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Abstract

The Lake Erie net basin supply (NBS) is defined as the net volume of water
entering or exiting the lake from its own drainage basin over a specified period of
time. NBS can be computed using either the component or residual method. In
this research, an uncertainty analysis was performed on the residual method of
computing Lake Erie NBS using both the First-Order Second Moment (FOSM)
method and a Monte Carlo simulation approach. Uncertainties in each of the
various inputs, including the inflows, outflows, and change in storage, among
other sources, were first defined through analysis of data, when available, or with
alternative methods when necessary. Estimating the uncertainty in each of the
NBS model inputs was found to be the most difficult and time consuming
component of this study, and also the component prone to the most subjectivity.
The results obtained using the FOSM and Monte Carlo approaches were found to
be nearly identical when applied to the residual method of computing Lake Erie
NBS. Comparison of the results of this study to the results from other research
showed that the overall uncertainties in NBS are of similar magnitude. However,
the uncertainty in the change in storage was found to be greater than estimates
given in previous studies, and greater than perhaps generally believed, being of a
similar magnitude to the uncertainty in the Lake Erie inflows and outflows, which
have normally been cited as the greatest sources of uncertainty in Lake Erie
residual NBS.
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1 Introduction

1.1 General Introduction

The Laurentian Great Lakes (hereinafter referred to as the Great Lakes)
are a series of large, connected freshwater lakes located in Canada and the United
States. In water balance studies of these lakes, an individual lake’s net basin
supply (NBS) is defined as the net volume of water entering (or exiting) the lake
from its own basin over a specified period of time. More specifically, NBS is
defined as the precipitation that falls directly onto the lake, plus the drainage basin
runoff that enters the lake, minus the evaporation from the lake itself, plus or
minus the direct groundwater flux.

NBS have traditionally been computed in the Great Lakes basin using
either of two methods: the component method, which computes NBS directly
from measurements and modelled estimates of the hydrologic components
themselves, namely over-lake precipitation, lake evaporation and basin runoff
(groundwater flow is normally considered negligible); or the residual method,
which computes the NBS to a lake as the residual of a lake’s change in storage,
inflows from upstream lakes, outflows downstream, and diversions into and/or out
of a lake. Of the two methods, the residual method was the first used by water
resources engineers in the Great Lakes basin, as it could be computed primarily
from readily available water level data; however, with the advent of modern
computers and numerical models, and the ability to manage and analyze large
datasets, the component method became feasible (Lee, 1992). The NBS
determined using the residual method (known as the residual NBS for short) are
computed and coordinated in the Great Lakes basin by Canadian and U.S.
agencies, notably Environment Canada (EC) and the U.S. Army Corps of
Engineers (USACE), respectively, and have been back-calculated to the year
1900. The National Oceanic and Atmospheric Administration’s (NOAA) Great
Lakes Environmental Research Laboratory (GLERL) in the U.S. has developed
models and methods for computing NBS estimates using the component method
(known as the component NBS for short), and has back-calculated these estimates
to 1948. Prior to this date, the data required for the component method is
insufficient. More recently, EC researchers have begun computing a second
estimate of component NBS using a suite of alternative methods and models.
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Accurate estimates of NBS are required in the Great Lakes basin for
operational regulation of Lake Superior and Lake Ontario, for the formulation and
evaluation of regulation plans, for water level forecasting, for time series analyses
using statistical methods, and to provide an indicator of climate change (Lee,
1992). This thesis will focus primarily on uncertainty in Lake Erie NBS
computed using the residual method, with some additional discussion and
comparisons made with regard to the component NBS.

1.2 Study Area

The Great Lakes form one of the largest fresh surface-water systems in the
world. The Great Lakes basin has a total drainage area of approximately
765,990 km?, of which approximately one third (244,160 km?) consists of the
surface area of the lakes themselves. The total volume of water in the Great
Lakes is approximately 22,684 km’, and this volume represents approximately
18-percent of the world’s fresh surface water (Fuller et al., 1995).

This huge resource is shared by Canada and the United States, and is of
tremendous importance to both countries. The regional importance of the Great
Lakes cannot be understated: the basin is home to millions of people who rely on
the Great Lakes for drinking water, irrigation, and recreational opportunities; the
lakes support diverse ecosystems, providing for a wealth of plant and animal life;
and they provide the foundation for major industries, including commercial
navigation, hydropower, tourism, and fishing, among others.

The Great Lakes system (Figure 1-1) consists of the five Great Lakes
themselves (Lake Superior, Lake Michigan, Lake Huron, Lake Erie and Lake
Ontario), one secondary lake (Lake St. Clair), four connecting channels (the
St. Marys, St. Clair, Detroit and Niagara rivers), and an outlet channel that drains
to the Atlantic Ocean (the St. Lawrence River). Lake Superior is the most
upstream of the Great Lakes. Its outflow is regulated, and passes through the St.
Marys River before entering Lake Huron. Lake Huron is connected hydraulically
to Lake Michigan through the Straits of Mackinac, and in this respect is
considered one lake. Lake Michigan-Huron’s outflow passes through the St. Clair
River, entering the relatively small Lake St. Clair, which then flows through the
Detroit River into Lake Erie. Lake Erie’s outflow consists of both the flow that
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passes through its natural outlet, the Niagara River, and the flow diverted through
the Welland Canal, both of which flow into Lake Ontario. Lake Ontario flows
into the St. Lawrence River, which is also regulated, and after passing through the
regulation works, the outflow from the Great Lakes travels by way of the
St. Lawrence River through Canada to the Gulf of St. Lawrence and the Atlantic
Ocean.

Though still one of the largest lakes in the world, of the five Great Lakes,
Lake Erie is the second smallest in terms of surface area, the shallowest of the
five, and the one having the smallest volume; however, its shores are heavily
populated by a number of major metropolitan areas, it is heavily industrialized,
and is biologically the most productive of the Great Lakes, supporting one of the
greatest freshwater fisheries in the world (Fuller et al., 1995). It is also one of the
more complex in terms of computing NBS by the residual method and estimating
its uncertainty. This is due to the complicated nature of determining Lake Erie’s
inflow and outflow and their large magnitude relative to the NBS, as well as the
effects of wind and thermal expansion and contraction on measured water levels
and the computed change in storage.

1.3 Thesis Objectives

The main objective of this thesis is to quantify the uncertainty in the
residual NBS for Lake Erie. The thesis will provide a detailed description of how
the residual NBS for Lake Erie is computed; identify sources of error in the
computations and methods for evaluating the uncertainty resulting from them; use
a subset of these methods and available data and models to accurately quantify the
uncertainty in each element of the computations; and combine these individual
sources of uncertainty using appropriate methods to determine the total
uncertainty in residual NBS. The uncertainty results will be compared to those
from other studies, and will be used to resolve differences observed in the
different methods of computing NBS. Methods will also be suggested that could
be used to reduce uncertainty. The findings of this study can be applied by the
engineering community to similar problems, including application of the methods
proposed for the other Great Lakes.
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1.4 Thesis Overview

This thesis consists of a total of twelve chapters, plus references and a set
of Appendices. This first chapter provides an introduction to the topic and
motivation for completing an uncertainty analysis on Lake Erie residual NBS.

Chapter 2 contains the literature review that was conducted for this study.
The chapter provides an overview of NBS, sources of uncertainty, and methods
that have been proposed to quantify them. It also discusses uncertainty analysis in
general, the different methods available for quantifying uncertainty, and their uses
and limitations.

In Chapter 3 the mathematical equations used to compute the NBS are
derived in general, and then for Lake Erie specifically. Additionally, a general
overview of the methods used to compute each of the quantities that are used in
the equations is given.

In Chapter 4, the basic statistical concepts and uncertainty analysis
methods used in this research are presented. Definitions are given for a number
of important terms used throughout this report, and the First-Order Second
Moment (FOSM) and Monte Carlo simulation methods of performing uncertainty
analysis are described.

In Chapters 5 through 10, the specific sources of uncertainty in cach of the
inputs to the Lake Erie residual NBS are evaluated in detail. Chapter 5 provides
an introductory section on the statistical methods available to compute open-
channel flow uncertainty, an overview of how they were applied in this research,
and their assumptions and limitations. In Chapters 6, 7 and 8 the uncertainties in
the Niagara River, Welland Canal, and Detroit River flows, respectively, are
estimated using statistical methods when possible, and more general approaches
when necessary. In Chapter 9, uncertainty in Lake Erie lake-wide mean water
levels is assessed, including the uncertainty resulting from gauge accuracy
limitations, temporal and spatial variability, and other sources. How this
uncertainty propagates to uncertainty in the computed monthly change in storage
is also determined. In Chapter 10, one additional source of uncertainty in residual
NBS is investigated, namely consumptive use. Consumptive use is normally
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assumed negligible in NBS computations, and the error that results from this
assumption is discussed in this chapter.

In Chapter 11 the uncertainty estimates derived in Chapters 5 through 10
are summarized and then used to provide an estimate of the overall combined
uncertainty in residual Lake Erie NBS. The overall uncertainty estimate is
determined on a monthly basis using both the FOSM method and a Monte Carlo
simulation approach, and the results from both methods are compared. The
uncertainty analysis results are also compared to previous estimates of uncertainty
in NBS from the literature.

Finally, Chapter 12 provides a summary and conclusions of this research,
and offers recommendations for further study.
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2 Literature Review

2.1 Uncertainty Analysis

Uncertainty can be defined in many ways. In general terms, the
uncertainty of a result or measured value (measurand) can be understood as a
quantifiable estimate of the quality of the measurand; more specifically, it is a
parameter that describes the dispersion of values that could reasonably be
attributed to the quantity being observed (ISO, 1995). Uncertainty is related to
but not the same as accuracy or error. The accuracy of a measurement refers to
how close the measurements of a quantity are to the true value of that quantity;
similarly, the error is the difference between the measured value and the true
value. Since the true value is rarely if ever known, the accuracy and the error
must be estimated, and this estimate is the uncertainty of the measured value
(Coleman and Steele, 1995).

Uncertainty results from imperfect information about the quantity being
measured (ISO, 1995). In scientific problems, uncertainty arises from many
sources, including the natural variability and randomness of natural physical
processes; the uncertainty due to incomplete knowledge of the true physical
processes being observed; uncertainty that results from representing complex
physical systems with simplified models or designs having uncertain parameters;
data uncertainties resulting from inaccuracy and errors in measurement of the
variables being studied, as well as inconsistencies, non-homogeneous data, and
spatial and temporal limitations of the data; and uncertainties resulting from
additional human factors (Yen et al., 1986; ISO, 1995). An uncertainty analysis
involves determining how uncertainty in each of these individual sources
propagates to uncertainty in the output of interest. Uncertainty analysis is also
sometimes referred to as risk or reliability analysis (Ang and Tang, 1984), in
reference to the risk associated with a decision or course of action, or the expected
reliability of the outcome, given the uncertainty of the information available on
which the final outcome depends.

Uncertainty analysis is increasingly being performed in a number of areas
of water resources engineering, including, for example, water quality modelling
(Beck, 1987), statistical climate model downscaling (Khan et al, 2006), urban
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stormwater analysis (Guo and Adams, 1998a; 1998b), groundwater flow
modelling (Dettinger and Wilson, 1981), hydrologic models (Blasone et al., 2008)
and hydraulic models (Thompson et al., 2008). There are numerous techniques
available for performing uncertainty analysis, and a number of reference texts are
available that describe these (e.g. Ang and Tang, 1984; Coleman and Steele,
1989; ISO, 1995; Mishra, 2009). One of the more recent is provided by Tung and
Yen (2005), who thoroughly reviewed a number of uncertainty analysis methods
and their application to problems specific to the field of hydrosystems
engineering.

Four types of uncertainty analysis methods were considered in this project
to assess how uncertainty in the various inputs propagates to uncertainty in the
total residual NBS. The four methods were direct integration method, Monte
Carlo analysis, FOSM method and Point Estimation method.

The direct integration or derived distribution method, as it is also known,
is an analytical or exact uncertainty analysis method. With this method, derived
probability distribution theory is used to determine the exact probability
distribution function (PDF) of the dependant random variable directly from the
PDFs of the independent random variables used as inputs to the model. In this
research the dependant random variable, or model output, is the total residual
NBS. The direct integration method requires the determination and integration of
the PDFs of the input variables, which can be difficult. Furthermore, applying
this method becomes quite complicated in a high-dimensional problem, and
therefore the direct integration method was not used in this research.

The Monte Carlo method can be used to provide a numerical
approximation of the full PDF of the model output. To do this, the probability
distributions of the random variables used as model inputs must first be
determined. Random samples are then drawn from the distributions of the model
inputs and substituted into the model to evaluate the model output. This is done
repeatedly to create a subset of probabilistic model outputs, the PDF of which
defines the uncertainty in the model output. The Monte Carlo method can be
computationally demanding, especially when applied to highly complex
numerical models: however, as will be shown, the residual NBS model used in
this research is dimensionally large, yet mathematically simple, making
application of the Monte Carlo method relatively uncomplicated.
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Two additional approximate uncertainty analysis methods were
considered. Rather than estimating the full PDF of the model output, these two
approximate methods only estimate certain statistical properties of the probability
distributions. The FOSM method is one such method, and it can be used to
estimate the mean and variance of the model output. This method is supported by
a number of international standards organizations, including the International
Organization for Standardization (ISO, 1995). It is also known as the first-order
variance method or the variance propagation method (Tung and Yen, 2005). The
FOSM method involves representing the model as a function of any number of
stochastic input variables using a Taylor series expansion to estimate the mean
and variance of the model output. The FOSM method is relatively simple to
apply, and can be used for nearly any problem, though the accuracy of the method
can be compromised when the distributions of the input variables are highly
asymmetric, since in such cases the distributions are not sufficiently described by
their means and standard deviations alone.

Lastly, the point estimation method is another approximate uncertainty
analysis method. Similar to the FOSM method, the point estimation method can
be used to estimate the statistical moments of a model output, but unlike the
FOSM method, the point estimation method is also able to account for asymmetry
in the PDF of the input variables. However, while this method is feasible when
one or two input variables are used, it becomes highly complicated for higher
dimensional problems (Tung and Yen, 2005). Therefore, given the high
dimensionality of the residual NBS model, the point estimation method was not
chosen for this study.

2.2 Net Basin Supplies

NBS have been computed in the Great Lakes for many years. Lee (1992),
Croley and Hunter (1994) and Neff and Nicholas (2005) have each provided
overviews and a comparison of the different methods (i.e. component and
residual) used to compute NBS in the Great Lakes, and they have also described
sources of error affecting these computations.

The computation of NBS using the residual method was the first of the
two methods used in the Great Lakes (Lee, 1992) as it was the simpler method to
apply, since the change in storage, inflows and outflows can be computed from
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readily available water level measurements. However, currently this is only
partly true, especially for Lake Erie. For example, determination of the Niagara
River outflow involves measurement of hydropower flows using rating tables that
relate discharge to measured power output in addition to water levels. As another
example, part of the Welland Canal flow is currently modelled using measured
velocities and an index-velocity relationship in addition to water levels; likewise,
velocity measurements and index-velocity relationships have also recently been
established in the St. Clair and Detroit rivers. Furthermore, the development of
any type of flow model, including those that use only water levels as the model
parameters, requires gauged discharge measurements for model calibration. Neff
and Nicholas (2005) provided some detail regarding the complexity of the
residual NBS computations for Lake Erie and the other Great Lakes, but a full
description is not available. The Coordinating Committee on Great Lakes Basic
Hydraulic and Hydrologic Data (commonly referred to simply as the
Coordinating Committee) has in the past provided documentation on Lake Erie
inflows (Coordinating Committee, 1982) and outflows (Coordinating Committee,
1976), as well as documentation on Great Lakes physical data (Coordinating
Committee, 1977). Otherwise, documentation (and in many cases computation)
of NBS and the various subcomponents of these computations has come about
mainly as a result of the work of the various International Joint Commission (IJC)
boards (e.g. INBC, 2009), or the occasional international studies that have
occurred (e.g. [UGLSB, 2009).

The component method of estimating NBS, specifically the method used
by GLERL, has been well documented. Croley and Hunter (1994) provided a
general overview of the GLERL method, while more detailed reports have been
produced for each of the individual components, including runoff and
precipitation (De Marchi et al., 2009) and evaporation (Croley, 1989; Croley and
Assel, 1994). Documentation is also becoming available for the more recent
component NBS estimates being developed by EC (e.g. Pietroniro et al., 2006;
Spence et al., 2009).

Until recently there have been few attempts to quantify the uncertainty in
the computed NBS estimates. Lee (1992) and Croley and Hunter (1994) outlined
potential sources of error in NBS. Quinn and Guerra (1986) analyzed the Lake
Erie water balance and the continuity of the system in particular. Neff and
Nicholas (2005) provided the most comprehensive study of uncertainty in the
Great Lakes water balance to date. This analysis, which was done for the purpose

10
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of illustrating how well the hydrology of the Great Lakes-St. Lawrence River
system is understood, included estimates of uncertainty in both the residual and
component NBS computations for each lake; however, the authors noted that the
uncertainty estimates provided were based primarily on best professional
judgment since published uncertainty calculations associated with most of the
flows and levels of the Great Lakes were unavailable. De Marchi et al. (2009)
completed an assessment of uncertainty in GLERL’s component NBS estimates
as part of the [JC’s International Upper Great Lakes Study (IUGLSB, 2009).
Another recent study by Quinn (2009) provided a statistical comparison of
residual and component NBS estimates for the upper Great Lakes, specifically
Lake Superior, Lake Michigan-Huron and Lake Erie. In addition, uncertainty in
the change in storage was estimated from an analysis of the measured water levels
at different gauge stations as compared to the mean water level computed for each
lake. This uncertainty estimate was combined with the uncertainty estimates for
the inflows and outflows provided by Neff and Nicholas (2005) to obtain the total
uncertainty in the computed residual NBS.

2.3 Flow Measurement and Uncertainty

There are numerous techniques that can be employed to measure flow in
open channels, with the choice of which to use depending on the individual
application (Herschy, 2009). The literature on flow measurement methods as well
as methods of estimating flow measurement uncertainty can be divided into two
groups: gauged flows and modelled flows.

Gauged flows refer to single determinations of discharge from actual field
measurements.  These are often assumed to be instantaneous or near-
instantaneous measurements, taken at a specific point in time. Gauged flows are
often measured using conventional current meters and the velocity-area method.
With this method, velocity is measured using a current meter at specific locations
in the channel cross-section, such that an estimate of the average velocity in the
channel or a specific portion of it can be determined and then multiplied by the
corresponding measured area to give the discharge. More recently, acoustic
technologies, such as Acoustic Doppler Current Profilers (ADCP), have been used
to measure velocity and discharge in open channels. An ADCP measures water
velocity by measuring the Doppler shift of a sound wave transmitted through and
reflected off small particles present in the water column (Simpson, 2001).

11
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Additional methods of measuring flow, such as moving-boat, dilution techniques,
and float methods, also exist (Herschy, 2009). Gauged flows are often referred to
as measured flows, and are collected periodically throughout the Great Lakes
region. Gauged flows are also used in conjunction with other measured variables
(such as water level and/or channel velocity, for example) in the calibration and
validation of flow models.

Modelled flows refer to indirect measurements of flow based on additional
measured and modelled predictor variables. Models are often used to determine
continuous or near-continuous measurements of flow, since continuous direct
gauged measurements are impractical. There are a number of different models
that can be used to estimate flow, many of which have been described by Herschy
(2009) among others. Examples include stage-discharge rating equations, which
relate measured water level at a channel cross-section to channel discharge; stage-
fall-discharge equations, which relate water level measured at two cross-sections
and the fall between these sections to channel discharge; index-velocity
relationships, which relate a measured index velocity acquired using acoustic or
other technology to the average velocity in the channel cross-section, which when
multiplied by the measured cross-sectional area gives the channel discharge;
Hydraulic Performance Graphs (HPG), which are similar to stage-fall-discharge
equations in that they relate water level measured upstream and downstream to
discharge in the channel (Gonzalez-Castro and Ansar, 2003); and numerical
hydrodynamic models, which are used to solve mathematical equations governing
flow in an open channel. Many of these methods and others are currently in use
in the Great Lakes region. For example, stage-discharge rating equations are
utilized in the Niagara River (Quinn and Noorbakhsh, 2001; INBC, 2009); stage-
fall-discharge equations are employed in the St. Clair and Detroit rivers (Quinn,
1979b; Fay and Noorbakhsh, 2010); index-velocity relationships are used to
measure the Lake Michigan Diversion at Chicago (Espey et al., 2001; Duncker et
al., 2006), the flow through the Welland Canal supply weir (Jeanette Fooks,
WSC, personal communication, 8 April, 2010), and more recently, the St. Marys,
St. Clair and Detroit River flows (IUGLSB, 2009); HPGs have been applied to the
St. Clair and Detroit rivers (Schmidt et al., 2009; Fay and Noorbakhsh, 2010); and
numerical hydrodynamic models have been developed for the St. Marys River,
the St. Clair and Detroit River system (Holtschlag and Koschik, 2002), and the St.
Lawrence River (Thompson et al., 2008).

12
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The uncertainty in gauged flows measured using conventional current
meters and the velocity area method has been examined by a number of
researchers (Pelletier, 1988). There are many sources of uncertainty in a
conventional gauged discharge measurement, including uncertainty resulting from
the accuracy of the current meter; uncertainty in estimating the mean section
velocity in both time and space resulting from natural fluctuations and the fact
that discrete point measurements of velocity are used to estimate the mean
velocity of the cross-section; and uncertainties in measuring the cross-sectional
area. Mathematical models for each of the error components in discharge
determination have been developed in order to better understand the various
sources of uncertainty (e.g. Dickinson, 1967), and methods for quantifying the
uncertainty in each component and suggested estimates have been given based on
a review of a number of studies and field observations (Carter and Anderson,
1963; ISO, 1979; Sauer and Meyer, 1992; Herschy, 2009).

Being a relatively new and evolving technology, the uncertainty in gauged
discharge measurements collected using an ADCP has received less attention.
Similar to conventional gauged discharge measurements, a number of sources of
error cause uncertainty in ADCP flow measurements. Uncertainty results from
both errors in the actual measurement of velocity and discharge, and also in the
estimation of velocity and discharge in the areas immediately below the ADCP
instrument and at the channel boundaries where velocity and flow cannot be
measured directly. Simpson (2001) provided detailed explanations of the
principles behind ADCP discharge measurements, and outlined sources of error
and guidelines for reducing the error in ADCP measurements. Muste et al.
(2004a) laid out a framework for computing ADCP uncertainty based on relevant
standards for uncertainty analysis, including ISO (1993). Gonzalez-Castro and
Muste (2007) also discussed errors in ADCP discharge measurements, and
derived the data reduction equations used to compute flow from the ADCP-
measured variables, which formed the basis of an analytical framework for
estimating uncertainty in ADCP measurements. Similarly, Kim and Yu (2010)
developed an analytical framework for uncertainty in velocity measurements
collected by ADCP. Examples of the practical application of these methods were
not found.

The uncertainty in modelled flows has been given less attention in the

past, although recent research has started to improve on this. Uncertainty in
modelled flows results from natural, random variability; from using a simplified

13



M.A.Sc. Thesis — J. Bruxer McMaster — Civil Engineering

model to represent the true hydraulic conditions and physics in the channel; from
errors in the model parameters; from uncertainty in calibration data; and from
uncertainty in measurement of the predictor variables used in the model.

Given that it is one of the more commonly used flow models, it is not
surprising that much of the literature on uncertainty in modelled flows has been
devoted to discharge determined from stage-discharge equations. The stage-
discharge equation relates water level to discharge in a channel, and normally
takes the form of a power equation. Much of the research on uncertainty in
discharge determined from stage-discharge relationships has focused primarily on
statistical analyses of deviations of gauged discharge measurements from the
fitted stage-discharge equation, as developed from linear regression theory (e.g.
Draper and Smith, 1998). For example, in addition to investigating the sources of
error in gauged discharge measurements, Dickinson (1967) also considered
uncertainty in determination of a single discharge estimate from a rating curve,
estimating uncertainty from the standard error of the mean relation at the mean
stage value. Venetis (1970) explained that discharge measurements show a
spread around the straight-line log-log fit mainly because of errors in the
measurements or gauged discharges themselves, but also because the stage-
discharge model is an approximation, noting specifically that the flow may not be
strictly uniform and the channel roughness may vary with depth. Venetis (1970)
also discussed the least squares regression estimates for the parameters, and
derived the equations for the maximum likelihood estimators and the variance-
covariance matrix of these estimators, which could be used to estimate the
variance of the discharge obtained from the stage-discharge relationship. Herschy
(1970) gave the same estimate for the error in the stage-discharge curve as
Dickinson (1967), but later revised his approach to include increasing confidence
bounds as one moves further from the mean stage value (Herschy, 1978). Ibbitt
(1975) gave the uncertainty estimate as the standard error of the residuals, and did
not account for the number of measurements made. Dymond and Christian
(1982) reviewed and summarized these previous studies, and identified three
types of errors that cause the random error of a single discharge measurement
determined from a rating curve, specifically rating curve error, water level
measurement error, and the error resulting from ignoring all physical parameters
other than water level that affect discharge. Freeman et al. (1995; 1996) used
statistical approaches to determine the uncertainty in polynomial relationships of
stage and discharge throughout the United States for the purposes of flood
damage reduction studies. Clarke (1999) and Clarke et al. (2000) suggested that

14



M.A.Sc. Thesis — J. Bruxer McMaster — Civil Engineering

errors arising from incorrect form of the rating curve can be ignored, since the
hydraulic justification for using a power-law equation is sufficiently strong, but
suggested that the standard error of the mean relation underestimates the
uncertainty in discharge obtained from a rating curve since it does not account for
the random variations as captured in the gauged discharge measurements. This
argument is supported by others, such as Tung and Yen (2005), who discussed
application of uncertainty analysis techniques to hydrosystems in general.

In more recent years alternative methods to the statistical approaches
described have been proposed. For example, Di Baldassarre and Montanari
(2009) investigated uncertainty in stage-discharge curves developed for an Italian
river using a one-dimensional hydraulic model. Pappenberger et al. (2006),
Krueger et al. (2009) and others have used variations on a fuzzy rating curve
method. McMillan et al. (2010) applied a variation of this method to a gravel-bed
river in New Zealand. This involved developing multiple rating curves from
subsets of available discharge and corresponding stage measurements, which
themselves were described by PDFs, in order to incorporate errors in the
measured variables into the flow model. All rating curves formulated in this
manner were retained if they passed through the error PDFs of all remaining
discharge measurements in the group, and these were combined to provide the
uncertain or envelope rating curve. Alternative methods such as these are
computationally intense, especially when a large number of gauged discharge
measurements are available, as is the case in the Great Lakes connecting channels.
Nonetheless, an adaptation of either of these methods may be a useful tool to
employ at a later date, but was considered beyond the scope of this thesis.
Instead, statistical methods as discussed above were used primarily in this
research to assess the uncertainty in modelled discharge.

Uncertainty in discharge determined from other models in addition to
stage-discharge equations has not been given equal attention. For example, the
uncertainty in discharge determined from stage-fall-discharge equations, in
particular the form of equation used in the Great Lakes, has not been evaluated
specifically.  However, the statistical methods applied to stage-discharge
equations can be adapted for other linear discharge models, including stage-fall-
discharge equations and index-velocity relationships.

The methods described above deal primarily with uncertainty in the model
and model parameters. However, error and resulting uncertainty is normally
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assumed to be greater than might be suggested by these methods alone when
flows are subjected to additional systematic effects. Systematic effects have been
observed in the Great Lakes connecting channels, and include weed growth
(Sellinger and Quinn, 2001), ice impacts (Derecki and Quinn, 1986), channel
erosion or deposition (IUGLSB, 2009), and channel obstructions (Quinn and
Noorbakhsh, 2001). These sources of error may be far greater than any other
error sources, and must be considered when appropriate.

In addition to the linear models relating measured water level(s) and
velocity to discharge described above, Lake Erie outflows are also determined in
part by other means. For example, the hydropower companies use rating tables to
relate discharge to measured power output and head difference, while a
combination of other models and methods are used to estimate flow through the
Welland Canal. The hydropower companies use the Gibson method, which is
well-documented (e.g. IEC, 1982), to measure flows for use in the development
and calibration of their rating tables; however, documentation of the actual rating
table development was unavailable. Similarly, there is little documentation
available regarding the flows in the Welland Canal.

2.4 Change in Storage and Uncertainty

Change in storage is the increase or decrease in the volume of water stored
in the lake over a given time period, and is determined by multiplying the change
in measured water level by the area of the lake. Uncertainty results from the
precision and resolution of measured water levels at individual gauges; from
temporal variability and the choice of averaging period used to estimate the mean
water level at the beginning of each month; from spatial variability of water levels
resulting from winds, barometric pressure and seiche effects; from the effects of
glacial isostatic adjustment (GIA), i.e. the slow rebounding of the Earth’s crust
due to the removal of the weight of the glaciers some 10,000 years ago; from error
in the computed area of the lake and the assumption that it remains constant
through the full range of water levels on the lake; and from the effects of thermal
expansion and contraction due to heating and cooling of the water volume.

The accuracy of individual water level measurements at a gauge station is

determined from the instrument manufacturer’s specifications and depends on the
type of instrument used. The water level gauges on the Great Lakes are installed,
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operated and maintained primarily by the Department of Fisheries and Oceans
(DFO) in Canada, and by NOAA in the U.S. The individual agencies are
responsible for processing the water level data and for quality control (NOAA,
2009), and the data collection methodologies and processing algorithms used
must be taken into consideration in the uncertainty analysis.

There has been much research on the effects of winds, barometric pressure
and seiches on measured Great Lakes water levels. Hayford (1922) described
these effects and provided one of the first and most comprehensive studies on
their impacts on water levels. Sustained winds affect the slope of the lake surface,
causing water levels at the downwind end of a lake to rise, and the water levels at
the upwind end to fall. This is known as wind-setup or storm-surge. The slope of
the lake surface also adjusts to differences in barometric pressure over the Great
Lakes, such that water levels are lower under high pressure areas, and higher
under low pressure areas (Hayford, 1922). Seiches normally occur when wind
intensity subsides, such that inertia of the water body as it returns to an
equilibrium state causes free oscillations of the water body, such that water levels
rise and fall, back and forth, at opposite ends of the lake (Hayford, 1922;
Hunt, 1959).

Hayford (1922) developed methods and equations for determining and
correcting for the effects of barometric pressure and winds on water levels at
gauges on lakes Erie and Huron, and compared the accuracy of the observed
water levels to the corrected water levels by comparing plots of the values to each
other and to plots of combined inflow, outflow and precipitation estimates.
Hayford (1922) also computed the probable errors for each gauge, and computed
weights to use in averaging lake-wide water levels. Hunt (1959) developed a
method for calculating and forecasting water level setup due to wind events on
Lake Erie by relating such events to measured land and lake-based wind data, as
well as temperature difference between the air and water. The largest effects of
wind setup and seiche were noted along the longitudinal axis of the lake, running
west to east from Toledo to Buffalo, but three other local seiches were also noted,
including seiches between the east end of Lake Erie and Long Point, as observed
between water levels at Buffalo and Port Colborne; between the south and north
shores of the lake, as observed between water levels at Cleveland and Port
Stanley; and between the west end of Lake Erie and Point Pelee, as observed
between water levels at Toledo and Monroe. The effects of local harbour
disturbances and the variability of the effects of wind-setup at different locations
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was also discussed. For example, the water level rises caused by wind setup at
Buffalo were observed to be much sharper than the corresponding water level
falls observed at Toledo, a result of the orientation and shape of the lake, and
local geographic features.

Quinn and Derecki (1976) and Quinn et al. (1979) investigated beginning-
of-month (BOM) water levels (i.e. the lake-wide mean water level at midnight on
the first day of the month) for Lake Erie and the other Great Lakes, respectively,
using Thiessen polygons as an alternative to straight averaging. Croley (1987)
used a numeric hydrodynamic model to investigate the long-term wind setup error
in water levels measured at gauges on Lake Erie. Historic gauge networks were
analyzed and spatial-optimum networks and gauge weightings were suggested to
minimize the errors observed.

In addition to comparing residual and component NBS, Quinn (2009)
analyzed BOM water levels and their uncertainty for each of Lake Superior, Lake
Michigan-Huron and Lake Erie. For Lake Superior, this was accomplished by
adjusting the recorded water level data for GIA, and comparing the lake-wide
mean to the standard deviations of measured water levels at the gauges used to
compute the mean. For Lake Erie, the coordinated mean water levels and change
in storage values were compared to the values obtained from the weighted gauge
network values from Quinn and Derecki (1976). Additionally, the average of the
beginning and end of month water levels was also compared to the monthly mean
water levels, and correction factors were suggested. This analysis did not
consider the uncertainty resulting from gauge accuracy and resolution or the
averaging period used.

GIA has long been recognized as having an impact on measured water
levels and water balance studies in the Great Lakes (Clark and Persoage, 1970).
More recent studies have also looked at the effect of GIA on Great Lakes water
levels (Coordinating Committee, 2001; Bruxer and Southam, 2008). However,
Quinn et al. (1979) dismissed the effects of GIA on monthly change in storage as
negligible due to the extremely small impact it has over a monthly time period.

There have been many investigations regarding the seasonal thermal
structure of Lake Erie (e.g. Derecki, 1976; Schertzer et al., 1987), but few have
considered its effects on the Lake Erie water balance. Meredith (1975) provided
the first and most comprehensive study to date on the effects of thermal expansion
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and contraction on the Great Lakes water balance. The mean monthly error
caused by thermal expansion and contraction was investigated by developing
dimensionless temperature profiles for the beginning of each month, relating these
to measured surface water temperatures to estimate the vertical temperature
distributions, and then using the differences from the beginning to the end of each
month to estimate the change in volume. Results suggested that the monthly NBS
could be in error by as much as 100% if thermal expansion and contraction is not
considered. Other researchers have investigated and discussed the effects of
thermal expansion and contraction on the Lake Erie water balance using similar
methods (e.g. Quinn and Guerra, 1986), but a lack of sufficient water temperature
data has precluded any more detailed investigation.

2.5 Additional NBS Inputs and Sources of Uncertainty

Two additional sources of error in the residual NBS will be investigated in
this study, namely consumptive use and minor diversions. Both of these should
be included as inputs in residual NBS computations, but because they are so small
compared to other components of the Great Lakes water balance, each of these is
typically assumed negligible (Lee, 1992). Similarly, direct groundwater flow to
or from the Great Lakes should be accounted for in the component NBS but is
normally omitted due to its small magnitude. However, neglecting any of these
quantities causes uncertainty in the computed NBS, and comparisons of the two
different NBS estimates must take the omitted quantities into consideration.

There are few studies and little data available on these three components
of the water balance. The Great Lakes Commission (GLC) acts as a repository
for Great Lakes water use data, including consumptive use, which is estimated by
the Great Lakes provinces and states and is thought to be highly uncertain (GLC,
2003a). Minor diversions are those normally assumed to have a negligible effect
on the Great Lakes water balance. Quinn and Edstrom (2000) described and
quantified most of both the major and minor diversions in the Great Lakes, but
additional diversions may exist. Lastly, a handful of studies have investigated
groundwater discharge to the Great Lakes at various locations (Grannemann and
Weaver, 1998), but the rate of flow varies throughout the basin, and few have
tried to quantify the total groundwater flow to any of the Great Lakes in particular
(e.g. Haefeli, 1972).
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3 Computation of NBS

3.1 Derivation of NBS Equations

Mathematical expressions for the two methods of computing NBS (i.e.
residual and component) can be derived from analyzing the water balance on a
large lake. The water balance can be expressed in full as (Lee, 1992):

AS+AS, =I-O+P+R-E+D+G-C (1)

where AS' is the total measured change in storage; AS;, is the change in storage

due to thermal expansion or contraction; / is the inter-basin inflow; O is the
inter-basin outflow; P is over-lake precipitation, R is basin runoff;, £ is lake
evaporation; D is inter-basin diversions into or out of the lake; G is direct
groundwater flow into or out of the lake; and C is consumptive use of lake water.
The NBS can then be defined directly as:

NBS=P+R-E+G ©)

Determination of NBS directly from estimates of precipitation, runoff and
evaporation has been termed the component method. In practice, groundwater
has been considered negligible, such that the component NBS are normally
computed as:

NBS=P+R—-E 3)

Substituting equation (2) into (1) and rearranging gives the residual method of
determining NBS:

NBS=AS+AS,, —~[+0+D+C 4)

20



M.A.Sc. Thesis — J. Bruxer McMaster — Civil Engineering

In practice, both the change in storage due to thermal expansion and contraction
as well as the consumptive use are assumed negligible and omitted, and as a result
the residual NBS is normally computed as:

NBS=AS—I+0+D (5)

3.2 Computation Methods Overview

The Great Lakes component NBS are computed by estimating each
component (i.e. precipitation, runoff and evaporation) directly. Traditionally,
GLERL has been the primary agency involved in computing component NBS in
the Great Lakes. The methods and models used by GLERL to estimate
precipitation and runoff were described recently by De Marchi et al. (2009).
Over-lake precipitation is estimated by GLERL using precipitation gauge
measurements at points throughout the basin, which are extrapolated to the lake
surface area using a Thiessen polygon weighting scheme. GLERL estimates
direct runoff using a combination of measured runoff from gauged basins, and the
extrapolation of measured runoff to ungauged areas and basins using area ratios.
Evaporation is estimated by GLERL using a one-dimensional energy balance
model, which has been calibrated to measurements of surface temperature and ice
cover (Croley, 1989; Croley and Assel, 1994). More recently, EC has begun
producing its own estimates of component NBS using its Modélisation
Environmentale Communautaire — Surface Hydrology (MESH) modelling system
(Pietroniro et al., 2006). To estimate over-lake precipitation, measured
precipitation observations are assimilated with historical short-term Global
Environment Multiscale (GEM) meteorological model forecasts to produce the
Canadian Precipitation Analysis (CaPA) product. For runoff, a coupled land-
surface scheme and hydrologic routing model is used to model flows from gauged
and ungauged areas, and then route the total flow downstream to the Great Lakes.
Lastly, evaporation is computed by EC using short-term GEM forecasts calibrated
to data collected from eddy covariance systems recently installed on Lake
Superior (Spence et al., 2009) and Lake Huron. Both GLERL and EC continue to
improve the component NBS estimates by improving the models and their
calibration, and collecting and incorporating additional data as it becomes
available.

21



M.A.Sc. Thesis — J. Bruxer McMaster — Civil Engineering

The residual NBS are computed from inflows, outflows, change in
storage, and diversions. Inflows and outflows, as well as some diversions, are
measured primarily using a combination of various streamflow estimation
techniques, including stage-discharge equations, stage-fall-discharge equations,
HPGs and index-velocity ratings, each of which is calibrated using gauged
discharge measurements and measured water level and velocity data. Change in
storage is determined from averaging measured water levels from gauges at a
number of locations on a lake, and determining the difference in average water
level from the start to the end of a time period.

In practice, groundwater flux, change in storage due to thermal expansion
and contraction, minor diversions, and consumptive use have traditionally been
considered negligible; however, for a comprehensive assessment of uncertainty in
NBS calculations these terms must also be considered.

3.3 Lake Erie Residual NBS Computation

As shown in equation (4), the residual NBS for any lake is given as a
residual of the change in storage, inflows, outflows, diversions and consumptive
use. Equation (4) can be defined for Lake Erie specifically by describing each
term in the equation individually and combining the results.

3.3.1 Change in Storage

The first two terms in equation (4), the change in storage terms, can be
expressed together as:

AS+AS,, =AH -CF (6)

where AH is the change in water level (head) on Lake Erie; and CF is the
conversion factor used to convert the change in head to discharge units. The
conversion factor is a function of the area of the lake and the number of seconds
in a month, and is computed from:
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A

e @)
d. -86400

where A is the mean surface area of Lake Erie; d, is the number of days in

month ¢; and 86400 is the number of seconds in a day. As stated, the change in
storage due to thermal expansion and contraction is assumed negligible and is not
computed. The remaining terms are evaluated as follows.

For a given month # the change in head on Lake Erie for that month
(AH,) is calculated as the change in water level from the beginning to the end of

the month in metres. That is

AH, = BOM,,, — BOM, )

+ t

where BOM, is the mean Lake Erie water level at the beginning of month ¢
BOM

t+1
water level at the beginning of the subsequent month ¢ + 1. The BOM water level
is meant to represent the mean water level of Lake Erie at midnight at the
beginning of the first day of the month. In reality, since instantaneous water
levels are assumed to be highly error-prone due to short term impacts resulting
primarily from meteorological effects, the level at midnight is instead estimated
using a two-day mean of the daily average Lake Erie water levels from the last
day of the previous month and first day of the current month. That is

is the mean Lake Erie water level at the end of month ¢, or the mean

BOM’ = h(n1=1,11=lsl) +2h(m=l—l,d=1uxi)

)

where -z is the average daily Lake Erie water level for the first day of

month 7 ; Agm-i-1a-tsr) is the average daily Lake Erie water level for the last day of
month #—1.

The daily mean water levels at gauges in Canada and the United States are
used to calculate the average daily lake-wide mean water level for Lake Erie.
There are currently a total of fourteen active water level gauges on Lake Erie, of
which six are located in Canada, and eight are located in the United States
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(Figure 3-1). Current practice of the Coordinating Committee is to use a network
of only four of these gauges to calculate the lake-wide mean BOM water level.
These include the gauges at Port Colborne and Port Stanley in Ontario, and
Cleveland and Toledo in Ohio. More specifically, for Lake Erie the daily lake-

wide mean water level (E) is calculated from:

e (ZCL +Zps)+(ﬁro +ch)
4

(10)

where hq, is the mean daily water level at Cleveland, OH; hps is the mean daily

water level at Port Stanley, ON; hro is the mean daily water level at Toledo, OH;

hee is the mean daily water level at Port Colborne, ON. These four gauges have
been chosen based on their reliability and their long periods of record, and in
order to balance the gauges between the two countries and to spatially balance the
gauges approximately around the area of the lake. The spatial balancing is
necessary to deal with meteorological effects, such as wind, barometric pressure
and seiches. The individual water level gauges are paired in parentheses because
if data from one gauge in any gauge pair is unavailable for a given period of time,
neither gauge in that pair is used to calculate the mean water level for that time
period, and instead the other two gauges are averaged to determine the mean Lake
Erie water level. It should also be noted that the Fairport, OH gauge was at one
time used to compute the mean Lake Erie water level; however, water level
difference plots suggest that this gauge is subject to local subsidence (e.g. Bruxer
and Southam, 2008), and therefore this gauge is no longer used in Lake Erie
change in storage computations, and historic BOM levels have been revised
accordingly (Nanette Noorbakhsh, USACE, personal communication, 24 August,
2010).

Lastly, as discussed, the change in storage due to thermal expansion and
contraction (AS,,) is currently omitted from residual NBS computations, but it

should be included in addition to the measured change in storage identified above.
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Figure 3-1: Active Lake Erie water level gauges

3.3.2 Inflow

The inflow term (/) from equation (4) can be defined simply as the

Detroit River flow, I,,,, entering Lake Erie.

Fefo (11)

While this is relatively straight forward, the accounting is quite complicated, since
monthly Detroit River flow is measured using a combination of a number of
stage-fall-discharge equations, hydraulic models, and by transferring the St. Clair
River flow using estimates of the Lake St. Clair NBS and change in storage.
Additional detail is provided in Section 8.

3.3.3 Outflow

The computation of the outflow term for Lake Erie is more complicated.
Lake Erie outflow is computed by summing the flow out of Lake Erie through
both the Niagara River at Buffalo (Oygp, ) and through the Welland Canal

(O ). Thus, the Lake Erie outflow (O) is given as:
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O= ON@Buf + Oy (12)

The total Niagara River outflow at Buffalo, can be determined using
various methods. One such method involves summing a number of flows
measured at various locations and by various agencies. The 1950 Niagara Treaty
signed by Canada and the United States set out orders of precedence for water
uses on the Niagara River. Specifically, the Treaty noted that the total Lake Erie
outflow, minus the flow needed for domestic and sanitary purposes and for the
service of canals for navigation, could be diverted for hydropower production
only after ensuring that the minimum flow required to preserve the scenic beauty
of Niagara Falls, as set out in the Treaty, was met. The International Niagara
Committee (INC) was established by the two governments following the signing
of the Treaty, and is responsible for reporting back to the governments on the
amount of water available under the Treaty for scenic flow over Niagara Falls, as
well as the amount diverted for hydropower production. As a result of this
Treaty, the flow over Niagara Falls and the total diverted for hydropower must be
carefully measured.

As such, the current practice when computing residual NBS is to
determine the total Niagara River flow at Buffalo by summing six separate flow
estimates, including the Niagara Falls and hydropower flows, which make up the
majority of the total. This is referred to as the summation equation method for the
purposes of this study. The Niagara River flow at Buffalo can be measured using
available stage-discharge equations, or alternatively, it could be estimated using
other flow models; however, currently these methods are limited in their
usefulness due to the effects of weeds and ice.

Figure 3-2 provides a map of the Niagara River with the six separate flow
estimates used in the summation equation indicated, while Figure 3-3 provides a
simplified schematic of the Niagara River flow at Buffalo. Referring to these two
figures, the summation equation for the Niagara River flow at Buffalo can be
stated as:

ON@BUF = Nyorr + Poupisa + Prar + Dyysse — Ry — Dy (13)

where N,,,,, is the computed Maid-of-the-Mist (MOM) pool outflow; P, ., is
the flow diverted to the Ontario Power Generation (OPG) Sir Adam Beck (SAB)
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hydropower plants One and Two; P, is the flow diverted to the New York
Power Authority (NYPA) Robert Moses (RM) hydropower plant; D,,... is the
flow diverted to the New York State Barge Canal (NYSBC) from the Niagara
River at Tonawanda, NY; R, is the local runoff entering the upper Niagara

River; and D,,, is the flow diverted to the Welland River from the Welland

Canal.
Dwr
Ry A
—l—’ PsaB1s2
On@BUF Y 3 CGIP —> Nwuom

Dnyssc

Figure 3-3: Niagara River simplified flow schematic

A large proportion (approximately 30-40%) of the total Lake Erie outflow
through the Niagara River passes through the MOM pool. The MOM pool flow
(N ,0x) includes the total flow that passes over Niagara Falls. In the past, an
additional portion of the N,,,,, flow included water diverted from above and

returned to the river below Niagara Falls to produce electricity at several low-
head hydropower plants. Since early 2006, when the last of these plants ceased

28



M.A Sc. Thesis — J. Bruxer McMaster — Civil Engineering

operation, the N,,,,, flow consists entirely of the total amount passing over

Niagara Falls. The amount that must flow over Niagara Falls varies depending on
the time of year and time of day according to rules set out in the Niagara Treaty.
During tourist hours, which are 8 a.m. to 10 p.m. from April 1% to September 15"
inclusive, and 8 a.m. to 8 p.m. from September 16™ to October 31% inclusive,
hydropower companies must ensure that no less than 2,832 m*/s (100,000 ft’/s)
passes over the Falls; during all other non-tourist hours, including night-time
flows during the tourist season and all hours from November 1* to March 31"
inclusive, the hydropower companies must ensure that no less than 1,416 m’/s
(50,000 ft*/s) flows over the Falls. These are the minimum amounts required by
the Treaty, but the actual amount varies depending on existing river conditions.

The hydropower companies divert nearly all of the remainder of the total
Niagara River flow at Buffalo from above Niagara Falls to hydropower plants
located downstream. The OPG SAB I and II hydropower plants ( £y, ) consist

of 10 and 16 turbines, respectively, while the NYPA RM plant ( 7, ) consists of

13 turbines. Water is diverted from the Chippawa-Grass Island Pool (CGIP)
above Niagara Falls into tunnels and open channels that carry the water
downstream to the hydropower plants. The actual amount diverted from the
Niagara River is determined from the measured flow through the hydropower
plants, as well as the change in storage in the forebays and storage reservoirs
upstream.

The NYSBC is a system of canals that traverse the state of New York,
connecting the major water bodies of Lake Erie, Lake Ontario and the Atlantic
Ocean, in addition to a few small interior lakes (INWC, 1985; Whitford, 1922). A
relatively small amount of water is diverted from the Niagara River into the
NYSBC system (D,ysz-). Water was originally diverted into the western end of

the canal directly from Lake Erie at Buffalo, NY, but this ended in 1918, when a
realignment of the canal was completed and the western end was moved to
Tonawanda, NY, downstream (north) of Buffalo on the Niagara River. From
1918 until present, water has been diverted from the Niagara River drainage basin
as opposed to Lake Erie. Tonawanda Creek originally flowed into the Niagara
River at Tonawanda, but the flow was instead diverted into the NYSBC at
Pendleton. Depending on the level of the Niagara River and the discharge from
the Tonawanda Creek watershed, water has been known to flow both into and out
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of the NYSBC from the Niagara River since this time, but the diversion from the
basin is treated the same as the diversion from the river itself.

Since outflow from Lake Erie through the Niagara River at Buffalo is
desired, but is estimated based on measurements downstream at the MOM pool
and the hydropower plants, the local runoff or inflow to the Niagara River, R, , is

subtracted from the measured flows downstream. A lack of gauging stations for
measuring local runoff, particularly historically, has meant that the local inflow
has been estimated as constant, average monthly values, based on an analysis of
measured flows from the period 1913-1960 for the Grand River, ON, and Genesee
River, NY (Coordinating Committee, 1962). These two rivers flow into Lake
Erie and Lake Ontario, respectively, but they are two of the largest and best
monitored inland rivers near the Niagara River, with each having a relatively long
period of recorded discharge data; however, how well these two rivers represent
the actual conditions and flows in the local Niagara River basin is not known.

A small additional volume of water diverted from the Welland Canal into
the Welland River (D,,,) is subtracted from the Niagara River flow at Buffalo in

the summation equation. The Welland River flows from this diversion at the
Welland Canal towards the Niagara River, but the mouth of the Welland River
has been dredged and the flow reversed such that the Welland River now flows
from the Niagara River to the SAB hydropower plants. Because the amount of
water diverted from the Welland Canal into the Welland River is accounted for in
the Welland Canal flow estimate (see below), it would be counted a second time
as part of the Niagara River outflow as it passes through the SAB hydropower
plants. Therefore, the D, , term is subtracted from the Niagara River flow at

Buffalo in equation (13).

In addition to the Niagara River flow at Buffalo, the outflow of Lake Erie
also includes a portion diverted to the Welland Canal. The Welland Canal is
operated by the St. Lawrence Seaway Management Corporation (SLSMC). The
SLSMC collects and manages the Welland Canal flow data and provides the data
to the INC, but the actual flow estimates come from a number of sources,
including the SLSMC itself, OPG, and municipal and industrial users. The
Welland Canal flow (O, ) is currently computed by averaging the measured

flow into the canal (WC),,) with the total measured flow as it is distributed along

the length of the canal at various locations (WC,s;). That is:
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[0 _ WCIN + WCDIST
wec 2

(14)

Similar to the Niagara River flows, the Welland Canal flows are
determined by summing a number of flow estimates as the water passes through
various hydraulic control structures and intake/discharge facilities located along
the canal system. Figure 3-4 shows a map of the Welland Canal with the major
flows indicated. The flow into the Welland Canal is computed as the sum of
flows through the Welland Canal supply weir (SW;,.) and through the lock

located closest to Lake Erie, Lock 8 ( L8), such that:

wC,, =SW,.+L8 (15)
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For accounting purposes, the distribution of flow along the Welland Canal,
WC 51 18 divided into four lettered groups, A, B, C and D:

WC,,p = WC , +WCy +WC,. +WC,, (16)

The Group A flow includes all flows diverted from the Welland Canal into
the Welland River, which is also the amount subtracted from the Niagara River
flows (i.e. Dy,,), as discussed previously. Most of this amount comes from both

the Welland Water Works, which withdraws water from the Canal and flushes
outputs to the Welland River, and from the Welland Canal syphon culvert roof
drains. In regards to the latter, the Welland River flows through a syphon culvert
that passes below an arm of a previous alignment of the Welland Canal. This
older stretch of canal is disconnected and water no longer flows freely through it.
For water quality purposes, six small drain holes were cut in the bottom of the old
stretch of canal and through the roof of the Welland River syphon culvert, such
that a small amount of water now flows from the old canal into the Welland
River. Only three of these holes are open today. Two smaller municipal and
industrial users account for the remainder of the water diverted from the Welland
Canal to the Welland River. The vast majority of Group B discharge is diverted
to the De Cew power plants ( P, ), which are owned and operated by OPG. The
De Cew flows also make up the majority of the total flow distributed along the
length of Welland Canal. The remainder of Group B is a small proportion and is
divided among a number of industrial and municipal users. Group C flows make
up a relatively small proportion of the total Welland Canal flow, with flows
divided between the Supply Weir for the second alignment of the Welland Canal
(SW,.), which is another discontinued section of canal not used in the current

alignment, and industrial users, some of which are obsolete or currently out of
service. Group D flows include water passing through Lock 7 (L7), or around
Lock 7 through the weir (W,,) and the SLSMC power house at this location

(P,,). General Motors currently uses a small additional amount, and is the only

industrial user in this group.
Given the above, and by combining the relatively small industrial and

municipal withdrawals as one, the total flow distributed along the Welland Canal
can be summarized as follows:
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WC sy = Dyg + Poe +SWye + LT+W,, + P, + ZIM (17)

where D,,, is the Welland River diversion; P, . is the hydropower diversion to
the OPG De Cew generating station; SW,,. is the flow through the supply weir for
the discontinued Second Canal alignment; L7 is the flow through Lock 7; W, is
the flow through the weir at Lock 7; P, is the flow through the SLSMC
powerhouse at Lock 7; and ZIM is sum of all other industrial and municipal

withdrawals. Substituting equations (15) and (17) into equation (14) gives the full
equation for the Welland Canal flow as it is currently computed:

(SWye +L8) +(Dyp + Ppe +SWyo +LT+WT+ P, +ZIM)
B 2

wc

(18)

3.3.4 Additional Diversions

Other than the Welland Canal and NYSBC diversions already accounted
for, no other diversions are included in the Lake Erie NBS -calculations.
According to Quinn and Edstrom (2000) there are at least five other minor
diversions involving Lake Erie. Two of these are interbasin diversions (i.e. water
is diverted into or out of the Great Lakes basin): the Ohio and Erie Canal diverts
water from the Ohio River basin to Lake Erie by way of the Cuyahoga River; and
the City of Akron, OH, diverts water to communities outside the Lake Erie basin,
but is required by the U.S. Water Resources Development Act of 1986 to return
the equivalent amount of flow back to the Lake Erie basin. The remaining three
diversions are intrabasin diversions (i.e. water is diverted within the Great Lake
basin): the City of London, ON, diverts water from both Lake Huron and Lake
Erie to the Thames River, which flows into Lake St. Clair; the City of Detroit, MI,
diverts water from Lake Huron to the Detroit River downstream; and the City of
Hamilton, ON, diverts a small amount of water from Lake Ontario to
communities in Haldimand County, within the Lake Erie watershed. The largest
of any of these are the Detroit and London diversions at approximately 4 m’/s and
3 m’/s, respectively, but even these have no measurable effect on lake levels

3 i s . 5 3
(Quinn and Edstrom, 2000). The remaining diversions are all less than 1 m’/s,
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and therefore, the assumption that these minor diversions have a negligible effect
on the water balance and the computed NBS and its associated uncertainty is
acceptable.

3.3.5 Consumptive Use

There is no agreed upon definition of consumptive use in the Great Lakes
basin; rather the definition has varied over time, and by agency and jurisdiction
(GLC, 2003a). Consumptive use is defined in the Great Lakes region by the
Great Lakes Commission (GLC) in the Regional Water Use Database annual
reports as “that portion of water withdrawn or withheld from the Great Lakes
Basin and assumed to be lost or otherwise not returned to the Great Lakes Basin
due to evapotranspiration, incorporation into products, or other processes” (GLC,
2003a). In the context of NBS estimates, consumptive use can be defined
alternatively as that portion of the water balance that is supplied to a basin but is
frequently removed before it can be accounted for by other terms of the water
balance (Neff and Nicholas, 2005).

The difficulty of defining consumptive use is outweighed by the difficulty
of quantifying it. Consumptive use in Lake Erie (C,) and in the Great Lakes

basin in general makes up a very small component of the water balance, and is
often omitted from the residual NBS computations. An assessment of the
uncertainty caused by this omission is discussed below in Section 10.

3.3.6 NBS Summary for Lake Erie
Substituting each of the individual equations derived above into equation

(4) gives the complete equation for Lake Erie NBS ( NBS ;) as computed using the

residual method:
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NBS, =
((hCZE gt hPS,r+l) + (Mo 1+ Ppc 1) B (hewg o +hps ) + (B + hPC,:)) ) A
4 4 d, - 86400
+ASy,
o IDet (19)

+ (NMOM + PSABI&Z + PRM * DNYSBC - RN - DWR)

. (SWyy. + L8) +(Dyp + By + SWy + LT +W,, + P, + ZIM)
2

il

The complete equation for Lake Erie residual NBS involves a large
number of variables, but is mathematically simple. To determine the overall
uncertainty in Lake Erie NBS, the uncertainty in each of these variables must first
be estimated, and then the individual estimates must be combined using
appropriate methods.
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4 Uncertainty Analysis Concepts and Methods

4.1 Statistical Terms and Concepts

Prior to presenting the uncertainty analysis, a brief introduction to some of
the statistical terms and concepts used in this research is provided. Much of the
terminology and many of the concepts used in this research are based on the
ISO’s Guide to the Expression of Uncertainty in Measurement (ISO, 1995). Also
known as GUM for short, this document is an internationally recognized standard
that describes general rules and guidelines for evaluating and expressing
uncertainty estimates, and is generally applicable to a broad range of scientific
and engineering disciplines. Other general texts on uncertainty analysis were also
found useful in developing and understanding the basic concepts, notably Ang
and Tang (1984) and Tung and Yen (2005).

The term uncertainty was defined previously in Section 2.1. Uncertainty
analysis involves deriving a quantitative description of how accurate an output of
interest is believed to be. This normally involves estimating the probability that a
certain output of interest takes on a particular value. In this research, the term
standard uncertainty is used to describe the uncertainty of a variable when it is
expressed as a standard deviation (ISO, 1995). The combined standard
uncertainty 1is the standard uncertainty of an output obtained from the
combination of a number of other quantities. For example, if a model output is a
function of two variables or inputs, and the standard uncertainty of each is known,
the combined standard uncertainty is the uncertainty of the output resulting from
the standard uncertainty in each of the inputs together.

The standard uncertainty of any variable can be multiplied by a coverage
factor to estimate the expanded uncertainty of the variable of interest (ISO, 1995).
The expanded uncertainty provides an interval within which the true value of the
variable of interest is expected to lie with a defined level of confidence. This is
also known as the confidence interval. For example, the expanded uncertainty
estimate can describe the confidence interval within which the value of the
variable in question is expected to lie 95% of the time.
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The ISO (1995) defines two types of evaluations of uncertainty, Type A and
Type B. In Type A evaluations of uncertainty, the uncertainty in an output is
evaluated through a statistical analysis of a series of observations. For example,
the standard deviation of a series of repeated observations of a quantity can be
viewed as a Type A standard uncertainty estimate. In Type B evaluations, other
means of evaluating uncertainty are used. Type B uncertainty can be evaluated by
pooling together all known information on the possible variability of the variable
in question and using engineering judgement to estimate the uncertainty of the
variable. It can be based on previous experience, knowledge of the system,
previous measurements, incomplete data, and manufacturer specifications among
other sources of information. It was found necessary in this research to employ
both Type A and Type B methods of evaluating uncertainty.

In some cases, it is helpful to know not only the standard or expanded
uncertainty of the variable of interest, but also the probability distribution. The
probability distribution identifies the likelihood that the variable of interest will
take a particular value or fall within a particular interval. For some methods of
evaluating uncertainty, such as the Monte Carlo method used in this research,
knowledge of the probability distributions of the model inputs are required to
evaluate the probability distribution or uncertainty of the model output. A
probability distribution can often be described by a mathematical equation known
as a probability distribution function (PDF). Also related to this is the cumulative
distribution function (CDF), which is a function that describes for any value of a
given variable the probability that the variable takes on a value less than or equal
to the value specified. A number of well-known probability distributions were
used in this research, including the normal, log-normal, uniform, triangular,
logistic, and Weibull distribution functions. Descriptions of these can be found in
a number of texts and other documents (e.g. Tsokos, 1972; Cooper and Weekes,
1983; ISO, 1995; Haan, 2002).

4.2 First-Order Second Moment (FOSM) Method

The FOSM method was one of two uncertainty analysis methods used in
this research. With the FOSM method, the output or model, y, is represented by

a function f(x,,x,,...x,), where the set of » input variables (x,x,,..x,) are

used to evaluate the output. This function can be approximated using a Taylor
series expansion of the input variables about their means. Evaluating the first
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order terms of the Taylor series, one can find the expected or mean value of the
output variable given as E(y), as well as the variance of the output variable given

as u’(y), from:

E(y) = f(x.x2..%n) (20)

n=1 n

()= Y )2 Y, Ve, e, uw) ux,) r(x,,x)) @)

i=1 j=i+l

where x; are the mean values of x.; u’(x,) are the variances of each input
variable x,; ¢, are the sensitivity coefficients computed for each input variable
x;; and r(x;,x;) are the correlation coefficients computed for each pair of input
variables x, and x;. The sensitivity coefficients are determined as the partial

derivatives of the model output with respect to the input variables, and can be

represented by:
dy
c,=— 22
= (22)

When the input variables are uncorrelated, the values of r(x,,x;) can be

assumed equal to zero, and equation (21) can be simplified to:
' (»)= ¢ u’(x,) (23)
i=l

The FOSM method of estimating uncertainty as described by equations (21)
and (23) is termed the law of propagation of uncertainty by the ISO (1995). The
FOSM method is relatively simple to apply in that it requires only knowledge of
the mean and variance of the input variables. The method allows estimation of
the mean and variance of the output, but cannot provide information on the
output’s probability distribution. Furthermore, the accuracy of the FOSM method
can be compromised when the model is highly non-linear, or when the uncertainty
in the input variables is non-symmetric and varies significantly from the normal
distribution (Tung and Yen, 2005). In such cases the variance may not provide a
good estimate of the uncertainty in the model inputs, and the accuracy of the

38



M.A.Sc. Thesis — J. Bruxer McMaster — Civil Engineering

combined uncertainty estimate can be compromised. In order to determine the
full probability distribution of the output, and to deal with highly non-linear
problems, a more sophisticated approach is required.

4.3 Monte Carlo Simulation Method

The second uncertainty analysis method used in this research was the
Monte Carlo simulation approach. A Monte Carlo simulation involves repeatedly
simulating the output variable, y, using randomly generated subsets of input

variable values, (x,,x,,..x,), according to their respective probability

distributions in order to derive the probability distribution of the model output.

To apply this approach, knowledge about the probability distributions of
the stochastic input variables must be known. The probability distribution of an
input variable can be determined by reviewing the data graphically or using
statistical means, or in some cases a probability distribution can be assumed based
on knowledge of the variable itself. In many cases a probability distribution that
can be described mathematically can approximate the data and be fit to the data
using various methods. If the input variable is not easily represented by a known
probability distribution, another approach is to develop an empirical distribution
from data describing the input variable and to randomly sample directly from this.
This approach is known as random sampling with replacement, or the
bootstrapping technique.

Once the probability distributions of the input variables are defined, a set
of input variables are then randomly sampled from the distributions. The model
output is then simulated for each set of randomly sampled input variables. A set
of simulated model outputs is combined to produce a probability distribution for
the model output, which then provides the model output’s uncertainty estimate.

The Monte Carlo method becomes much more complicated if model input
variables are correlated. Special care must be taken to ensure that the correlation
of the input variables is preserved in developing the subset of input variables used
to evaluate the model output. In such cases, joint PDFs must be developed for the
correlated inputs and sampled accordingly.
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The Monte Carlo simulation approach is computationally more demanding
than the FOSM method, as it requires significantly more evaluations of the model
output. To reduce the computational burden of this approach, some researchers
have proposed adding simplifying assumptions or more sophisticated sampling
techniques, including response surface replacement of the model and Latin
Hypercube sampling (Iman and Helton, 1988). In this research the input and
output variables and the relationships between them are already mathematically
quite simple, so it was unnecessary to use such methods.
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5 Discussion of Open-Channel Flow Measurement
Uncertainty

5.1 Overview

Due to the large magnitudes of the inflows and outflows relative to Lake
Erie’s NBS, uncertainty in these flow estimates can cause relatively high
uncertainty in the overall Lake Erie NBS computed using the residual method.
For example, Lee (1992) suggested that flows were normally considered accurate
to within 5%, but as noted by Quinn and Guerra (1986), a 5% error in Detroit or
Niagara River flows can result in a 34% error in residual Lake Erie NBS. Neff
and Nicholas (2005) came to similar conclusions, indicating that uncertainty in
the inflow and outflow contributed the most uncertainty to the residual NBS for
Lake Erie. Therefore, accurate estimates of flow uncertainty are required.

Determining the uncertainty in Lake Erie inflows and outflows requires
determining the uncertainty in the data and models used to compute them. The
data includes gauged flow measurements, measured water levels and channel
velocities, while the models used are primarily linear or linear-transformed
mathematical relationships between certain measured input variables and the
continuous flow in the channels. There are many methods proposed in the
literature for estimating uncertainty in linear discharge models such as stage-
discharge relationships. Of these, statistical methods involving a comparison of
gauged flow measurements to modelled discharge were primarily chosen for this
study. Given that these methods have been subject to some debate (Dymond and
Christian, 1982; Clarke et al., 2000) and in the case of Lake Erie are applied to
flows obtained using different models (i.e. stage-discharge, stage-fall-discharge
and index-velocity methods), a more detailed general discussion is provided
below prior to specific application to the Lake Erie inflows and outflows.

5.2 Uncertainty in Gauged Discharge Measurements

Gauged discharge measurements provide a snapshot of the flow in a
channel at any point in time, but continuously collecting gauged flow
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measurements is not practical. Instead, the gauged flow measurements are used to
establish discharge models that relate a continuously measured variable, such as
water level or velocity, to the channel discharge. @ Gauged discharge
measurements are subject to uncertainty and this translates to uncertainty in the
calibrated discharge models. Therefore, the uncertainty in the gauged flows must
be estimated in order to determine the combined standard uncertainty in the Lake
Erie inflows and outflows.

As discussed in Section 2.3, many researchers have investigated the
uncertainty in gauged flow measurements. The total uncertainty in a gauged
discharge measurement varies depending not only on the method used to collect
the measurement, but also on the conditions under which the measurement was
performed. For example, ice, flow obstructions, wind, and changes in stage
occurring during the measurement can all affect measurement accuracy.
According to Sauer and Meyer (1992), under good conditions the standard error
in gauged discharge likely ranges between around 3 and 6%, but could be as great
as 20% under overall poor conditions. Herschy (2009) also noted these variations
in uncertainty, and estimated that the attainable level of uncertainty in a single
measurement of discharge given good measurement practice was between 5 and
20% at a 95% confidence level, depending on the measurement method used.
The attainable level of uncertainty for both conventional current meter and ADCP
discharge measurements was given as 5%.

In the Great Lakes specifically, Quinn (1979a) applied the methods of
Carter (1970) and Herschy (1970) to investigate the uncertainty in gauged flows
collected in the Niagara and St. Lawrence rivers using the velocity-area method
with conventional current meters and found the standard errors to be on the order
of 3 to 5%, or approximately 6 to 10% at the 95% confidence level. Schmidt et
al. (2009) noted that the methods used to collect discharge measurements in the
St. Clair and Detroit rivers have varied over time, and that the data available to
describe these methods was insufficient to allow for a full uncertainty analysis.
Nonetheless, the authors estimated the minimum standard error in conventional
measurements taken on the St. Clair and Detroit rivers to be 3.2 to 6.9%,
depending on the number of velocity panels used for each specific measurement.
Schmidt et al. (2009) also noted similar issues in terms of data limitations for the
more recent ADCP measurements on the St. Clair and Detroit rivers, and based in
part on a study by Mueller (2003), estimated uncertainty in these measurements to
be at least 5%. On the other hand, Espey et al. (2001) examined errors in ADCP

42



M.A.Sc. Thesis — J. Bruxer McMaster — Civil Engineering

gauged measurements for the Lake Michigan diversion at Chicago, and estimated
the random error to be 0.9%, with systematic errors between 0.2 and 0.7%. From
this it was estimated that the overall uncertainty in the ADCP measurements could
be as low as 0.5%; however, Espey et al. (2001) also noted that some sources of
uncertainty were likely unaccounted for, and based on their own professional
judgement and reports by Lipscomb (1995) and Morlock (1996), a more
conservative uncertainty estimate of 5% was used. Espey et al. (2001) also noted
that systematic errors were more likely to affect flow models developed from
ADCP measurements than from conventional current meter measurements, since
typically a single ADCP is used for all gauged discharge measurements, and since
calibration procedures for ADCPs were not yet well-documented.

Given the limited data available to describe the discharge measurement
methods used as noted by Schmidt et al. (2009), a more detailed analysis of
uncertainty in individual discharge measurements was not pursued in this
research. Instead, based on the combined results described above, an uncertainty
estimate of 5% at the 95% confidence level, or a standard uncertainty of 2.5%,
was assumed for all gauged discharge measurements used to evaluate flow
models in this study.

5.3 Uncertainty in Discharge Determined from a Linear Model

One of the methods or models most frequently used to measure
streamflow in an open-channel is to relate measured water level(s) to channel
discharge through the use of a rating equation. The simple case of relating
discharge to a single water level measurement is known as a stage-discharge
equation. The stage-discharge equation can be given in the form

Q. =C-h’ (24)
where Q. is the rating curve discharge; Cis a coefficient; /4 is the stage; and £ is

an exponent. Normally % is replaced by 4 —a (Herschy, 2009), where a is the
elevation of zero flow, such that:
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Q0. =C-(h—a)’ 25)

The stage-discharge relation is normally calibrated by fitting a linear
version of the equation to measured flows and water levels. The stage-discharge
equation can be linearized by taking the natural logarithm of both sides.

In(Q,) =mn(C)+ 4 -In(h—a) (26)

If we let the dependant variable In(Q,)=Y, and the predictor variable
In(h — a) = X, the equation can be written in the familiar form of a straight line
with intercept In(C) = b, and slope S =b,.

Y=b, +b X (27)

In practice, when establishing a stage-discharge curve the value of a is
often given an initial assumed value prior to fitting the other model parameters; it
is then varied until a curve having best fit is found (INBC, 2009; Herschy, 2009).
If a value of a is assumed, measured pairs of ¥, and X, can be used to calibrate
this equation, a solution of which can be found using least squares regression
theory (e.g. Draper and Smith, 1998), such that:

n

Y (X, -X)(Y,-Y)
b =1 — (28)
Z(Xi —'})2
by=Y-b X (29)

where Y, are the n measured log-transformed gauged discharge measurements,

In(Q,); X, are the log-transformed gauged water levels converted to depths,

In(h, —a); and Y and X are the mean values of these variables. The model

parameters b, and b, are subject to uncertainty. Equations for the sample

variance of each parameter, as adapted from Draper and Smith (1998), are given
as:

44



M.A.Sc. Thesis —J. Bruxer McMaster — Civil Engineering

n

S

Var(by) =| —=2— |-5? (30)
ny (X, - X)’

Var(b,) =TSZ—_ 31
>, - Xy

0 2 . . ;
The sample variance, s°, or the mean squared residual, is an estimate of the true

variance o’ based on the sample of measured values. It is defined by:

>, -7y
S2 :i=1(7_2)_ (32)

where Y is the log-transformed discharge obtained from the linear model,
In(Q,,). It follows that the sample standard deviation of the model parameters

are then:
>
sd(by) =| —L—-—| s (33)
nY (X, - X)’
sd(b,) = e TE (34)
QX - X)%)

Furthermore, taking the square root of the sample variance gives s, which is
known as the residual standard error or standard error of estimate. As explained
by Herschy (2009), the standard error of estimate defines the spread or dispersion
of measured discharge values about the fitted relationship. It can be expressed as
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a percentage, and can be multiplied by an appropriate Student’s z-value to give the
error estimate at a desired level of confidence.

Returning to equation (27), by substituting equation (29) we obtain:
Y=Y +b(X - X) (35)

Using this equation, for any value of X = X, we can predict the mean response

Y= Yo from the fitted model. Furthermore, the variance of the mean response can

be given by:
Var(Y,) = Var(Y) +Var(b ) (X, — X)* (36)

The Var(?) can be represented by the sample variance of the mean equal to

s>/ n, and substituting equation (31) for Var(b,) and simplifying gives:

5 X, —X)
Var(Ty) = s* - l+”(—°)— 37
D YC AT
i=1
The sample standard deviation of the mean response is then:
1/2
5 X, - X)’
sd(¥y)=s- 1+% (38)
b Xy
i=1

This equation represents the standard deviation of the mean predicted value of ¥,

and is also known as the standard error of the mean relation. The standard error
of the mean relation gives curved uncertainty limits which are smaller than the
standard error of the estimate, and are at a minimum at the mean stage and
corresponding discharge values, and increase towards the extreme high and low
stage and discharge values. The minimum value for the standard error of the
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mean occurs when X =X (i.e. n(h+a)=In(h+a)), such that the above

equation is reduced to:

S

Jn

sd(Y,) = (39)

The curved limits given by equation (38) are more acceptable, given that error is
likely to increase as one moves further from the mean value.

However, since the actual observed values of Y, vary about the true mean

value with variance o, a predicted value Y, of an individual observation will

have variance equal to that of the mean relation plus additional model error
(Draper and Smith, 1998; Tung and Yen, 2005), such that the sample variance of
the observations is defined as:

)2
Var(Y,),, =s*+sd(¥,)* =s- 1+1+M “0)
0/ obs 0 = -
Z(Xi —X)2
i=1
The sample standard error of the observations is then:
1/2
5 =
sd(Yy),,, = (s* +sd(Y,)")"> =s- 1+l+n(0—/ @1
Z(Xi _X)2

Equation (41) provides an estimate of the spread of observations, which
can be used to produce an uncertainty interval within which any observed value of
Y can be expected to lie. That is, any past or future measurement of Y is

expected to be within sd(¥,),,, of the model predicted value, Y,, approximately
two thirds of the time. Contrast this with the standard error of the mean relation,
sd (I}O), which can be used to construct an uncertainty interval within which the
mean of a set of observations Y, can be expected to lie approximately two-thirds

of the time. Tung and Yen (2005) call the interval constructed with the standard

47



M.A Sc. Thesis — J. Bruxer McMaster — Civil Engineering

error of the mean relation, sd ()A’O), the confidence interval of the true mean
response, while the interval constructed with the standard error of the
observations, sd (fo)gbs, is called the prediction interval of an observed value.

These two definitions differ, and both have been suggested as defining the
uncertainty in a discharge measurement taken from a stage-discharge curve. For
example, Herschy (1978; 2009) suggests the standard error of the mean relation to
represent the uncertainty, whereas Clarke et al. (2000) disagreed, and suggested
the standard error of observations as the preferred estimate of uncertainty.

Assuming that sd (}A’O) represents the total uncertainty in a stage-discharge

measurement, as Herschy (1978; 2009) does, essentially assumes that observed
differences between the gauged and modelled flows is primarily the result of error
in the gauged discharges, and that the model, being based on a large sample of
gauged flow measurements, provides the more accurate estimate of the true

discharge. On the other hand, assuming that sd ();0) represents the total

obs
uncertainty, as preferred by Clarke et al. (2000), basically assumes that the
differences between gauged and modelled discharges result primarily from errors
in the model itself. Dymond and Christian (1982) added a term in their
assessment of uncertainty in the stage-discharge curve to account for uncertainty
in the gauged discharge measurements, essentially implying that the difference
between the gauged and modelled discharges is the result of error in both the
gauged measurements and the fitted model, providing somewhat of a compromise
between the two methods; however, if the standard error of the gauged discharges
is greater than the standard error of the estimates, the method proposed by
Dymond and Christian (1982) basically gives the same result as Herschy (1978;
2009).

The mean of a number of repeated observations will provide a more
accurate estimate of the measured quantity than any individual measurement
itself, but only if the errors are random and the measurements are repeated under
the same conditions. This is not possible in a dynamic, natural channel, where
conditions from one measurement to the next cannot be maintained. The gauged
flows, while being subject to error themselves, also account for hydrodynamic
processes taking place in the channel that are not accounted for in the simplified
stage-discharge model used to estimate discharge. For these reasons the standard
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error of the observations, sd (?O)Gbs , was considered the more appropriate and

conservative estimator of the model uncertainty for this study.

Up until this point only linear relationships having one predictor variable
have been discussed. However, the more general case of having two or more
predictors in a linear relationship can be dealt with using similar methods. This
will be necessary for assessing uncertainty in stage-fall-discharge relationships,
such as those used to estimate flows in the St. Clair and Detroit rivers.

The case of two or more predictors is better dealt with using matrix
notation. However, in order to demonstrate its use, it is easier to first revert back
to the two-parameter linear relationship defined by equation (27), i.e.
Y=b,+bX . Then, as adapted from Draper and Smith (1998) and Tung and

Yen (2005), if we define in matrix notation (identified by bold print) the series of
observations Y and X, and the parameters of the linear equation, b, as:

Y, I &
B 1 X
. oo by
Y=| " [; X= ;b= s (42)
. . b
_Yll_ _1 Xll

Then when written in matrix form, the linear equation becomes:
Y=Xb (43)

This is equivalent to equation (27) in standard notation. Also, for the two
parameter case, it can be shown that:

o ZX,.
XX = ZX- ZX?' (44)

Yy
XY = ZZXY} (45)
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where X is the transpose of X. Multiplying equation (43) by X’ gives:
X’Y=X"Xb (46)
This equation can be solved for the parameters b in matrix form by:
b=(X’X)"'X’Y (47

The term (X’X)™ is the inverse of (X’X) and is given by:

> ¥

xxt =| "2 ()_(,-}— X) Z(XiI—X> i)

(X, -X)? DX, -X)

The matrix (X’X)" multiplied by the variance of Y, &, gives the variance-
covariance matrix of the parameters b:

Var(b) = (X°X)" o (49)

1 .
For any value of X =Xy= [X } we can predict Y =Y, from:

0

Y, = Xo’b= (I,X(,)[Z‘)} (50)

1

Furthermore, using equations (49) and (50) and substituting the sample variance
of Y (i.e. s*) for o, an estimate of the variance of the mean predicted value

();0 ) can be determined from:

Var(Y,) = Xo* (X°X)" 52X, (51)
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This equation, in matrix form, is equivalent to equation (37) given previously in
standard notation. It follows that the sample standard deviation, or standard error
of the mean relation, can be given by:

sd(¥) =s-{ Xo (X’X)" X }'2 (52)
Similarly, the standard error for an individual observation is:

sd(Yy) . =s- {1+ Xp* (X°X)" X, }'"2 (53)

obs

While these definitions were developed using the case of a linear model having
one predictor variable, the resulting equations are applicable to the case of a linear
model having any number of predictor variables, p. In summary, any set of n

observations of a dependant variable, Y, can be written in matrix notation as:

Y
Y2

Y= (54)

—1 Xl,l p,l |
1 X, X,

x| ! (55)
Ll Xy + + =« &,

A linear relationship between the predictor variables and the dependant variable
can then be written from equation (43) as Y=Xb, and the relationship parameters,
b, are given as:
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b=|" (56)

The linear relationship can be solved in matrix form using equation (47), and the
standard error of the mean relation and the standard error of observations can be
determined from equations (52) and (53), respectively.

An example of a two-predictor model is any of the stage-fall-discharge
equations used in the Detroit River. The stage-fall-discharge equations are
derived from Manning’s equation, and summarizing Quinn (1979b), Schmidt
(2009), and Fay and Noorbakhsh (2010), are given in the form:

Qc :K'(Wlhl + thz _a)ﬂ' '(hl _hz)ﬂ2 (57)

where Q. is the rating discharge; xis a coefficient accounting for channel
roughness, channel width, reach length, and other factors not accounted for
elsewhere; the term (w,h, +w,h, —a)” accounts for the area and hydraulic
radius of the channel; the term (4, —/,)” accounts for the water surface slope; #,
and h, are equivalent to the water surface elevation at the upper and lower ends
of the reach, respectively; w, and w, are weights given to 4, and h,, respectively;

a is a coefficient representing the mean bottom elevation, and is similar to the
value of a from the stage-fall discharge relationship given in equation (25) in that
it defines the water level elevation of zero flow; and the exponents g, and [, are

empirical constants.

The water levels 4, and &, in the term (wA, +w,h, —)” can be given
any weighting, but are often given equal weight, such that w, and w, both equal

0.5, providing the average of the two gauged water levels; alternatively, the
weights can be given values of 1 and 0, or vice versa, such that the water level of
only one gauge is employed in this term of the equation (Quinn, 1978; Fay and
Noorbakhsh, 2010). The values of x, «, B, and B, are the model calibration
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parameters. In practice, o is often given an assumed value and then the
remaining model parameters are used to fit the model to the observed data (Fay
and Noorbakhsh, 2010). For g, and fS,, Quinn (1978) suggested values of 2 and
0.5, respectively, based on Manning’s equation, while Schmidt (2009) stated that
p, has also been given a value of 5/3. The exponents can also be fit empirically

during model calibration, and this has been the case most recently for the St. Clair
and Detroit rivers (Fay and Noorbakhsh, 2010).

The non-linear stage-fall-discharge equation can be linearized by again
using a natural logarithm transformation, such that:

In(Q,) =In(x)+ B, - In(w,h, + w,h, —a)+ B, - In(h, —h,) (58)

Given a set of n observations of gauged flows O, and measured water levels 4,
and h,,, and working from equations (54), (55) and (56), we can define the set of

n dependant variables as:

Y
YZ

Y=\ (59)

where ¥, =In(Q,),. Likewise, the predictor variables are defined as:

1 Xl‘l X2,1
1 Xl,z X2,2
X=| ' (60)
_]‘ Xl,n X2Jl N
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where X

Ln

=In(wh, +wh,, —a), and X, =In(h, —h,,),. Lastly, the model

parameters are defined as:
b =|b (61)

where b, =In(x), b, = f,, and b, = B,. From these, the two-predictor linear

model can be solved and the standard error estimates found using the matrix form
of the equations given above. The matrix operations were performed for this
research using the open-source statistical software package “R” (http:/www.r-

project.org/).

5.4 Uncertainty in Model Predictor Variables

The methods outlined above for estimating uncertainty in discharge
determined from a linear model capture uncertainty resulting from random errors
as represented by the differences between gauged and modelled discharge
measurements. This is termed the model error. Additional error results from
uncertainty in the model variables, which includes error in measured water levels,
velocities or other predictor variables. Given the case of n predictor variables,
which will be assumed to be water levels denoted as /, from the law of
propagation of uncertainty (ISO, 1995), the uncertainty in the discharge QO as a

function of the uncertainty in each predictor variable is given as:

u’(0), _Z(aQ] u (h)+2i Z[ j[ ] u(h,)-u(h,)-r(h,,h,) (62)

i=1 i=l j=i+l

where u(Q), is the standard uncertainty in the measured discharge QO due to
uncertainty in the measured water levels; u”(Q), is the variance of Q; 6Q/0h, is
the rate of change of O due to a change in each predictor variable %, and is
known as the sensitivity coefficient for each 7%, ; u(h,) is the standard uncertainty

in predictor variable £ ; and r(h;,h;) is the correlation coefficient of any two
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predictor variables 4, and h;. If errors in the predictor variables are assumed

uncorrelated, the equation is reduced to:

W(Q) = Z[—;;Q] *(h) (©3)

The different flow models used in computing inflows and outflows for the Lake
Erie residual NBS require different combinations of predictor variables, and
therefore, the uncertainty that results is considered separately for each flow
model.

5.5 Combined Uncertainty in Modelled Flows

In determining the overall uncertainty in a single determination of
discharge from a rating curve or other flow model, the uncertainties in the gauged
discharge measurements, in the model, and in the model predictor variables must
all be considered. As described in the previous sections, a number of researchers
have defined the overall uncertainty in modelled discharge as either the standard
error of the mean relation or the standard error of observations. They have
combined this with a term quantifying the uncertainty in flow due to uncertainty
in the predictor variables, normally water level, to determine the overall
uncertainty in a modelled discharge measurement. The uncertainty in the gauged
discharge measurements has normally been ignored, or assumed to be accounted
for in the deviations of the gauged measurements from the best-fit model.

A somewhat modified approach for quantifying the overall uncertainty
was taken in this research. Assuming that the errors in the gauged discharge
measurements, the errors in the model, and the errors in the model predictor
variables are uncorrelated, the combined standard uncertainty of any individual
discharge measurement taken from a rating curve, u(Q), can be expressed as:

w’(Q)=u’(Q,) +u’(Q,) +u*(Q,) (64)

where u(Q,) is the standard uncertainty in the gauged discharge (assumed to be

approximately 2.5%); u(Q,,) is the model uncertainty, taken as the standard error
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of observations, sa’(f’o)obs, or equivalently, the combined standard ecrror of

estimate, s, and standard error of the mean relation , sd ()A’O); and u(Q,) is the

uncertainty in the measured discharge resulting from uncertainty in the model
predictor variables. That is:

u?(0)=(0.025)% +(s* +sd (¥,)*) +u*(0,) ' (65)

Inclusion of the term for gauged discharge uncertainty increases the
uncertainty estimate over that suggested by most other studies. This effectively
errs on the side of caution, and provides a conservative uncertainty estimate. As
will be shown in subsequent sections, if the gauged discharge error term is not
included, the overall uncertainty in a single determination of discharge from a
rating curve may be underestimated.

5.6 Combined Uncertainty in the Average Discharge in a Period

The preceding section described the uncertainty in a single determination
of discharge from a rating curve model. In most water balance studies, including

computations of NBS, the average discharge in a period, @ , is required. The law

of propagation of uncertainty can also be used to determine the combined
standard uncertainty of the average discharge in a period. The full equation is
given as:

n=1 n

u%é){(j—g]u Q)+ ZZ[ Q)( Q] u(0)u(Q,) 10,0,  (66)

i=l j=i+l

where u(@) is the standard uncertainty of the mean discharge for a given period;

u(Q,) is the uncertainty in one of n individual discharge measurements used to

compute the mean discharge; 7(Q,,0;) is the correlation coefficient for discharge

measurements { and ;; and 6@/ 00, =1/n, since the average of a set of n

measurements is being determined, with each measurement given equal weight.
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If the error in each individual discharge measurement is assumed random and
uncorrelated, #(Q,,Q;) is equal to zero, and the equation simplifies to:

u*(0) = ZG] v*(0) 67)

Furthermore, if u(Q,) is assumed constant for all Q,, the equation can be
simplified further to:

u(Qi)

u(Q) = N

(68)

This is the well known equation for the standard error of the mean of a set of
observations.

Conversely, if the errors in the discharge values are assumed to be
systematic or fully correlated, then 7(Q,,Q;) is equal to one, and the equation

simplifies to:
uZ@):Giu(Q,-)) (69)

Again, if u(Q,) is assumed constant for all Q,, this equation can be simplified
further to:

u(Q) =u(Q,) (70)

That is, the uncertainty in the mean discharge is equal to the uncertainty in any
single discharge estimate.

It is exceedingly difficult to determine whether the sources of error that
cause each of the various sources of uncertainty in the modelled discharge are
correlated, and if so, to what degree. This is especially true since the true
discharge can never be determined. Not knowing whether the errors are
correlated or not makes evaluating the combined uncertainty in the average
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discharge in a period difficult as well. The result is that the combined uncertainty
could be either over or underestimated, depending on how well the assumptions
made reflect reality.

In this study, it was assumed that the errors in the gauged discharge
measurements were fully correlated. This implies that the errors in ADCP
discharge measurements are systematic, and therefore they cannot be reduced by
averaging repeated samples. Since normally a large number of measurements are
used to define the rating curve, if the errors in gauged discharge were assumed
random and entirely uncorrelated, they would effectively cancel out. However,
often the same instruments, crews and methods have been used to collect the data.
Gauged discharge measurements evaluated in this study were primarily conducted
using ADCPs. Simpson (2001) noted a number of sources of both random and
systematic errors in ADCP measurements. Espey et al. (2001) has suggested that
errors in ADCP discharge measurements are more likely to be systematic than
conventional measurements. Unlike conventional current meter measurements,
ADCP measurements are often conducted with the same instruments due to their
higher costs, so any systematic error, such as that caused by the instrument
calibration, for example, will affect each measurement in a similar manner. As
another example, due to signal interference caused by channel boundaries (i.e. the
bed surface and channel banks) or the instrument itself, ADCPs are unable to
measure the velocity and flow near these boundaries or just below the receiver
(Simpson, 2001). Instead the velocities in these portions of the cross-section are
estimated based on a mathematical relationship. Any error caused by these
relationships will affect each ADCP measurement in a similar manner, and these
errors will not be reduced by averaging. Also, as will be shown in the Niagara
River MOM pool flow evaluation, conditions in the river and limitations of the
instrumentation were found to have caused a systematic error in the conventional
measurements collected prior to 2001 that was not detected until more recent
ADCP measurements became available. It is likely that some of the error in
gauged discharge measurements is random, and given enough measurements,
these random errors will effectively cancel out; however, determining what
portion of the error is random and what portion is not was found to be difficult
and beyond the scope of this study. For these reasons, the safer assumption was
made, and errors in gauged discharge measurements were assumed to be fully
correlated, and therefore not reduced by averaging, in order to provide a
conservative uncertainty estimate.
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Determining whether the uncertainty terms accounting for model error are
correlated is also difficult to determine. The standard error of the mean relation
and the standard error of estimates were each considered separately. Since each
measurement is obtained from the same flow model, the uncertainty in the model
relationship, namely the standard error of the mean relation, was assumed fully
correlated, since averaging a series of measurements will not reduce the error that
results from differences between the estimated mean relation and the true mean.

On the other hand, it is assumed that natural variability in the channel flow
is captured in the gauged discharge measurements used to construct the rating
equations, and that this natural variability is represented by the spread of the
measurements around the best fit flow model (i.e. the standard error of estimate).
This natural variability could be assumed random and the errors that result could
be assumed uncorrelated. Likewise, the uncertainty in the model predictor
variables, namely the measured water level and/or velocity, could also be
assumed to be random in nature. Assuming these errors to be uncorrelated, they
would be reduced by averaging consecutive measurements to obtain the mean
discharge in a period. This may be true or partly true in some cases; however, it
is also possible that the same conditions causing the errors observed are
persistent, causing the errors to be correlated to a certain degree. For example, it
is possible that part of the spread of the observed measurements is caused by
hysteresis effects resulting from variable slope during periods of rising and falling
discharge; or perhaps a persistent wind causes super-elevation of the water
surface and a systematic error for a long enough period of time that the errors
should not be assumed random in nature. The conservative approach would be to
assume that, as with the gauged discharge measurement errors, the model errors in
repeated measurements are fully correlated; however, this likely overestimates the
combined uncertainty since the random variability would in reality average out.

In light of the difficulties in determining whether errors should be assumed
correlated or not, the analysis of uncertainty in inflows and outflows that follows
deals with this aspect on a case-by-case basis.

5.7 Additional Sources of Uncertainty and Systematic Errors

Using a model to determine discharge requires the assumption that the
flow model used, which is derived from gauged discharge measurements
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collected previously, continues to represent the existing conditions in the river.
Additional systematic errors, such as those caused by changing channel
conditions possibly arising from erosion, deposition, aquatic vegetation/weed
growth, ice or other obstructions, for example, can cause the model to not
accurately represent the actual channel conditions existing at the time of the flow
measurement. This can result in errors which are often much larger than the
errors determined using the methods described above, and these must be dealt
with separately.
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6 Sources and Estimates of Uncertainty in Niagara
River Flow

6.1 Niagara River Flow Overview

As discussed, the current accounting of Lake Erie outflow through the
Niagara River is quite complicated. The summation equation includes the MOM
pool flow, the flow through the hydropower plants, the flow through the NYSBC,
local runoff to the upper Niagara River, and the Welland River diversion from the
Welland Canal. Determining the total uncertainty in the Lake Erie outflow
through the Niagara River requires assessing the uncertainty in each of these
different subcomponents, and since these are each measured or estimated using
different methods, the uncertainty analysis requires a variety of techniques. The
total combined uncertainty in the Niagara River flows can then be determined by
combining the uncertainty from each of the different subcomponents. An
alternative method for determining Niagara River flows involves measuring
discharge at the actual outlet of Lake Erie using a stage-discharge relationship.
This method is discussed, as well as its limitations, at the end of this section.

6.2 Niagara Maid-of-the-Mist (MOM) Pool Flow

The flow through the Niagara River MOM pool (N,,,,) is currently

modelled using a stage-discharge rating equation based on measured water levels
at the Ashland Avenue water level gauge located in Niagara Falls, NY, just
downstream of Niagara Falls at the MOM pool. Near-instantaneous hourly water
level readings are used to determine 24 hourly discharge estimates each day,
which are averaged to determine the daily mean discharge. The daily mean
discharges are then averaged to determine the mean monthly discharge.

The International Niagara Board of Control (INBC) is responsible for
developing and maintaining the Ashland Avenue stage-discharge relationship.
The Ashland Avenue gauge was established in 1957. Prior to this, the stage-
discharge equation was based on water levels measured at the discontinued
Morrison Street gauge, located on the Canadian side of the MOM pool. The
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Ashland Avenue gauge station has been used to establish the stage-discharge
rating for determining flow through the MOM pool since this time. The first
rating was the 1964 Ashland Avenue equation, and since then there have been two
revisions of this equation, one in 1981, and the most recent in 2009 (INBC, 2009).
The current Ashland Avenue equation is given by:

Nyoy =0.6429 - (h,, — 82.814)3'0 -

where h,, is the water level measured at Ashland Avenue. This equation was

developed using concurrent gauged Ashland Avenue water levels and a total of
281 ADCP discharge measurements collected from 2001 to 2007 by the INBC at
what is known as the cableway section located downstream of the MOM pool,
just upstream of the hydropower plants.

The model uncertainty in the Niagara MOM pool flows determined from
the Ashland Avenue equation was estimated using the statistical methods outlined
in Section 5. The standard error of estimate, standard error of the mean relation,
and standard error of observations were all computed. Using the 281 ADCP
discharge measurements, the standard error of estimate was found to be 2.1%. A
range of realistic Ashland Avenue water levels from 95 to 104 metres was used to
compute a range of standard errors of the mean and standard errors of the
observations. The standard errors of the mean relation for the Niagara River
MOM flows were extremely low, ranging from only 0.1 to 0.4% for the range of
water levels investigated. This is in part the result of the large number of
measurements used to define the rating curve. The standard errors of the
observations are larger than the standard errors of the mean, and are all fairly
similar, ranging from 2.1 to 2.2% for the range of Ashland Avenue water levels
examined. These values are very similar to the standard error of estimate as well,
as would be expected due to the small standard errors of the mean computed.

Despite the fact that the hydropower companies divert a large amount of
water for power production purposes, with exact volumes varying throughout the
year and throughout the day during the tourist season, the water levels and flows
in the Niagara River do not show significant variation due to the regulating effects
of Lake Erie. That is, water levels of Lake Erie have a relatively narrow range
due to the lake’s large surface area. Lake Erie water levels can show greater
variation during storm-setup, but in general the flow conditions in the Niagara
River are relatively steady. Furthermore, gauged flow measurements have been
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collected at a range covering much of the range of water levels and flows that
may reasonably be expected at the Niagara River below Niagara Falls. This is in
contrast to rating equations developed for many inland rivers and streams, where
during large floods flow measurements are rarely collected, and flow estimates
must be determined by extrapolating the rating curve well beyond the range of
actual gauged flow measurements used to calibrate the relationship, or using
alternative flow estimation methods.

A plot of the Ashland Avenue rating curve, the ADCP measurements, and
the 95% confidence level as obtained from the standard error of the observations
is shown below in Figure 6-1. To simplify the uncertainty analysis, a constant
value of 0.5% was used for the standard error of the mean relation, along with the
2.1% standard error of estimate, such that the combined standard error of
observation was approximately 2.2%. This represents the total model uncertainty,
or the uncertainty in an instantaneous discharge estimate due to errors in the
model used.
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Figure 6-1: Ashland Ave. rating compared to ADCP measurements
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The Ashland Avenue rating is rarely affected by ice and weeds due to the
steep slope and strong current in this stretch of the Niagara River. Furthermore,
the channel bed at this location is rock and is believed to be stable, such that
changes to the channel cross-section are unlikely to occur. Therefore, additional
error caused by these sources was assumed to be negligible.

The Niagara River does, however, provide a good example of the
systematic errors that can exist in gauged flow measurements. Prior to 2001,
when ADCP measurements began to be collected, the cableway section was used
to measure discharge out of the MOM pool using conventional current meters and
the velocity-area method. Upon comparing the conventional and ADCP
discharge measurements, the INBC (2009) found that the ADCP-measured flows
were consistently higher than the previous Ashland Avenue rating equation and
the conventional flow measurements collected between 1973 and 2001. This
discrepancy was investigated using detailed soundings of the cableway cross-
section and it was concluded that changes in the channel itself had not occurred,
but rather increased resolution of the ADCP measurements had caused them to
have a cross-sectional area approximately 4% greater in size than that measured
during the lower resolution conventional measurements, which subsequently
resulted in the greater flows computed from the ADCP. The current Ashland
Avenue rating equation was therefore calibrated using only the most recently
collected ADCP measurements, since these were believed to be more accurate
than the older conventional measurements.

In this research, the conventional measurements were compared to the
new rating (Figure 6-2), and the standard error was found to be approximately
4.6%. Therefore, for discharge taken from the old rating there would have been
an unknown systematic error of approximately 4.6%. This would be in addition
to the uncertainty in the rating curve described by the spread of measurements
around the curve (i.e. the model error). A similar unaccounted for or unknown
bias could exist for any flow model. This analysis shows the importance of
including the uncertainty in the gauged discharge measurements in addition to the
model and predictor variable uncertainty. If uncertainty in the gauged discharge
measurements was not included in the previous Ashland Avenue rating equation,
the uncertainty in the MOM pool flow would be underestimated. This also
provides an additional example of systematic errors in gauged discharge
measurements, giving further evidence of the need to treat these errors as fully
correlated.
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Figure 6-2: Ashland Ave. rating compared to conventional flow measurements (pre-2001)
and ADCP measurements (post-2001)

In addition to uncertainty in the gauged discharge measurements and
model uncertainty, the uncertainty in discharge resulting from uncertainty in the
model variables must also be considered. In the case of a stage-discharge
equation, the only predictor variable is the measured water level. Uncertainty in
water levels actually affects the modelled discharge in two ways: first, the gauged
discharge measurements used to calibrate the model require corresponding water
level measurements; second, measured water levels are used as an input variable
in the model itself. The uncertainty resulting from the first source was assumed to
be small, and is likely captured in the analysis of model uncertainty.

In regards to the second source, the MOM pool flow equation is evaluated
using instantaneous hourly water levels measured at Ashland Avenue by the
hydropower companies, and the uncertainty in an instantaneous measured water
level is small, being 3 mm according to NOAA (2009). Other unaccounted for
sources of error in the water level measurements may cause the uncertainty to be
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somewhat greater. Nonetheless, given the large depths and the range of water
levels observed, this source of uncertainty has a relatively small effect on the
Niagara River flows. For example, taking the derivative of equation (71), the
sensitivity coefficient, or the change in flow with respect to a change in water
level, is:

N o _ 1.9287 - (1, —82.814)*° (72)

AA

Applying the law of propagation of uncertainty, the uncertainty in discharge due
to uncertainty in the Ashland Avenue water level can be found from:

u2(NMOM)lx :i(ég;lw&] uz(hAA) (73)

i=l

Assuming a relatively high Ashland Avenue water level of 101 metres to evaluate
equation (72), the change in discharge with respect to a change in water level is
approximately 640 m’/s per metre. Assuming a conservative estimate of 1 cm for
the uncertainty in the measured water level, this corresponds to an error in
discharge of less than 7 m’/s, a negligible amount. Furthermore, assuming that
errors in the measured water levels are random and uncorrelated, by averaging the
instantaneous discharge measurements these errors will effectively cancel out
over the course of a month.

On the other hand, since the hourly water levels are actually instantaneous
water levels taken at the top of each hour, they do not necessarily represent the
true continuous water level or the true average hourly water level. As a result, the
instantaneous modelled flows will not necessarily represent the continuous and
true average flow, and this will result in additional uncertainty in the mean daily
and monthly flow estimates. To evaluate the magnitude of this source of
uncertainty, 6-minute water level data (the highest resolution data available at
Ashland Avenue) for the months of January through July 2010 were used to
compute 6-minute flow estimates, and the average of these were compared to
average flows computed using hourly data. For the non-tourist season months of
January through March, a comparison of the 6-minute and hourly results showed
absolute differences of less than 20 m?/s for all daily means, and these errors

66



M.A.Sc. Thesis — J. Bruxer McMaster — Civil Engineering

cancelled out over the course of a month such that the monthly means were found
to be no greater than 1 m’/s different.

The same comparison was performed for the tourist season months.
Figure 6-3 shows an example comparison of the 6-minute and hourly flows for
one day during the tourist season. Similar to the non-tourist season, for the tourist
season months of April through July, the absolute differences were small, being
less than a maximum of 23 m’/s for the daily means. However, the flows
determined from the hourly data appeared to be biased, almost always being
slightly higher on average than the flows determined from the 6-minute data for
both the daily and monthly means. The monthly means determined from the
hourly data for the tourist season months were 3 to 4 m*/s greater than the means
determined from the 6-minute data. The cause of this small bias is not entirely
clear, but appears to be related to a combination of the rise and fall of the flows
during the transition to and from tourist hours, the non-linearity of the 6-minute
flow estimates between the top of each hour (see Figure 6-3), and the starting and
ending elevation of each day. The discrepancy between 6-minute and hourly data
should be investigated further, but the uncertainty caused by using instantaneous
hourly water level readings as opposed to higher resolution data was considered
negligible given this analysis.
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Figure 6-3: Six-minute vs. hourly Ashland Ave. water level data (1 April, 2010)
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The combined uncertainty in the monthly MOM pool flow can be
estimated using the methods outlined in Section 5.6. Equation (65) can be applied
to determine the uncertainty in a single determination of the MOM pool flow, but
to determine the combined uncertainty in the monthly flow estimates,
assumptions about whether the errors are correlated or not must also be made. As
stated, the errors in the gauged discharge measurements were assumed to be fully

correlated. Furthermore, the uncertainty in the fitted relation, i.e. sd(f’o), is

assumed fully correlated since the same rating is used for each hourly
measurement. Assuming the errors in the remaining components of equation (65)
(i.e. the standard error of estimate and the uncertainty caused by the measured
water levels used as the model predictor variables) are fully correlated as well
gives the maximum standard uncertainty estimate of 3.4%. That is:

(N, ) = (0.025% +0.021% +0.005% +0.005%)°° =3.4%

Alternatively, if the errors in the remaining components are assumed
uncorrelated, the minimum uncertainty estimate can be obtained. Since 24 hourly
flow measurements are obtained from the model each day and then averaged for
the entire month (approximately 30 days), the minimum uncertainty estimate is
2.6%. That is:

B 2 0.021 , 2 0.005 ., .
u(NMOM)—\/O.OZS +(m) +0.005 +(m) =2.6%

Essentially the random uncertainty in the model and in the predictor
variables cancels out due to the large number of measurements that are averaged,
and the overall uncertainty results primarily from the uncertainty from the ADCP
measurements used to calibrate the equation. It seems unlikely that there would
not be at least some residual random error in the monthly flow estimates. Also,
given that the flows over Niagara Falls are managed by the hydropower
companies, the assumption that the errors are entirely random and uncorrelated
seems unreasonable.

A review of the ADCP discharge measurements used in the Ashland

Avenue rating curve calibration further supported the assumption that at least a
portion of the model error was correlated and not reduced by averaging. For
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example, a total of 93 ADCP measurements were collected on four consecutive
days from 30 October to 2 November, 2004. Assuming a standard error of
estimate of 2.1%, if the model errors were uncorrelated, the overall error in these

measurements would be reduced to 2.1/4/93 = 0.2%. A comparison of the rating
flows and the ADCP gauged discharge measurements showed the average
difference between the two estimates to be approximately 1%. That is, the
uncertainty estimate of 2.1% was reduced by averaging, but not entirely, and not
as much as would be expected if the errors were assumed entirely uncorrelated. A
similar analysis performed on 43 measurements collected on 8-9 May, 2007,
showed similar results, with the average difference being -9 m’/s, or
approximately 0.35% of the average flow on the two days. A similar error value
of approximately 1.5% or less was observed for a number of other consecutive
days of measurements where ADCP and rating curve discharge estimates were
compared. If an estimate of 1.5% is used and assumed fully correlated, the
combined uncertainty would be approximately 3%. That is:

U(N oy ) =0.025 +0.0152 +0.005% =3%

This estimate seems reasonable, but is again dominated by the uncertainty
in the ADCP discharge measurements. Given the difficulty in determining
whether errors are correlated or not, and given that additional unaccounted for
sources of error may exist (for example, these results are based on the gauged
discharge measurements used to calibrate the flow model, whereas additional
measurements may show slightly different results), the maximum standard
uncertainty estimate of 3.4% was used in this analysis in order to provide a
conservative estimate; however, it should be noted that this is likely somewhat
over-estimated, and this analysis shows that the actual uncertainty could be much
lower.

6.3 Hydropower Diversions

The discharge through the OPG and NYPA hydropower plants on the
Niagara River is determined from rating tables, which relate turbine unit
discharge to the combination of power output measured for each unit and the
gross head difference between the penstock intake and the tailrace (Mikhail,
2006). The rating tables themselves are derived from field test results. Relatively
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recent field testing for the Niagara hydropower plants was conducted during unit
upgrades, and involved determining discharge through selected turbine units using
the Gibson test method. The Gibson test method (also known as the pressure-time
method) of estimating flow in a closed conduit is rather involved, but essentially
entails application of the energy balance equation to two sections of a closed
conduit (the penstock), and accounting for the static pressure difference that arises
between the two sections as a result of a change of momentum induced when the
flow through the penstock is stopped suddenly (Adamkowski et al., 2006). The
full Gibson test was performed on about one in every four of the turbine units on
the Niagara River, with less extensive Index testing using what is known as the
Winter-Kennedy flow relationship performed on the remaining units to ensure a
similar performance as those tested with the absolute Gibson test method (Mikhail
and Knowlton, 2006).

The accuracy of the hydropower flow measurements has been estimated
by a number of sources. According to test reports for the Niagara hydropower
plants (e.g. Mikhail, 2007; Mikhail and Knowlton, undated), while the accuracy
of each Gibson test varies, the expected accuracy of the flows measured using the
Gibson test is quoted as 2.25%. This agrees with estimates given in international
standards, where the accuracy of the Gibson test is reported as being within the
range of 1.5 to 2.3% (IEC, 1991, as reported by Adamkowski et al., 2000).
Uncertainty estimates in the Index test reports for the Niagara River (e.g. Mikhail,
2007) give the total uncertainty as around 2% at a 95% confidence level, though it
is unclear whether this refers to the turbine flows or the combined test results.
Regardless, these results agree with Adamkowski et al. (2006), who state that the
accuracy of flows determined using the Winter-Kennedy method is close to the
accuracy of the flows determined using the absolute Gibson method.

It seems that other researchers have accepted these estimates of
uncertainty in the measured flow as the total uncertainty estimate for the
hydropower diversion. For example, Neff and Nicholas (2005), in close
agreement with the estimates given above, gave an uncertainty estimate for the
Niagara hydropower flows of 2.33%, which according to the authors was based
on a written communication with OPG. Likewise, Metcalfe (2002) gave the
“overall uncertainty” as +/- 2.1% at the 95% confidence level for the Niagara
hydropower flows. Additional information on how these flow uncertainty
estimates were obtained and the probability distribution of the error estimates
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could not be obtained from the hydropower companies, and was not found in the
literature or test reports.

While these estimates are all fairly consistent, they are likely based in part
on the same assumptions and estimation methods. The fact that they are in such
good agreement with the Gibson test uncertainty estimates indicates that other
sources of uncertainty (i.e. in addition to uncertainty in the measured flows from
the Gibson test) may not be properly accounted for. For example, the discharge
through the hydropower turbines is determined from rating tables that relate the
measured flows as determined from the Gibson tests to the power output and
gross head. Uncertainty in the measured power output and gross head, as well as
uncertainty in the relationship between these variables and the rated discharge,
must also be accounted for in the uncertainty estimate of the Niagara hydropower
diversions. Furthermore, the actual discharge diverted from the Niagara River is
calculated on an hourly basis not from the flow through the hydropower plants
alone, but rather it also includes the change in storage in the forebays and storage
reservoirs upstream. Over the course of a month or longer, the effects of storage
on the mean monthly power diversion are small, but this would also provide a
source of uncertainty. Losses due to evaporation and leakage provide another
source of uncertainty, though again, the amount may be negligible.

According to OPG (K.C. Chan, OPG, written communication, 24 August,
2010), the combined uncertainty of the rating table flows for the SAB II units
would consist of three components, including: uncertainty resulting from
performance testing on units tested by the absolute method (Gibson test);
uncertainty due to variation of the other units tested for similarity by the Index
method; and extrapolation of the results to other heads from the test head. Similar
to the estimates given above, the uncertainty in the first two sources, the Gibson
and Index tests, were suggested as +/-2.0% and +/-1.8%, respectively. For the
third source of uncertainty, there apparently is no estimate available, but it is
judged by Mr. Chan to be 0.5% for a medium head plant such as the SAB units.
From this, it was estimated that the combined uncertainty level for the derived
rating table would be +/- 2.7%; however, this estimate is based on the assumption
that all errors are uncorrelated, which seems unlikely given, for example, that
only one quarter of the turbine units were tested and that test results are
extrapolated from the test head to other heads. Mr. Chan also suggested that other
sources of uncertainty in the flow accounting include the accuracy of the station
head measurements, the variation of head with time and the flow accounting
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software package used. Furthermore, these results are for SAB 11, and uncertainty
may be somewhat different for the other hydropower plants.

A more detailed investigation of uncertainty in the hydropower flows was
deemed to be beyond the scope of this research. Based on the above findings, and
assuming full correlation of the uncertainty estimates provided by OPG for the
Gibson test, Index test, and extrapolation of results, an uncertainty estimate of
approximately 4.0%, having a normal distribution, was assumed at the 95%
confidence level for the combined Niagara River hydropower diversion. It is
recognized, however, that this may be underestimated, and a more exhaustive
uncertainty analysis of the hydropower diversions from the Niagara River may be
worthwhile.

6.4 New York State Barge Canal (NYSBC) Diversion

The amount of water diverted to the NYSBC from both Lake Erie prior to
1918 and from the Niagara River since then is not well known. The actual
diversion from the Niagara River has been gauged periodically in the past, but has
not been measured continuously, and is instead estimated for water balance
purposes as a constant value. The estimated amount currently used varies
depending on whether the NYSBC is open for navigation or closed during the
non-navigation season. When the NYSBC is open, it is assumed that the mean
daily flow is 31 m’/s; when closed, the flow is assumed to be zero. Since the
NYSBC flows are reported monthly, the monthly flows during maintenance
periods and during the transition period to and from the navigation season are
estimated as the mean discharge times the ratio of days with the canal in operation
to the number of days with zero flow in the canal (Len Falkiner, EC, personal
communication, 10 August, 2010). For example, if in April during the transition
to navigation season conditions the NYSBC is in operation for only 20 days, the
mean monthly flow would be 21 m*/s (i.e. 20 days in operation divided by 30
days in April, multiplied by 31 m’/s).

Though little documentation is available (and at times the reports are
conflicting) according to the Special International Niagara Board (SINB, 1930)
and the IJC (1953), the flow estimate when the NYSBC is open appears to have
been at least originally based on measurements conducted in the 1920s.
Measurements were also made in the 1950s (INWC, 1985; IJC, 1985), possibly in
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order to confirm or adjust the earlier estimates. The SINB (1930) gives one of the
more detailed reports on the NYSBC diversion. In this report, the results of
measurements collected during the summer months from 1923 to 1926 and in the
winter of 1927 were given. These are shown here in Tables 6-1 and 6-2,
respectively, with the mean and standard deviations also computed. The SINB
(1930) noted that during the navigation season, levels at Lockport were carefully
maintained, with flow likely the same at night as during the day; however, during
winter, when levels were not as carefully maintained, the flow at night was about
40 ft*/s (1 m?/s) less than during the day, and the discharge all day on Sunday was
about 275 ft*/s (8 m?/s) less than the weekday day-time flows. From this
information and the measurements collected, the average NYSBC diversion from
the Niagara River at the time was estimated to be 1,400 ft*/s (40 m’/s) during the
navigation season and 1,000 ft*/s (28 m®/s) during winter, with an average of
1,200 ft*/s (34 m?/s) for the year.

Table 6-1: Measured NYSBC flows: 1923-1926 navigation season (SINB, 1930)

Date Flow (ft'/s) Flow (m’/s)
6/5/1923 1318.7 37.3
8/9/1923 1392.3 39.4
8/13/1923 1341.7 38.0
7/24/1924 1405.4 39.8
10/20/1924 1381.8 39.1
9/11/1925 1458.5 413
9/11/1925 1408.6 39.9
9/14/1925 1341.6 38.0
9/14/1925 1330.6 373
9/24/1925 1461.6 41.4
9/24/1925 1465.7 41.5
8/31/1926 1463.4 41.4
8/31/1926 1469.0 41.6

Mean 1403.0 39.7
Std. Dev. 57.0 1.6
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Table 6-2: Measured NYSBC flows: 1927 non-navigation season (SINB, 1930)

Date Flow (ft'/s) Flow (m’/s)
2/24/1927 1025 29.0
2/24/1927 1049 29.7
3/10/1927 1080 30.6
3/10/1927 1085 30.7

Mean 1060 30.0
Std. Dev. 28 0.8

A report by the IJC (1953) noted that until October 1928, approximately
275 ft’/s (8 m’/s) of the total diversion was diverted for power purposes. This was
discontinued after this year, such that the total diversion during the navigation
season would have been 275 ft'/s (8 m’/s) less than the 1400 ft*/s (40 m’/s)
measured in the 1920s, or approximately 1125 ft*/s (32 m*/s). When rounded to
the nearest 100 ft*/s, this is equivalent to the constant amount of 31 m?/s currently
used.

Occasional field measurements have been collected since this time,
including some in the 1950s, with some reports stating that these were used to
provide the current estimated amount of the diversion (INWC, 1985; IJC, 1985).
For example, according to the International Niagara Working Committee (INWC,
1985), just prior to field tests conducted in 1957, flow measurements made by
current metering estimated the NYSBC flow reaching Lockport to be 1120 ft*/s
(32 m’s). The 1957 field tests after this were conducted to determine the
possibility of passing additional flow through the NYSBC for the purposes of
agriculture. Actual data for these tests was not found, but it was noted by Stellato
(1981) and the INWC (1985) that these tests showed that increases in the
discharge of greater than approximately 100 ft*/s (3 m*/s) resulted in increased
levels of seepage and leakage, and as such, no further work has been conducted in
this regard (INWC, 1985).

Regardless of the actual source, the NYSBC diversion reported by the
INBC is today based on these past studies and estimates, and is given as 31 m?/s
during the navigation season and zero during the non-navigation season. The
uncertainty in the NYSBC flows was determined from the above information.
The 1923-1927 measurements and additional findings reported by the SINB
(1930) are assumed to be the best available. Using the measurements from
Table 6-1, and removing the additional 275 ft*/s (8 m’/s) diverted for power
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production prior to 1928, the mean measured discharge was found to be 31.9 m’/s
with standard deviation of approximately 1.6 m’/s. The mean is slightly greater
than the 31 m*/s currently used in NYSBC flow accounting. Also, since only 13
measurements were collected, multiplying the standard deviation by a Student’s t-
value of 2.18 for 12 degrees of freedom gives the error as 3.5 m’/s (or
approximately 10%) at the 95% confidence level. This compares well with
results reported by Stellato (1981) as discussed above, which explained that field
measurements had showed that increases in NYSBC discharge of greater than
3 m’/s could not be accommodated without increased seepage and leakage. It is
assumed that conditions in the NYSBC have not changed significantly since these
measurements were first collected. Therefore, given the difference in the mean
and the standard deviation computed above, and the fact that discharge likely
varies to a small degree due to the Niagara River water level, for this study the
NYSBC discharge was assumed to be 31 m®/s, with an uncertainty estimate of
+/- 15% at the 95% confidence level during the navigation season. During the
non-navigation season, with the canal dewatered, it is assumed that the amount of
zero used for reporting purposes is correct, with any leakage assumed negligible.

6.5 Upper Niagara River Local Runoff

The local runoff, or local inflow, to the upper Niagara River between
Niagara Falls and Buffalo (R, ) is not measured directly. Instead, 12 constant

monthly values are traditionally used. These monthly values were determined
from an analysis of measured flows from the Grand River, ON, and Genesee
River, NY, based on the period of record from August 1913 through December
1960 (Coordinating Committee, 1962). In the original analysis, drainage area
ratios were used to extrapolate the Grand and Genesee River flows to the local
upper Niagara River basin. That is, the monthly mean discharge per unit area for
the combined Grand and Genesee rivers were multiplied by the local drainage
area of the upper Niagara River and then averaged by month to estimate the mean
monthly local inflows. The mean monthly values currently used as determined
from the original analysis are given in Table 6-3.

Table 6-3: Niagara River local runoff values (Coordinating Committee, 1976)
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
Flow
(m?/s)

37 | 37 | 91 | 93 | 45 | 23 | 14| 8 8 14 | 25 | 31
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There are three major sources of uncertainty in these estimates of local
runoff to the upper Niagara River. The first is the uncertainty in the measured
flows from the Grand and Genesee rivers. De Marchi et al. (2009) discussed
uncertainty in runoff estimates to the Great Lakes. The second source of
uncertainty results from the use of Grand and Genesee River flows as surrogates
for Niagara River tributary inflows. The Grand and Genesee rivers flow into
Lake Erie and Lake Ontario, respectively. They are the two major inland rivers
located closest to the Niagara River, but how well these two rivers represent the
actual conditions and flows in the upper Niagara River basin is not known. The
last source of uncertainty results from the use of a constant mean flow value based
on a short historic record to represent a time-varying quantity. Local runoff varies
seasonally and annually, so the deviation of flows about their mean will provide a
source of error given that constant mean values are used.

To quantify the uncertainty in the local inflow to the upper Niagara River
for this study, revised local inflow estimates were derived using a similar area
ratio method as used by the Coordinating Committee (1962), but based on
measured discharges from actual tributaries to the upper Niagara River basin.
Currently approximately 1434 km” of the upper Niagara River drainage basin is
gauged, which corresponds to approximately 44% of the 3250 km® total drainage
area of the basin as estimated by the Coordinating Committee (1962). This
includes gauges operated by Water Survey of Canada (WSC) at the Welland
River at Caistor Corners, ON (238 km®), and Oswego Creek at Canboro, ON
(80.7 km?), in addition to gauges operated by the United States Geological Survey
(USGS) at the Tonawanda Creek at Rapids, NY (904 km?) and Ellicott Creek
below Williamsville, NY (211 km?). The Ellicott Creek gauge was originally
located at Williamsville (Ellicott Creek at Williamsville, NY); this gauge was
relocated downstream in 1972, which increased the measured drainage area. An
additional gauge station, Tonawanda Creek at Batavia, NY (443 km?), is located
upstream of the Tonawanda Creek at Rapids gauge station. A summary of these
gauge stations and their periods of record is given in Table 6-4.
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Table 6-4: Upper Niagara River tributary gauge information

Fa— Station Station Drainage | Start | End

BENEY | Number Name Area (km?) | Year | Year
Welland Ri

EC | 02nAco7 | \elland River below 238 | 1957 | 2008

Caistor Corners

Oswego Creek at

EC
02HA024 Canboro

80.7 1988 | 2008

UsGs | 04217000 | Tonawanda Creek at 443 1944 | 2009
Batavia NY

Tonawanda Creek at
USGS | 04218000 904 19 2
Rapids NY 35 | 2009

Ellicott Creek at
USGS | 04218500 Williamsville NY 197 1955 | 1972

Ellicott Creek below
USGS | 04218518 Williamsville NY 211 1972 | 2009

When the Coordinating Committee (1962) conducted its local inflow
analysis some of these stations did not exist, while others had too short a period of
record to be used for such an analysis. As such, the Grand and Genesee rivers,
each with long established periods of record, were used instead of the actual local
tributaries. The Coordinating Committee (1962) did, however, compare the mean
local flows derived for the upper Niagara River from the Grand and Genesee
River data to flows determined from the existing tributary gauges for the 1955-
1960 period and found that the use of the local inflows determined from the
Grand and Genesee records would generally underestimate actual tributary flow
from December through March, and overestimate it from April through
November. Since there are longer periods of record available today for the local
tributaries, it is possible to obtain better estimates of local runoff from these.

Similar to what was done for the Grand and Genesee rivers, the monthly
mean measured flows were obtained for the local tributary gauges and multiplied
by area ratios to estimate the mean and standard deviations for the Niagara River
local inflows. The general equation can be written as

A
Total (74)

z RGtmged ’ Z 4

R, =

Gauged
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where R, is the estimated local runoff to the upper Niagara River; R, is the
sum of measured runoff from the gauged portion of the basin; 4, , is the total
upper Niagara River drainage basin area; and 4, 1s the sum of the areas of the

gauged portion of the basin. The period of record used started in July 1957,
which corresponds to the installation of the Welland River gauge, and ended in
December 2008. The combination of gauges used was chosen to maximize the
gauged portion of the basin without overlap. For example, if data at Tonawanda
Creek at Rapids, NY, were available, then Tonawanda Creek at Batavia, NY, was
not used, as it is located upstream; however, Tonawanda Creek at Batavia, NY,
was used when the downstream gauge data were unavailable, with the areas
adjusted accordingly.

A comparison of the results is given below. Table 6-5 shows that the
currently used values based on the Coordinating Committee (1962) analysis
underestimate the local tributary flows for the months of August to March by an
average of -2 to -29 m’/s, with the largest discrepancies occurring in the winter
months. On the other hand, the Coordinating Committee (1962) values
overestimate the flows by an average of 3 to 9 m’/s for the remaining months.
This agrees fairly well with the Coordinating Committee (1962) findings.

Table 6-5: Comparison of upper Niagara River local runoff estimates
Upper Niagara River Local Inflows (m’/s)
Jan | Feb | Mar I Apr | May| Jun |Jul | Aug l Sep | Oct | Nov | Dec
Grand and Genesee rivers, Coordinating Committee (CC), 1962
Mean |37 [37]91[93]45][23]14] 8 | 8 | 14| 25| 31
Local Tributaries (LT)
Mean 56 | 65 | 104 | 84 | 37 | 20 [ 11|10 | 14 | 19 | 39 | 60
Median | 53 | 66 | 104 | 81 | 29 | 14 | 7| 6 6 | 13 | 30 | 57
StDev 33 138137129 (22|18 |10 14 | 25| 25| 29| 36
Max 148 | 167 | 181 | 151 | 97 [ 108 [ 45| 90 | 162 | 162 | 141 | 166
Min 3 9 [ 41 |31 |13 | 4 |2] 2 2 1 2 2
Mean Difference
CC-LT [-19]-28[-13] 9 | 8 | 3 [3][-2]-6]-5]-14]-29

Statistic
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Figure 6-4 shows a boxplot of the results. The boxplot indicates that the
spread of local inflows varies significantly about the mean, such that for any
given month the Coordinating Committee (1962) estimates could be in error by
more than 100 m*/s. The mean (grey dashed line) and median (horizontal solid
black line within the boxes) of the local tributary flow estimates also can be seen
to differ, due to the non-symmetric distribution of the estimated local inflows.
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Figure 6-4: Boxplot comparison of upper Niagara River local runoff estimates

The differences between the mean Grand and Genesee River based flow
estimates and the mean local tributary based flow estimates were used as the
mean error in the local runoff, while the standard deviations of the local tributary
based runoff estimates were used as the standard uncertainty estimate in the
FOSM uncertainty analysis.  For the Monte Carlo analysis, probability
distributions were fit to the local tributary runoff data for each month using the
“R” statistical software package. Empirical CDFs were plotted against fitted
distributions until a distribution that looked to provide an acceptable fit to the data
was found. The results of this exercise are provided in Appendix A. The type of
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PDFs found to provide the best fit varied depending on the month. A list of the
distributions used and their parameters are given in Table 6-6. These distributions
were randomly sampled using “R” to obtain a probabilistic estimate of the local

tributary runoff for any month for input into the Monte Carlo analysis.

Table 6-6: Probability distributions used for local runoff uncertainty estimation

Month | Distribution | Parameter 1 | Value | Parameter 2 | Value
Jan Weibull Shape 1.73 Scale 62.77
Feb Weibull Shape 1.78 Scale 72.80
Mar | Log-Normal | Mean-Log | 4.58 | StDev-Log | 0.37
Apr Normal Mean 83.81 StDev 28.89

May | Log-Normal | Mean-Log | 3.45 | StDev-Log | 0.56
Jun Log-Normal | Mean-Log | 2.70 | StDev-Log | 0.75
Jul Log-Normal | Mean-Log | 2.06 | StDev-Log | 0.73

Aug | Log-Normal | Mean-Log | 1.90 | StDev-Log | 0.82
Sep Log-Normal | Mean-Log | 2.00 | StDev-Log | 1.05
Oct Log-Normal | Mean-Log | 2.40 | StDev-Log | 1.06

Nov Weibull Shape 1.35 Scale 42.16
Dec Weibull Shape 1.73 Scale 67.08

The preceding results provide an estimate of the uncertainty that results
from using mean local inflows determined from historic Grand and Genesee River
data instead of actual tributary flows. Additional uncertainty results from the
uncertainty in the measured local tributary flows themselves, and the use of area
ratios to extrapolate the gauged portion of the tributary basins to the ungauged
portions. De Marchi et al. (2009) estimated the uncertainty in runoff estimates for
the entire Great Lakes region as determined using a similar area ratio method as
was used in this study. They assumed that the uncertainty in the actual measured
flows was 10% at the 95% confidence level, and represented this by a normal
distribution. In addition, for Lake Erie runoff they showed that the uncertainty
resulting from extrapolating measured flows from gauged basins to ungauged
portions of the basin when between 40 and 60% of the basin is gauged (which is
approximately the proportion of the upper Niagara River basin that is gauged)
could be fitted with a logistic distribution having parameters of approximately
-0.038 and 0.086. This means the ungauged basin runoff for Lake Erie was
underestimated by approximately 4%, with standard error of approximately 9%.
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However, these results depend on the actual gauged basins used in the analysis,
and may not apply exactly to the upper Niagara River basin. The bias identified
by De Marchi et al. (2009) was instead assumed to be an unknown source of
error, and therefore the combined uncertainty due to both the uncertainty in the
gauged flows and the uncertainty due to extrapolating to ungauged portions of the

basin was computed as V5> +4”> +9% =11%, with mean error of zero. This
source of uncertainty is essentially negligible compared to the uncertainty that
results from using a constant monthly value for the local runoff instead of an
actual estimate of the tributary flows, and therefore it was omitted from the
remainder of this analysis; however, if a new approach to estimating local inflow
were to be employed, such as the one suggested in this research, this additional
source of uncertainty would need consideration.

6.6 Welland River Diversion

As discussed, a small additional volume of water is diverted from the
Welland Canal to the Welland River (D,,,). The Welland River has been routed

to pass below an old stretch of the Welland Canal through a set of six syphon
culverts, and flows from here to the Sir Adam Beck hydropower plants, where the
total Welland River flow is measured as part of the hydropower plant flows.
Since flow diverted to the Welland River is measured at both the Welland Canal
and at the hydropower plants, it must be subtracted from the total Lake Erie
outflow to avoid accounting for this volume twice.

The water diverted from the Welland Canal enters the Welland River from
a number of sources. The largest source is the flow that passes through a set of
holes cut into the bottom of the old stretch of canal and through the roof of the
syphon culverts. This flow currently makes up approximately 50% of the total
Welland River diversion, but in the past was even greater, making up
approximately 70% of the diversion. The next largest amount comes from the
Welland Water Works, which takes water from the Canal and flushes it to the
Welland River. This currently makes up approximately 40% of the total
diversion, and in the past made up approximately 20% of the total. The remaining
10% comes from smaller domestic and municipal sources, which also take water
from the Welland Canal and return it to the Welland River.
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The flow through the syphon culvert drain holes into the Welland River
syphon culverts is estimated by treating each of the holes as a simple submerged
orifice. The theoretical equation of flow through an orifice (Olson, 1966) results
from the continuity equation, Q = VA, where A equals area, and the velocity, V',

is determined from ¥ =./2gh , where g is gravitational acceleration and 4 is the

head difference. In this case the continuity equation is multiplied by a coefficient,
K, which results from the fact that in practice theoretical flow is different than
actual flow, due primarily to different orifice shapes. The flow through the three

syphon culvert drains (WR,,,) can therefore be determined from:

PR, =3-(K-[2gh - A) (75)

Assuming that errors in determining 4 and % are small, uncertainty
results primarily from the coefficient chosen, and the fact that the equation is
theoretically based and may not accurately represent the true flow. The
coefficient used by the SLSMC is 0.934, and was determined based on flow
measurements taken in September 1973 (Fraser Johnston, SLSMC, letter to the
INC, undated). Theoretical values of the coefficient normally range from
approximately 0.6 to 1.00 according to Olson (1966). This gives a range of 0.4.
A range of 0.6 was used in this analysis to be conservative. Given a range of 0.6
in the coefficients, flow error could range from 0 to 60% of flow. If these are
assumed to be the lower and upper 95% confidence limits, then the standard error
is approximately 15%.

Data and information for the Welland Water Works and the other flows
that make up the total Welland River diversion was not available. It seems
unlikely that these flows would be less accurate than the flow through the syphon
culvert drains. Assuming a standard error of 5% for this remaining 50% of the
total diversion and combining with the uncertainty determined for the syphon
culvert drains, the total standard uncertainty would be less than 10%. A
conservative estimate of 10% for the standard uncertainty in the Welland River
diversion was assumed, and it was assumed that this was normally distributed.
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6.7 Combined Uncertainty in Niagara River Flow at Buffalo

The combined uncertainty in the Niagara River flows was estimated using
both the FOSM and the Monte Carlo approach. Archived monthly estimates of
the total Niagara River flow at Buffalo are available from 1900 to 2008, as is data
for the NYSBC and the constant monthly local runoff estimates; however,
monthly estimates of the Niagara River MOM pool flows were only readily
available for the period 1962 to 2008, and monthly estimates of the combined
hydropower diversions were only readily available for the period of August 1999
to December 2008. As a result, an uncertainty analysis on the Niagara River
flows for the full period of record could not be performed. Instead, only the 1962
to 2008 period was investigated. The hydropower flows for 1962 to July 1999
were estimated from equation (13) by subtracting the MOM and NYSBC flows
from the total Niagara River flow at Buffalo, and then adding the coordinated
local runoff values for each month and an estimate of the Welland River
diversion. Due to rounding errors the results are not likely exact, but they provide
a good estimate of the magnitude of the hydropower flows in comparison to the
remainder of the Niagara River flow components, and are sufficient for the
purposes of this analysis. The results of this analysis were applied to the overall
uncertainty analysis in Lake Erie NBS for the full period of record (1900 to 2008)
as will be described in subsequent sections.

Table 6-7 provides a summary of the mean magnitude of each of the inputs
to the Niagara River flow at Buffalo as computed using the summation method, as
well as the computed uncertainty of each input as used in the FOSM method.
Note that the local inflow uncertainty estimates were the only inputs treated
differently for the FOSM and Monte Carlo methods, with the FOSM method
using the mean and standard deviations of the local tributary results, and the
Monte Carlo method using the probability distributions as described in
Section 6.5. The mean flow in the case of the FOSM method is simply the mean
Coordinating Committee (1962) values, and in addition to the uncertainty
estimates provided, there is also a mean error caused by the mean difference
between these currently used estimates and the local ftributary estimates
determined in this research, as shown in Table 6-5.
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Table 6-7: Niagara River mean input flows (1962-2008) and uncertainty estimates

NMOM PSAB&2+RM DNYSBC RN DWR ON@Bxg’

Month @ u u Z? u u é u u é u u @ u u é
m’fs) | (%) | (@s) | (m¥s) | (%) | @) | (miss) | (%) | @s) | (m¥s) | (%) | @*/5) | (mss) | (%) | @s) | ()

Jan 2016 | 3.4 69 3932 | 2.0 79 1 7.5 0 37 89| 33 19 10.0 2 5894
Feb 1949 | 3.4 66 3943 | 2.0 79 0 7.5 0 37 103 38 19 10.0 2 5837
Mar | 2000 | 3.4 68 4146 | 2.0 83 1 1D 0 91 41 37 19 10.0 2 6037
Apr | 2620 | 3.4 89 3749 | 2.0 75 7 7.5 1 93 31 29 19 10.0 2 6264
May | 2634 | 3.4 90 3847 | 2.0 &l 29 T3 2 45 49 | 22 19 10.0 2 6445
Jun 2603 | 3.4 89 3769 | 2.0 75 31 7.5 2 23 78 18 19 10.0 2 6361
Jul 2560 | 3.4 87 3710 | 2.0 74 31 7.5 2 14 71 10 19 10.0 2 6267
Aug | 2532 | 3.4 86 3625 | 2.0 73 31 7.5 2 8 175 14 19 10.0 2 6160
Sep 2463 | 3.4 84 3567 | 2.0 71 31 713 2 8 313 25 19 10.0 2 6033
Oct 2398 | 3.4 82 3556 | 2.0 71 31 7.5 2 14 179 | 25 19 10.0 2 5951
Nov 1887 | 3.4 64 4072 | 2.0 81 21 7.5 2 25 116 | 29 19 10.0 2 5935
Dec 1965 | 3.4 67 4095 | 2.0 82 3 7D 0 31 116 36 19 10.0 2 6013
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As expected, the largest sources of uncertainty are the MOM pool flows
and the combined hydropower diversions, owing to their large magnitude in
comparison to the other inputs used to compute the Niagara River flow at Buffalo.
The local runoff, though somewhat smaller in magnitude, is also a notable source
of uncertainty. Despite having large uncertainties in a relative sense, the
uncertainties in the Niagara River flow resulting from the NYSBC and Welland
River diversions are small in comparison due to the smaller volumes of water
diverted at these locations. In terms of NBS and Niagara River flow
computations, the uncertainty from these sources could have been assumed
negligible and omitted from the analysis.

The combined uncertainty in the Niagara River flow at Buffalo can be
computed using the FOSM method and the uncertainty estimates shown in
Table 6-7. Assuming the different flow estimates to be uncorrelated, from
equation (23), the combined standard uncertainty is simply the root sum of
squares of each of the different standard uncertainty estimates provided, since in
the summation model used to compute the Niagara River flow at Buffalo the
sensitivity coefficients are all equal to one. That is:

u(Oy@pu) = \/“2 (Nyron) + u’ (Psamearm) T u’ (Dyysse) + u’ (Ry)+ u’ (Dyr)

where u(P,,0,.zy) 1 the uncertainty in the combined hydropower diversions,

and all other variables are as previously defined.

The Monte Carlo method was computed by sampling from each of the
different probability distributions identified for each input, a summary of which is
provided in Table 6-8. For each month from 1962 to 2008, the statistical software
package “R” was used to create stochastic representations of each input by
randomly sampling from each probability distribution. A total of 2500
realizations were computed for each month. The mean value for each of the
MOM pool, combined hydropower, NYSBC and Welland River diversion flows
was assumed to be the deterministic value obtained from the USACE, and these
were perturbed by the normal distributions defined by their standard deviations in
Table 6-8. For the local runoff, values were sampled directly from the
distributions listed in Table 6-8. The randomly generated input variables were
then combined to produce a total of 2500 estimates of the Niagara River flow at
Buffalo for each month in the period of record, the probability distribution of
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which defined the uncertainty in the Niagara River flow. The results were
checked for convergence by using a subset of 1000, 1500, and 2000 of the 2500
Monte Carlo simulated values, and the results were found to be nearly identical to

those determined from the full dataset.

Table 6-8: Niagara River Monte Carlo analysis input distributions and parameters

Input Month | Distribution | Parameter 1 Value Parameter 2 | Value
thl
N All Normal Mean er:t(i)rrrllateys StDev 3.4
thl
P psore | All Normal Mean emst(i)rlilatgs StDev 2.0
thl
2 — All Normal Mean ;?;at; StDev 7.5
Jan Weibull Shape 1.73 Scale 62.77
Feb Weibull Shape 1.78 Scale 72.80
Mar | Log-Normal | Mean-Log 4.58 StDev-Log | 0.37
Apr Normal Mean 83.81 StDev 28.89
May | Log-Normal | Mean-Log 3.45 StDev-Log | 0.56
R Jun | Log-Normal | Mean-Log 2.1 StDev-Log | 0.75
4 Jul | Log-Normal | Mean-Lo 2.06 StDev-Lo 0.73
8 g
Aug | Log-Normal | Mean-Log 1.9 StDev-Log | 0.82
Sep | Log-Normal | Mean-Log 2.0 StDev-Log 1.05
Oct | Log-Normal | Mean-Log 2.4 StDev-Log 1.06
Nov Weibull Shape 1.35 Scale 42.16
Dec Weibull Shape 1.73 Scale 67.08
thl
Diyn All Normal Mean e:t(i);atgs StDev 10

A summary of the uncertainty analysis results from the FOSM and Monte
Carlo methods for the Niagara River flow are provided in Table 6-9. Of note is
that the two methods gave almost identical results, even despite the fact that the
uncertainty in the local runoff was treated slightly differently in each case. The
reason for this is that the output (in this case, the total Niagara River flow at
Buffalo) is a linear function of the model inputs (i.e. the summation equation). If
a model is highly non-linear, the FOSM method will not accurately represent the
uncertainty in the model output, since only the first-order terms of the Taylor
series expansion are used to represent the model. Including higher-order terms of
the Taylor series expansion can improve this, but would also require additional
and more difficult computations of the higher-order moments of the input error
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distributions. As stated, in the case of the Niagara River flows, inclusion of the
higher-order terms was not necessary, and this is reflected in the similarity
between the FOSM and Monte Carlo method results. Monthly differences in the
uncertainty estimates is partly the result of the difference in the MOM pool flows
during tourist and non-tourist seasons, since the relative uncertainty in the MOM
pool flows is somewhat greater than in the hydropower diversions. The
difference is also partly the result of differences between the local runoff
estimates. Lastly, histograms of the Monte Carlo analysis results for 2008 were
plotted (see Appendix B) and were found to be normally distributed, a result of
the central limit theorem. According to this theorem, the sum of a large number
of statistically independent random variables, such as the inputs to the Niagara
River flow equation, will tend towards a normal distribution, even if the random
variables themselves are not normally distributed, so long as none of them
dominates in terms of magnitude.

Table 6-9: Niagara River FOSM and Monte Carlo analysis results comparison

Mean Uncer}tainty 0 Uncertainty
Month ON@B:J (m’/s) (% of ON@ Buf )

i FOSM MC DIFF. | FOSM | MC DIFF.
Jan 5894 109 110 0 1.86 1.86 0
Feb 5837 110 110 0 1.88 1.88 0
Mar 6037 113 115 -2 1.88 1.91 -0.03
Apr 6264 120 120 0 1.92 1.92 0
May 6445 120 121 -1 1.86 1.87 -0.01
Jun 6361 118 118 0 1.85 1.85 0
Jul 6267 115 115 0 1.83 1.83 0
Aug 6160 113 113 0 1.84 1.84 0
Sep 6033 113 111 1 1.87 1.85 0.02
Oct 5951 111 112 -1 1.87 1.88 -0.01
Nov 5935 108 108 0 1.81 1.81 0
Dec 6013 112 112 0 1.86 1.86 0

6.8 Alternative Niagara River Flow Estimation Methods

The current method of determining the total Niagara River flow involves
the summation of a number of smaller flow estimates. Each of these flow
estimates could be measured using alternative methods or models, and these could
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provide an alternative or supplemental estimate of the different flows used to
compute the summation equation. While it is unclear whether such methods
would provide a more accurate estimate, at the very least they could provide a
check on the existing estimates, and may help identify unaccounted for sources of
error. As an example, a number of the subcomponent flows could be measured
using an Acoustic Velocity Meter (AVM). For instance, as an alternative to
determining the hydropower diversions from the flow through the power plants
and the change in storage upstream, the diversions could be measured directly at
points between the Chippawa Grass Island Pool and the power plants themselves
using acoustic velocity methods. Similarly, the diversion to the NYSBC could
also benefit from the use of acoustic velocity instruments. In fact, in 1989, a trial
attempt was made to measure the NYSBC diversion using an AVM and index- '
velocity relationship in combination with a simple hydrologic model (INC, 1990).
Unfortunately, the results of this trial were quite poor, with the AVM providing
flow estimates that were erratic and generally too high, possibly due to
inexperience with the equipment and a less than ideal location for the instrument
installation. ~ As such, the project was terminated, and no direct field
measurements have been taken since that time. However, given the more modern
instrumentation and software now available, in combination with more
experienced technicians and a better location for the instrument than was used in
1989, it seems likely that acoustic technology could be a useful tool to measure
flow at this location.

The estimation of local inflows could be improved by using estimates
from actual gauged tributary flows extrapolated to ungauged portions of the basin
as opposed to the constant mean values based on historic Grand and Genesee
River flows as is currently used. Though the measured tributary flows are subject
to uncertainty and extrapolation of these to the ungauged areas of the basin adds
additional uncertainty, this method would provide a time varying estimate that
should at least be more representative than the current estimates since the flows
would be based on measurements from the tributaries themselves.

An alternative method for determining the total outflow from Lake Erie
would be to measure it directly at Buffalo using any number of models, such as a
stage-discharge or index velocity relationship, for example. The hydropower
companies currently use a rating equation for their operations, which is based on
water levels measured at one of their own gauges located at Fort Erie. The
NOAA water level gauge at Buffalo, NY, has also been used to establish a stage-
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discharge relationship in the upper Niagara River. This equation is used primarily
for Great Lakes routing model purposes, since the Buffalo gauge, being located
on Lake Erie, allows the Lake Erie outflow through the Niagara River to be
estimated based on the water level of the lake (Quinn and Noorbakhsh, 2001).
The stage-discharge relationship developed from the Buffalo water level gauge
has been found to be sufficiently accurate for many purposes; however, since the
factors affecting water levels can differ between the lake and the connecting
channels, flow in the Niagara River may be better represented by a gauge on the
river itself. Furthermore, the Buffalo stage-discharge relationship is affected by
weeds in the summer months and by ice in the winter months, both of which
retard flow. The average monthly flow retardation at this location was found to
range from 50 to 300 m*/s according to Fan and Fay (2003). Constant monthly
mean flow retardation values are used for Great Lakes routing model purposes,
and in addition to including the effects of ice and weeds, these also account for
the fact that the Buffalo water level does not necessarily represent the mean Lake
Erie water level. Therefore, the Buffalo rating is assumed only reliable for
estimating the actual Lake Erie outflow during the relatively weed and ice free
months of May and November.

Recently, WSC re-established a water level gauge at Fort Erie. This will
be used to establish another stage-discharge relationship in the upper Niagara
River, although it may take several years to obtain a wide enough range of water
levels and flows to properly define the curve. The gauge is expected to be
designated as an International Gauge, which will ensure that agencies from both
Canada and the United States are involved in the development, validation and
review of the flow model used and the resulting flow estimates. The location of
this gauge station is on the river itself, which may allow it to more accurately
reflect the variation in flows occurring in the river than the Buffalo gauge;
however, this relationship may also be affected by weeds and ice, and if this is
determined to be the case, then additional flow measurements during the summer
and winter months and ongoing adjustments to the rating curve may be necessary
(Jeanette Fooks, WSC, personal communication, 13 October, 2010).

Additional methods for estimating flows, such as a stage-fall-discharge
equation, acoustic velocity measurement and index velocity relationships, or
hydrodynamic models, for example, could be used to provide additional estimates
of flow out of Lake Erie through the Niagara River, and these could potentially
increase the accuracy of the total Lake Erie outflow estimates.
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7 Sources and Estimates of Uncertainty
in Welland Canal Flow

7.1 Welland Canal Overview

As stated and shown in equation (14) the total outflow through the
Welland Canal (O,,.) is currently determined by averaging the flow entering the

canal from Lake Erie at the far southern end (WC ) with the flow measured as it
is distributed along the canals’ length (WC ;). Similar to the Niagara River

flows, the total Welland Canal flow is determined by summing a number of
smaller flows that are distributed along different paths (see Section 3.3.3).

There are sources of error in each of the different subcomponents, and the
uncertainty caused by each of these is evaluated in this section. The uncertainty
from each of the different subcomponents is then combined to estimate the
uncertainty in the estimated flow into the Welland Canal, and the uncertainty in
the estimated flow distributed along the length of the Welland Canal. These flow
estimates are also compared, and an assessment of the uncertainty in the total
Welland Canal flow used in Lake Erie NBS computations as estimated from the
average of the two is made.

7.2 Welland Canal Supply Weir Flow

The flow into the Welland Canal is determined from equation (15) as the
flow through the Welland Canal supply weir and the flow through Lock 8, with
the supply weir controlling the total discharge entering the Welland Canal and
making up the greatest proportion of the total flow. The flow through the supply
weir is currently measured using a SonTek Argonaut-SL side-looking ADCP and
an index-velocity rating. Prior to the SonTek installation, a set of two rating
equations relating discharge to head difference above and below the weir and the
weir gate opening was used to measure flow through the supply weir. The choice
of which equation to use depended on the Lake Erie water levels at the time, as
verified by the INBC. The current use of the SonTek is believed to provide a
more accurate estimate of the supply weir flows.
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The SonTek ADCP measures the velocity of a relatively small area of the
channel cross-section. An index-velocity rating is used to relate the measured
velocity to the mean velocity in the channel, which is then multiplied by the
measured channel cross-section area to get discharge. The channel area is
determined from a stage-area rating, which relates measured stage to area of the
cross-section. The Welland Canal stage-area rating was developed in 2004 from
depths obtained from ADCP measurements of the channel flow. Stage is
measured using a pressure transducer located inside a well immediately adjacent
to the SonTek instrument.

The SLSMC owns and operates the equipment, and is responsible for
measuring and providing discharge records to the INC. The INBC supports the
SLSMC and INC in this regard, and is responsible for developing and validating
the supply weir index-velocity and stage-area ratings. To calibrate and validate
the index-velocity rating, gauged discharge measurements are required at a
section near the instrument. For the Welland Canal, gauged discharge
measurements are collected by the INBC using another ADCP, this one mounted
to a tethered boat and operated from a bridge located upstream of the supply weir
and the SonTek horizontal ADCP and related instrumentation. The gauged
discharge measurements are divided by the cross-sectional area of the channel
determined from the stage-area rating to estimate the mean channel velocity. The
mean velocity from each gauged discharge measurement is then related to the
corresponding measured SonTek velocity, and a linear regression relationship is
used to develop the index-velocity rating.

Since the discharge obtained from an index-velocity relationship is
determined as the estimated mean velocity times the measured cross-sectional
area, the uncertainty in the discharge is determined by first estimating the
uncertainty in the velocity and area separately, and then combining the results.
The uncertainty in the mean velocity obtained from the index-velocity rating was
determined using the statistical methods outlined in Section 5. In this case,
instead of discharge, the mean velocity is the dependant variable in the linear
relationship; instead of stage, the measured velocity from the SonTek is the
independent variable. The standard error of estimate was found to be 3.1%.
Depending on the magnitude of the measured velocity the standard error of the
mean relation ranged from 1.0 to 2.1%, and the standard error of the observations
ranged from 3.2 to 3.7%. The minimum relative error values occur near the mean
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measured velocity, whereas the highest errors occur at the extreme maximum and
minimum velocities. A comparison of the Welland Canal supply weir index-
velocity relationship and the ADCP measured velocities are given in Figure 7-1.
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Figure 7-1: Welland Canal supply weir index-velocity rating vs. mean velocities from ADCP
measurements

The uncertainty in the supply weir flows due to error in the mean channel
velocity can be determined from

W(SWye) = A" -u(V)’ (76)

where u(SW,, ) is the uncertainty in the flow through the supply weir; A4, is the
cross-sectional area; and u(}') is the uncertainty in mean channel velocity. Errors

in the measured velocity result from both errors in the index-velocity rating, as
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described above, and errors in the model predictor variable, i.e. the measured
velocity itself. These two sources are assumed uncorrelated and treated
separately. The uncertainty in the supply weir flows due to error in the index-
velocity rating alone can be determined from the standard error of estimate (3.1%)
and by assuming a constant standard error of the mean relation value of 2.0% to
simplify the computations. Assuming an approximate average cross-sectional
area of 200 m” and using a conservative (i.e. high) estimate of the mean velocity
of 2 m/s, the combined standard uncertainty in discharge due to model error
would be approximately 15 m*/s. That is:

u(SW,,.) =\/200z -(2-0.031)> +200% - (2-0.020)* =15 m’/s

Additional uncertainty results from uncertainty in the measured velocity
used to evaluate the index-velocity rating. According to brochures on the SonTek
company website (http://www.sontek.com/), the accuracy of the measured
velocity is 1% plus an additional 0.5 cm/s due to resolution of the instrument. A
confidence level is not stated, but it was assumed that this was the expanded
uncertainty estimated at the 95% confidence level, such that the standard
uncertainty was assumed to be 0.5%. Using the same method as before and the
same assumptions of a 2 m/s average velocity and 200 m” average cross-section
area, the combined standard uncertainty due to the measured velocity was found
to be approximately 2 m*/s. That is:

U(SWyy) =4/200% -(2-0.005)* +200> -0.005% =2 m?/s

The uncertainty in the cross-sectional area of the channel must also be
determined. As explained by Duncker et al. (2006) in regards to the Lake
Michigan Diversion at Chicago, errors in the stage-area rating effectively cancel
out. The reasoning for this is as follows. In developing the index-velocity rating,
the cross-sectional area from the stage-area rating ( 4, ) is first used to determine

the mean velocities (¥ s ) from the gauged discharge measurements (Dt )

using:

I Q augec

V poped = — (77)
AXS
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Subsequently, when determining the modelled supply weir flow from the
index-velocity rating, the mean cross-sectional velocity determined from the

rating (¥ uine ) is multiplied by the cross-sectional area determined from the same

stage-area rating. That is:
SVVWC = I7mu'ng ® A,\'S (78)

Therefore, any errors in A4, effectively cancel out, and as such, only the error in

cross-sectional area resulting from errors in the measured water levels needs
consideration in this analysis.

The SLSMC does not provide an estimate of the accuracy of the water
level gauge at this location. Instead, a conservative standard uncertainty estimate
of +/-1 cm was assumed. The stage-area rating is given as:

A, =138.27+34.35-(h,,, —172.37) (79)

SwW

The area of the cross-section is determined from the measured water level
(A ) and the area below and above the SonTek instrument. The area below the

Sw

SonTek instrument is given as a constant 138.27 m?; the area above is equal to the
measured water level minus the SonTek elevation (172.37 m) times the width of
the channel (34.45 m). Assuming a conservative water level uncertainty estimate
of 1 cm, the uncertainty in the cross-sectional area from the rating, u(4,y), is

equal to 34.35-0.01=0.345 m”. Given that the average velocity in the channel is
less than 2 m/s, it can be shown that the uncertainty in area would correspond to

an uncertainty in discharge of no more than v2?-0.345> =0.7 m’/s. This is a

negligible amount when compared to the uncertainty in the mean velocity, and as
a result uncertainty in the cross-sectional area was considered negligible.

The overall uncertainty in the supply weir flows can therefore be taken as
the uncertainty in the gauged discharge measurements (assumed standard
uncertainty of 2.5%) plus the model uncertainty and the predictor variable
uncertainty due to velocity alone. As was done for the MOM pool flow, all errors
were assumed fully correlated, and therefore not reduced by averaging. Given an
average supply weir discharge of approximately 200 m’/s (as determined from
INC records for the period 1999-2009), the combined standard uncertainty for any
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individual estimate is approximately \/(200-0.025)2+152 +2% =16 m’/s, or

approximately 32 m?/s at a 95% confidence level. This corresponds to a relative
standard uncertainty of 8%, or 16% at the 95% confidence level.

7.3 Uncertainty in Flows into the Welland Canal

Lock 8 is the lock located furthest south and closest to Lake Erie, and flow
through Lock 8 makes up the remainder of the total flow into the Welland Canal.
The flow through Lock 8 is generally much less than that which flows through the
supply weir. For example, a review of data from the SLSMC for the period of
2000-2009 showed that the flow through Lock 8§ made up a maximum of 36% of
the total flow into the Welland Canal for any month (this occurred in March
2007), but on average the flow through Lock 8 makes up much less of the total
Welland Canal flow, being less than 7% for the month of March, and less than 4%
on average for all other months. The higher proportion occurring in March is a
result of the need to flush ice from the lock chamber. Other months at the end of
the navigation season also see a slightly greater proportion of the flow into the
Welland Canal pass through Lock 8 as a result of ice flushing and also due to
larger volumes of shipping occurring just prior to the close of the navigation
season.

The flow through Lock 8 is divided between flow due to lockages and
flow due to hydraulic assists. Flow due to lockages is computed from the number
of lock cycles times the capacity of the lock relative to the head differential. The
lock dimensions are all that are needed, because the water moves from one lock to
the other through the bottom of the lock chamber, and therefore ship displacement
does not need to be considered. The flow due to lockages is normally quite small,
amounting to only approximately 1 m’/s or less in a given month. Hydraulic
assists involve allowing additional water to enter one end of the lock chamber to
assist the ships in exiting the lock. Hydraulic assists are measured by fixed intake
valve opening flow rates multiplied by the time they are open. The flow due to
hydraulic assists is larger than the flow due to lockages at Lock 8, but is also
normally quite small compared to the flow that passes through the supply weir.

Data to compute uncertainty in Lock 8 flows were not available. Given
that the flows are computed primarily from measurements of water levels and the
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uncertainty in Lock 8 flows is greater than the supply weir flows. Therefore, as a
conservative estimate, the total uncertainty in the flow into the Welland Canal
was assumed to be equal to the relative uncertainty computed for the supply weir
flows, which was found in Section 7.2 to be equal to 8%, or 16% at the 95%
confidence level.

7.4 Uncertainty in Flows Distributed Along the Welland Canal

Equation (17) was given in Section 3.3.3 to describe the flow distributed
along the length of the Welland Canal. The information and data available for the
flows distributed along the length of the Welland Canal to the various hydraulic
control structures, intake and discharge facilities, and industrial and municipal
users was insufficient to directly evaluate the uncertainty. Instead, indirect means
and inferences from other analyses were used.

Approximately 6 to 8% of the total flow distributed along the length of the
Welland Canal comes from the Welland River diversion ( D,,,). The uncertainty

of this was estimated to be 10% in Section 6.6.

The OPG diversion to the De Cew power plants ( /,.) makes up by far the

greatest proportion of the total Welland Canal flow at approximately 75-85%.
The diversion is determined in a similar manner as the diversions to the power
plants on the Niagara River, in that the total flow is determined from the flows
through the power plants, which are measured using rating tables that relate water
level head differences and power output to discharge, as well as the measured
change in storage on Lake Gibson and Lake Moodie upstream of the De Cew
power plants. The rating tables are based on performance testing results, but
performance testing has not been conducted at De Cew since at least the early
1980s, and possibly longer than this for some units (Joan Frain, OPG, personal
communication, 20 September, 2010). Given improvements in flow measurement
technology and changes in plant efficiency that may have occurred since the
plants were last rated, it seems that the relative uncertainty in this diversion
estimate should be somewhat greater than the uncertainty in the total Niagara
River hydropower diversion, which was estimated to be approximately 4% at the
95% confidence level in Section 6.3. Therefore, it was assumed that the
uncertainty in the OPG De Cew diversion from the Welland Canal was normally
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distributed, having an uncertainty of 5% at the 95% confidence level, or 2.5%
standard uncertainty.

Depending on the time of year, anywhere from about zero to 5% of the
total Welland Canal flow passes through Lock 7 due to lockages (7). Since
Lock 7 flows require only the measurement of water levels and the lock
dimensions, which are unlikely to be subject to significant errors, the standard
uncertainty in Lock 7 flows is likely small, and was assumed to be 5%. A much
smaller proportion of the Lock 7 flows is assumed to be leakage, and this error
was considered negligible.

Similarly, an additional zero to 4% of the total Welland Canal flow passes
through the weir at Lock 7 (W,,). The flow through the weir at Lock 7 is
measured using a rating table similar to what was used at the supply weir prior to
the installation of the SonTek. The relative standard uncertainty in this flow
estimate is likely to be greater than the Welland Canal supply weir flow estimate
measured using the SonTek, and therefore it was assumed to be 10%.

Another approximately 5 to 6% of the Welland Canal flow passes through
the SLSMC powerhouse at Lock 7 (P,,). The powerhouse flow is measured

using a rating table similar to those used at De Cew and on the Niagara River.
The P, rating tables were recently revised due to the installation of new
equipment. The verification flows were measured using a die dilution method. It
seems reasonable to assume that uncertainty in the powerhouse flows would be

similar to what it is at the hydropower plants at De Cew, i.e. 5% at the 95%
confidence level, or standard uncertainty of 2.5%.

The remaining flows distributed along the length of the Welland Canal,
namely the flow through the second canal supply weir (S#,.) and the sum of the
small industrial and municipal users (ZIM ) is quite small, and uncertainty from

these components was assumed negligible.

If we assume that 80% of the flow passes through the De Cew hydropower
plants, and the remaining 20% is divided evenly between the Welland River
diversion, Lock 7, the weir at Lock 7, and the powerhouse at Lock 7 (i.e. 5% of
the total flow to each), then, assuming that errors in each of the different flow
estimates are uncorrelated, the relative uncertainty in the total flow distributed
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along the length of the Welland Canal can be estimated as approximately 2.1%.
That is:

uWc, ;)

= Ju(Dyp)* +u(Pye)? +u(L7)? +u(W,,)* +u(P,,)*

=/(0.05-0.10)* +(0.8-0.025)* +(0.05-0.05)> +(0.05 -0.10) + (0.05 - 0.025)
=2.1%

This estimate is much less than the estimated standard uncertainty of the
flow into the Welland Canal, which was given as approximately 8%. This is
primarily the result of the large percentage of the total flow that passes through the
De Cew power plants, which is assumed to be relatively accurate.

7.5 Comparison of Flows Into and Distributed Along
Welland Canal

Since the proportion of the total Lake Erie outflow that passes through the
Welland Canal is estimated as the average of the flows into and flows distributed
along the Welland Canal, if the two estimates are assumed to be free from
systematic errors and the errors in the estimates are assumed uncorrelated, the
total uncertainty in the estimated Welland Canal flow can be found from:

(O ) = 0.5 -u(WC,y)? +0.5% -u(WC)p,g,)* (80)

Using the uncertainty estimates determined for WC,, and WC,,, of 8%

and 2.1%, respectively, the total standard uncertainty in the estimated Welland
Canal flow is approximately 4%, or approximately 8% at the 95% confidence
level. What remains to be determined is whether the assumption that neither flow
estimate is subject to systematic errors is indeed correct.

The measured flows into the Welland Canal were compared to the
measured flows distributed along the length of the Welland Canal for the period
April 2005 (when the flows through the supply weir began being measured using
the SonTek ADCP) to April 2010. Five months of data were missing in the
records for the flows into the Welland Canal, likely the result of equipment issues
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or maintenance requirements, resulting in 56 months of data used for this analysis.
Since both WC,, and WC,,,, are believed to be equally valid estimates of the

actual Welland Canal flow, the differences between them provide an additional
estimate of the uncertainty.

A plot of the differences is shown in Figure 7-2. The mean and standard
deviation of the two estimates are provided in Table 7-1. The maximum absolute
difference between the two estimates was found to be 39.7 m’/s. This is larger
than the 95% confidence level estimated for either of the individual flow
estimates individually. However, the root mean squared difference was found to
be 14 m*/s, or approximately 7% of the average Welland Canal flow. Using this
as the standard error, the standard error of the mean of the two estimates is equal

to 14/4/2 =10 m’/s, or approximately 4% of the Welland Canal flow, which is
the same as the estimated uncertainty calculated above and helps confirm the
results.
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Figure 7-2: Difference in Welland Canal flow estimates (Apr. 2005 — Apr. 2010)
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Table 7-1: Comparison of Welland Canal flow estimates (Apr. 2005 - Apr. 2010)

Flow Estimate Mean (m’/s) Standard Deviation (m’/s)
wcC,, 218 41
WE s 77 214 36

7.6 Combined Uncertainty in Welland Canal Flows

The individual uncertainty estimates given for WC,,, and WC, ., of 8%

and 2%, respectively, might suggest that inclusion of the estimated flow into the
Welland Canal increases the level of uncertainty in the total estimated Welland
Canal flow. However, the previous analysis showed that the differences between
the two estimates are greater than the uncertainty of either estimate individually.
It is unclear what causes the differences. For example, it is known that local
inflows along the length of the Welland Canal (from stormwater drainage, for
example) will be accounted for in WC,),,,, but there may also be an unknown

amount of leakage along the length of the canal. There may also be a small time
lag between the flows measured as they enter the Welland Canal, and flows
measured as they are distributed along the Welland Canal’s length. These are just
two examples, but regardless of the many possible causes, their effect on either
flow estimate is unknown. The differences between the two Welland Canal flow
estimates indicate that unknown systematic errors may exist at times.
Furthermore, these errors may not be properly captured in the uncertainty
estimates for the two flow estimates individually. By averaging the two
estimates, the effects of any such errors are reduced. Therefore, unless these
systematic errors can be identified, the two flow estimates should continue to be
averaged to obtain the estimated total Welland Canal flow. From the previous
analysis, a standard uncertainty estimate of 4% was determined to be reasonable
for the estimated Welland Canal flow.

7.7 Alternative Welland Canal Flow Estimation Methods

In addition to the need to reduce errors in either Welland Canal flow
estimate, it is useful to have both estimates available in order to reduce the chance
of having periods of missing data. Recently this has occurred more often with the
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flows into the Welland Canal, due to power interruptions, equipment failures or
maintenance requirements of the supply weir SonTek ADCP. The two flow
estimates also make it possible to make comparisons of flows into and distributed
along the Welland Canal, often allowing potential problems with one or both
datasets to be more easily identified.

Additional flow models could also be used to estimate the flow in the
Welland Canal, and could again provide a check of the current estimates. For
example, a rating equation, such as that which was used in the past, could still be
used today and compared to the index-velocity rating. Furthermore, ADCPs and
index-velocity ratings could be installed at a number of other locations, such as
downstream of Lock 8 and the supply weir to measure the total flow into the
Welland Canal, or at the actual diversion to the OPG De Cew power plants in
order to provide an additional estimate of the true amount of water diverted from
the canal at this location.
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8 Sources and Estimates of Uncertainty
in Detroit River Flow

8.1 Detroit River Overview

The Detroit River flow (/,,,) is determined using a combination of flow

models, including a collection of rating equations and hydrodynamic models of
the Detroit River, as well as using flow estimates determined for the St. Clair
River by adjusting them for the monthly NBS and change in storage of Lake
St. Clair (these adjustments are known as transfer factors). The actual
combination of models used for any given month is complicated, and depends in
part on the time period and conditions at the time of measurement. For example,
only certain stage-fall-discharge equations can be used when ice is present in the
Detroit River. The water resources engineers at the USACE and EC that are
responsible for determining what they believe to be the best monthly flow
estimates also use a considerable amount of judgement based on the data and
information available to them. To simplify the uncertainty analysis for this study,
only the uncertainty in stage-fall-discharge equations derived for both the Detroit
and St. Clair rivers were estimated, as well as the uncertainty in the Lake St. Clair
transfer factors. The overall uncertainty in the monthly Detroit River flows was
inferred from these results.

8.2 Stage-Fall-Discharge Equations

Compared to the Niagara River, the Detroit River has a much more
gradual slope. There is no specific control section in the Detroit River, but rather
the flow is controlled by the characteristics of the entire channel reach. For this
reason, a traditional stage-discharge equation relating water level to flow is
inappropriate, and more complex techniques are required. Stage-fall-discharge
equations are one such method.

Quinn (1979b) derived stage-fall-discharge equations and outlined

methods of calibrating them for the Great Lakes connecting channels. Schmidt
(2009) also examined the form of stage-fall-discharge equations used in the Great
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Lakes. A number of stage-fall-discharge equations have been developed for the
Detroit River using various water level gauges and gauge pairs. Figure 8-1 shows
the location of available water level gauges on the Detroit River. The most recent
equations were developed by the Coordinating Committee (Fay and Noorbakhsh,
2010) from a total of 212 ADCP discharge measurements collected from 1996 to
2006, and concurrent water level measurements collected at gauging stations
along the Detroit River. These equations are given in Table 8-1. It should be
noted that at the time of this research the stage-fall-discharge equations provided
were designated as preliminary and are subject to change. In fact, these caveats
are often applied to the flow equations and flow estimates determined by the
Coordinating Committee, since both the equations and estimates themselves have
been and continue to be revised as additional data and analyses are made
available. Regardless, the equations presented here are the best available at the
time of this research, and they provide a model for estimating the uncertainty in
the Detroit River flows as they are currently computed.

Lake St. Clair
Windmill Point, Michigan
Lé:? <

&
Q
N\ s
3— Fort Wayne, Michigan
o

Michigan

S
&

Q

—

9

Wyandotte, Michigan

S

Ontario

Amherstburg, Ontario

|

0
Gibraltar, Michigan
s Uv

Bar Point, Ontario

Figure 8-1: Detroit River water level gauges
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Table 8-1: Detroit River stage-fall-discharge rating equations

McMaster — Civil Engineering

Eqn | Gauge 1 Gauge 2 Equation
Windmill Fort Wavne
D.1 | Point oy | Q= T181081- Uy —164) -y )
( hwp) FW
Windmill
y Wyandott
D2 | Point {‘:‘ ‘)) * | 0=99.1367 - (hyp —164)™ . (hyp — by )"
( hWP) Wy
Windmill
. Ambherstb
D3| Point (;rs )urg O =51.3625- (hy, —164)>"" (B, — Iy, )"
( hwp) AM
Fort Wayne | Wyandotte
S (hFW) (hwy) Q =60.2808 - (hFW - 164) S (hFW - hWY )02943
Fort Wayne | Amherstburg
Dt (hFW) (hA\I ) Q =23.5558- (hFW - 164) 2 (hFW - hAM )0.2906

The standard error of estimate (s) was calculated for each stage-fall-
discharge equation using the ADCP data and corresponding water levels, and the
statistical methods outlined in Section 5 for linear models having two predictor

variables. The standard error of the mean relation (.sd ()A’O)) and standard error of

observations (sd (}}0) ) were calculated for observed daily water levels at each

obs
gauge pair from 1994 to 2009, and the minimum and maximum of each are given
along with the standard error of estimate in Table 8-2 below.

Table 8-2: Detroit River rating equation standard error estimates (%)

, sd (1) 5d (¥y)
qn. S

Min Mean Max Min Mean Max
D.1 33 0.2 0.4 2.5 3.3 33 4.1
D.2 32 0.2 0.4 2.0 3.2 3.2 3.8
D.3 35 0.2 0.4 2.1 35 35 4.0
D4 4.1 0.3 0.5 2.6 4.1 4.2 4.9
D.5 4.6 0.3 0.5 2.6 4.6 4.6 5:3

The standard errors of the mean relation are greater in this case than those
computed for the MOM pool flows. They also show a greater range, which is the
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result of the second variable in the stage-fall-discharge equation being a measured
fall (i.e. the water level upstream minus the water level downstream), which
varies significantly about the mean, unlike the water levels themselves in the
connecting channels, which have relatively less variability. For example, the
coefficient of variation computed for the difference between water levels
measured at Windmill Point and Fort Wayne during the ADCP gauged discharge
measurements was approximately 15.2%, whereas the coefficient of variation for
the measured water levels themselves at Windmill Point and Fort Wayne were
each approximately 0.2%. For the same reason, the standard error of the
observations also showed a greater range than those seen in the Niagara River. In
determining the actual Detroit River flow, the current practice is to average the
flows determined from the two best flow equations, which are assumed to be
equations D.1 and D.2 based on their estimated standard errors and standard error
of observations; regardless, averaging the flow equations will not reduce the
uncertainty since the equations are likely highly correlated since they are based in
part on the same water levels, and also on the same flows used for calibration. As
proof of this, the standard error of estimate of the two-equation average was
computed separately, and was found to be 3.1%, which is only slightly less than
the standard errors of estimate computed for equations D.1 and D.2 individually.

Similar to the Niagara River MOM pool flow discussions already
presented, in addition to model uncertainty, the uncertainty in Detroit River
discharge resulting from uncertainty in the model’s input variables must also be
considered. In the case of a stage-fall-discharge equation, the model’s input
variables are the two water levels measured upstream and downstream. The
uncertainty in discharge resulting from uncertainty in water levels was assessed
for each equation. In the case of a stage-fall-discharge equation, uncertainty in
water levels affects both the water level and slope portion of the equation. The
Detroit River flows are determined from mean daily water levels rounded to the
centimetre. The daily flows are then averaged for a month to obtain the monthly
mean Detroit River flow used in the Lake Erie NBS computations. The
uncertainty in the measured water levels was assumed to be equal to the
uncertainty due to gauge accuracy, uncertainty due to rounding the daily water
levels to the centimetre, and uncertainty in computing the mean of 24 hourly
water levels. These errors were assumed to be uncorrelated. The error due to
gauge accuracy is likely smaller than 1 cm, and since it can be assumed to be
random, it would be reduced to a negligible level by averaging the 24 hourly
readings. On the other hand, the daily mean water level is rounded to the
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centimetre, not the hourly levels, so this error in the daily means level is not
reduced by averaging, and can be represented by a uniformly distributed
uncertainty estimate of +/- 0.5 cm, which corresponds to a standard uncertainty of

0.5/+/3=0.3 cm. The uncertainty in the computed mean of the 24 hourly levels
was determined for each gauge as the standard deviation of the hourly water
levels, sd,, ,,, divided by the square root of 24 hours in a day. That is:

ifia) = % (81)

The uncertainty in the mean daily water level was computed for each
gauge using equation (81) and hourly water levels from the years 2000 to 2005.
The results are provided in Table 8-3. The results varied by month, with the
largest errors occurring in the fall and winter. It can also be noted that the errors
increase moving downstream, with the largest errors observed at the Amherstburg
gauge, which is likely a reflection of water level variability caused by backwater
effects resulting from the water level of Lake Erie.

Table 8-3: Standard uncertainty in 24-hour mean Detroit River water levels

Standard Uncertainty in Mean Water Level (m)
Month | Windmill Point | Fort Wayne | Wyandotte | Amherstburg
(WIPO) (FOWA) | (WYAN) (AMHE)
1 0.003 0.004 0.006 0.006
2 0.003 0.005 0.006 0.007
3 0.005 0.006 0.007 0.008
4 0.004 0.005 0.006 0.006
5 0.003 0.005 0.005 0.006
6 0.002 0.003 0.003 0.004
7 0.002 0.003 0.003 0.003
8 0.002 0.002 0.003 0.003
9 0.002 0.003 0.004 0.005
10 0.004 0.005 0.007 0.007
11 0.004 0.006 0.007 0.008
12 0.004 0.006 0.008 0.009

The overall uncertainty in the daily flows resulting from all three sources
can be determined by first computing the derivative of each stage-fall-discharge
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equation. An example is provided for equation D.1, where the change in flow
with respect to a change in Windmill Point ( /,,,) water level is:

00  42.802-(hy, —164)"%

- 0.6376
Ohyyp (hyp — by )

+216.89 - (A — 164)"% (hyp = hpy ) (82)

Furthermore, the change in flow with respect to a change in Fort Wayne (4,,,)

water level is:

42.802 - (h,,, —164)"836¢*
aQ = — ( wprP ) (83)

~ 0.6376
OhFW (th’ - hFW )

Based on a review of monthly data from 1960 to 2006, the approximate
average water levels for Windmill Point and Fort Wayne were found to be
approximately 175.10 m and 174.87 m, respectively. Substituting these values
into equations (82) and (83), the rate of change in flow as a result of a change in
Windmill Point water level is approximately 10,030 m®/s per metre, and the rate
of change in flow as a result of a change in Fort Wayne water level is
approximately -9080 m*/s per metre. These are the sensitivity coefficients for the
upstream and downstream water levels, respectively. The sensitivity coefficients
computed for the other equations are given in Table 8-4. Of note is that the
coefficients are nearly equivalent in magnitude, but opposite in sign, a result of
the form of the stage-fall-discharge equations used.

Table 8-4: Detroit River rating equation sensitivity coefficients

Sensitivity Coefficient (m’/s per metre)

Water Level D.1; D.2: D.3: D.4: D.5:
Gauge WIPO- WIPO- WIPO- | FOWA- | FOWA-

FOWA WYAN | AMHE | WYAN | AMHE

Upstream 10049 6955 5926 14200 9212
Gauge

Downstream 29096 -5992 -4852 -13078 7925
Gauge
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The rounding errors affecting each daily water level can be assumed
uncorrelated. However, the errors in the mean 24-hour water levels, as shown in
Table 8-3, affect each gauge and were found to be highly correlated, with
correlation coefficients found to be greater than 0.8 in all cases (Table 8-5). This
is to be expected given that the same factors affecting water level and flow in the
river affect each of the water level gauges. Using the correlation coefficients
given, the combined standard uncertainty in discharge resulting from the
uncertainty in water levels, #(Q), , can be computed from the simplified equation:

2 r 7)
) 80 [0.3 ] 57
— . —_ + h( uls
u (0), (ah““] 100 ¥ hasie)
+ 8_Q ! (ﬂ) +112(Z[1,11/s) (&)
ahd/s B 100
0 0 p B
’ [ahfs J[ﬁj ‘ Ll(hd,u/s ) : u(hd»‘”-") : r(hu/s’hd/s)

where 00Q/06h,, .and 0Q/0h,,, are the sensitivity coefficients computed for the
upstream and downstream water levels, respectively; (0.3/100)° represents the

rounding error; ll(Zu.d/:) and u(haa) are the standard uncertainty in the mean
24-hour (daily) upstream and downstream water levels, respectively; and
r(il,,/s,zd/s) is the correlation coefficient. Using the results in Tables 8-3, 8-4

and 8-5, the uncertainty in discharge due to uncertainty in water levels was
computed and is shown in Table 8-6. These uncertainty estimates are larger than
that estimated to be due to uncertainty in the Ashland Avenue water level
computed for the Niagara River MOM pool flow equation, a result of the greater
uncertainty in the daily mean water levels than the hourly water levels, and
relatively larger uncertainty in computing the difference between water levels
than in computing the water levels individually. The uncertainty values are also
fairly constant, reflecting the fact that the uncertainties in the upstream and
downstream daily mean water levels have the effect of cancelling out to a large
degree due to the correlation between these errors and the positive and negative
sensitivity coefficients computed for the upstream and downstream gauges,
respectively.
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Table 8-5: Detroit River mean daily water level correlation coefficients

Gauge | WIPO | FOWA | WYAN | AMHE
WIPO 1.00 0.90 0.86 0.82
FOWA | 0.90 1.00 0.99 0.97
WYAN | 0.86 0.99 1.00 0.99
AMHE | 0.82 0.97 0.99 1.00

Table 8-6: Detroit River combined standard uncertainty due to uncertainty in
measured water levels

Standard Uncertainty due to Uncertainty in WLs (m’/s)
Month ilo W= D.2: D.3: D.4: D.5:
WIPO- WIPO- WIPO- | FOWA- | FOWA-
FOWA WYAN | AMHE | WYAN AMHE
Jan 44 33 30 58 38
Feb 46 35 32 58 38
Mar 47 36 32 58 38
Apr 45 34 29 57 37
May 44 32 28 57 37
Jun 42 30 26 56 36
Jul 42 30 25 56 36
Aug 42 29 25 56 36
Sep 42 30 27 57 36
Oct 46 35 3| 58 38
Nov 47 36 32 58 39
Dec 48 39 36 59 41

In addition to the uncertainty that results from the water level
measurement errors, the error that results from using daily water levels as
opposed to a shorter time step was also assessed. Hourly water levels are more
representative of the continuous flow fluctuations that occur in the Detroit River.
They are also more representative of the time it takes to conduct a gauged flow
measurement. Since gauged flow measurements are used to calibrate the stage-
fall-discharge equations, it seems logical that the discharge equations developed
from them are more representative of hourly flows than daily flows.
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A comparison was made between monthly flows determined from daily
water levels and those determined from hourly water levels for the 5-year period
of 2000 to 2004. Uncertainty caused by using daily water levels instead of a
shorter time period was found to cause an average bias of approximately 9 m*/s
for equation D.1. That is, on average, the monthly flows determined from
average daily water levels were found to be 9 m?/s greater than those determined
from hourly water levels. The standard deviation of the differences was 4 m’/s.
The results were similar for equation D.2 and for the average of the two
equations, with a bias of approximately 8 m’/s observed, having standard
deviation of 4 m*/s. The cause of these biases is the non-linearity of the stage-fall
discharge model. As a simple example, given a non-linear function y = f(x)

having x to some exponent A, it can be shown that y = » x” is not equivalent to
g p y q

v =(Z x);'. Again, since the gauged flows used to calibrate the model are

collected in a much shorter time period than 24 hours, and usually closer to one
hour, the stage-fall-discharge relationships will be more representative of hourly
flows, and therefore the bias should be regarded as real and should be considered
in addition to the random uncertainty caused by the deviations of the flow
measurements from the model.

Similar to the Niagara River MOM pool flows, the combined uncertainty
in the Detroit River flows estimated from stage-fall-discharge equations can be
estimated using the methods outlined in Section 5.6. To determine the combined
uncertainty, assumptions about whether the different sources of error are
correlated or not need to be made. As stated the errors in the gauged discharge
measurements were assumed to be fully correlated. Furthermore, the uncertainty

in the mean relation (i.e. sd ();())) , was assumed to be a constant value of 1%,

which is a conservative estimate based on the average results shown in Table 8-2.
As was done for the Niagara River MOM pool flow, this value was assumed fully
correlated since the same stage-fall-discharge equations are used for each
measurement. Furthermore, the standard error of estimate, s, was assumed to be
a constant 3.2% for each equation and the average of equations D.1 and D.2.
Assuming this error and the errors in the predictor variables to be fully correlated
gives the maximum standard uncertainty estimates for each equation. As an
example, the uncertainty due to water levels determined from equation D.1 was
found to be a maximum during December when it was found to be 48 m*/s, which
is approximately 1% of the average Detroit River discharge. The combined
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standard uncertainty for this month for equation D.1 would therefore be computed
as:

u(0,,) =(0.025% +0.032% +0.01> +0.01%)*° =4.3%

Alternatively, if the errors are assumed uncorrelated, the minimum
uncertainty estimate is obtained, since random model errors represented by the
standard error of estimate and uncertainties due to model variables are reduced by
averaging. Since daily water levels are used to estimate daily flows, which are
then averaged for the entire month (approximately 30 days), the minimum
uncertainty estimate for the month of December for equation D.1 is 2.8%. That
is:

0.032

V30

1 4001 + Oy —08%

u(0,,) = \/0.0252 +( e

Essentially the random uncertainties in the model and in the predictor
variables cancel out due to the daily measurements being averaged for cach
month. The overall uncertainty is dominated by the uncertainty from the ADCP
measurements used to calibrate the equation. The random component of the
uncertainty in this case (i.e. the combined random model uncertainty and
predictor variable uncertainty) would be less than 1%. Again, it seems unlikely
that there would be so little residual random error in the monthly flow estimates,
although, unlike the Niagara River MOM pool flows, the Detroit River flows are
not managed in any way, and therefore all scatter could be assumed the result of
natural variability. Nonetheless, the estimate for the random component of less
than 1% intuitively seems too small, and calls into question the assumption that
the errors are entirely random and uncorrelated.

The discharge measurements on the Detroit River are not collected
consecutively as at the cableway on the Niagara River: on the Niagara River, the
flow that currently passes over Niagara Falls and through the MOM pool can be
adjusted, whereas on the Detroit River, the flow is relatively steady and
consecutive measurements would give similar flow estimates. Therefore, a
review of consecutive ADCP discharge measurements used to calibrate the
Detroit River equations as was performed for the MOM pool was not possible.
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Instead, the flows estimated from each of the different stage-fall-discharge
rating equations were compared to each other. Since it has been assumed that
errors in the ADCP gauged discharge measurements are fully correlated, they will
affect each rating equation approximately equally, since each equation was
calibrated using the same discharge measurements. Also, any random error in the
ADCP discharge measurements should cancel out due to the large number of
measurements used in the calibration process. Therefore, any differences in flow
estimated from the different rating equations should be entirely the result of errors
in the models and the predictor variables.

Monthly flows were computed from daily water levels for the period of
1994-2009 for each of the five Detroit River rating equations. Flows computed in
the winter months can differ significantly due to ice effects in the Detroit River,
and this is dealt with differently, so only the non-winter months were considered
in this analysis. The average difference and root mean squared deviation found
for each pair of equations was computed for each month of April to November.
The results are given in Tables 8-7 and 8-8, respectively.

Table 8-7: Mean difference in Detroit River flow estimates (1994-2009)

Average Difference (%)

Month | D.1- |D.1-|D.1-|D.1-|D.2-|D2-|D2-|D3-|D3-|D4-
D2 | D3 | D4 | D5 | D3 | D4 | D5 | D4 | D5 | D5

Apr 0.5 L 0.3 09 ( 06 | -03 | 04 | -08 | -02 | 0.6

May 0.4 07 {0204 ]03]|-03]-011]-05]-03] 02

Jun 0.3 0.1 |-02|-051]-011}]-041|-07]-03/|-061]-03

Jul 00 | -04)|-06|-13]-04)|-07]-141]-03/|-09]-07

Aug 02 (-07|-01}-16]-09)|-03]|-18]| 06 |-1.0] -1.6

Sep 00 (-081]-02}|-15|-08]-02]-15] 06 |-07]-13

Oct -03 | -03 | -0.1 | 0.1 00 ] 02 | 04 | 02| 04 | 02

Nov | -03 | 0.3 0.6 19 | 0.7 | 09 | 22 | 0.2 1.5 1.3
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Table 8-8: Root mean squared deviation in Detroit River flow estimates (1994-2009)

Root Mean Square Deviation (%)

Month | D.1- |D.1-|D.1-|D.l-|D2-|D2-|D2-|D3-|D3-|D.I-
D2 | D3 | D4 | D5 | D3 | D4 | D5 | D4 | D5 | D2

Apr 0.8 1.3 1.6 1.8 | 0.7 1.2 1.4 1.4 1.2 0.9

May 0.7 0.8 1.6 1.5 0.4 1.2 1.4 1.3 1.3 0.7

Jun 0.5 0.5 1.4 14 | 04 1.1 1.3 1.1 1.1 0.8

Jul 0.5 0.6 1.3 1.7 | 05 1.1 1.7 | 0.9 13 1.0

Aug 0.6 0.9 1.4 | 2.1 1.0 1.0 | 2.2 1.1 1.3 1.8

Sep 0.6 1.0 1.5 | 20 | 09 1.1 2.0 1.3 1.2 1.6

Oct 0.7 0.8 1.4 1.1 04 | 09 | 09 1.1 0.8 0.9

Nov 0.7 0.7 15 | 22 | 0.8 1.3 24 1.1 1.7 1.4

Table 8-7 shows that the ratings are biased to a certain degree, depending
on the month, with the average differences between ratings being less than 2% in
all cases. Furthermore, there also appears to be a seasonal component to the bias,
with the average differences being positive or negative for consecutive months.
These biases will be partly accounted for by the standard errors of the mean
relation, lending further proof that this component of the uncertainty estimate
should be considered fully correlated. Also, the largest differences involve
equation D.5, which is not normally used in computing the Detroit River flow.
Table 8-8 indicates that the root mean squared difference between ratings is also
normally less than 2%, with only six months having values greater than this, and
all of these involved equation D.5.

If the random component of the uncertainty in the stage-discharge
equations is assumed to be 1% after averaging, the uncertainty in the difference

between equations would be +0.01* +0.01*> =1.4%. This is close to the root
mean squared deviations calculated in Table 8-8, and would seem to support the
assumption that model errors caused by natural variability of the channel flow are
random and uncorrelated, and therefore reduced by averaging over the course of a
month.

However, this assumption also implies that further reduction in error could
be gained by computing the flows on a smaller time-scale, e.g. hourly as opposed
to daily. A similar analysis as that performed on the daily flows was performed
on a shorter period of 5 years of hourly data (2000-2004). The monthly flows
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determined from hourly data for each of the different equations were compared.
The results were fairly similar to the daily analysis. The values of the root mean
squared deviations for the different equations were approximately 1%, and
therefore did not appear to be reduced below the values computed from the daily
water levels and flows. It is possible that on a shorter term basis some of the
errors are correlated: for example, during a wind event on Lake Erie, backwater
effects may cause persistent errors in water levels and flows that would be
correlated such that if the wind event lasted for a sufficiently long period of time,
the errors in discharge estimated from the rating during that period would be
correlated and would not be reduced by averaging.

Nonetheless, overall this analysis indicates that while the error in
discharge may be uncorrelated and reduced in part by averaging flows measured
over a month, it may be unsafe to assume this in all cases. Therefore, for the two-
equation average discharge determined from equations D.1 and D.2, the
maximum standard uncertainty estimate determined for equation D.l1 of
approximately 4.3% was used, which corresponds to approximately 8.6% at the
95% confidence level.

8.3 Flow Transfers

In addition to the Detroit River stage-fall-discharge equations, the total
Detroit River flow is also estimated using the monthly St. Clair River flows
transferred to the Detroit River using what are known as transfer factors (7F).
The transfer factors are determined from the Lake St. Clair water balance, and can
be computed as:

TF =P+R—-E-AS (85)
where P, R and E are the monthly precipitation, runoff and evaporation to Lake
St. Clair, respectively; and AS is the monthly Lake. St. Clair change in storage.
Since P+ R— E = NBS, this equation can also be written as:

TF = NBS - AS (86)

The monthly Detroit River flow (O, ) is then estimated from:
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Opier = Qsc +TF (87)

where Q. is the monthly St. Clair River flow. In order to determine the

uncertainty in this estimate of Detroit River flow, the uncertainty in each
component must be computed.

Similar to the Detroit River, the St. Clair River flows are determined from
a combination of flow models. This includes the use of stage-fall-discharge
equations, which have been developed for a number of gauge pairs on the
St. Clair River. A map of the St. Clair River gauge locations is shown in
Figure 8-2. The most recently coordinated stage-fall-discharge equations were
developed by Fay and Noorbakhsh (2010). There are a total of 18 equations for
the St. Clair River (Table 8-9), with the choice of which to use depending on data
availability and ice conditions in the river. Specifically, for the most recent flow
estimates on the St. Clair River, equations S.1 and S.2 (Group A) were averaged
during ice-free conditions whenever data were available; equations S.3 through
S.10 (Group B) were averaged during ice-free conditions whenever data were
unavailable to compute S.1 or S.2; equations S.11 through S.15 (Group C) were
averaged whenever ice occurred between Algonac and St. Clair State Police
gauges; and equations S.16 through S.18 (Group D) were averaged whenever ice
occurred at or above the St. Clair State Police gauge (Fay and Noorbakhsh, 2010).
Due to the higher velocities in the channel, ice effects do not normally impact
upstream water levels in the St. Clair River, which explains the use of the
upstream water levels only in equations S.11 through S.18.
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Figure 8-2: St. Clair River water level gauges
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Table 8-9: St. Clair River stage-fall-discharge rating equations

Eqn. | Group Gauge 1 Gauge 2 Equation Usage
S.1 Fort Gratiot (4,,;) Port Lambton ( %, ) 0 =497.5476 - (h,, — 167)" 1% (M —hy, Y0302 | Averaged during ice-free

A ) — os1s7 | conditions when data
.9 Fort Gratiot (/,,,) Algonac (A, ) 0 =478.3803-(h, —167) (h,( —Hy ) st avallabile
S.3 Dunn Paper (4,,, ) Port Lambton (4, ) O = 429.7046 - (h,,, —167)'2247 (hyy h”)o.sm
S4 Dunn Paper (4,,,,) Algonac (4, ) 0 =401.7882-(h,, — 167)"**" (h s — B s

29 5
$.5 Mouth Black R. ( 4,5, ) Port Lambton (4, ) 0=392.4165-(h,, —167)'***-(h, . — h,, )7 Averaged during ice-iree
s | Mouth Black R. (A, ) Algonac (h,, ) 0 =367.8937-(h,, —167)"*'*"- (B, 5 —1,)***°* | conditions when data
S.7 Dry Dock ( 4,,, ) Port Lambton ( /,, ) 0 =454.7937 - (h,, —167)'*°%0 -(hy,, h”)°5'48 were unavailable to
2 JorS.2
84 Dry Dock (/,,) Algonac (h,;) 0= 408.6712-(h,, —167)""-(h,, —h,, )= | Popueslord
$.9 Point Edward (4, ) Port Lambton ( 4,,, ) Q0 =334.5477 - (h,, —167)"*%"°- (., — b, )" 3%
S.10 Point Edward (4,,,,) Algonac (4, ) Q: 323.1508 - (h” —167) 3680 (h,/ h” )0 5497
S.11 Fort Gratiot (/) St. Clair St. Police (Ag.,) | O =511.0261-(hy, _167)1 172 (M, = hgep )04557
5.12 Fort Gratiot (/,,;) | St. Clair St. Police (hy.,) | Q=371.8869 - (A, —167)" > - (h,; —hgy )" | Averaged whenever ice
y 3 occurred between

§13 | € Dunn Paper (4, ) St. Clair St. Police (hg.,) | O=292.1239 - (hy, —167)14j95 ( e —Agep )" Ssi Algonac and SL. Clair
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The uncertainty in each of the St. Clair River stage-fall-discharge
equations was determined in a similar manner as was done for the Detroit River,
with ADCP gauged discharge measurements collected from 1996 to 2006 in the
St. Clair River used to evaluate the standard error, and daily water levels from
1994-2009 used to evaluate the standard error of the mean relation and standard
error of observations. The results are given in Table 8-10.

Table 8-10: St. Clair River rating equation standard error estimates (%)

Ean. | Group | s sd(¥,) sd(Fy)

Min | Mean | Max Min | Mean | Max
S.1 A 3.14 0.21 0.42 2.56 3.15 3.18 4.05
8.2 3.63 0.24 0.45 2.17 3.64 3.66 4.23
S.3 3.01 0.20 0.40 2.36 3.01 3.04 3.82
S.4 3.51 0.23 0.44 2.17 3.51 3.54 4.13
S.5 3.13 0.21 0.41 2.39 3.14 3.17 3.94
S.6 B 3.64 0.24 0.45 2.47 3.65 3.68 4.40
8.7 2.92 0.19 0.39 223 2.93 2.95 3.67
S.8 341 0.23 0.44 2.55 3.42 3.44 4.26
S.9 3.59 0.23 0.47 2.76 3.60 3.63 4.53
S.10 3.52 0.23 0.44 2.42 3.53 3.56 4.28
S.11 3.74 0.25 0.53 5.46 3.74 3.80 6.61
S.12 3.74 0.25 0.54 5.81 3.74 3.80 6.91
S.13 c 3.72 0.24 0.52 5.28 3.73 3.78 6.46
S.14 3.84 0.25 0.54 5.60 3.85 3.90 6.79
S.15 4.06 0.26 0.56 5.87 4.07 4.12 7.14
S.16 3.88 0.26 0.52 6.92 3.89 3.94 7.94
S.17 D 3.61 0.24 0.50 6.34 3.62 3.67 7.30
S.18 3.62 0.24 0.51 6.63 3.63 3.68 7.56

A number of important points can be noted. First the standard errors of
estimate (s) were for the most part between approximately 3 and 4%, which is
similar to the Detroit River standard error estimates. Furthermore, the standard

errors of the mean relation (sd(fo)) and standard errors of observations

( Sd (),};) )obs
however, that all of the standard errors tended to be greater for the equations used

) were also of a similar magnitude for all equations. It can be noted,
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only during ice effects (i.e. equations S.11 through S.18), which is the result of
the slope estimate being more uncertain due to the smaller distance between
gauge pairs used in these equations. This is especially true for the maximum
sd ()}0) computed for each equation, which were found to be greater than 7% in

obs

some cases. Nonetheless, overall the differences in the mean sd ()}0) were not

obs
very large, ranging from about 3 to 4%, regardless of the equation used. Also of
note is that those equations using Port Lambton as the downstream gauge (such as
S.1 for example) tended to have smaller error estimates than those using Algonac
(such as S.2 for example). This might be a reflection of backwater effects from
Lake St. Clair and the St. Clair Delta at Algonac. Overall, the results were quite
similar to the Detroit River stage-fall-discharge equations, and a standard
uncertainty estimate of 4.3% was used for the St. Clair River flows for the
remainder of this analysis.

Transfer factors have been computed in the past by Quinn (1976) and
more recently under the auspices of the Coordinating Committee. The more
recent coordinated flow transfer factors are computed using Lake St. Clair
monthly NBS estimates determined from a revised version of the component
method (Rob Caldwell, EC, written communication, 13 August, 2010).
Precipitation has been determined from basin gauge averages or from NOAA
GLERL estimates. Runoff is calculated from Lake St. Clair tributaries in Canada
(Thames River at Thamesville and Sydenham River at Florence) and the United
States (Clinton River at Mt. Clemens), with the runoff from these gauged portions
of the basin extrapolated to the ungauged portion using area ratios. Additionally,
the Rouge River, which is a tributary to the Detroit River, has been included in
some transfer factor computations to account for backwater effects on Lake St.
Clair that affect the recorded change in storage. Evaporation has been computed
using a simplified mass transfer method adapted from Derecki (1976), which
relates lake evaporation to surface water temperature, vapour pressure, and wind
speed.

Alternatively, GLERL component NBS estimates have been used to
compute the transfer factors (Nanette Noorbakhsh, USACE, personal
communication, 6 July, 2010). According to De Marchi et al. (2009), uncertainty
in GLERL component monthly NBS estimates for Lake St. Clair ranges from
approximately -22% to 31% on average at the 95% confidence level, which
corresponds to approximately -30 to 50 m’/s for an average Lake St. Clair NBS
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estimate of approximately 150 m*/s. De Marchi et al. (2009) also identified a bias
of approximately 8.3%, which corresponds to about 12 m?/s, indicating that the
GLERL component NBS may be underestimated. These results are specific to the
GLERL NBS model, and do not necessarily apply to the coordinated transfer
factors described above; however, a comparison of the transfer factors determined
using the GLERL NBS and the NBS used in the coordinated transfer factors for
the period 1987-2005 showed the coordinated values to be 21 m?/s less than the
GLERL values on average, and the root mean squared deviation was calculated as
50 m’/s. Since the uncertainty analysis results presented by De Marchi et al.
(2009) were greater than the GLERL deterministic results, the coordinated values
would appear to be even further underestimated. The sum of the 12 m*/s found by
De Marchi et al. (2009) and the 21 m’/s found by comparing the GLERL and
coordinated transfer factors is approximately 30 m’/s, or 20% of the assumed
average. Furthermore, an uncertainty estimate of 30% at the 95% confidence
level in either NBS estimate used to compute the transfer factors seems like a
reasonable assumption given the results presented.

A full analysis of the uncertainty in Lake St. Clair change in storage was
not performed; however, based on the analysis of uncertainty in Lake Erie change
in storage presented in Section 9, the total standard uncertainty in the monthly
Lake St. Clair change in storage was assumed to be 2 cm, or 4 cm at the 95%
confidence level, which corresponds to about 10 and 20 m?/s, respectively, when
the area of Lake St. Clair and the number of days in a month are included.

Assuming the errors are uncorrelated, the total uncertainty in the Detroit
River flows determined from the St. Clair River flows and the Lake St. Clair
transfer factors can be found from:

uz(QDET):“2(Qsc)+“2(NBSL5C)+”2(ASLSC) (88)

where #(Q,;;) 1s the standard uncertainty in the Detroit River flow estimates;
u(Q.-) 1s the standard uncertainty in the St. Clair River flow estimates;
u(NBS, ) is the standard uncertainty in the Lake St. Clair NBS; and u(AS, )

is the standard uncertainty in the Lake St. Clair change in storage. Given that the
average St. Clair River flow is approximately 5000 m?/s, the value of u(Qye) in

discharge units is approximately 400 m’/s at the 95% confidence level. Even
using conservative estimates of 50 m*/s and 20 m’/s for u(NBS, ) and u(AS;50)
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respectively, does not significantly increase the overall uncertainty in the Detroit
River flows over that of the St. Clair River flow alone. Therefore, it can be
assumed that the uncertainty in the Detroit River flows determined from the
St. Clair River flows and transfer factors is the same as the Detroit River stage-
fall-discharge equation uncertainty estimate of approximately 4.3%. However,
the possible bias caused by underestimating the Lake St. Clair NBS should be
given consideration in comparisons of the different Detroit River flow estimates.

Lastly, a comparison of the different flow estimates for the 1994-2005
period was made. The flows compared were the flows from the Detroit River
stage-fall-discharge equations (D.1 and D.2), and the flows determined from the
coordinated St. Clair River flows plus both the coordinated and GLERL transfer
factors. The root mean squared difference was approximately 2%, which falls
well within the 4.3% uncertainty estimated for each flow estimate individually.
This helps confirm that the uncertainty estimate of 4.3% is adequate, and suggests
that it may in fact be overestimated.

8.4 Additional Sources of Error

The preceding analysis investigated random errors in estimating flows in
the Detroit River stage-fall-discharge equations, as well as the St. Clair River
equations and transfer factors. These errors are those that occur due to natural
variability and random errors in measuring water level and flow. Additional
systematic impacts can cause additional errors, and these are often greater than
the random errors described above.

One s