void testO{
A a = new BO;

a.mO;
a = new CO;

a.mO;
}

}

Listing 7.1: Dynamic Binding Example 1

Here, although the static type of a is A, the two calls inside the testO

method of Class D to a.mO dynamically maps to B.mO and C.mO, respec­

tively, although statically both of them are bound to A.mO. Notice that if for

example, class C didn't override the mO method and if we had code like

C c = new CO;

c.mO;

then the c.mO call would dynamically map to AmO. So in general, this

kind of virtual method call can dynamically map to the version of that method

in any other class in the inheritance hierarchy, including subclasses and super­

classes.

Consider further now Figure 7.2 where interface A is implemented by

classes Band C. And both classes implement a method mO from interface A

Jow consider the code snippet in Listing 7.2. The same reasoning applies

here too. Although statically both of them are bound to AmO, the two calls

inside the testO method of Class D to a.mO dynamically maps to B.mO and

C.mO·
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Figure 7.2: Interface Implementation

interface A{
public void mO ;

}
class B implements A{

public void mO {

System. out. println (" hi") ;

}
}
class C implements A{

public void mO {

System. out. println (" hello");

}
}
class D{

public void testO{

A a = new B();

a.mO;

a = new CO ;
a.mO;

}
}

Listing 7.2: Dynamic Binding Example 2

So class inheritance and interface implementation play similar role in the

dynamic binding problem. Let's discuss this issue a bit more with respect

to impact analysis with some examples. Consider the scenario in Listing 7.3,

where class B extends class A. In the print method of classD, a is instantiated
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as an object of class A first and then B (just to show the effect). Although in

each case, a can access methods that are defined in class A only, in the second

case a will use the overriden version of the method test() defined in class B.

class A{

public void test () {

System. out. print In (" hi");

}
}

class B extends A{

@Override

public void test () {

if(C. check O){

System. out. printIn ("hey");

}
else {

System. out. printIn (" sorry") ;

}
}

}

class C{
public static boolean check () {

if(oo.){

return true;

}
return false;

}
}

class D{

public void print 0 {
A a = new A() ;

a.test();

a = new BO ;

a.testO;

}
}

Listing 7.3: Inheriteance Dependency
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Notice that B's version of the test() method is dependent on class C's check()

method, whereas A's is not. If any change happens in C's check() method

then it will affect B's test() (but not A's) and hence D's print(). Jow in a

static analysis, it is hard to determine which version of the test() method is

being called whenever you encounter a statement like a. test().

For the sake of conservative analysis our first thought was to include all

possible calls in the call graph, namely:

D : print() -+ A : test()

D : print() -+ B : test()

If we include the first one but not the second, we will lose the impact of the

change of class C's check() method on class D's print() method. In reality,

there can be many many subclasses (direct or transitive) of A like B. So for

the worst case analysis, we have to include all those subclasses in the call graph

chain.

Somebody might consider the example in Listing 7.3 a bit foolish. He might

wonder why someone would write it like Aa = newB() instead of Ba = newB()

when he actually needs an instance of class B. But the problem is in real

programs, it might not be known ahead of time whether a is an instance of

class A or class B. Below we depict some scenarios that happens in real

programs regarding this issue:

7.3.2.1 Scenario 1

Going back to the first example in Listing 7.3, the print() method of class D

might receive an object of type A from somewhere outside as a parameter, as

shown in Listing 7.4. In this case, when analyzing class D, statically there is

no way to know whether an instance of class A or of any subclass (direct or

transitive) is being used as the parameter. So we cannot say ahead of time

which version of the test() method will be called.

class D{
public void print(A a){
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}
}
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a.test();

Listing 7.4: Scenario 1

7.3.2.2 Scenario 2

Some standard design patterns directly entail this philosophy of inheritance

as a practice of re-usability and encapsulation. Listing 7.5 is a code snippet

from one of our master's courses (CAS 703) project (railway simulation) that

implements the observer pattern. Class FilePanel and LogPanel (and a few

more actually in our real program) both implement the Observer interface.

Class ControlPanel has a list of Observers (i.e. the classes implementing

Observer) and whenever its notifyObservers() method will get called, it will

simply call the update() method of all the Observers.

interface Observer {

void update () ;

}

class FilePanel implements Observer {

update () {

}
}

class LogP anel implements Observer {

update () {

}
}

class Con trolP anel {

ArrayList <Observer> 0 bservers = new ArrayList <Observer> () ;

void notifyObservers () {
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for(Observer observer: observers){

observer. update () ;

}
}

}

Listing 7.5: Scenario 2
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When the update() method is called, statically there is no way to know

whose update is being called.

It is worth mentioning (and probably clear to the reader by this time) that

among the 4 kinds of method invocations discussed in the previous section,

only virtualinvoke and inter faceinvoke are the candidates for the dynamic

binding problem, the other two are not.

7.3.2.3 Conservative Analysis

Considering static conservative analysis, our first approach was as follows: for

a class (or interface) A and its method aO gets called from class B's method

bO and A has classes (or implementations) AI, A 2 , .. . , An in its inheritance

hierarchy. Then we included all the following in the call graph:

B : bO ---+ A.aO

B : bO ---+ AI.aO

B : bO ---+ A2 .aO

7.3.2.4 Problems with Conservative Analysis

In the Oracle E-Business suite that we are working on, there are almost 170,000

class files, not considering the jar and zip files. And our first call graph genera­

tion program constructed a caller-callee relation with approximately 6 million

tuples, without considering the inheritance and implementation. When inher­

itance and implementation were taken into account, the conservative analysis

generated 30-40 million more tuples and the program ran out of memory, even

on a 32GB RAM system. Aside from the memory problem, the other problem
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is that of those millions of rows, a big percentage may be useless and lead to

a huge number of false positives in the impact analysis phase.

Table 7.3.1 shows the top 10 classes (or interfaces) in the Oracle E-Business

Suite with the highest number of subclasses (or implementations).

Class or Interface Name Transitive Subclasses
oracle.jbo.XMLInterface 53,934
oracle.jbo.server.TransactionListener 40,786
oracle.jbo.Properties 36,487
oracle.jbo.VariableManagerOwner 36,458
oracle.jbo.ComponentObject 36,449
oracle.jbo.common.NamedObjectImpl 36,370
oracle.jbo.server.NamedObjectImpl 36,105
oracle.jbo.server.ComponentObjectImpl 36,104
oracle.jbo.server.TransactionPostListener 33,181
oracle. apps.fnd.framework. OAFwkConstants 30,979

Table 7.3.1: Top 10 classes/interfaces with highest number of transitive subclass­
es/ interfaces

In addition to the huge number of subclasses or implementations, another

reason for that huge number of tuples was that a method can be called (through

virtualinvoke or interfaceinvoke) from hundreds of places. For example, if

there are classes B l , B 2 . .. B100 all calling method mO of class A through

either virtualinvoke or interfaceinvoke, then we will have those hundred edges

to A : mO, plus the number of subclasses multiplied by 100 edges for the

conservative analysis.

This huge number of unmanageable and possibly unworthy edges are one

of the prime reasons why we switched from a mere call graph analysis to

access dependency analysis. We now show how, by using access dependency

analysis, we can reduce these huge number of edges dramatically but still keep

our analysis static and conservative.

In access dependency analysis, if a method aO of class A calls method mO
from class (or interface) B, and classes (and interfaces) B l , B 2 ... Bn are in

class B's inheritance (or implementation) hierarchy, then we do not add call

edges from A : aO to B l : mO, B2 : mO ... Bn : mO. Rather we only add a

call edge from A : aO to B : mO. To handle the dynamic binding statically, we
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add edges from B : mO to the mO method of only those transitive subclasses

(or implementations) of B who overrode the mO method. Also, if B itself did

not override method mO, we add an edges from B : mO to the mO method

of the closest transitive superclass of B that has mO defined. We explain this

with the example in Figure 7.3.

B

; ,
c

Legend
-..t> Inheritance

- -t> Implementation

A specifies mO. 8 and C
implements it. H and I override
8's version of mO. K overrides
C's version of mO.

Figure 7.3: Inheritance and Implementation Hierarchy

Here, we show a sample inheritance and implementation hierarchy. Class

Band C implements interface A. Classes D and E extend class B; and classes

H and I extend class D. On the other side, classes F and G extend class C;

and classes J and K extends class F. Consider that interface A specifies one

method mO that classes Band C implements. Classes D, E, F, G and J don't

override the mO method. Classes H and I override B's version of mO and K

override C's version of mO.
TOW consider there are 10 classes Xl, X 2 . .. X10, each of which has a

method testO that calls A : mO with an interfaceinvoke. If we had stuck

to our conservative analysis then it would have generated all of the following

110 (not all edges shown) call edges:

Xl : testO ---+ A : mO
Xl : testO ---+ B : mO
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Xl : test() -t C : m()

Xl : test() -t D : m()

Xl : test() -t E : m()

Xl : test() -t F : m()

Xl : test() -t G : m()

Xl : test() -t H : m()

Xl : test() -t I : m()

Xl : test() -t J : m()

Xl : test() -t K : m()

X 2 : test() -t A : m()

X 2 : test() -t B : m()

X 2 : test() -t C : m()

X 2 : test() -t D : m()

X 2 : test() -t E : m()

X 2 : test() -t F : m()

X 2 : test() -t G : m()

X 2 : test() -t H : m()

X 2 : test() -t I : m()

X 2 : test() -t J : m()

X 2 : test() -t K : m()

XIO : test() -t A : m()

XIO : test() -t B : m()

XIO : test() -t C : m()

XIO : test() -t D : m()

XIO : test() -t E : m()

XIO : test() -t F : m()

XIO : test() -t G : m()

XIO : test() -t H : m()

XIO : test() -t I : m()

XIO : test() -t J : m()

XIO : test() -t K : m()

7. Building the Access Dependency Graph
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On the other hand, if we use access dependency analysis described above,

we only have the following 15 edges:

Xl : testO -+ A : mO
X 2 : testO -+ A : mO
X 3 : testO -+ A : mO
X 4 : testO -+ A : mO
Xs : testO -+ A : mO
X 6 : testO -+ A : mO
X 7 : testO -+ A : mO
X 8 : testO -+ A : mO
X g : testO -+ A : mO
XIO : testO -+ A : mO
A : mO -+ B : mO
A : mO -+ C : mO
A : mO -+ H : mO
A : mO -+ I : mO
A : mO -+ K : mO

The first 10 edges are due to the invokevirtual invoked to A : mO. And the

rest 5 are the edges from A : mO to the mO method of only those transitive

subclasses or implementations of A that overrode or implemented their own

version of mO, namely, B, C, H, I and K. Thus, we have a great deal of

reduction in the number of edges. Notice that, a similar explanation exists

in case there was a virtualinvoke from anywhere to the mO method of B or

C. Notice also that for example, if there is a virtualinvoke from Xl : testO to

J : mO, then by the conservative analysis we will have the following 4 edges:

Xl : testO -+ J : mO
Xl : testO -+ F : mO
Xl : testO -+ C : mO
Xl : testO -+ A : mO

whilst the access dependency analysis will give us only 2 edges:

Xl : testO -+ J : mO
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J : mO -+ C : mO

7. Building the Access Dependency Graph

because C is the closest transitive superclass of J that has the body of method

mO defined.
Now considering impact analysis, statically we have all the information in

the access dependency analysis as we would have had in the fully conservative
analysis. The impact analysis can still be successfully carried out. Consider
a change caused by a patch inside the K : mO method, and assume we have
any of the following two code segments:

class X{

public void test(A a){ II a is actually an instance of class J

a.m(); II an interfaceinvoke to A:m()

}

}

class X{

public void test(C c){ II c is actually an instance of class J

c.m(); II a virtualinvoke to C:m()
}

}

\"Iith the following edges generated by our access dependency analysis, it

is still possible to trace back from the changed method J : mO to X : testO

C : mO -+ J : mO
A : mO -+ C : mO
X : testO -+ A : mO
in case of the interfaceinvoke and

C : mO -+ C : mO
X : testO -+ C : mO
in case of the virtualinvoke.

Notice that one of the reasons we don't call it a call graph any more is that

the edges that we generate to handle the dynamic binding problem statically

are not really call edges. For instance, in the above example, A : mO doesn't

call C : mO and C : mO doesn't call J : mO. What this means is that
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a call to A : m() might actually result in call to C : m() or a call to C :
m() might actually result in call to J : m(). And adding the edges this

way (rather than adding edges directly from the original callers) dramatically

reduces the number of edges. For example, in the Oracle E-Business suite, as

shown in Table 7.3.1, the interface oracle. jbo. XMLInterface has over 50,000

transitive implementations or subclasses. But only a few hundred of them

had their own body of certain implemented or overridden methods defined in

themselves. So the number of edges were reduced to a huge extent after the

access dependency analysis was taken into account. It also eliminated our out

of memory problem altogether.

7.3.3 Including Fields

While initially thinking about the construction of a call graph, we did not

think about fields. Under ideal condition, where at least the syntactic validity

of the whole program is maintained even after a patch is applied, we do not

need to include the fields at all. Considering impact analysis, a change in a

field can mean change in the field's initialization, a change in the field's type

or a change in the field's access flags.

Now, when a change occurs in a field initialization, this change is not

reflected in the fields section of the bytecode (or the XML representation

of the bytecode we are using). The fields section remains unchanged. It is

reflected as a change in the < init> method in case of a non-static field and in

the <clinit> method in the case of a static field; which is quite justified. So

with respect to impact analysis, to capture a change in a field initialization, it

seems that we do not need a calling edge from the method that uses that field

to that field itself, because that edge would be useless. Rather it makes more

sense to have a calling edge from the calling method to the <init> method

of the class which the field belongs to (in case of a non-static field) or to the

<clinit> method (in case of a static field). However, careful thinking reveals

that, in case of a non-static field, we do not need the calling edge either.

Because up above the control flow an instance of that class must have been

instantiated somewhere using invokespecial and we have the calling edge to

that class's <init> method there. Of course, in the case of a static field, we
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need an edge to that class's <clinit> method because <clinit> does not get

called explicitly. But in neither case, in the ideal condition, do we need an

edge to the field itself.

Now the other kind of change that might occur pertaining to field is change

in field type (like long to short) or a change in the access flags (like public

to private). Once again, in an ideal case, these changes are bound to be

accompanied by subsequent changes in one or more methods. Consider the

code in Listing listing:7.6.

class A{
public long i = 4;

public void testO{

i = get Value 0 ;
}

private long getValue 0 {

return value; II value is some short value

}
}

class B{
public void check(){

A a = new AO;

long d = a. i ;

}
}

Listing 7.6: Code: Assigning a short value

Here if, the type of the field i is changed from long to short, the return

type of the method getValue is doomed to change from long to short also.

Otherwise there is syntactic invalidity left in the program. Similarly, consider

if the access modifier of i is changed from public to private, then class B's

method check() cannot access i directly as it is doing in the code. There has

to be subsequent changes inside class B and class A also if class B wants access

to the value of i (like adding a public method in class A giving class B indirect
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read-only access to class B). So in these cases also, we do not need the edges

to fields under ideal circumstances.

However, keeping in mind that a customer's system actually has the legacy

application layer on top of the E-Business Suite, a change in a field type or

access flags might leave syntactic inconsistency in the system. The point here is

that Oracle patches only modify the E-Business Suite (and the database also,

but that is out of the context). So any change inside the E-Business Suite

that can lead to a syntactic invalidity will be compensated by other changes

elsewhere in the E-Business Suite. This is ensured by Oracle themselves. But

considering the legacy nature of the customer's application layer, the interface

between the application layer and the E-Business Suite might not be well

defined2
. For example, in the above example, if class B is in the customer's

layer rather than the E-Business Suite, the change of access of field i from

public to private would lead to syntactic invalidity. For this reason, as a safe

conservative approach, we have decided to keep the edges to the fields.

Since accessing a field is not a call, we do not name our graph a call graph.

This is one of the reasons we call it access dependency graph, or just depen­

dency graph in short (The other reason is due to how we handle the huge

number of edges due to the dynamic binding problem and will be discussed in

section 7.4). And instead of the terms 'caller' and 'callee', we use 'accessor'

and 'accessee'. Formally, for any 2 classes A and B (A and B can possibly

be the same class), if A's method a() accesses B's fields b1 , b2 , bn then we

consider each of these class-field pairs, A : a(), B : b1 , B : b2 , B : bn , as

nodes of the access dependency graph and the following as edges:

A : a() ----* B : b1

A : a() ----* B : b2

A : a() ----* B : bn

where each class-method pair on the left of the arrow is the accessor node and

2At the time the impact analysis project is being conducted, we don't have a very good
knowledge on the customer's legacy layer and its the interface of the E-Business suite to it



98 7. Building the Access Dependency Graph

the one on the right is the accessee node.

We can note that in Java bytecode, accessing a non-static field is expressed

by the instructions putfield (write) and getfield (read) while accessing a static

field is expressed by the instructions putstatic (write) and getstatic.

Now that we have discussed the issues affecting the call graph, and dis­

cussed the reasons behind our switching from a mere call graph to an access

dependency graph, we present the details of the access dependency analysis.

7.4 Access Dependency Analysis

Considering everything we have discussed so far, we will formally describe

our concepts of the access dependency graph in this section. Below are the

criteria we take into account while building our dependency graph using access

dependency analysis:

1. For any two classes A and B (where A and B could possibly be the same

class, or B may be an interface), if A's method aO calls B's method bO
using any of invokeinterface, invokestatic, invokespecial and invokevir­

tual, then we add the following edge to the dependency graph:

A : aO -+ B : bO

2. For any two classes A and B (where A and B could possibly be the same

class, or B may be an interface), if A's method aO calls B's method

bO using either of invokeinterface or invokevirtual, and B has transitive

subclasses or implementations B 1, B2 ... Bn explicitly implementing or

overriding bO as its own version, then add the following edges to the

dependency graph in addition to the edge described in criteria 1:

B : bO -+ B1 : bO
B : bO -+ B2 : bO

B : bO -+ Bn : bO
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In addition, if B is a class that inherited method bO from some other

class but doesn't override bO itself, then add the following edge to the

dependency graph:

B: bO -t S: bO
where S is the closest transitive superclass of B up the inheritance hier­

archy.

3. For any two classes A and B (where A and B could possibly be the same

class), if A's method aO accesses B's field b using any of putfield, getfield,

putstatic and getstatic, then add the following edge to the dependency

graph:

A: aO -t B : b

In addition, if b is a static field, also add the following edge to the

dependency graph:

A : aO -t B :< clinit > 0

where <clinit> is the bytecode method representing the static initializers

of the class.

7.4.1 Sensible Transitive Closure

Notice that every sensible path that could have been traversed by the con­

servative analysis is also traversable by the access dependency analysis, but

possibly with several orders of magnitude fewer number of edges. By sensi­

ble, we mean a path that is worth traversing (for example, if a class does not

override a certain method, it is not sensible to traverse a path to that method

of that class). This means that the transitive closure of the sensible accessor­

accessee relation pairs are same for the conservative analysis and the access

dependency analysis. So we have the same sensible reachability in the access

dependency analysis as we would have had in the conservative analysis.
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7.4.2 Handling LC Changes

Its worth noting that our access dependency analysis safely incorporates the

LC changes [RST+04] mentioned earlier in section 7.1. Since our access depen­

dency analysis adds edges to a the methods of subclasses or implementations

of a class defining their own version in case of an interfaceinvoke and virtualin­

voke, we cannot possibly miss any impact related to change in a virtual method

lookup. For example, consider the example program taken from [RST+04].

Here the changes (added code fragments) have been shown in boxes.

class A {
public AO{ }
public void foo(){ }
Ipublic int x; I

}
class B extends A {

public BO{ }
public void foo(){ B.bar(); }

public static void bar(){ y = 17;

public static int y;
}
class C extends A {

public CO{ }
public void foo(){ x = 18; }

public void baz(){ z = 19; }

pUblic int z; I
}

class Tests {
public static void test1(){

A a = new AO;
a.fooO;

}
public static void test2(){

A a = new BO;
a.fooO;

}
public static void test3(){

A a = new CO;
a.fooO;

Figure 7.4: Example program. Added code fragments are shown in boxes.
[RST+04]

Notice that class C did not override method fooO in the old version. But

it does override in the new version. So the test30 method of class Tests now

binds the call a.fooO to C : fooO, whereas previously it used to bind it to

A : f 000· This change will be captured in our analysis because we will have

the following edges in our access dependency graph of the new program (with

others, of course):
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Tests : test30 ---* A : f 000
A : fooO ---* B : fooO

A : fooO ---* C : fooO

101

So it is easy to track back from C : fooO to Tests: test30 following these

edges.

So far, we have discussed the factors affecting the call graph, our reasons

for switching from call graph to access dependency graph and the formal de­

scription of the access dependency graph. We now discuss our full empirical

process of generating the dependency graph. For the process, we use the XML

equivalent of Java class files, just like we did in Chapter 6. Before we move on,

we will first discuss our first attempt of generating dependency graph using

Soot [LBL+10]. Although we did not use Soot finally in our process, its worth

discussing the empirical problems we faced while using it, because during our

early project work, we stuck to it for almost two months until we decided to

abandon it because of those empirical problems.

7.5 First Attempt to Build Dependency Graph

Using Soot

Soot was introduced in Chapter 4. It is a widely used Java optimization

framework for optimizing bytecodes and carrying out several kinds of analysis

like control flow analysis, data flow analysis, extracting call graphs etc. We

attempted to generate control flow graphs and call graphs with Soot. Below

we discuss these.

7.5.1 Control Flow Graph With Soot

Soot provides provisions for generating several control flow graphs in its pack­

age soot. toolkits. graph. Before trying Soot on our E-Business Suite, we

tried Soot on some sample small-size projects having order of a few hundred

classes on our personal machines (Mac as x, 2.13 GHz Intel Core 2 Duo, 4

GB SDRAM). However, it turned out that even for a single class, with no
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maximum heap size specified, Soot ran out of memory and with 500 MB max­

imum heap size specified, Soot took almost 40-50 seconds to generate control

flows. When we ran Soot in whole program mode to generate control flows

for the whole program, it continued to run out of memory and seemed to run

forever.

Now compared to the size of our E-Business Suite, our sample projects

were pretty small. That's one of the reasons we decided not to do a detailed

control flow or a data flow analysis. We switched to generating call graphs

with Soot.

7.5.2 Call Graphs With Soot

First we discuss the techniques that Soot uses to generate call graphs and then

we discuss our experience applying them. Vijay et. al discussed 3 kinds of

analyses (introduced in Chapter 4) to generate call graphs which have been

incorporated in Soot. Vle describe these techniques in short here:

Class Hierarchy Analysis (CHA)

Class hierarchy analysis is a standard method for conservatively estimating

the run-time types of receivers3 [BS96]. Given a receiver 0 of with a declared

type d, hierarchy_types(d) for Java is defined as follows:

• If receiver 0 has a declared class type C, the possible run-time types of

0, hierarchy_types (C), includes C plus all subclasses of C.

• If receiver 0 has a declared interface type I, the possible run-time types of

0, hierarchy_types(I), includes: (1) the set of all classes that implement

I or implement a subinterface of I, which they call implements (I) , plus

(2) all subclasses of implements(I).

Its worth noting that this analysis is almost same as the conservative anal­

ysis we discussed before in the previous section, except that CRA takes into

account only the subclasses and subinterfaces, but not the superclasses.

This analysis results in the call graph with the maximum number of edges.

3 receiver here is the object on which the method in invoked
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Rapid Type Analysis (RTA)
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Rapid type analysis [SHR+OO, BS96] is a very simple way of improving the

estimate of the types of receivers. The observation is that a receiver can

only have a type of an object that has been instantiated via a new. Thus,

one can collect the set of object types instantiated in the program P, call

this instantiated_types(P). Given a receiver 0 with declared type C with

respect to program P, they use rapidJypes(C, P) = hierarchy_types(C) n
instantiated_types(P) as a better estimate of the runtime types for o. This

particular version of rapid type analysis is called pessimistic rapid type analysis

[SHR+00] since it starts with the complete conservative call graph built by

CHA and looks for all instantiations in methods in that call graph. The

original approach suggested by Bacon and Sweeney [BS96] is optimistic rapid

type analysis. In the optimistic approach the call graph is iteratively created,

and only instantiations in methods already in the call graph are considered as

possible set for computing instantiated_types(P).

Variable-type Analysis and Declaration-type Analysis

According to [SHR+OO], Rapid type analysis can be considered to be a very

coarse grain mechanism for approximating which types reach a receiver of a

method invocation. In effect, rapid type analysis says that a type A reaches a

receiver 0 if there is an instantiation of an object of type A (i.e. an expression

newA()) anywhere in the program, and A is a plausible type for 0 using class

hierarchy analysis.

For a better approach, they point out that for a type A to reach a receiver

o there must be some execution path through the program which starts with

a call of a constructor of the form v = newA() followed by some chain of

assignments of the form Xl = v; X2 = Xl;"'; xn = Xn-l; 0 = X n . The in­

dividual assignments may be regular assignment statements, or the implicit

assignments performed at method invocations and method returns. They pro­

pose two flow-insensitive approximations of this reaching types property. Both

analyses proceed by: (1) building a type propagation graph where nodes rep­

resent variables, and each edge a -+ b represents an assignment of the form
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b = a, (2) initializing reaching type information generated by assignments of

the form b = newA() (i.e. the node associated with b is initialized with the

type A) and, (3) propagating type information along directed edges corre­

sponding to chains of assignments. These two are Variable-type Analysis and

Declaration-type Analysis. The details of these techniques have been discussed

in [SHR+OO].

With Soot, call graphs can be generated using these different techniques,

the computational complexity being the least in case of class hierarchy analysis

and the most in the case of variable type analysis.

We tried the class hierarchy analysis to extract the call graph from a sin­

gle sample class file on our local machines and it took almost 50 seconds to

generate the call graph, the maximum heap size being specified as 800 MB.

Without specifying the heap size, it was still running out of memory. Then we

went on and tried to generate the call graph for our sample small size projects

in whole program mode and even with 2 GB of maximum heap size specified,

it ran out of memory. Considering this performance, the call graph generation

process of Soot didn't seem feasible in case of our huge sized E-Business Suite

at all.

The amount of time needed by Soot is due to the fact that when it begins

an analysis from a particular class, it loads that class into memory and then

subsequently loads all the classes that is directly or transitively referenced by

that class, in addition to carrying out all the computations. And thereby,

when executed, it also needs all those classes to be present in its classpath.

Going back to our experience with Soot, we then switched to another ap­

proach, that is, using the XML representation of the bytecodes generated by

Soot. This XML is rather an operational semantics level of a class file (and

so much more verbose than the XML generated by the ClassReader tool of

the Dependency Finder toolset). Our intent was to generate the XMLs first

and then parse them to extract the dependency information (like invokein­

terface, invokespecial, invokevirtual, invokestatic, getstatic, putstatic, getjield,

putjield).

The XML way worked much better in terms of time and memory. It took

approximately 4 seconds, on the average to generate one XML file from a class
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file. And for our small size test projects, it worked reasonably well.

But then we went on and tried to use the XML way on the machine (Linux

64-bit, 32 GB SDRAM). With individual XML file generation, running out

of memory on this machine was not really an issue, but at an average of 4­

5 seconds per XML generation, the total time for generating XML files for

all the E-Business Suite files would have been approximately one and a half

weeks!! In practice, it turned out to be even worse - we ran our program

and after 3 days, it was only able to generate XML files for 23,000 class files.

This is because for some files, the XML generation took more than 10 seconds

and because of the possible huge access dependencies among the classes, the

loading of hundreds of classes was making it even worse.

As a result, despite being an excellent tool and incorporating excellent tech­

niques like class hierarchy analysis, rapid type analysis, variable type analysis

etc., Soot was empirically unable to prevail in our specific problem domain.

Fortunately, soon after these experiences, we came across the Dependency

Finder toolset [Tes10a] which is actually a suite of tools for analyzing Java

bytecode. As mentioned in Chapter 3, among its tool suite, two were of special

interest to us - Dependency Extractor and ClassReader. Dependency Extrac­

tor generates XML containing information specifically pertaining to depen­

dencies, but lacks some useful information like inheritance, invocation type

(interfaceinvoke, virtualinvoke, specialinvoke, staticinvoke) , field access type

(getfield, putfield, getstatic, putstatic) etc. So we decided to use ClassReader

which generates rather an equivalent one-to-one representation of the bytecode

containing every information we need.

We have now reached a stage where we can begin describing our dependency

graph generation process in detail.

7.6 Graph vs Relation

Just to make a note, in the discussion following, we will use the words graph

and relation, edge and pair, entity and node interchangeably. This is because

we can imagine the edges of a graph as pairs of a binary relation; and the

nodes of a graph as elements of the set on which the relation is built on. For
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example, if we have the following call edges: A : aO ---+ B : bO
A : aO ---+ C : cO

we can imagine it as a relation having nodes {A : aO, B : bO, C : cO} and

edges (A : aO, B : bO), (A : aO ---+ C : cO). Since we will ultimately store the

dependency information in relational database tables, technically it will be a

relation. But conceptually it is also a graph.

7.7 Access Dependency Graph Generation

In this section we describe the access dependency graph generation process.

This process corresponds to the steps shown in Figure 5.2. We have imple­

mented our automated tool Dependecy Analyzer in Java for carrying out these

steps. With the process detail, we will also describe which tasks are carried

out by which class and method in our program. To start with the process we

need a classpath from where we can pick up our class files.

7.7.1 The ClassPath

From one of the configuration files of the E-Business Suite (courtesy: Akbar

Abdrakhmanov), the following classpath was found:

/u01/oracle/VIS/apps/apps_st/cornn/java/classes,

/u01/oracle/VIS/apps/tech_st/10.1.3/appsutil/jdk/lib/dt.jar,

/u01/oracle/VIS/apps/tech_st/10.1.3/appsutil/jdk/lib/tools.jar,

/u01/oracle/VIS/apps/tech_st/10.1.3/appsutil/jdk/jre/lib/rt.jar,

/u01/oracle/VIS/apps/apps_st/cornn/java/lib/appsborg.zip,

/u01/oracle/VIS/apps/tech_st/10.1.2/forms/java,

/u01/oracle/VIS/apps/tech_st/10.1.2/forms/java/frmall.jar,

/u01/oracle/VIS/apps/tech_st/10.1.2/jlib/ewt3.jar,

/u01/oracle/VIS/apps/tech_st/10.1.2/j2ee/OC4J_BI_Forms/applicati­

ons/formsapp/formsweb/WEB-INF/lib/frmsrv.jar

Notice that some of the directories leads to jar and zip files. Along with

those, some of the other directories of the classpath also have lots of jar and zip
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files containing class files in them. At this stage there were some interesting

thoughts about these jars and zips going on in our mind. Before we move

further with the dependency graph generation process, we will discuss those

thoughts.

Influence of Jar and Zip Files

In a good number of patches inspected by us, no jar or zip files were found.

Presumably the reason is that the class files inside the jar files are more stable,

that is, less likely to change over time and that's why they are jarred or zipped.

Despite their stableness, we can't ignore calls that go to jars and zips. Consider

Figure 7.5, where there is call from some method in a class A to some method

inside some class in jar J1 . That call then followed by some subsequent calls

inside other jars (possibly the same one) and finally there is a call back from

jar I n to some method in class B. So unless we record this full call chain, we

miss the transitive dependency from A to B.

Moreover, many of these jar files are from the java standard class library

(e.g. rt.jar). And since some of Oracle's E-Business Suite's classes might have

inherited from them we need to record those for tackling the dynamic binding

problem anyway. Finally, we estimated that there are 170,000 thousand class

files in the classpath that are not inside any jar or zip file, and 205 jar and

zip files, extracting to almost 60,000 class files. Summing up, we get almost

230,000 class files. So incorporating these jars and zips does not introduce too

much overhead to our computation considering the overall size.

7.7.2 The High Level Algorithm

Algorithm 7.1 shows a high level algorithm for our dependency graph gener­

ation. It is basically an algorithmic re-phrasal of Figure 5.2. First, we use

the classpath information to generate XML files from class files; and in case

of jar and zip files, extract them and then generate the XMLs. Parsing those

XML files we get the list of entities (methods, fields) in classes and assign

each entity a unique id (this will be explained later). We also build up the

dependency relationship (method call, field access) and augment it with extra
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Figure 7.5: Call to and call back from jars

relation pairs arising for sovling dynamic binding issues as discussed earlier.

Finally we insert all these information into database for future reuse. In the

next few sections, we describe all these steps in detail.

7.7.3 Common Data File

Just like the modification finding process in Chapter 6, here also, we we main­

tain a class called Data throughout our process that holds common data and

constants shred by all other classes (modules). These include:

• inTable ~ a hashmap for storing inheritance information

• entities - a hashmap for for storing entity (method:field) information

• nonOverridenPairs - a hashmap for storing information about methods

that were not overriden or implemented by the sorresponding class
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Input: classpath CP
C
XML Repository (a directory) R
Output: an XML file D
Data: E = in-memory entity repository

I = in-memory inheritance repository
D = in-memory dependency repository
DBE = database entity repository
DBI = database inheritance repository
DBD = database dependency repository
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1 begin
2 foreach path p E CP do
3 generate XML files from class files in p and store them in R;
4 extract jar and zip files in p to class files and generate XML files

from them and store them in R;
5 end
6 foreach XML file x E R do
7 parse the XML file;
8 record all entity information (method, field) in E with unique

id's for each entity;
9 record inheritance information in I;

10 end
11 foreach XML file x E R do
12 parse the XML file;
13 record all method call information (method, field) in D in terms

of id's;
14 for virtualinvoke and interfaceinvoke calls add extra information

to D;
15 record all field access information in D;
16 for static field access add extra information to D;
17 end
18 insert the information in E into DBE;
19 insert the information in I into DBI ;

20 insert the information in D into DBD;

21 end

Algorithm 7.1: The High Level Algorithm for Generating Access De­
pendency Graph
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• dependencies - a list for storing all the dependency information

• pairCount - an integer variable for storing the number of entities

• classPath - an array of Strings representing the classpath

• unj arPathPrefix - the path (String) where jar and zip files are ex­

tracted to class files

• classOutputPrefix - the path (String) where XMLs generated from

class files are kept and some other constants, some of which holds some

extra information about entities (e.g. static or non-static) while some

others holds names for database stored procedures or functions. The

detailed meaning of all these will be apparent as we discuss our full

process.

7.7.4 Generating XML Files

For generating XML files from class files, we use the ClassReader tool just

as the same way we used in Chapter 6. We have a class FileManager whose

method parseClassPath iterates through all the directories in the classpath

does two things: (1) If it finds any class file, it generates XML file using the

XMLGenerator class (which internally uses ClassReader) and puts the XML file

inside a subdirectory in directory classOutputPrefix. The subdirectory is

named according to the directory where the actual class file resides. (2) If it en­

counters any jar or zip files, it extracts them into directory unj arPathPref ix

(and creating appropriate subdirectories inside) using its other private meth­

ods lookForJarAndZips and inj ar.

7.7.5 Building up the Entity and Inheritance Informa­

tion

Just to alleviate all confusion, by an entity we mean either a method or a field

(though for the sake of building the dependency relation later on, we also store

class names in our entity list). Technically it is the class name followed by a

colon followed by a method signature, or the class name followed by a colon
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(:) followed by a field name (in case of only class name entries, there is only

the class name, no colon). The list of entities in necessary before we can start

building the dependency relation (or graph) because the accessor-accesse pairs

(edges) of the relation (graph) are based on nodes from the entity list.

We have a class EntityHandler that builds up the entity list. The

buildEntites method of this class iterates through all the generated XML

files one by one and parses them to fetch out class name, superclass name, in­

terfaces, methods and fields. Before parsing the methods and fields, it passes

the superclass and interfaces information to the class InheritanceResolver.

For keeping track of the inheritance information we maintain a hashmap data

structure inTable which maps a class name to an instance of class Vertex.

Class Vertex has the following members:

String className

Vertex superClass

Edge subList

Set<String> transitiveChildren

className represents the name of the class. superClass is the superclass

of the class and subList begins a linkedlist representing all the direct sub­

classes or implementations of the class (or interface). sublist is actually an

instance of class edge which has the following members:

Vertex vertex

Edge nextEdge

The Edge class sets up the link between a class(or interface) and its direct

subclasses (or implementations). The subclasses themselves are linked by fur­

ther instances of Edge represented by the nextEdge member. So effectively

we have a graph structure representing the inheritance (and implementation)

relationship among classes. We build it this way so that we can calculate the

transitive subclasses and implementations of a class or interface easily, which is

represented by the transitiveChildren member. This transitiveChildren
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member is needed later for adding extra edges for the dynamic binding prob­

lem. For example, if class A has subclasses B, C and D and class B has sub­

classes E and F, then class A will have B, C and D in its sublist, separated by

the Edge links, and B will have E and F in its sublist, similarly separated by

the Edge links. Following the subList links recursively, we can calculate A's

descendants B, C, D, E and F and so on. Figure 7.6 demonstrates the graph

structure of the inheritance hierarchy.

C D
.....................

F

~-~----~-~--------.~---.---~I , I I
I I I I

Legend
~--.
--~

subList

nextEdge

link to
suoerclass

Figure 7.6: Graph Structure of the Inheritance Relation

We got 4 methods inside the InheritanceResolver class. Method

checklnheritance checks for superclasses and interfaces and invokes method

makelnheritanceEdge, if the superclass is not empty and the superclass is

not java . lang . Db j ect. We don't consider java . lang . Db j ect in our in­

heritance hierarchy because every class in Java is implicitly a subclass of

it. The makelnheri tanceEdge method adds necessary edges to the inheri­

tance graph. The other two methods are calculateTransitiveChildren and

getTransitiveChildren which are used for calculating descendants by recur­

sively following the graph links described above. The following code segment

from getTransitiveChildren demonstrates this:

Edge edge = vertex.subList;
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while(edge != null){

list.add(edge.vertex.className)j

if(edge.vertex.transitiveChildren == null){

list.addAll(getTransitiveChildren(edge.vertex))j
}

else{

list.addAll(edge.vertex.transitiveChildren)j
}

edge = edge.nextEdgej
}

vertex.transitiveChildren = list;

113

Coming back to our EntityHandler class, we have methods

parseClassForMethods and parseClassForFields that parses the XML for

methods and fields, respectively. Every method and field we encounter is put

in a hashmap called entities. This hashmap has the entity name (class

name: method signature / field name) as key and an integer as value. We

maintain this integer in a shared integer variable called entityCount. This

variable starts from 0 and whenever we find an entity we increment it by

one and store it in the entities hashmap against the entity name key. For

example, for the following two example classes, the entities hashmap will

look like Table 7.7.1.

class A{

public void a(int i){

}

public int test(){

return 0;

}

}

class B{
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}

7. Building the Access Dependency Graph

int count = 0;

public void b(int i){

}

public int test(){

return 0;
}

Key Value
A:A() 1
A:a(int) 2
A:test() 3
B:B() 4
B:b(int) 5
B:test() 6
B:count 7

Table 7.7.1: Sample Entity List [RST+04]

Note that the constructors method for each class appears because although

they were not explicit in the source code, they are explicit in the bytecode and

hence, in the XML.
In addition, we maintain another hashmap called entityInfo that stores

information about entities, specially whether an entity is static or non-static.

This hashmap has the entity id as key and a flag (indicating staic or non-static

etc.) as value. This flag value can have the following possible values stored in

our common Data class:

CLASS (0) if the entity is a class

NON_STATIC_METHOD (1) if the entity is a non-static method

STATIC_METHOD (2) if the entity is a static method

NON_STATIC_FIELD (3) if the entity is a non-static field

STATIC_FIELD (4) if the entity is a static field

Although this hashmap is not useful for the dependency graph generation,

the information stored in this hashmap might come handy when we have to
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deal with maintaining the dependency graph with successive patches, as will

be discussed in Chapter 8.

At the end of building the entity list, we calculate the descendants of each

class using the calculateTransitiveChildren method. This information

will be used in adding extra information for handling dynamic binding issue

during the dependency relation generation process.

The reader might wonder why we are using a hashmap and storing interger

values against them rather than storing the entity names directly in a list.

This was rather an empirical software engineering decision. The reasons will

be clear when we discuss the dependency relation generation process next.

7.7.6 Building the Access Dependency Relation

Having built the list of entities and gathering the inheritance information,

we now begin to build up the dependency relation. Before we move into the

details, we first discuss how we intend to store the dependency relation in

memory.

7.7.6.1 Storing the Dependency Relation in Memory

In the previous section, we showed how we store the entity information in

memory using a hashmap rather than a simple list. The way we store the de­

pendency relation in memory is complementary to that. Its worth mentioning

that our first approach was to store entity information in a list with String

values as members of the list. Theoretically there is no problem with that. But

if we store the entity information in a list with String values, that means we

have to keep the full names of entities (class: method/field) in the dependency

relation as well. For example, consider the following code segment:

class A{
public void test(){

B b = new BO;

b. doNothingO ;
}

}
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class B{

}
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public void doNothing(){

}

For this two classes, if we had stored the entities in a list and built the

dependency relation accordingly, they would look like the ones shown in Ta­

ble 7.7.2.

Entity
A:AO
A:testO
B:BO
B:doNothingO

(a) Entity List

Accessor Acessee
A:testO RBO
A:testO B.doNothingO

(b) Dependency Relation

Table 7.7.2: Plain Entity List and Corresponding Dependency Relation

For small size programs, this would work quite fine. But remember we are

dealing with a system having hundreds of thousands of class files and possi­

ble millions of enitites; with the fact that everything we are doing has to be

done keeping impact analysis in mind. When first built our entity list and

dependency relation like Table 7.7.2, and inserting those into the database, it

was taking up a huge memory and also a huge table space in the database.

Remember by class name we mean the fully qualified class name and for meth­

ods, we take the full method signature (not only the name), some of the class

names turned out be almost 500 characters long and some of the method sig­

natures turned out to be over 2000 characters long. And since there can be

multiple method calls or multiple field access from the same method, in the

dependency relation, there would be repetitions of such long names again and

again. This kind of information storage also makes the impact analysis (which

is being done by my colleague Wen Chen 4) harder. During impact analysis,

when we tried to fetch the information from the database and run analysis on

4(in progress)
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memory, these huge and repeatedly occurring string values made the impact

analysis process horribly slow.

That is why we finally decided to store the entity information and depen­

dency relation in a different way. That is, we decided to assign unique integer

id's to each entity and in the dependency relation, we only keep the id's in

pairs. For the example shown above, we get storage like Table 7.7.3.

Entity Id
A:AO 1
A:testO 2
B:BO 3
B:doNothingO 4

Accessor Acessee
2 3
2 4

(a) Entity
Hashmap

List as

(b) Dependency
with Id's

Relation

Table 7.7.3: Entity List (as Hashmap) and Corresponding Dependency Relation

Storing this way dramatically reduces the memory requirement because

we are now using integer Id's instead of long strings repeatedly. An added

advantage of this hashmap is that during the dependency relation generation,

if an entity is found which was already found before, we can just look up the

hashmap with that entity's string value to retrieve its id, which takes very

negligible constant time and boosts the performance improvement. This also

makes the impact analysis phase extremely faster because the database tables

(where we finally store all these information, discussed later) also have the

same format of storage - entity and id against them. Assigning id's also opens

an even more elegant way of storing the dependency relation pairs in memory.

In Java, an integer is 32 bits, whose maximum value is more than 2000 million,

which is a reasonably safe upper limit. But for storing the accessor and accessee

id's as relation pairs in memory, we can use a java long variable which is 64­

bits, storing the accessor id in the upper 32-bits and the accessee id in the

lower 32-bits as shown in Figure 7.7.

Thus, for storing the dependency relation, we can just keep a list of longs.

In our program we call this list dependencies. Just to demostrate, below is

the code segment we use for doing it:
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(

Upper 32-bit Lower 32-bit

A _A
Y

"Accessor id Accessee id

Figure 7.7: Storing id's in Java long variable

long dependency = cl;

dependency = dependency « 32;

dependency += c2;

dependencies.add(dependency);

Now we move into the details of the process.

7.7.6.2 The Process of Building Dependency Relation

Our Dependencyhandler class has a method buildDepepndecyRelation that

iterates through all the XML files and calls another method parseMethods

which parses the methods of a particular class for finding dependency instruc­

tions, i.e., calling a method or a field access. Since calling a method can be

done in four ways (invokeinterface, invokespecial, invokestatic, invokevirtual)

and accessing a field can be done in four ways (getstatic, putstatic, getfield,

putfield) , it takes the instructions with any of these eight kinds of accesses and

records the accessor entity and the accessee entity. Just to clarify once again,

we store the accessor entity as Fully Qualified Accessor Class Name: Signa­

ture of the Accessor Method and the accessee entity as Fully Qualified Accessee

Class Name: Signature of the Accessee Method / Name of the Accessee Field.

Since, our entity list is a hashmap, and our dependency relation is pairs of

id's, whenever we add a new pair to the relation, we just extract the id's of

the accessor and accessee entity using the get method of the hashmap, which

makes it pretty fast. Notice that this is another advantage of using hashmaps.

Since the same method can be called or same field can be accessed multiple

times from a particular method, to avoid duplicacy, we maintain a temporary

set of accessed entities during the parsing of each method. If any accessed
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method or field is already in the set, we ignore it. Thus we get rid of duplicate

relation pairs occurring in our dependency relation.

1 ow, there are a number of side points here. Remember we need to know

record additional information in case of method calls that are dynamically

bound. And we mentioned previously that invokevirtual and invokeinterface

are the candidates for this. So we record this information with the following

code snippet:

if(instruction.startsWith(linvokevirtual") II
instruction.startsWith(linvokeinterface")){

virtualOrlnterface = true;
}

Besides, remember when we add extra dependency pairs to the relation,

we need to know which transitive subclasses or of a certain class overrode

a called method, and which transitive implementations of an interface have

their own version of a called method. Finding this is not so hard. Because

when we parse call or access instructions, if we find a called method that is

not in our entity list but the class, to which that method belongs, is in the

entity list, then that class uses the inherited version of the method and has

not overriden that method itself. We maintain another list (actually another

hashmap) called nonOverridenEntities to keep account of these entities. It

is better demonstrated with an example. Consider the following code segment:

class A{
public void one(){

}

public void two () {

}

}
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class B extends A{

public void one(){

}

}

class C{
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public void test(){

B b = new BO;

b.twoO;
}

}

Here, class B extends class A but overrides only method one(), not two().
So B : two() won't be in our main entity list. But since class C's method test()

calls class B's method two(), we put B : two() in our nonOverridenEntites

list.

Later on, if we find a dependency and if that dependency is a candidate for

the dynamic binding problem, we use the descendants, superclass information

and the nonOverridenEntites to add the extra dependency pairs. Instead of

keeping these extra dependency pairs in the same ArrayList dependencies,

we maintain another ArrayList extraDependencies of long values. This

is done with the help of two methods addlmplicitAccessDependencies,

which adds dependency edges (pairs) to the subclasses and implemen­

tations which have defined their own version of inherited methods, and

addEdgeToClosestSuperClass, which adds a dependency edge to the method

of a closest transitive superclass where the method body is defined in case the

called class has not defined the method itself. We also maintain another list

dynamicClients containing the id's of the methods whose dynamic binding

issue have been resolved, so that they are not considered again. It is worth

mentioning that, for only building the dependency relation once, we did not

actually need to different ArrayList in memory. We could just keep all depen­

dency pairs in one single list. However, in Chapter 8, when we discuss how
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to maintain the dependency relation with successive patches, the reason for

keeping them separate will become apparent.
Again, we need to know whether an access is to a static field or not, because

in case of a static access we have to explicitly include a dependency pair (edge)
to the < clinit> method of that class. So we record for static accesses as well:

if (instruction. startsWithe II getstatic ") II instruction. startsWithe "putstatic ")){

isStaticField = true;

}

And later on we add the dependency on the <clinit> method using

addDependencyToStat icInit ializer method.

Thus we have all the dependency information in our list of Java long values,

where each value is an encoded dependency pair (edge).

7.7.7 Saving the Information Into Database

Having built up all the information in memory, our next task is to store ev­

erything in database. Before storing we need to prepare our database.

7.7.7.1 Preparing the Database

We are using Oracle 11g database in our project. Although any other standard

database (e.g. SQL Server, MySQL) would have been suitable, we are using

it because we have easy access to it in our university's oracle server.

We need different tables for storing different kinds of information. For

storing the entities, we have a table Entity with three columns - Class_Name,

Feature_Name and Id; the first of them are of data type varchar and the last

one. Class_Name is the name of the class and Feature_Name is either the

signature of the method or name of the field. Id is the unique id assigned to

each entity. This table is populated from our in memory hashmaps entities

and nonOverridenEntities.

For storing the dependency relation, we have three tables called

Dependency_Relation_Original, Dependency_Relation_Extra and

Dependency_Relation, each consisting of two integer columns - Accessor_Id
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and Accessee_Id. This first table is populated from our in memory ArrayList

dependencies, while the second one is populated from our in memory

ArrayList extraDependencies. The third table is a union of the first two

holding all dependencies. To maintain referential integrity, we keep foreign

key constraints from Accessor_Id and Accessee_Id to the Id column of

Entity table.

Vve also store the meta-data about entities,i.e, the information from the

entitylnfo hashmap, into a database table called Entity_Info, which has

two columns - Id and type. Id is the id of the entity and type is the type of

the entity corresponding to the value field of the hashmap entityInfo.

Finally, we also store the inheritance information into two database tables.

We have a table Inheritance with two varchar columns - parent and child.

This table stores the direct subclass or implementation information of a class

or interface. This corresponds to the subList member of our Vertex class. We

have another table Inheritance_SuperClass with the same schema structure

but this one only stores superclass information.

Apart from the tables, we also have a number of oracle stored procedures

for inserting the information into the tables:

• SP_INSERT_ENTITY_ORIGINAL - for inserting entities into the entity ta­

bles Entity_Original

• SP_INSERT_DEPENDENCY_RELATION_ORIGINAL - for inserting depen­

dency relation pairs (edges) into the Depepndency_Relat ion_Original

table

• SP_INSERT_DEPENDENCY_RELATION_EXTRA - for inserting extra depen­

dency relation pairs (edges) into the Depepndency_Relat ion_Extra ta­

ble

• SP_COMBINE_DEPENDENCY_RELATION - for combining dependency rela­

tion pairs (edges) from tables Depepndency_Relation_Original and

Depepndency_Relat ion_Extra into the Depepndency_Relat ion table

• SP_INSERT_ENTITY_INFO - for inserting meta data about entities into

Entity_Info table
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• SP_INSERT_INHERITANCE - for inserting direct subclass and implemen­

tation information into Inheritance table

• SP_INSERT_INHERITANCE_SUPERCLASS - for inserting superclass infor­

mation into the Inheritance_SuperClass table

7.7.7.2 Inserting the Data into The Tables

We have two classes DatabaseHelper and ConnectionManager to help us deal

with the database. ConnectionManager is the class for getting us database

connection and closing it. DatabaseHelper has four methods to help us in­

serting different kinds of data into the database.

First, insertEntities method of class DatabaseHelper is called to store

our in-memory original entity lists entities and nonOverridenEntities

into database table Ent i ty_Original using SP_INSERT_ENTITY. The

insertEntitylnfo method is then used to populate the meta data about

entities in the Entity_Info table using SP_INSERT_ENTITY_INFO.

ext, insertDependencyRealtion method is called to store the in­

memory dependency information dependencies into the database table

Depepndency_Relation_Original using SP_INSERT_DEPENDENCY_RELATION.

The same method is also used to store the in-memory dependency information

extraDependencies into the database table Dependency_Relation_Extra

using SP_INSERT_DEPENDENCY_RELATION_EXTRA. Then the

insertDependencyRealtion method is used to combine the re­

lation pairs from tables Depepndency_Relation_Original and

Dependency_Relation_Extra into table Dependency_Relation with

the help of SP_COMBINE_DEPENDENCY_RELATION.

The insertlnheritance and insertlnheritanceSuperclass methods

are used to insert inheritance information into the database tables using

SP_INSERT_INHERITANCE and SP_INSERT_INHERITANCE_SUPERCLASS, respec­

tively.

Thus we have all the in-memory information stored in our database tables.

The information stored in the Entity and Dependency_Relation would be

used in the impact analysis phase. Although impact analysis and test selec­

tion is not one of the main subject matters of this thesis, in the following
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section we discuss a bit how the impact analysis will work based on our stored

information.

7.7.8 Performance and Statictics

We ran our process on our university's oracle server machine which has 8

quad core 3,2 GHz processors and 32 GB memory. The operating system is

Linux 54-bit. On that machine, the XML generation for all the class files,

including the ones from jars and zips (total 230,000) takes approximately 40

minutes. The computation in memory, namely generation of the entity list,

inheritance information and dependency relation takes just more than one

and a half hours. Finally, the insertion of all those information into database

takes approximately four and a half hours. So in total, the whole process

takes approximately 7 hours dominated by the database insertion time, which

is reasonably acceptable for any customer who spends weeks for running all

their tests.

There are almost 4.5 million methods and fields (nodes) in total, and

the dependency relation (graph) has almost 12 million accessor-accessee pairs

(edges). These numbers give an idea on how huge the graph is.

7.8 Impact Analysis

We can consider the Entity table as a set of nodes and Dependency_Relation

table as the set of edges of the access dependency graph. Along with these data,

the modification information between versions of class files (from Chapter 5)

are also input for the impact analysis phase. The impact analysis starts from

a function (method) or a field that has changed, extract its id from the Enti ty

table and then traces back along its accessors using the Dependency_Relation

table. Thus it builds up an impact set, which is the transitive accessor set of

that changed entity. Consider the original and modified versions of a program

in listings Listing 7.7 and Listing 7.8.

class A{
private void ml () {

B b = new B() ;



7. Building the Access Dependency Graph 125

b. test ();

}

public void rn2() {

ml() ;

}

public void m3() {

II doesn't directly or

transitively access B: test ()

}
}

class B{

private int i = 0;

public void test(){

i++j

}
}

Listing 7.7: Original Version of Code

class A{
private void ml () {

B b = new B() j

b. test () j

}

public void rn2() {

ml() ;

}

public void m3() {

II doesn't dire c tly or

transitively access B: test ()

}
}

class B{

private int O·,
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}
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public void test () {
i --j

}

Listing 7.8: Modified Version of Code

The Entity and Dependency_Relation generated for this program will

look like this:

Class Name Feature Name Id
A A() 1
A m1() 2
A m2() 3
A m3() 4
B B() 5
B test() 6
B 1 7

Accessor Id Acessee Id
3 2
2 5
2 6

(b) Dependency Relation Table

(a) Entity Table

Table 7.8.1: Entity Table and Dependency Relation Table

Here, only the B : test() method is modified and its id is 6. So using

the Dependency_Relation table, the transitive accesor id's 2 and 3 are found

which correspond to A : m1() and A : m2(), respectively. So these are found

in the impact set.

7.9 Test Selection

Remember we are interested in finding the functions in the customer's appli­

cation layer which are potentially affected, i.e., the functions in the customer's

application layer that directly or transitively access the changed functions or

fields. Based on this information, the required tests would be selected from

the existing test suite. Although at this moment, we do not have too much

idea about the hypothetical customer's test suite, we are presuming they have

a coverage test matrix telling which functions are covered by which tests. For
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example, for the example in Listing 7.7, we might have a coverage matrix like

Table 7.9.1, assuming class A is a class from the customer's application layer.

Test Name Class Name Function Name
Test1 A m2()
Test2 A m3()

Table 7.9.1: Test Coverage Matrix

Here we have Test1 covering method A : m2() and Test2 covering method

A : m3(). Taking the intersection of this information with the impact set we

calculated, only Test1 is selected.

7.10 A Critical Impact Analysis Issue

We have discussed the details of the access dependency graph generation pro­

cess and also demonstrated in short how impact analysis and test selection can

be carried out on this later on. But some interesting questions are left. After

applying a patch, we have a modified dependency relation. So which version

of the dependency graph do we carry out our impact analysis on? The old one

or the new one ? Or do we need to compare the two versions of the graph ?

In this section, we discuss these issues.

A change inside a method made by a patch, by altering or adding or deleting

some non-access instructions5 inside it, does not alter our dependency graph.

So in these, it does not really matter which version of the graph we actually use.

The situation is more interesting when the change occurs in access instructions.

Consider Figure 7.8. Here, method a previously used to call method b, but

after patching it now calls method c instead. So the graph structure has now

changed.

Method b might well have been deleted, or might not. But a careful think­

ing reveals that, in this case, method a will be reported as a changed method

by our modification finder tool anyway (Chapter 6). So all we need to do is

to begin impact analysis from method a. It does not really matter how the

graph structure changed. So we can just work with the new version of the

5non-access means instruction other than method calls or field access
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Legend
--+-,.
o

Call
Removed Call

Method

Figure 7.8: Call relation among methods

graph here. Similar reasoning applies for a newly added method as well. If

a method is newly added, then there must have been a change in some other

method who is now calling that newly added method. And we will have that

other method reported as a changed method by our modification finder tool.

Again, the new version of the graph is sufficient for this.

The only interesting issue left is if an overriden method is added without

changing the call structure elsewhere. Consider the following code segment:

class A{
public void m(H

}

}

class B{

public void mO{ II overriden version of m()

II newly added
} II by a patch

}

class C{

public void test(){

B b = new BO;
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b.mO;

}

}
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Here the the overriden version of method mO has newly been added by

the patch. Before applying the patch, the dependency graph will have the

following edges:

C : testO --+ B : mO
B : mO --+ A : mO

The second edge is due to the implicit dependency to the nearest transitive

superclass version of the method.

After applying the patch, the dependency graph will have only the first

edge. We no more have the edge to the nearest transitive superclass's method

because mO is not defined in B. The important thing is that impact analysis

is still possible beginning with B : mO, since it is a newly added method.

Considering everything, we have come to the conclusion that only the ver­

sion of the dependency graph after applying the patch is enough for impact

analysis.

7.11 Other Impact Analysis Issues

In this section, we discuss some other issues pointed out in impact analy­

sis pointed out in related works, especially in [RST+04]. otice that with

the modification finding tool from Chapter 6 and with the dependency graph

generation tool discussed in this chapter, it is possible to carry out impact

analysis. As we discussed section 7.1, atomic changes like changes in initializ­

ers, constructors, fields are all reported as change in certain methods by our

modification finding tool. And then we can use our dependency graph for

the impact analysis. Some other issues pointed out in [RST+04] and how we

handle them are discussed in the following subsections.



130 7. Building the Access Dependency Graph

7.11.1 Changes in Inheritance Hierarchy and Overload-
.
lng

It is possible for changes to the inheritance hierarchy to affect the behaviour

of a method, whose code is not changed. Consider Figure 7.9 taken from

[RST+04]. Various constructs in Java such as instanceof, casts and exception

catch blocks test the run-time type of an object. If such a construct is used

within a method and the type lies in a different position in the hierarchy of the

program before the edit and after the edit, then the behaviour of that method

may be affected by this hierarchy change (or restructuring). For example, in

Figure 7.9(a), method fooO contains a cast to type B. This cast will succeed

if the type of the object pointed to by a when execution reaches this statement

is B or C in the original program. In contrast, if we make the hierarchy change

shown in Figure 7.9(b), then this cast will fail if the run-time type of the object

which reaches this statement is C. Note that the code in method fooO has not

changed due to the edit, but the behaviour of f 000 has been possibly altered.

In case of a change in inheritance hierarchy change, like the change in a

superclass or interface, our modification finding tool will report it as a su­

perclass or inheritance change. For example, in the example just mentioned,

class C will be reported as a changed class with superclass changed. And

our dependency graph built using the new version of class C will have that

changed incorporated in itself. Then our impact analysis can just begin with

any method (including <init> ) of C that has been referred from somewhere

to find the potentially affected methods.

7.11.2 Threads and Concurrency

Another issue pointed out by [RST+04] is threads and concurrency. But note

that just like [RST+04], changes related to threads like addition/deletion of

synchronized blocks and the addition/deletion of synchronized modifiers on

methods will both result in a changed method being reported by our modi­

fication finding tool, because this is a change in the 16-bit access flag. Then

our impact analysis can just begin with those methods using the dependency

graph.
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class Test {
public void foo( ){

A a = neil CO;
... (B)a ...

} }

(a)
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(b)

Figure 7.9: Hierarchy changes that affects a method whose code is not changed
[RST+04]

7.11.3 Exception Handling

Just like [RST+04], exception handling is not a significant issue in our analysis.

Any addition or deletion or statement-level changes to a try, catch or finally

block will be reported as a changed method. Then our impact analysis can be

carried out using that method and the dependency graph.

7.11.4 Changes to CM and LC

Remember from section 7.1 that CM is a changed method and LC is a change

in virtual method lookup as discussed there. Some additional issues pointed

out by [RST+04] are (i) adding a body to a previously abstract method, (ii)

removing the body of a non-abstract method and making it abstract, or (iii)

making any number of statement-level changes inside a method body or any

method declaration changes (e.g., changing the access modifier from public to

private, adding a synchronized keyword or changing a throws clause). Notice
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that in all these cases, the corresponding method would be reported as a

changed method in our analysis.

In addition, in some cases, changing a method's access modifier results

in changes to the dynamic dispatch in the program (i.e., LC changes). For

example, there is no entry for private or static methods in the dynamic dispatch

map (because they are not dynamically dispatched), but if a private method is

changed into a public method, then an entry will be added, generating an LC

change that is dependent on the access control change, which is represented as

a CM. However, in our case, this kind of change will still cause the method to

be reported as a changed method and using the newer dependency graph and

the change information, impact analysis can still be successfully carried out.

7.12 Summary

In this chapter, we discussed the concepts and building process of the access

dependency graph generation process. We also discussed how the modification

information from Chapter 6 and the dependency graph from this chapter aids

tacking several impact analysis issues. With this chapter, the discussion of the

main subject matters of this thesis comes to an end.

However, in the next chapter, we discuss some of our ideas and thoughts

about the maintenance of the dependency graph in the future, with the appli­

cation of successive patches.



Chapter 8

Maintaining the Dependency

Graph Over Time

In this chapter, we discuss some ideas and issues about maintaining our depen­

dency graph over time with the application of patches. The topics discussed

in this chapter are not the main subject matter of this thesis. However, it is

worth discussing these issues, since the future maintenance of the dependency

graph is of obvious interest. All the ideas discussed in this chapter are at

purely hypothetical level.

8.1 The Maintenance Issue

We first discuss what we actually mean by maintaining the graph. Say we

have a certain version of the dependency graph. When a patch is applied, it

changes some of the files, adds new files and may even delete some old files.

So our dependency graph structure is very likely to change. And we have to

make sure that after patching, we have the correct consistent version of the

new graph. There are two possible ways we can do that:

• Build the whole dependency graph again after patching

• Amend the existing dependency graph based on the modification infor­

mation

133
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At first thought, amending the existing dependency relation seems easy

enough, and also seems a logical way to go, rather than following the time

consuming way of building the whole call graph again. Theoretically that

makes more sense too. However, we have given it a considerable amount of

thought and reached the fact that in the worst case, amending is probably no

better than building the whole graph again. We discuss our thoughts one by

one to demonstrate how we reached that conclusion.

8.2 Patch Complexity

As discussed in Chapter 2, we examined several of the Oracle patches and the

highest number of files in a patch was found to be as big as 6,000 (and may be

more). Now the question is, how complex can a modification done by a patch

be? For example, a patch can be as simple as just modifying some instructions

inside one or a few functions (methods), or it can be as complex as modifying

lots of methods, adding or deleting existing methods, introduce changes in the

inheritance hierarchy of classes etc.

Since we are concerned about building automated tools, we have to take

into account the worst case complexity of patches, that is, we have to assume

every kind of possible changes that can be made by a patch.

Besides, remember since we store our dependency graph information in

the database, maintaining it will involve considerable interaction with the

database. The main problem with maintenance is introduced by the following

things:

• Changes in virtual or interface method call

• Changes in the inheritance hierarchy

• Changes in type of method call or type of field access

We now discuss these one by one.
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8.3 Changes in Virtual or Interface Method

Call

Recall that virtual and interface method calla are carried out using the invoke­

virtual and invokeinterface instructions. Consider an example that demon­

strates the problem. Consider Figure 8.1 where class B and class C has sepa­

rate inheritance hierarchies.

Legend
--t> Inheritance

B c

H J

Figure 8.1: Inheritance Hierarchies

K

TOW consider there is another class A and method A : test() calls method

B : m(). Then for our access dependency graph, besides this original call

edge, we also have edges from B : m() to the m() method of those subclasses

of B that overrode m(). Suppose now that the patch makes a change inside

A : test() such that it now calls method C : m() instead of B : m(). In this

case, to maintain the graph, we need to delete the edge A : test() -+ B : m()

but we cannot just delete the edges from B : m() to its subclasses. Because

there might be other methods in other classes in the system that still hold

calls to B : m() and for them, those edges are still needed.
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We have two choices here for- as for the first option, we can search

through the dependency graph whether any other method holds the call ref­

erences to B : mO and if not, delete those extra edges as well. As you can

guess, this option will be extremely costly because of the searching time. For

the second option, remember we have two separate tables in our database

Dependency_Relation_Original and Dependency_Relation_Extra, the first

one holding the original call edges and the send holding the extra edges

added for handling dynamic binding. So we can just delete edges like

A : testO -+ B : mO from Call_Relation_Original and once we are done

with all of these kinds of edges, we can search Dependency_Relation_Extra

to see whether any Accessor_Id exists for B : mO. If not, we can safely delete

all those extra edges from Dependency_Relation_Extra as well. Otherwise,

we just keep them. This option is much less costlier than the first one. Notice,

however, that both options involve lots of database interaction.

8.3.1 Changes to the Inheritance Hierarchy

Changes to the inheritance hierarchy can be introduced in two ways - (1)

Changing the superclass of an existing class and (2) Introducing a new class

whose superclass is an existing class. Actually, the situation can be even more

complex when we consider the transitive superclasses and subclasses.

Consider Figure 8.2. Here classes Band C have been removed from the

inheritance hierarchy and classes E and F have been introduced. Notice that,

nothing inside class A's code might have changed, despite the change in the

inheritance hierarchy. So A might not have been reported as a changed class,

nor as an added class. Nevertheless, virtual and interface calls to A's methods

still need to be re-organized. For example, if there is another class X and X :

testO calls A : mO, then besides the edge X : testO -+ A : mO, we previously

had edges A : mO -+ B : mO, A : mO -+ C : mO and A : mO -+ D : mO, if

Band Chad overriden mO. But now, we have to delete the first edges and

instead have edges A : mO -+ E : mO and A : mO -+ F : mO. To achieve

these, we have to utilize our database tables Dependency_Relation_Original,

Dependency_Relation_Extra and Inheritance. Remember the last table

stores subclass and implementation information.
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legend
-- -t;>- Inheritance (before patching)

--t> Inheritance (after patching)

Figure 8.2: Inheritance Hierarchy Change

Similar arguments apply in case of the edges to the nearest transitive su­

perclass. Consider Figure 8.3 where class B didn't override method mO before

patching, but after patching it does. So a virtual method call to C : mO, as­

suming C doesn't override mO, previously resulted in an extra edge C : mO -+
A : mO, but after patching it should result in the extra edge C : mO -+
B : mO, without having anything inside class C to change. Again, for resolv­

ing this, we have to consult database tables Dependency_Relation_Original,

Dependency_Relation_Extra and Inheritance_Superclass. Remember the

last table stores superclass information.

This implies that, in worst case, not only we need to worry about the

changed or added classes, but also unchanged existing classes that may have

changed classes and added classes as their new direct or transitive subclass or

superclass.
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Legend

............c> Inheritance

B Bdidn't override m() before
patching, but overrides m()
after patching

c

Figure 8.3: Change in Overriding

8.3.2 Changes in Type of Method Call or Type of Field

Access

Consider a method mO of a class A which was previously non-static but has

changed to static after patching. Say there is another class X and method

X : testO calls A : mO. Before patching, this call was virtual. But after

patching this call is now static. So, although the edge X : testO ~ A : mO
remains in the new version, the extra edges from A : mO to subclasses of A

now needs to be removed because this call is no longer a candidate for dynamic

binding. Similarly, if mO was previously static but now turned non-static, we

need to add those edges. Once again, we need the dependency and inheritance

related tables from database to resolve this issue.

Again, consider a static field changed to non-static. Previously for an

access to that field, we would have an edge to the <clinit> method of the

class which that field belongs to. But now since the static reference is no more

there, we may need to eliminate the edge to the <clinit> method, unless of

course, there are other static field references still out there to that class. So

we have to check whether any static references are still left, and if not, then

remove all the corresponding reference to the <clinit> method. We can do

this with the help of our database table Entity_Info which stores meta data
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about entities (static, non-static).

There are other issues in the graph amending process as well. Before we

move onto those, we examine the abstract steps involved in the amending

process.

8.4 The Abstract Amending Process

The steps in the amening process in short are as follows:

1. Remove all deleted classes and their methods and fields from the entity

list

2. Remove all deleted methods and fields from changed files from the entity

list

3. Adjust the inheritance record according to the removed classes

4. Adjust the dependency relation according to the removed methods and

fields

5. Add the classes, methods and fields from the added classes to the entity

list

6. Add the classes, methods and fields from the changed classes to the

entity list

7. Keep records of change in inheritance hierarchy during the previous two

steps

8. Adjust the inheritance record according to those added classes other

change in the inheritance hierarchy

9. Adjust the dependency relation according to those added classes, meth­

ods and fields

10. Adjust the dependency relation according to the added calls, removed

calls, added access and removed access inside changed class files
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8.5 Other Issues

Besides the ones mentioned in the section 8.2, there are some other side issues

in maintaining the graph. These issues are actually complementary to the ones

described there.

8.5.1 Keeping the Data

Remember that our dependency tables only contain id's, the original names

(class name, method name, field name) of the entities are contained in the

entity tables. So while making amendments to the dependency tables, like the

amendments discussed in the previous section, we also have to make changes

to the entity tables. For example, if a method is deleted by a patch, we

have to first remove it from the entity table and then remove the associated

dependencies from and to that method from the dependency tables. Otherwise

the tables will be inconsistent.

Theoretically, it does not seem to be that much of a problem. The concept

is that whenever an added or deleted entity is encountered, just make changes

in the entity and dependency list and keep them consistent. However, problems

arise in our empirical domain. We see a trade-off between two options:

• Updating the tables in database

• Bringing the table data into memory, make the amendments there and

then insert back into database when everything done

Consider the steps mentioned in section 8.4. They involve deleting and

inserting entities into the entity list, dependency relation list and inheritance

list. Now all these can be done inside the database without bringing any data

into memory. But in the worst case, that may involve lots of application­

database interaction. For example, if we want to know the id of a certain

entity (method, field), we have to execute a query with that entity, such as

select id from ENTITY where feature_name = some_name

Again, for example, when we want to know about the subclasses or imple­

mentations of a certain class, we also need to execute similar queries which
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may take a lot of time if number of changes is reasonably high. Calculating

the transitive children in database is not so straightforward either as it is in

an in-memory graph structure.

The other way is to bring in the stored entity list, dependency relation

and inheritance list into memory, using build in-memory abstract data objects

like hashmaps, arraylists and use them for intermediate processing; and finally

insert those back into database after all processing has been done. This way

the only significant time we need to worry about is the fetching and insertion

time. However, the in-memory processing is much more elegant and faster. For

example, we can keep in memory hashmaps for the entity list, arraylist for the

dependency relation and a graph structure for the inheritance hierarchy, just as

we did in Chapter 7 when building the dependency graph. But remember from

Chapter 7 that the database insertion of millions of rows is the main villain

in our tool performance. So both trade-off options have their own merits and

demerits.

8.5.2 Reusing Id's

Another issue in maintaining the dependency graph is in reusing the id's of the

entities that are deleted. Because we can assign those id's to newly introduced

entities, instead of wasting them. Although as far as the upper limit of the

integer id's is concerned (over 2000 million), reusing is not a big issue we can

live with even wasting those deleting id's for hundreds of patches. However,

as far as an efficient management tool is concerned, in general, we would like

to save those id'd for reuse. We can do this by keeping a database table (for

trade-off option 1) or an in memory list (trade-off option 2) and populating

with id's whenever an entity is deleted. Then when new entities are added,

we can first look up that table/list and assign one from it if all the id's in that

table/list are not used up by that time.

8.6 The Possible Detailed Amending Process

Having discussed the issues related with amending the graph, we now list the

steps of the possible amending process (the ones we mentioned at a high level
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of abstraction in section 8.4) in detail. As for choosing between the trade-off

options, we choose option 2 (brginging the data in memory first) below.

• First we need the modification information from Chapter 6 and also

information about added and deleted files that we get from patch anal­

ysis. For the changed files we have to generate the difference holding

XML files. And for the added and deleted files we have to generate the

class-equivalent XML files.

• \1Ile have to bring in the Entity, Entity_Info,

Dependecy_Relation_Original, Dependecy_Relation_Extra,

Inheri tance, Inheritance_Superclass tables from the database

into memory and build the entity hashmap, entity meta data hashmap,

dependency relation arraylist, inheritance graph structure and superclass

linked list.

• We have to create a list holding deleted id's. Say we call it deleted_list.

Also we have to record the highest id used in the existing entity list in a

variable maxid

• Vve have to remove all deleted classes and their methods and fields from

the in memory entity hashmap and from the entity meta data and add

those deleted id's into deleted_list

• Vve have to remove all deleted methods and fields from changed files from

the in memory entity hashmap and from the entity meta data and add

those deleted id's into deleted_list

• The deleted classes will have caused some changes in the inheritance

hierarchy. So we have to adjust the inheritance graph and superclass

linked list in memory according to the removed classes.

• We have to adjust the dependency relation arraylist according to the

removed methods and fields.

• From the newly added classes, we have to add the class, method and

field information to our entity list and to the entity meta data as well.
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While assigning id's to the added entities, we look for deleted id's in

deleted_list first. If that list is empty, then we begin assigning from

maxid. Also the newly added classes will perform some enhancement in

the inheritance hierarchy. So we have to enhance the inheritance graph

and superclass linked list accordingly

• The changed files might also contain added methods and fields. We have

to add method and field information to our entity list and to the entity

meta data as well. For assigning id's we follow the same strategy as

in the previous step. If any of the changed classes has its superclass

or interfaces changed, it will cause some modification in the inheritance

hierarchy. So we have to enhance the inheritance graph and superclass

linked list accordingly

• We have to parse the added classes and added methods in changed classes

for finding new calls and field accesses and add those to our dependency

relation arraylist. We also have to account for the extra call edges for

dynamic binding due to the virtual and interface calls.

• We have to look for the existing unchanged classes who have now got

a newly added class or a changed class as its new transitive subclass or

superclass, or who have lost a transitive sub or superclass due to deletion.

For all these kinds of classes, we have to make necessary amendments in

their virtual call relation.

• For changed methods, we have to look for newly added calls and field

references and adjust the dependency relation accordingly. Also, if the

type of a call or field access changes, we have to amend entries for them

as discussed earlier.

• If all the static references to a class are removed, we also have to remove

the implicit call edge to that class's <clinit> method.

• Finally, we need to evacuate the database tables and re-insert all these

data into them again.
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8.7 Our Current Decision

The previous section discussed the possible amending process in detail choos­

ing trade-off option 2. Note that, even with choosing trade-off option 1 the

complexity of the process might have been pretty high in worst case. As the

reader can see, no matter what trade-off option we choose, the worst case

amending process is fairly complex in general. Of course, in reality, it may

happen that a patch only performs very minor change in one part of the sys­

tem, not making any change to the inheritance hierarchy, static access, type of

method call etc. But the worst case scenario can be as complex as discussed

in the previous sections.

Now as far as our problem domain is concerned, remember from the statis­

tics of Chapter 7 that our dependency graph generation process takes approx­

imately 7 hours, which is a pretty tolerable time span in industry. Considering

that our customer patch their system once every 2 or 3 months, 7 hours is not

a big deal anyway. So rebuilding the whole graph with every successive patch

is not a bad choice at all from industrial point of view. Moreover, with all the

complexities involved in the amending process, rebuilding also seems safer. As

a side gain, notice also that, rebuilding the graph each time eliminates the

need for some of the database tables like Dependency_Relation_Original,

Dependency_Relation_Extra and Entity_Info. That way we do not have

to insert data into and maintain these tables and our dependency graph gen­

eration process will get faster.

Considering everything, for the time being, we have decided to rebuild the

dependency graph with every successive patch.

8.8 Summary

In this chapter we have discussed some ideas and issues about maintaining

the dependency graphs with the application of successive patches in the course

of time. Since everything presented in this chapter is purely hypothetical, it

is well possible that in the future, some of our decisions made in this chapter

will be reversed (or again, may be not) based on the continual work conducted

on this impact analysis project.
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The next chapter, which is the final one of this thesis, discusses the con­

tribution and limitations of the work presented in this thesis, as well as a

discussion on the possible future works that can be conducted.



Chapter 9

Discussion and Future Work

In this chapter we discuss the contributions we made in this thesis, limitations

faced during the research process and future works that may be done on the

work presented in this thesis.

9.1 Contribution

Reverse engineering can be seen as an opposite process of compilation. In

compilation, lower level representation of the program is created from a higher

level representation. In reverse engineering we follow the other way: from

lower level code to higher level specification or information. That's why we we

follow the process of analyzing Java byecode files to extract the dependency

information from them and also to determine change information between

two successive versions of a bytecode file. We see our main contribution as

adapting the existing off-the-shelf tools in extracting the required information

for impact analysis in our specific problem domain. An important contribution

of our approach is that we have been able to build up a worst case static

dependency relation despite working at a relatively high level of abstraction,

like not moving into statement level control flow or data flow analysis. And

as we have discussed in Chapter 8, the dependency relation is built up in such

a way so that impact analysis can be carried out successfully without missing

anything.

The Dependency Extractor tool of Dependency Finder [TeslOa] generates

146
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a great deal of information that we need. However, due to the fact that it

lacks some useful information (like inheritance), we had to use another tool

ClassReader of the same toolset and adapted its class equivalent XML output

according to our need.

The two complete processes shown in Figure 5.1 and Figure 5.2 are fully

automated. Interaction among the Java classes are without any human inter­

vention making the processes more robust and easily verifiable. Moreover, due

to the modular nature of the processes, if needed, we can temporarily stop

some of the sub-processes to see various intermediate outputs. For example,

we can print the inheritance graph to console or to a file on disk to check that

it is built up correctly.

The tools developed in this thesis are not merely a proof of concept. Unlike

many of the related works discussed in Chapter 4, they just do not just ex­

hibit a concept of larger analysis which may be implemented in a larger scale.

Rather they are designed as fully usable (though still domain specific) soft­

ware products keeping rigorous software development methodologies in mind.

The domain where we applied our ideas and design is fully empirical (Ora­

cle E-Business Suite) and probably one of the largest software systems in the

world. We keep on trying to incorporate more and more software engineering

principles to make these tools even more efficient.

The tools also interact well with third party outside tools (from Dependency

Finder) and are flexible enough to incorporate new features in them. The

codes included in the thesis are easily comprehensible and we hope that any

fellow student will be able to understand them and translate them into different

architecture within a limited time.

9.2 Limitations

Back in Chapter 2, we mentioned that we have limited, for the sake of this

thesis, our scope only to class files. However, remember that Oracle patches

actually contain files with dozens of other extensions. Although we have done

some rough work for handling SQL and PL/SQL files, currently our tools can

only handle Java class files.
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Moreover, even inside the Java environment, the dependency graph we

build is capapble of handling only Java entities at this moment. In reality,

there can be database accesses from inside the Java methods like executing

database queries, stored procedures and functions etc. And those database

functions and procedures can have dependencies among themselves as well. So

the complete dependency graph actually extends from the Java environment

to the database which we have abstracted out from this thesis.

The dependency graph we build is a kind of raw representation of the

dependency relation among the entities of the Java environment. It does not

currently incorporates any specific patterns in the dependencies (for example,

out of a hundred classes it may turn out that ninety of them depends on a

few methods of one single class). In addition, because of the huge size and

empirical problems discussed in Chapter 7, we did not do a statement level

control flow or data flow analysis. Our analysis is roughly at the method level.

This way things get a bit simpler but it abstracts out many of the crucial

possibilities. For example, a test may be affected by one branch of an if-else

condition and not by the other, but the impact analysis and test selection

carried upon the dependency graph will report that test as an affected test

anyway.

Although our tools are modular in nature and we have tried to keep various

concerns separate as far as possible, currently our tools can handle only Java

bytecodes. Systems based on languages other than Java are still out of reach

of our tools.

Finally, since our goal is an automated toolset, less amount of work is done

in producing better displays for the outputs of the intermediate steps. Some

further works can be done to create better human readable outputs for those

steps.

9.3 Future Work

fost of the future work is complementary to the limitations mentioned in

section 9.2. Firstly, as mentioned earlier, our tools can currently only handle

class files. But for a real enterprise level tool, which any customer would
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be ultimately expecting, changes in all the other kinds of files need to be

incorporated. For several database related files like SQL, PL/SQL, PLL etc.

we have already done some rough works. For example, to detect differences

between two versions of a PL/SQL package file, we have written Java programs

that parses two versions of the file to detect database functions, procedures,

triggers etc. that have changed code inside them. We have also written Java

programs with the help of regular expressions to detect differences between two

SQL or PL/SQL scripts as to determine which tables in database the new version

of the script may alter, update or create. We went further and also wrote Java

tools to detect schema and data changes between two versions of a database

table. But all these works need to be developed further to incorporate them

into our toolset.

As far as the extension of dependency relation to the database is concerned,

we have written a Java program that uses a tool called Java String Analyzer

(JSA) (whcih itself is based on Soot [LBL+10]) to detect SQL string literals that

are used to access the database somehow (e.g. call a database procedure) with

the help of regular expressions. However, we have only tested our program on

very narrow scale sample projects and we are not currently so sure about its

feasibility in our real system. However, in future, this issue certainly needs to

be taken care of, possibly with a better approach.

Since we store all information in a database, in future, this gives us a

chance of examining the information with intelligent queries or mining the

data to extract certain patterns in dependencies. The benefit of this would be

that we may be able to narrow down our analysis to certain specific parts of

our system.

If we are able to find some patterns in the dependencies and in the changes

made by patches, in future, we might well look for doing a detailed statement

level control flow or data flow analysis on specific parts of the system to take

our analysis at a finer grain and to be even more accurate with the test case

selection.

Many legacy systems are based on older languages like COBOL. In future,

we may need to deal with such systems. And for that, our tools need to be

made more generic, such as by re-factoring code and separating the concerns
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even further. Also the fact that Java bytecode is a relatively higher level

representation than other kinds of compiled codes (e.g. assembly, machine

code) and several off-the-shelf bytecode analysis tool already exists facilitated

our work to a great extent. But in the case of languages like COBOL, we

would first have to write our tools for analyzing the compiled representations

of these languages. This will be a challenging issue in the future.
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