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Abstract

The Multi Frame Assignment (MFA) tracker solves the data association problem
as a constrained optimization for fusing multiple sets of data to the tracks with an
Interacting Multiple Model (INNM) estimator.

With the rapid development of parallel computing hardware such as GPU (Graph-
ics Processor Unit) in recent years, GPGPU (General-Purpose computation on GPU)
has become an important topic in scientific research applications. However, GPU
might well be seen more as a cooperator than a rival to CPU. Therefore, exploiting
the power of CPU and GPU in solving the MFA tracker algorithm based on CPU-
GPU integrated computing environment is the focus of this thesis.

In this thesis, a parallel MFA algorithm implementation based on CPU-GPU
integrated computing model to optimize performance is presented. The results show
that the algorithm increases the average performance by 10 times compared with the
traditional algorithm. Based on the results and current trends in parallel computing
architecture, it is believed that efficient use of CPU-GPU integrated environment will

become increasingly important to high-performance tracking applications.
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Notation and Abbreviations

Abbreviations
MFA Multi Frame Assignment
GPU Graphical Processing Unit

GPGPU  General Purpose Graphical Processing Unit
GPS Global Position System

CPU Central Procession Unit

ML Maximum Likelihood

MHT Multiple Hypothesis Tracker

VP Vertex Processor
FP Fragment Processor
2D Two Diamension
3D Three Diamension

SIND Single Instruction Multiple Data
MIND Multi Instructions Multiple Data
SPAD Single Program Multiple Data
API Application Protocol Interface

pPC Personal Computer



HCDFG  Hierarchical Control Data Flow Graph
PCI Peripheral Component Interconnect
RAM Random Access Memory

PDF Probability Density Function

PHD Probabilistic Hypothesis Density

RMSE Root Mean Square Error
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Notations

A Area of surveillance region
ci.(z)  Distribution of false alarms
Er Total average received energy
E(.)  Expectations

I Carrier frequency

F(.) Target motion model function

g(.)  Non-linear range measurement function

H, Target present hypothesis
Hy No target present hyvpothesis
H Channel matrix

1,(.)  Modified Bessel function of the second kind

IS Time step

L Likelihood ratio

L Number of targets

L Number of particles per target
AM Number of transmitters

M, Number of Monte Carlo runs

N Nuwmber of receivers
N, Number of particles used in particle filter
N Estimated number of targets

psen  Probability of signal plus noise measrment

PN Probability of noise only measrment



Vi

V mar

‘,Hill.l'

Probability of target survival
Probability of target birth
Probability of target death
Probability of detection
Probability of false alarm
Covariance matrix

Range bin

Received signal

Total number of range bins
Transmitted signal

Sample time

Process noise

Maximum target speed
Minimum target speed
Weight of particle

Additive white Gaussian noise
Target state vector
Estimated target state vector
Complex amplitude measurement
Target scatterer

Rayleigh distribution
Rayleigh parameter
Proportional to

Element of

viil



Contents

Abstract

Acknowledgements

Notation and Abbreviations

1 INTRODUCTION

2 MULTIFRAME ASSIGNMENT TRACKER FOR MULTITARGET

TRACKING
2.1 Target Tracking
2.2 Nlultitarget Tracking
2.2.1  Data association
2.2.2  Filtering Algorithms
2.2.3 Kalman Filter
2.2.4  Extended Kalman Filter
2.3 Multiframe Assignment

2.3.2  2-D Assignment

2.3.1  Overview

X

iii

v



233 S5-D Assignment . ... 17

3 GPGPU PROGRAMMING 18
3.1 What is GPGPU? . . . 0 000, 18

3.2 GPU Architecture . . . . . 0oL 19
321 GPCEPU GaidS & o 0 26 5 5 55 58 8 55 5 5 n a o vom oo m s 21

3.2.2  GPGPU Memory Model . . . . ... .. .. 21

3.3 CUDA Framework . . . .. ... 22
3.3.1  CUDA programming environment . . . . . . . . . . .. . .. 22

3.3.2  Data Parallelism . . . . ... .. .00 24

4 MFA TRACKER IMPLEMENTATION IN CPU-GPU INTEGRATED

ENVIRONMENT 25
4.1 Overview . . ..o 25

4.1.1  Bottleneck of GPU-CPU intergrated computing environment . 28

4.1.2 Parallel task optimization (PTO) algorithm . . . .. . . . .. 31

4.2 Parallelization of MFA Tracker Tasks . . . . . . . .. .. .. .. ... 33
4.2.1  Parallelization of data association task . . . . . . .. . .. .. 34

4.2.2  Parallelization of cost calculation task . . . . . . . ... . .. 35

4.2.3  When to Use the GPU for Data Association? . . . . . .. . . 38

1.2.4  Parallelization of new track initialization task . . . . . . . . 40

4.2.5  When to Use the GPU for Initialization? . . . . . . . . . . .. 41

5 RESULTS AND DISCUSSIONS 47
5.1 Performance Measures . . . . . ... 47
5.2 Simulations . ..o 48



5.3 Results . . .

CONCLUSIONS AND FUTURE WORK

6.1 ConcluSions . . . . v v v i o e e e e e e e e e e e e e e e e e e e e
6.2 Future Work . . . . . . .

X1



List of Figures

2.1 DMultitarget tracking system . . . . . ..o 7
2.2 Well-seperated targets’ validated regions . . . . . . . ... ... ... 8
2.3 Closely-spaced targets’ validated regions . . . . . . . ... ... ... 8
3.1 Programmable graphics pipeline . . . . . . .. ... L L. 19

4.1  Paradigm of task partition in CPU-GPU intergrated environment . . 27

4.2 Data transfer rate from host (CPU) to device (GPU) . . .. . .. .. 29
4.3 Data transfer rate from device (GPU) to host (CPU) . . . .. . . .. 30
4.4 CPU-GPU intergrated computing model. . . . . .. .. .. ... .. 30
4.5 INMM/multiframe shared memory parallelizaion . . . . . . . . . .. .. 34
4.6 Assignment tree for (S+1)—=D ... ... oL 35

4.7 Assignment tree with multiple transmitter-receiver pairs and time steps 41

4.8 Flow chart of MFA tracker . . . . . .. ... ... ... 43

4.9 Flow chart for sequential MFA tracker computation in stand-alone
4 Y T T T T 44

4.10 Flow chart for parallel MFA tracker computation on CPU-GPU inte-

orated enviromment . ... Lo 46
5.1 GPU bandwidth grpah . . . . . . ... oo 49
5.2 Performance comparison graph of GPU vs CPU . . . . . . . . .. .. 49

X1l



5.3 Efficiency of parallel MFA algorithms

xiil



List of Tables

4.1 CPU to GPU Bandwidth Test . . . . . . . . . . . . . . . ... ... 29

Xiv



Chapter 1

INTRODUCTION

In the past three decades tracking has been employed in a wide range of applica-
tions in both military and commercial systems. These applications include Global
Position System (GPS), inertial navigation system, missile gnidance and control, air
traffic control, satellite orbit determination, maritime surveillance, fire control sys-
tem. automobile navigation system and underwater target tracking systems. In each
these cases, the computational requirement varies according to the number of targets
present in the surveillance region.

Graphic Processing Units (GPU) have acquired progranunability for general scien-
tific applications in recent years. When such a generality of the GPU is emphasized. it
is called General Purpose Graphic Processing Units (GPGPU) (J.D. Owens. D. Lue-
bke. and N. Govindaraju, 2007). Dramatic improvements in computing speed have
been made by appropriate use of GPUs in several fields. Hence, in order to enhance
the efficiency of the target tracking algorithm, the advantage of GPU is utilized in
this thesis.

With the current improvements in computer performance, the demand for target
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tracking applications is ever growing. As a result, the processor development endues
in two directions: general-purpose processor and special-purpose processor. One
advantage of modern CPUs has been increased performance according to Moore's Law
based on clock frequency and transistors (M. Ekman, F. Wang, and J. Nilsson, 2005).
Transistors in CPU are not only responsible for the interpretation, implementation
and completion of the various commands and arithmetic logic operation. but also for
the control and coordination of the function of most parts of the computer. However,
Modern Graphics Processor Unit (GPU) is specialized for compute-intensive, highly
parallel computation. GPU has more transistors devoted to data processing rather
than data caching and flow control. In recent years, GPU has seen rapid growth
in performance. which has broken up the Moore's Law (J. Owens, D. Luebke, N.
Govindaraju. M. Harris, J.Kruger, A. Lefohn, and T. Purcel, 2005). Since GPU
has highly-efficient and flexible parallel programmable features, a growing number
of researchers and business organizations have recognized some of the non-graphical
rendering with GPU to implement the calculations, and hence have created a new
field of study: GPGPU (D. Luebke, M. Harris, J. Kruger, T. Purcell, N. Govindaraju,
[. Buck, C. Woolley, and A. Lefohn, 2004), the objective of GPGPU is to use GPU to
implement more extensive scientific computing. GPGPU has been successfully used
in algebra. fluid simulation, database applications, spectrum analysis, and other non-
graphical applications (I. Buck, 2005). Extensive research done in the area indicates
that GPU in solving compute-intensive problems has great advantage compared to
CPU (C. Thompson, S. Hahn. and M. Oskin, 2002). However, due to the high
intensive usage of GPU, it is impossible to complete all computing tasks solely on the

GPU. Many control and serial instructions still need to be completed on the CPU.
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GPU might well be seen more as a cooperator than a rival to CPU. To utilize GPU
for general purpose computations is to exploit the power of CPU and GPU in solving
generic problems based on collaborative and heterogeneous computing environment,
so that it provides a better solution to solve general computing problems. Generally,
traditional parallel task scheduling algorithms are used to schedule task to the first
idle processing unit (C.H. Pin and H.L. Sheng. 2001). However, the differences of the
heterogencous processors in performance and bandwidth should be analyzed. In CPU
and GPU heterogeneous environment, partitioning and scheduling tasks depend on
four characteristics:

e Computing model of task adapted to the CPU or GPU programming model

e Reasonable amount of computing resources

e Task of keeping data within the capacity of GPU memory

e Bottleneck of data transfer efficiency between CPU and GPU

In this thesis. the main focus is on CPU-GPU integrated computing model. which
aims at optimizing the performance of parallel data task scheduling. In terms of
gaining the power of General Purpose Graphical Process Unit (GPGPU) parallel
computing, the Multi Frame Assignment (MFA) tracker algorithm in multiple tar-
get tracking is implemented using NVIDIA GeForce 285GTX and compare with the
traditional data parallel task scheduling algorithm. The results show that the algo-
rithm increased average performance by 10 times faster than the traditional algorithm
implementation on the CPU only environment. On the basis of this result, the conclu-
sion of this thesis can be further extended to the multi-processor CPU collaborative
with GPU for heterogencous computing environment .

The rest of the thesis is organized as follows: The subsequent section provides
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background of MFA Tracker and GPU programming model in order to facilitate and
understanding of this thesis. In Section 2, an explanation of MFA tracker and its
requirement for massive parallel computing requirement is provided, In Section 3, the
background on GPGPU and CUDA framework for data parallelization is given. In
Section 4, the bottleneck of CPU-GPU integrated computing is analyzed. Then the
CPU-GPU integrated computing model and the data parallelization and scheduling
algorithm are also described.  Section 5 presents the experiment results with the
Multi Frame Assignment algorithm, and shows that the performance of traditional
sequential MFA algorithm, which is implemented in a CPU only enviromment, is
better than the data parallelization MFA algorithm, which is implemented in the
CPU-GPU integrated environment. Conclusions and suggestions for future work are

presented in Section 6.



Chapter 2

MULTIFRAME ASSIGNMENT
TRACKER FOR MULTITARGET
TRACKING

2.1 Target Tracking

The process of inferring the value of a quantity of interest from indirect, inaccurate
and uncertain observations is called estimation. The tracking process can be described
as the task of estimating the state of a target at the current time and at any point in
the future. The estimation of the current state of a dynamic system from noisy data
is called filtering and estimating the future state is called prediction (Y. Bar-Shalom,
X. Li and T. Kirubarajan, 2001). In addition to the estimates, the tracking system

should produce some measure of the accuracy of the state estimates.

o
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2.2 Multitarget Tracking

A track is a symbolic representation of a target moving through an area of interest. In
the tracking system, a track is represented by a filter state that gets updated on each
new measurement. Figure 2.1 illustrates the basic elements of a conventional Multiple
Target Tracking (MTT) system. A signal processing unit converts the signals from
the sensor to measurements, which become the input data to the MTT system. The
incoming measurements are used for the track maintenance.

Track maintenance refers to the functions of track initiation, confirmation and
deletion (Y. Bar-Shalom and X. R. Li, 1995). Observations not assigned to existing
tracks can initiate new tentative tracks. A tentative track becomes confirmed when
the number and the quality of the measurements included in that track satisfy the
confirmation criteria. Similarly, a track that is not updated becomes degraded. and
it must be deleted if not updated within some reasonable interval. Gating tests
evaluate which possible measurement-to-track pairings are reasonable and a more
detailed association technique is used to determine final pairings. After the inclusion
of new observations. tracks are predicted ahead to the arrival time for the next set of
observations. Gates are placed around these predicted positions and the processing
cycle repeats.

If the true measurement conditioned on the past is normally (Gaussian) dis-

tributed with its Probability Density Function (PDF), it is given by

P(zk+112k) = N(zk41; Zi41]k, S(k + 1)] (2.1)

where zj.4 is the measurement at time k+1. Zp = [z, 20, ..., 2], Zp01 |k is the predicted

6
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Track
Scan /Process Observation-to-Track Maintenance(Initiation,
Measurements Assaciation Confirmation and
Deletion)
Gating Computation Filtering and Prediction

Figure 2.1: Multitarget tracking system

(mean) measurement at time A + 1 and S(k + 1) is the measurement prediction

covariance. then the true measurement will be in the following region

‘V(l- + J,",) = {Z : [3..2;_.+1|]|']S(A7 & 1)_1[2"‘%}(«%1”\‘] < ",‘} (

[N}
]
N

with the probability determined by the gate threshold ~.

The region defined by (2.2) is called gate or validation region (V) or association re-
gion. The region is also known as the ellipse (or ellipsoid) of probability concentration:
the region of minimum volume that contains a given probability mass. The validation
procedure limits the region in the measurement space where the information proces-
sor looks to find the measurement from the target of interest. Measurements outside
the validation region can be ignored since they are too far from the predicted location
and very unlikely to have originated from the target of interest. It can so happen
that more than one measurement is found in the validation region.

Figures 2.2 and 2.3 illustrate the gating for two well-separated and closely-spaced
targets. respectively. In the Figures 2.1 and 2.2 e indicates the expected measurement
and the x indicates the received measurement (R. Tharmarasa, T. Kirubarajan. M.L.

Hernandez and A. Sinha, 2007).
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Figure 2.2: Well-seperated targets’ validated regions

Figure 2.3: Closely-spaced targets’ validated regions



MLA.Sc. Thesis - K. Herathkumar McMaster - Electrical Engineering

Any measurement falling inside the validation region is called a validated mea-
surement. In Figure 2.3: Validation regions of two closely spaced targets and the
measurements inside those validation regions are shown (Y. Bar-Shalom and X. R.
Li. 1995). More than one measurement is validated in Figure 2.2: there is an asso-
ciation uncertainty. That is, there is ambiguity as to which, if any. of the validated
neasurements is target originated, assuming that at most one measurements is target
generated.

In tracking multiple targets, the basic idea is the same as in single target tracking
provided that the targets are well-separated (Figure 2.2). However, if the targets are
closely spaced. which causes the corresponding validation regions to overlap (Figure
2.3). the validation region for a particular target may also contain detections from
nearby targets as well as clutter detections. Hence, there is a need for a data associa-
tion technique in order to resolve the measurement origin uncertainty. In this thesis.
in order to simplify the analysis, it is assumed that the targets are well-separated so

that no measurement-origin uncertainty with respect to the targets.

2.2.1 Data association

Data Association is an algorithmn designed to handle measurement origin uncertainty
by determining which track a measurement should belong to. It is also called mea-
surement to track association . Several methods have been discussed in the literature
with the issue of target initiation. existing target update and track termination (Y.
Bar-Shalom. X. Li and T. Kirubarajan, 2001). Among the strategies available to

solve data association problems. Multiple Hypothesis Tracker (MHT) attempts to
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keep track of all possible association hypotheses over time. MHT can be computa-
tionally complex as the number of association hypotheses grows exponentially over
time. The nearest neighbor method associates each target with the closest measure-
ment in the target space. This procedure has the shortcoming of pruning away many
feasible hypotheses. A more appealing Joint Probabilistic Data Association Filter
(JPDAF) uses a gating procedure to prune away infeasible hypotheses.

The problem of tracking multiple targets in clutter considers the situation where
there are possibly several measurements in the validation region of each target. The
set of validated measurements consists of:

e the correct measurement (if detected and falls within the gate)

e the nndesired measurements: false alarms

Then the problem of data association is that of associating the measurements in
cach validation region with the corresponding track (target). The simplest possible
approach Nearest Neighbor (NN), is to use the measurement nearest to the pre-
dicted measurement as if it were the correct one. An alternative approach, Strongest
Neighbor (SN). is to select the strongest measurement among the validated ones (Y.
Bar-Shalom, X. Li and T. Kirubarajan, 2001).

Since any of the validated measurements could have originated from the target.
this snggests that all the measurements from the validation region should be used
in some fashion. A Bayesian approach. called Probabilistic Data Association (PDA),
associates probabilistically all the neighbors to the target of interest (Y. Bar-Shalom,
X. Li and T. Kirubarajan, 2001). This is the standard technique used for data
association in conjunction with the Kalman filter or the extended Kalman filter.

The Kalman filter can be applied only if the models are linear and measurement and

10
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process noises are independent and white Gaussian (Y. Bar-Shalom, T. Kirubarajan

and C.Gokberk. 2005).

2.2.2 Filtering Algorithms

In order to analyze and make inferences about a dynamic system, at least two models
are required: first, a model describing the evolution of the state with time (the
system model). second. a model relating the noisy measurements to the state (the

measurement model).

g1 = fr(op) +mp (2.3)

2 = /lk(.‘l’/,-) + Wy, (24)

where . is the state of the target and z. is the measurement vector at revisit time k. It
is assumed that these models arve available. The probabilistic state-space formulation
and the requirement for the update of information on receipt of new measurements are
ideally suited for the Bayesian approach. This provides a rigorous general framework
for dvnamic state estimation problems.

In the Bayesian approach to dynamic state estimation, one attempts to construct
the posterior probability density function of the state based on all available infor-
mation. including the set of received measurements. Since this PDF contains all
available statistical information. it can be considered to be the complete solution to
the estimation problem. In principle, an optimal estimate of the state may be ob-

tained from the PDF. A recursive filtering approach means that the received data can
o

11



M.A.Sc. Thesis - K. Herathkumar McMaster - Electrical Engineering

be processed sequentially rather than as a batch so that it is not necessary to store
the complete data set nor to reprocess existing data if a new measurement becomes
available. Such a filter consists of essentially two stages: prediction and update. The
prediction stage uses the system model to predict the state PDF forward from one
revisit time to the next. Since the state is usually subject to unknown disturbances,
prediction generally translates, deforms and spreads the state PDF.

Suppose that the required PDF p(4]Z)) at revisit time A is available, where
Zi = [z1. 29, ... 2¢]. The prediction stage involves using the system model (2.3) to

obtain the prior PDF of the state at time & + 1 and is given by

8]
ot
~

play +112Z;) = / Pl o) p(ag]| Zy ) dak (

The update operation uses the latest measurement to modify the prediction PDF.
At revisit time A, a measurement z;, becomes available and will be used to update the

prior via Baye's rule:

P | TP (Ta1]Z)
plzr1|Zk)

P(Xsr1]| Zir) = (2.6)

In the above, the likelihood function p(zp.q|erer) is defined by the measurement
model (2.4).

The above recursive propagation of the posterior density is only a conceptual
solution in that. in general, it cannot be determined analytically. Solutions do exist

but in a restrictive set of cases.

12
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2.2.3 Kalman Filter

The Kalman filter assumes that the state and measurement models are linear and
the initial state error and all the noises entering the system are Gaussian and, hence,
parameterized by a mean and covariance (M. S. Arulampalam, S. Maskell, N. Gordon
and T. Clapp. 2002). Under the above assumptions, if p(zx|Z;) is Gaussian, it can
be proved that p(wg1|Zre1) is also Gaussian.

Then. the state and measurement equations are given by

rpe1 = Frap +ng (27)

Zp = H[‘..'l']\. -+ Wi (28)

It Fj. and H) are known matrices, vy ~ N(0,T;) and w; ~ (0.%,). the Kalman
filter algorithm can then be viewed as the following recursive relationship (M. S.

Arulampalam, S. Maskell. N. Gordon and T. Clapp. 2002).

plap|Zy) = N(ap;mglk, Plk) (2.9)
['(-"L‘+1 IZL) — ‘\'Y(;T;H_JZ Mgy |]1 PI\*III‘) (210)
]l(.l'k+1 |ZL) = -\"(«I'I;Tl: Ny 4 IA PL.+1 l/\) (211)
where
my1 |k = Frpomglk (2.12)

13
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Pegilk = Tp+4 Fppr PelkFip T (2.13)
M|k +1 = mygq|k + K1 (zre1 — Heeomgee [k) (2.14)
Pipilk+1 = Pelk — Ky Higr P |k (2.15)
with
Skt = HiprPepa|kHen" + Siga (2.16)
Kivi = Pealkl, S 1o (2.17)

In the above. N(xr:m. P) is a Gaussian density with argument z. mean m and
covariance 2.

This is the optimal solution to the tracking problem if the above assumptions
hold. The implication is that no algorithin can perform better than a Kalman filter
in this linear Gaussian environment.

In many situations of interest the assumptions made above do not hold. Hence the

Kalman filter cannot be used as described above, and approximations are necessary.

2.2.4 Extended Kalman Filter

If the functions in the (2.3) and (2.4) are nonlinear, then a local linearization of the
equations may be a sufficient description of the nonlinearity. Local linearization of
the above functions are

dfy ()

Fo= 1 (2.18)
dx

14
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g, = Hulz) (2.19)
dx

The Extended Kalman Filter (EKF) is based on that p(x)|Z;) is approximated
by a Gaussian. Then all the equations of the Kalman filter can be used with this
approximation and the linearized functions (M. S. Arulampalam, S. Maskell, N.
Gordon and T. Clapp, 2002).

If the true density is substantially non-Gaussian, then a Gaussian can never de-
scribe it well. In such cases, particle filters will vield an improvement in performance

in comparison to the EKF.

2.3 Multiframe Assignment

2.3.1 Overview

The Multi Frame Assignment (MFA) algorithm associates the latest S — 1 scans of
measurements (frames) to the tracks, i.e., when the frame at scan A is received, the
association is performed between the track list at scan k& — S + 1 and measurements
at scans (h — S+ )7, The MFA is often implemented as a sliding window (Y. Bar-
Shalom. T. Kirubarajan and C.Gokberk, 2005). After performing the association at
kth scan. tracks are updated only with the measurements from the (k — S+ 2)th
scan. When the next frame at scan b+ 1 is received, the window is advanced to cover
the frames at scans (k— S +s)774 and association is performed between these frames
and the tracks at (£ — .5 4+ 2).

Observe that at scan A the MFA assignment algorithm makes a hard decision to

only a single frame of data. i.e. after the association at scan A the tracks are updated

15



M.A.Sc. Thesis - K. Herathkumar McMaster - Electrical Engineering

with only the frame at scan £ —S+2. The association between the tracks at £ —S+1
and the rest of the frames is only tentative (i.e., soft decisions), and can be changed
in the subsequent processing in light of the new measurements. This soft decision
capability gives the MFA advantage over the 2-D assignment. where the tracks are
associated and updated with the latest frame. The price paid for this advantage is
the delayed decision making and increased computational cost (R. Tharmarasa, S.
Sutharsan and T. Kirubarajan, 2009).

The MFA algorithm formulates the data association as a constrained global opti-
mization problem. The objective is to minimize the total assignment cost of associat-
ing sequences of measurements to tracks. The minimization of total assignment cost
of associating the measurements to the tracks is gained by parallelizing the MFA al-
gorithm in multilevel. and implementation of MFA algorithm in the General Purpose

Graphical Processing Unit (GPGPU).

2.3.2 2-D Assignment

The data association yields decisions as to which of the received measurements should
be used to update each track. In assignment, the data association is formulated as
a constrained optimization problem, where the cost function to be minimized is a
combined negative Log-Likelihood Ratio (LLR) evaluated using the results from the
state estimator.

The assignment between the list of tracks and the latest list (scan/frame) of mea-
surements is formulated as a discrete optimization (matching) problem to maximize a
dimensionless global likelihood ratio of the measurements-to-tracks assignment. The

likelihoods are obtained from the state estimator such as the Kalman filter or the

16
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Interacting Multiple Model (IMM) estimator (Y. Bar-Shalom and X. R. Li, 1995), for
the target kinematic state and the classifier outputs for the target types.

In 2-D assignment the measurements from the scan list M (k) are matched (or
deemed to have come from) the tracks in list T(k — 1) by formulating the matching
as a constrained global optimization problem. The optimization is carried out to

minimize the cost of associating (or not associating) the measurements to tracks.

2.3.3 S-D Assignment

In 2-D assignment only the latest scan is used and information about target evolution
through multiple scans is lost. Also it is not possible to change an association later
in light of subsequent measurements. A data association algorithm may perform
better when a number of past scans are used. This corresponds to multidimensional
assignient for data association.

In S-D assignment. which is the optimization-based Multiple Hypothesis Tracking
(MHT) with a sliding window the latest S — 1 scans of measurements are associated
with the established track list (from time & — .S+ 1. where £ is the current time, i.e.,

with a sliding window of time depth S — 1) in order to update the tracks.



Chapter 3

GPGPU PROGRAMMING

3.1 What is GPGPU?

A recent trend in computer architecture is the move from traditional, single-core
processors to multi-core processors and further to many-core or massively multi-core
processors. This is primarily due to the difficulties in making individual processors
faster. while it is possible to provide more processing power by putting more cores
onto a single die. The result of this trend is that computational problems which can
take advantage of multiple threads can see significant linear speedup with the number
of cores available (Oxford University, 2010).

Since GPUs have been independently developed to perform data-parallel com-
putation using multiple cores, the scientific computing community is keen to take
advantage of this technology by performing some computation on GPUs that has tra-
ditionally been done on CPUs. This is referred to as General-Purpose computation

on GPUs (GPGPU) (F. Wu, M. Cabral and J.Brazelton, 2010).
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3.2 GPU Architecture

From a traditional standpoint of graphics processing. GPU is designed to process
graphics made up of geometric primitives such as points, line, and triangles. Modern
graphics pipeline shown in Figure 3.1 is mainly composed of Vertex Processor (VP),

Rasterizer and Fragment Processor (FP).

Texture

LN

Vertex Data Vertex Processor Rasterizer

I J>

Frame Buffer
\!— Processor

/L Fragment g —
s

v

Figure 3.1: Programmable graphics pipeline
(=) (=) O

GPUs operate according to the standardized graphics pipeline (see Figure 3.1),
which is implemented at hardware level (C. Thompson, S. Hahn, and M. Oskin.
2002). This pipeline, which defines how the graphics should be processed, is highly
optimized for the typical graphics application, i.e., displaying 3D objects.

The vertex processor receives vertices, i.e.. corners of the geometrical objects to
display. and transform and project them to determine how the objects should be
shown on the screen. All vertices are processed independently and as much in parallel
as there are pipelines available. In the rasterizer it is determined what fragments, or

potential pixels. the geometrical shapes may result in, and the fragments are passed
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on to the fragment processor. The fragments are then processed independently and
as much in parallel as there are pipelines available, and the resulting color of the
pixels is stored in the frame buffer before being shown on the screen.

At the hardware level the graphics pipeline is implemented using a number of
processors, cach having multiple pipelines performing the same instruction on different
data. That is, GPUs are Single-Instruction, Multiple-Data (SIMD) processors, and
cach processing pipeline can be thought of as a parallel sub-processor.

From an alternative point of view, GPU can be seen as a streaming processor
containing arrays of VPs and FPs operating in parallel (NVIDIA Corporation, 2010).
When the programmer specifies a shader program which is called kernel and a data
stream, GPU maps this data onto the available processors to compute the result. Cur-
rent GPU has Multiple-Instruction. Multiple-Data (MIMD) VPs and Single-Program,
Multiple-Data (SPMD) FPs. GPU execute batches of fragment threads in SIMD ex-
ecution style (one thread per pixel). Both VPs and FPs are highly computationally
capable (1. Buck, 2005).

Much research on GPGPU has been presented. GPU is a large amount of pro-
erammable floating-point horsepower that can be exploited for compute-intensive
applications completely unrelated to graphics processing. But GPU is hardly a com-
putational panacea. Its arithmetic power results from a highly specialized architec-
ture (C. Thompson, S. Hahm, and M. Oskin, 2002). Today. with the rapid devel-
opment of GPU, many programming challenges and limitations of architecture have
been solved by hardware design and programming techniques. A new issue associated
with the usage of GPU for general-purpose computation is how to integrate with CPU

to achieve better performance.
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3.2.1 GPGPU cards

GPGPU cards provide an abundance of computational cores (240 on a Nvidia GTX
280) associated with a limited amount of memory and memory bandwidth. Each
core can compute three single precision floating point operations per clock for a total
maximum performance of 10? floating point operation per second (TFLOPS). This
is roughly 20 times more computational power than an Intel i7 CPU. Each GPGPU
card can have from 512MB to 4GB of memory with a bandwidth of 140GB/sec. The
bandwidth available per core is 140(GB/sec) / 240 cores = 0.58GB/sec/core. An
iCore7 CPU can access up to 64 (GB/sec) / 8 cores = 8GB/sec/core. Each GPGPU
core has access to 13.8 less data per second than an Intel i7 CPU (NVIDIA Corpora-
tion. 2010). For this reason, algorithms that are more computationally intensive than
memory intensive are particularly suited for GPGPU cards. It is important to note
that. in this thesis, MFA algorithins is a memory intensive algorithm due to the high
capacity of data involved. So that MFA algorithm is rewritten to minimize memory

transfer and maximize computational loads.

3.2.2 GPGPU Memory Model

GPGPU cards have six different types of memory. each with its own characteristics:
global (large. read/write. no cached. slow). texture (large. only read. cached). con-
stant (small. only read. cached). registry (small, read/write, fast), local (like global),
and shared (small, read/write. fast, temporary). Shared memory and registry are em-
ploved at runtime to store the temporary information for threads (N. Govindaraju,

S. Larsen.J. Gray and D. Manocha . 2007).
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3.3 CUDA Framework

3.3.1 CUDA programming environment

High-level programming languages are prepared for parallel programming in GPU.
In the case of NVIDIA's GPU products, C-like language called CUDA is prepared.
CUDA employs a programming model called single program multiple data stream
(SPMD). This is a direct reflection of the limitation such that a warp has to execute
a single operation. A sample pseudo code is given below. In this pseudo code. the be-
havior of threads in GPU ave defined. First. data used in GPU code is transferred by
call cudaMemepy (). Then copies of kernal foo() are spawned by a special calling syn-
tax foo<<<...>>>(), where the number of copies is specified in the bracket. While
GPU works, CPU does some computation or simply waits by calling cudaStream-
Synchronize(). Finally. the host PC brings back the result of GPU’s computation by
calling again cudaMemepy().

Threads are grouped into a block and blocks are further grouped into a grid. A
rough image of task distribution is the following: a block is assigned to a multiproces-
sor, it is divided into warps, and then warp is processed by thread processors. Here,
note that threads in a block are guaranteed to be executed synchronously, whereas
blocks are not. If one has to synchronize among blocks after some task, they should
prepare a GPU code that ends at the task and a CPU code that waits all tasks of all

blocks. by calling cudaThreadsSynchronize().

(8]
o
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//GPU(device) code
float (xg)[N];
_global_ void foo(){
// who am i?
int tid=blockDim.x * blockIdx.x + threadldx.x;
int Nthreads=blockDim.x * gridDim.x;
assert(Nthreads==N) ;
// do my own task
for(i=0; i < M; i++ ){
glil [tid]l=g[i] [tid] + ...;
// do special task, if I am a special thread
if (tid==0){...}
}
//CPU(host machine) code
float c[M][N];
int main(int argc, charx* argv){
cudaMalloc (&g, sizeof (float)*N*M);
cudaMemcpy (g, c,sizeof (float)*N*M, cudaMemcpyHostToDevice);
nblocks = N*M/32;
nthreads=32;
foo<<<nblocks, nthreads>>>();
cudaStreamSynchronize (0) ;

cudaMemcpy (c,g,sizeof (float)*N*M, cudaMemcpyDeviceToHost);

)
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3.3.2 Data Parallelism

A data-parallel computation is where computation has been parallelized by distribut-
ing the data amongst computing nodes. It can be contrasted with a task-parallel
computation, in which the distribution of computing tasks is emphasized as opposed
to the data. One framework that is used to accomplish data-parallelism is Single
Instruction. Multiple Data (SIMD), in which multiple processors execute the same
instructions on different pieces of data. This is the architecture used in GPUs, since
it allows How control computation to be shared amongst processors and thus allows
more of the hardware to be devoted to instruction execution.

Not all computation must be completely parallelizable. Although typically every
thread will run identical functions, the functions themselves can condition on thread
identifiers and data so that different instructions are executed in some threads. How-
ever, in SIMD architectures this leads to a performance hit since computation only
occurs in parallel when the same instructions are being performed (J. Owens, D.

Luebke, N. Govindaraju. M. Harris, J.Kruger, A. Lefohm, and T. Purcel, 2005).
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Chapter 4

MFA TRACKER
IMPLEMENTATION IN
CPU-GPU INTEGRATED
ENVIRONMENT

4.1 Overview

To implement MFA algorithm based on CPU-GPU integrated computation, tasks
partition can be divided into two categories: computing tasks and communicating
tasks.

e Computing tasks run in CPU or GPU whereby several instructions act on data.

and then retrieve computing results.
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e Communicating tasks are responsible for controling the data input and output
of computing tasks.

MFA Algorithm can be divided into multiple sub-tasks, and these sub-tasks are
implemented through a certain processing flow. The structure of sub-tasks consists
of data and operation. Therefore, sub-tasks are mapped to CPU implementation
or GPU implementation by scheduling sub-tasks to different hardware. Hierarchical
Control Data Flow Graph [HCDFG| can be used to describe computing model of
GPU-CPU heterogeneous environment. HCDFG allows nesting of the traditional
data flow hierarchically (K. N. Levitt and W. T. Kautz, 1972). Especially. it is
not only a good description of multi-tasks in an algorithm, but can also optimize
performance of scheduling fine-grained sub-tasks between CPU and GPU. As shown
in Figure 4.1, and computing tasks are operating nodes, and communicating tasks
are transmitting nodes, and edges between nodes describe direction of data flow (L.
Wang, Y.Z Huang. X. Chen, and C.Y. Zhang, 2008).

In order to exploit task parallelism on coarse grain decomposition, MFA algorithm
can be divided into many sections, e.g., segments S1 to S6. Therefore. implementation
of each segment is mapped to CPU or GPU.

For simplicity. the case of one CPU and one GPU is evaluated. The execution time
Tior is defined in (4.1). The execution time of CPU is denoted as T,,,. the execution
time of GPU as T},,. and the communication time between CPU and GPU as T,,,,.

Then

I‘l‘o! - I']m + 7_;]]1!1 I T‘(*om (41)

From (4.1) (L. Wang. Y.Z Huang. X. Chen, and C.Y. Zhang, 2008). the following
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essential characteristics are identified and associated with how to minimize T}, to
achieve maximized performance while we are implementing the MFA algorithm in
CPU-GPU integrated environment:

e Communication time between CPU and GPU, which might be a bottleneck of
CPU-GPU integrated computing environment.

e The paradigm of mapping sub-tasks of MFA tracker to CPU implementation or

GPU implementation by scheduling sub-tasks to different hardware.

A ™.
: y Task 1
( (SD CPU
\\\v‘\ 7
Pl
/ Task 2
'\ 82) GPU
\\ \‘___’,/
\\\_ e
e ™~
4 ’
N Task 3
CPU
N

Figure 4.1: Paradigm of task partition in CPU-GPU intergrated environment
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4.1.1 Bottleneck of GPU-CPU intergrated computing envi-

ronment

From the implementation point of view of the CPU-GPU integration, CPU is consid-
ered as a host processor that can both distribute tasks and execute tasks, while GPU
can only execute tasks (NVIDIA Corporation, 2010). In order to analyze the per-
formance bottlenecks of CPU-GPU integrated computing, the data communication
speed of upload-bandwidth (transfer results of GPU to CPU memory) and download-
bandwidth (transfer data of CPU to GPU memory) are examined to investigate the
data transfers performance and data communication bottleneck in the CPU-GPU
integrated computing environment while we implement such MFA algorithm with
massive amount of data processing.

In order to experiment the data upload and download speed between host (CPU)
and device (GPU), massive amounts of data from target measurement sets are gener-
ated and used for analyzing the data communication bottleneck. The large capacity
of target measurement sets with different capacity of data transferred from CPU to
GPU as well as GPU to CPU. The time taken for the data transfer from CPU to
GPU as well as GPU to CPU is calculated. Table 4.1 shows the data obtained from
this bandwidth test experiment. Two different graphs Figure 4.2 and Figure 4.3 are
plotted using the Table 4.1.

As shown in Figure 4.2 and Figure 4.3, experiment results of bandwidth are much
lower than the theoretical bandwidth of PCI-Express 16x (4GB/s). Therefore, data
transfers efficiency between CPU and GPU is a bottleneck and it is more of a bot-
tleneck than the hardwares capacity for computation in CPU-GPU integrated envi-

ronment. For the purpose of finding the data commmunication bottleneck experiments

O
(09}
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Table 4.1: CPU to GPU Bandwidth Test

Dataset(MB) | Upload Speed(Mb/s) | Download Speed(Mb/s)
1.08 275.71 1220.58
2.16 346.08 2020.78
3.24 661.67 2720.58
3.84 768.97 3181.62
4.44 754.88 2150.23
5.04 721.89 2380.83
5.64 987.26 2348.13
6.24 930.4 2440.44
Bandwidth Test - Host to Device
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Figure 4.2: Data transfer rate from host (CPU) to device (GPU)
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Bandwidth Test - Device to Host
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Figure 4.4: CPU-GPU intergrated computing model.
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presented in this work, NVIDIA GeForce 285GTX as graphics card (GPU Device)
is used. This card has 240 graphics processors clocked at 1476MHz, 1GB GDDR3
video memory clocked at 1242MHz and the data transfers between CPU and GPU
device occur through the PCI-Express 16x interface, which is the connecting bridge
in the PC and the host (CPU) and device (GPU) as shown in the Figure 4.4. This
processor includes 5 VPs and 12 FPs. As for the computer systems, Intel Pentium D

820 based system with 2GB RAM hardware specification has been used.

4.1.2 Parallel task optimization (PTO) algorithm

Parallel task optimizing algorithm of CPU-GPU integrated environment indicates
relationship among computing capability of processor. communicating cost. and size
of data sets. At first, in this work, three assumptions are made as the basis of parallel
task optimization of parallel processing in CPU-GPU integrated environment, and
then an algorithm (L. Wang, Y.Z Huang, X. Chen, and C.Y. Zhang. 2008) is given
in this section later.

The computing capability of processor is denoted as F,,,, communicating or data
transferring cost of GPU (communication or data transferring between host CPU and
device GPU as T'ry,,, communicating cost of CPU (communication between host CPU
and main memory) as Tr.,,. size of data sets as d. the following four mathematical
assmptions are made in order to optimize the time taken for the data communication
between the host CPU and the device GPU (L. Wang, Y.Z Huang, X. Chen, and

C.Y. Zhang. 2008):
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([ x T"_(”)u (—1 2)
d o< Trep (4.3)

NP) | BTres AT R
- 4.4
Ad A S T Ad (4-4)
l e A=
T’(:pu < T’g])u (40)

As far as the above mentioned assumptions are considered, there are two major
characteristics. First, when the size of data sets changes. the communication or data
transferring cost will be considered as a major factor of performance. Second, the
GPU and CPU both have independent local memory. Communication can be divided
into three parts: communication between GPU and video memory, CPU and main
memory. and interface between CPU and GPU. As described in Section 4.1.1. data
transfers efficiency between CPU and GPU is a bottleneck. Therefore, communication
cost between host (CPU) and device (GPU) is far more important than other costs (L.
Wang, Y.Z Huang, X. Chen, and C.Y. Zhang, 2008).

On the basis of the concept mentioned above, an optimization algorithm is devel-
oped for parallel task optimization which is implemented in MFA tracker algorithm of
parallel data processing in CPU-GPU integrated environment.The parallel task opti-
mization (PTO) steps are follows (L. Wang. Y.Z Huang. X. Chen, and C.Y. Zhang,
2008):

Step 1: If the time taken to the traffic or communication time 77 is ignored. the
executed time of GPU and CPU could be measured separately, which is Typu(P;) and

1., (F;) under some calculational measures by analyzing the different measures of the
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task. Supposing Ty, (F;) < Tepu(F) is right when 7 is located in the interval of [m, n],
GPU will execute this task, otherwise CPU will do.

Step 2: By analyzing the different calculational measures of Pi and corresponding
traffic T'r; of the task, under some calculational measures, the executed time of GPU
and CPU is obtained. which is T, (Pi) 4 T, (Tr; and 10, (P) 4 Topu(Tr), if the
following equation (4.6) is right when 7 is located in the interval of [m,n], GPU will

execute this task, otherwise CPU execute the task.

7}]1;11(171:) + ]ﬁ_r/]m('T"i) . ]::pu(Pi) =+ Tcpu(jjrz) (46)

Step 3: Based on step 2, the parallel task scheduling is further optimized. that
code segments can be divided into subtasks TaskS;. TaskSsy, .......... TasksS,,. Under
the premise that the size of data sets is the same both on CPU and GPU for each

subtask. the compute-intensive subtask will be executed by GPU,

4.2 Parallelization of MFA Tracker Tasks

In order to resolve the computational complexity issues in the MFA tracker algorithm,
the multilevel parallelization in MFA tracker is introduced, in order to implement the
tracker in the parallel computation general purpose GPU systems. Multilevel paral-
lelization enables many independent and highly parallelizable tasks to be executed
concurrently, including: 1) multiple frame assignment problems via a parallelization
of the partitioning task. and 2) the numerous gating tests. state estimates, covari-
ance calenlations. and likelihood function evaluations (used as cost coefficients in the

multiframe assignment(MFA) problem) via a parallelization of the data association
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interface task (R.L. Popp. K.R. Pattipati, Y. Bar-Shalom, and R.R. Gassner, 1998).

4.2.1 Parallelization of data association task

Data association probleni iterface

Ciky .« Thread
. e P
: RW L W e
| rd i )
g s | Solve2D |
' . Tnan Gt \’ Join — assignment |
] oL 1| S ] {
n b 5 ! | problem |
14| A o
Create 'y ; {7 1/ Svach.
pihreads | S~ 7 ; U p threads

Figure 4.5: IMM/multiframe shared memory parallelizaion

Even though it has been a historical and widely held belief that the most computa-
tionally intensive aspect of multitarget tracking has been the task of solving the data
association problem. contrary to conventional wisdom, the interface to the data asso-
ciation problem also comprises a significant fraction of the workload. Consequently,
as illustrated in Fig. 4.5 (R.L. Popp. K.R. Pattipati, Y. Bar-Shalom, and R.R.
Gassner, 1998), in m-best multiframe, in particular, based on the supervisor/worker
model, a supervisor thread initially forks a specified number of worker threads. say
p. to process the set of candidate associations, i.e., C(k). Once forked, the supervisor
awaits processing of C'(£) to be completed by the p worker threads via a joint oper-
ation. Worker threads, asynchronously and in parallel, process a specified number of
candidate associations per serialized critical section access across mutually exclusive
track and measurement data. The processing of a candidate association primarily
consists of computing the numerous independent gating tests (which consists of a

coarse maximumn velocity gating test and a fine Kalman filter elliptical gating test).
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state estimates, covariance calculations, and likelihood function evaluations used as
assignment cost coefficients in the 2-D assignment problem. Since the processing cost
corresponding to each candidate association is not uniform (depends on the results of
gating), dynamic scheduling of candidate associations across threads is employed. In
this way. because candidate associations are dynamically scheduled, maximum load

balancing is achieved.

4.2.2 Parallelization of cost calculation task

Track Sensor 1 Sensor 2 Sensor S
Dummy 2FTT RS ST #TTT #EE Sy Dummy
track —=*._ __ Moo . L measurement

Figure 4.6: Assignment tree for (S +1) — D

In multiframe assignment. measurements from multiple (say, S) sensors are matched
to the tracks in the track list. That is, elements of (S + 1) lists are matched together
through a optimization algorithim to solve the data association. The number of lists
in the assignmment determines the dimension (D) of the optimization problem. This
assignment can be done in two ways. The first one, called S-D + 2-D assignment. is a

85
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two-step approach in which measurements from all the sensors are grouped together
first and then the grouped measurements are associated to the tracks (R. Tharmarasa,
S. Sutharsan and T. Kirubarajan, 2009). The second approach called (S + 1) — D
assignment is a one-step algorithm in which measurements are directly assigned to
the tracks. In the (S + 1) — D formulation, if S is equal to one then it will be same
as 2-D. In this tracker,(S + 1) — D assignment is used since it does not require a
maximum likelihood (ML) estimate, which is used in measurement-to-measurement
association in S — D. A sample assignment tree for (S + 1) — D is shown in Figure
4.5.

The cost of assigning measurements iy, is, .... i to track t is given by

. p(Ziyig....ig Xt)
Givia-nds = —log — : 4.7
Ctiyig LS 0g ])(2111’2””75"@) ( )
5
p(Ziyin....ig|Xy) = H(l — PD)““("")(PDI)(:,-&]X,))“("“" (4.8)
s=1
S 1
s=1 ¥$8
0 25=10
Uiss) = (4.10)

1 otherwise
where ug; ) takes value 0 if 7, = 0 and 1 otherwise. PD is the probability of detection
and s is the volume of the measurement space of sensor s.
The most likely hypothesis is determined by the (S+1)— D assignment formulation
by solving the following constrained optimization (R. Tharmarasa. S. Sutharsan and

T. Kirubarajan, 2009):
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T Ni No N,
111111 ZZ Z(‘:l,-,l,-,:“_,;sz.‘ul,;,}__,-s (4.11)

Bl Ty S 1=041=0i0=0  iy=0

subject to

Ny Ny

Yo Y Bps = Li=lasT (4.12)

i1=0  4s=0
No Ny

T
Z Z LTirin.iy — .I.J = Loonss 1\71 (—115)

in=0 is=0
4\'s~ 1

Z Y W = lyi=1,.. N, (4.14)

t=0i,=0 1s—1=0

where 14;,;,. 5. can be given by

1 Z,i,. ;1s from target t
Ltiyig..is = (4.15)
0 otherwise

In the above formulations, iy, = 0 indicates the dummy measurement, t = 0
indicates the dummy track, 7" is the total number of tracks and N, is the number of
measurements from sensor s.

According to the above mentioned cost calculation in (4.7) and the optimization
in 4.11 are very high computational tasks. Also, the data such as measurement and
track lists used in this task computation are very high compute-intensive. Hence when
performing the cost calculation operation in the single CPU computing environment,
it takes massive amount of time for the completion of particular computation. By
implementing this cost calculation task in CPU-GPU integrated environment, high
computational efficiency is gained using the PTO optimization algorithm as demon-

strated in the simulation.
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Computational load of the (S+1)—D assignment can be reduced by approximately
decomposing and assigning multiple threads for the individual (S + 1)D assignment
into S individual 2-D assignments. That is, each sensor’s measurements are associated

to the tracks separately.

4.2.3 When to Use the GPU for Data Association?

To perform the data association in the GPU, estimates of all the tracks and all
the measurements must be transferred to the GPU. The track information contains
estimated state and corresponding covariance for each INM mode. Hence, the size of

a track information is

B, = (n.M +n2M) x 64 (4.16)

where n, is the size of the state and M is the number of IMM modes. In the above,
G4-bits are used for a double value.

For each measurement, following information must be transferred:
e time

e nmcasurements

e variances

e SNR

e PIA

e scensor state
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Hence. the size of the measurement information is
B, =0+n.+n,+1+1+n,)64 (4.17)

where n. is the size of the measurement and ng is the size of the sensor state.

The communication load for n, targets and n,,, measurements is

B4y gy ) = 1By + Ty By (4.18)

Then. communication time will be

Te(npy ) = By, g, ) /1 (4.19)

where r; is the data transfer rate between the CPU and the GPU.

The computation time of the data association in the CPU will depend on the pro-
gramming language, for example, implementing in MATLAB might take few hundreds
times than that of C implementation. Hence, it is hard to quantify the computation
time. A lookup table may be created from experiments.

If the data association computation time for n, targets and n,,, measurements in

the CPU is T3 (14 1, )+ the corresponding computation time in the GPU will be

T (Tigy Ty, ) 2 T3y (1, Pemg )/ T (4.20)

where f, is the improvement factor of the GPU.

39



4

M.A.Sc. Thesis - K. Herathkumar McMaster - Electrical Engineering

Then. it is beneficial to perform the data association in the GPU if and only if

TR (npyne, ) < TES (ny, Fhae V1 g+ Tl Vi P ) (4.21)
1
T (1, ) [ 1+ j_ < To(ng.nm,) (4.22)
y
T.(ng o, ) f
TD;\ . s - My /g 423
B, < (1.23)

4.2.4  Parallelization of new track initialization task

In terms of forming the new tracks, the measurements that are not associated to
already existing tracks from all the sensors are used. If the probabilities of detections
of the targets are high for all the sensors, then the measurements at one time step
from all the sensors can be used to initialize new tracks using the logic of at least n
measurements from m sensors. However, this approach will fail in low probability of
detection cases. Hence, measurements over multiple time steps must be considered
in track initialization, as shown in Figure 4.6.

The above approach will be computationally demanding even with few sensors. A
suboptimal approach, in which new tracks are formed first for each sensor separately
by considering multiple time steps and then the new tracks from all the sensors are
fused together, can be used to reduce the computational load so that track initializa-
tion can be done in real-time.

Since this above process requires high computational power for forming the new
tracks from each sensor and then for fusing together each formed tracked, this process
is implemented in parallel. for gaining the power of CPU-GPU integrated computer
environment. Here the PTO algorithm is applied while implementing in the integrated

environment.
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Figure 4.7: Assignmnent tree with multiple transmitter-receiver pairs and time steps

[ this tracker, distributed tracking is used for track initialization and centralized
tracking is used to update the already initialized tracks. The distributed tracking for
initialization might result in slight performance degradation compared to the central-
ized tracking. However, the advantage of diversity of sensor field is not totally lost.
It is reasonable to assume that target-sensor geometry will not change significantly
in two or three measurement time steps. Hence, even if only one sensor has better
detections of a target due to target-sensor geometry. a track will be initialized at least
by that sensor. After initializing, the measurements from all the sensors will be used

in the following time steps to confirm the track.

4.2.5 When to Use the GPU for Initialization?

This decision making is same as the one given for data association. However. for

track initialization. only the measurements need to be transferred to the GPU. Then,
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it is beneficial to perform the data association in the GPU if and only if

T(l‘lr’(j(”nm) < T(,{'P[J’(nmﬂk)/f.‘l + Te(nny,) (4.24)
1
T({'P(}(”H?A ) 1 + f_ < Tc(”m;‘.) (42:))
49
Tc(”m )fr
T([-P "(“’Hl ) “‘—‘“k.&‘/ (—1:26)
U k 1+ fg

where Ty (1, . ) is the track initialization computation time for n,,, measurements
in the CPU.

However, if the data association for the existing target is already performed in
the GPU. then there is no need to transfer the measurement to the GPU. Hence,
it is always beneficial to perform the track initialization in the GPU, if the data
association is performed in the GPU.

The process of MFA tracker sequential computation on a stand-alone CPU is
shown in Figure 4.8 and Figure 4.9. As can be seen in the process flow chart Figure
4.9, a nested iteration of computations is performed in the sequential MFA algorithm.
Because of this nested iteration and the tracker’s measurement data set capacity is
also high in size, there is a computational overhead in this sequential process. In
order to avoid this computational bottleneck, the process is partitioned into multiple
threads. and each task is assigned to separate threads. The measurement association
and the cost calculation are performed in parallel as shown in Figure 4.10.

The process of MFA tracker is parallel algorithin is shown in Figure 4.10 Firstly,
initialize all parameters. and transport the parameters to GPU for computing the
cost of associating multiple targets. Then, initialize GPU and start multiple threads

to compute cost calculation with many different data sets for the multiple targets.
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According to the results, retain the most likelihood path and transport the path
parameters back to host. The CPU is mainly responsible for GPU initialization,
memory management, data preparation, and receiving the results from GPU. The
GPU is mainly responsible for parallel computing and transporting the results to host.
Due to the CPU accessing memory device only by PCI-E interface, the transmission
is slow as shown in the previous section became of the bottleneck in the CPU-GPU
data communication. Frequent data exchanging between host and device should be

avoided in the data parallel algorithm.
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Chapter 5

RESULTS AND DISCUSSIONS

5.1 Performance Measures

The performance measures that show the effectiveness of an MFA parallel algorithm
are the speedup factor and parallel efficiency. These measures depend on how a given
set of tasks is assigned and executed onto the GPGPU architecture. The speedup of

a parallel algorithm is given by

3 e LG}

= - Bl
Exccg) (el

Where is Eure) Execution time on CPU and Ewcg) is execution time on CPU-GPU

integrated environment.
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5.2 Simulations

This section presents a two dimensional tracking example to illustrate the new paral-
lel task scheduling technique on CPU-GPU integrated environment and to compare
with the direct implementation of the sequential algorithm on CPU only computing
environment. The single target Markov transition model that characterizes the ;™

target dynamic at time & is given by

ol o Al g =
Ty, = Ay, +wy (5.2)

where @) = [}, yl. 7, yl] is the state of the the j™ target, which consists of target
position (ry. yi) and target velocity (i@, §i) at time step &, and wy is an i.i.d. sequence

of zero-mean Gaussian noise vectors with covariance 7. The matrix A7 is given by

LT 0 0
10 0
Al = (5.3)
00 1 T
0 0 0 1
The matrix S,’ 1s given by
T:! T2
= e @ 9
| Z T 0 0
5 = - S (5.4)
o o
3 2
0 0 Z 7

where [ = 1 x 107 ' m%s™3.
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Figure 5.3: Efficiency of parallel MFA algorithms
5.3 Results

This simulation considered a varying number of targets in the scenario to illustrate
the MFA parallelization efficiency. Simulation results show the improved speedup of
the CPU-GPU integrated environment when compared to the traditional CPU only
computational environment.

The GPU parallel platform that is used to analyze the performance of the MFA
algorithim consists of a NVIDIA GeForce 285GTX as graphics card (GPU Device).
This card has a 240 graphics processor clocked at 1476MHz, 1GB GDDR3 video
memory clocked at 1242MHz and the data transfers between CPU and GPU device
occur throngh the PCI-Express 16x interface, which is the connecting bridge between
the host (CPU) and device (GPU).

Figure 5.1 shows the communication characteristics of the parallel architecture on
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which simulations are performed. The communication speedup is calculated from the
communication characteristics graph.

As the dimension of the state vector of the target increases, the data transmission
between the host (CPU) and device (GPU) increases linearly. However, the computa-
tional requirement for each target increases exponentially due to the data association
in each track.

The simulation results presented in Figures 5.2 shows that the computational
time of parallel MFA implementation on CPU-GPU integrated environment is always
below the direct implementation on CPU only environment. This time reduction is
achieved by reducing the huge amount of data transmission at each time step using

PTO algorithm.



Chapter 6

CONCLUSIONS AND FUTURE
WORK

6.1 Conclusions

This thesis considered the parallelization of a MFA tracker for multitarget tracking
problems. The high computational load of the standard MFA tracker, which typically
consists of vectors., is made tractable for real-time applications throngh parallelization
in a primary-secondary architecture using optimization techniques.

This work focused on how to exploit computation performance in CPU-GPU in-
tegrated environment. The contributions of the work presented in this paper are
two-fold. First, this work presents CPU-GPU integrated computing model and al-
gorithm to optimize traditional implementation of MFA on GPU computing model.
Second. this work analyzes the performance of the parallel task optimization meth-
ods to prove the model and algorithm. The results of the experiments indicate that

owr parallel task algorithm can better adapt to the collaboration of heterogeneous
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computing processors.

Furthermore, the proposed Parallel Optimization Algorithm (PTO) design method
is shown to be more efficient in terms of resource utilization. In the parallel MFA
algorithm using PTO design technique, the data transfer between the host computer
(CPU) and the parallel computation hardware device (GPU) is reduced significantly
without any apparent degradation in tracking performance. However. the proposed

PTO algorithim makes the overall algorithm efficient and real-time feasible.

6.2 Future Work

In the future, the performance of multiple CPUs and GPUs in an integrated environ-
ment could be evaluated. and the optimization of load balancing to achieve higher
performance cab be analyzed. Testing of the parallel MFA algorithm on different
CPU-GPU integrated environments and exploring the new performance opportuni-
ties offered by newer generations of CPUs and GPUs would be more beneficial. It
would also be interesting to test parallel MFA algorithm on large number of targets
to get more experimental results. Finally, another interesting direction is exploring

this parallel MFA algorithm on multiple GPGPUs.
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