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Abstract

The 1\lulti Fr81ne Assignment (i\IFA) tracker solves the data association problem

as a constrained optimiwtion for fusing multiple sets of data to the tracks with an

Interacting :\Iultiple i\Iodel (1:\11\1) estimator.

\Vith the rapid development of parallel computing hardware such as GPU (Graph­

ics Processor Unit) in recent years, GPGPU (General-Purpose computation on GPU)

has become an important topic in scientific research applications. However, GPU

might "'ell be seen more as a cooperator than a rival to CPU. Therefore, exploiting

the power of CPU and GPG in solving the :\lFA tracker algorithm based on CPU­

GPG integrated computing environmcnt is the focus of this thesis.

In this thesis, a parallel :\'lFA algorithm implementation based on CPU-GPU

intcgratcd computing model to optimizc performancc is presented. The results show

that the algorithm increases the average performance by 10 times compared with the

traditional algorithm. Based on the results and current trends in parallel computing

architecture. it i.-· believed that efficient lise of CP "-GPU integrated environment will

become increasingly important to high-performance tracking applications.
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Notation and Abbreviations
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}.lFA

GPU

GPGPe

GPS

CPu

}lL

}.lHT

VP

FP

2D

3D

SDlD

}.lDID

SP}.lD

API

PC

i\Illlti Frame Assignment

Graphical Processing Unit

General Purpose Graphical Processing

Global Position System

CentrEI! Procession nit

}'laxillmm Likelihood

}'lultiple Hypothesis Tracker

Vertex Processor

Fragment Processor

Two Diamension

Three Dimnellsion

Single Instruction \lultiple Data

?lIlilti Instructions i\Illltiple Data

Single Program i\lultiple DatR

ApplicRtion Protocol Interface

Personal Computer
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HCDFG

PCI

RA1VI

PDF

PHD

mvrsE

Hierarchical Control Da.ta Flow Gra.ph

Peripheral Component Interconnect

Random Access Memory

Proba.bility Density Function

Probabilistic Hypothesis Density

R.oot j\ilean Square Error
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Notations

E(.)

j~

F(.)

9(. )

Hj

Ho

H

10 (. )

/..

L

L p

j\1

111m

N

Np

N,

PS+IY

Ps

Area of surveillance region

Distribution of false 8lanns

Total average reccived energy

Expectn tions

Carrier frequency

Target motion model function

:\on-linc<w range measuremcnt function

Target present hypothesis

:\0 target present hypothesis

Channel matrix

:-Iodified Bessel function of the second kind

Timc step

Likelihood mtio

:\umber of targcts

:\umber of particles per target

K umber of transllli tters

Number of i'vIonte Carlo nms

:\limber of rccei\'ers

l\ulllber of particles used in particle filter

Estim<ltcd number of targets

Prob8bility of signal plus noise measrment

Probnbilit~; of noise onI" measrmellt
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Pc Probability of target survival

P13 Probability of target birth

Po Probability of target death

Pr/ Probability of cletection

Pia Probability of false alarm

Q Covariance matrix

'" Range bin

r( t) Received signal

R Total number of range bins

s(t) Transmitted signal

T Sarnple time

v". Process noise

11,11 (l X Maximum target speed

11,,,,0t: r-linimum t8rget speed

'IV (.) ·Weight of particle

w(t) Additive white Gaussian noise

x" Target state vector

XI; Estimated target state vector

"y Complex amplitude measurement

( Target scatterer

R Rayleigh distribution

(JA Rayleigh par8meter

ex Proportional to

E Element of
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Chapter 1

INTRODUCTION

III the past three decades tracking has been employed in a wide range of applica­

tions in both military and commercial systems. These applications include Global

Position System (GPS), inertial navigation system. missile guidance and control, air

traffic controL satellite orbit determination, maritime surveillance. fire control sys­

tem. automubile llilvigation sj'stem and underwater target tracking systems. In each

these cases. the computational requirement varies according to the number of targets

present in the surveillance region.

Graphic Processing Units (GPU) have acquired programmability for general scien­

tific 8pplications in recent years. \i\Then such a generality of the GPU is emphasized. it

is called General Purpose Graphic Processing Units (GPGPU) (J.D. Owen '. D. Lue­

hke. ilnd ='. GOYinc1arajn. 2007). Dramatic improvements in computing speed have

been mClde by appropriate use of GPUs in several fields. Hence, in order to enhance

the efficienc\' of the target tracking algorithm, the advRntage of GP is utilized in

t his thesis.

\i\'ith the cunent improvements in computer performance, the demand for target

1
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tmcking applications is ever growing. As a result, the processor development endues

in two directions: genen:d-purpose processor and special-purpose processor. One

advantage of modern CPUs has been increased performance according to :\'loore's Law

hased on dock frequency and transistors (J\1. Ekman. F. V/ang, and J. ~ilsson, 2005).

Tnmsistors in CPU are not only responsible for the interpretation, implementation

and completion of the various commands and arithmetic logic operation, but also for

the control ~md coordination of the function of most parts of the computer. However,

l\lodern Craphics Processor Unit (CPU) is specialized for compute-intensive, highly

parallel computation. CPU has more transistors devoted to data processing rather

tlli:1n delL:) caching and flow control. In recent years. CPU has seen rapid growth

in performance. which has broken up the l'vIoore's Law (J. Owens, D. Luebke, N.

Covindar(iju. M. Harris, .I.Kruger, A. Lefohn, and T. Purcel, 2005). Since CPU

has highly-efficient and flexible parallel programmable features, a growing number

of researcllcrs and business organizations have recognized some of the non-graphical

rendering \\·ith CPC to implement the calculations, and hence have created a new

field ofstuch-: CPCPU (D. Luebke: ~1. Harris, J. Kruger, T. Purcell, N. Govinclaraju,

1. Buck. C. V/oolley, (ind A. Lefohn, 2004). the objective of GPCPU is to use CPU to

implement more extensive scientific computing. GPGPU has been successfully used

in algebra. fluicl simulation, clatabFtse applications. spectrum analysis, and other non­

graphicsl applications (1. Buck. 2005). Extensive research clone in the area indicates

that GPl in .'olving compute-intensi\·e problems has grea Ftclvantage compared to

CPU (C. Thompson, S. Hahn. (ind \1. Oskin. 2002). Ho\\·ever. due to the high

intensive uSclge of CPU: it is impossible to complete all computing tasks solely on the

CPC. J\Ianv control and serial instructions still neecl to be completed on the CPU.

2
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GPU might well be seen more as a cooperator than a rival to CPU. To utilize GPU

for general purpose computations is to exploit the power of CPU and GPU in solving

generic problems based on colla.borative and heterogeneous computing environment,

so that it provides a better solution to solve general computing problems. Generally,

traditional parallel task scheduling algorithms are used to schedule task to the first

idle processing unit (C.H. Pin a.nd I-LL. Sheng, 2001). However, the differences of the

heterogeneous processors in performance and bandwidth should be a.nalyzed. In CPU

and GPU heterogeneous environment, partitioning and scheduling tasks depend on

four chamcteristics:

• Computing model of task adapted to the CPU or GPU programming model

• R.ec)soua.ble amollnt of computing resources

• Task of keeping data within the capacity of GPU memory

• Bottleneck of d8ta transfer efficiency between CPU and GPU

In this thesis. the main focus is on CPU-GP integrated computing model. which

c1ims at optimizing the performance of parallel data task scheduling. In terms of

gaining the po\\-er of General Purpose Graphic81 Process nit (GPGPu) pa.rallel

computing. the ;\Illiti Frmne Assignment UvIFA) tracker algorithm in multiple tar­

get tracking is implemented using \,VIDIA GeForce 285GTX and compare with the

traditional data parallel task schedlllillg algorithm. The re~;ults show that the algo­

rithm illcremied average perfonnHllce by 10 time' faster than the traditional algorithm

implementation on the CP . only ellviroument. On the hasis of this result. the conclu­

sion of this thesis C8n be further extended to the multi-processor CPu collaborative

\\'i th GP U for heterogellcous computing environment.

The rest of the th sis is organized 8S follows: The subsequent section provides

J
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background of :\'IFA Tracker and GPU programming model in order to facilitate and

understanding of this thesis. In Section 2, an explanation of MFA tracker and its

requirement for massive parallel computing requirement is provided, In Section 3, the

background on GPGPU and CUDA framework for data parallelization is given. In

Section 4, the bottleneck of CPU-GPU integrated computing is analyzed. Then the

CPU-GPu integrated computing model and the data parallelization and scheduling

rlJgoritlun me also described. Sectiou 5 presents the experiment results with the

:\Iulti Frame Assignment algorithm, and shows that the performance of traditional

sequential i\IFA algorithm, \Yhich is implemented in a CPu only enviroument, is

better than the delta paralleli;,;ation l\IFA algorithm, which is implemented in the

CPU-GFe integrated environment. Conclusions ami suggestions for future work are

presented in Section 6.
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Chapter 2

MULTIFRAME ASSIGNMENT

TRACKER FOR MULTITARGET

TRACKING

2.1 Target Tracking

The process of inferring the value of a quantity of interest from indirect, inaccurate

alld llncertai II observations is called estima tion. The tra,cking process call be described

(18 the task of estimating the state of a tmget at the current time and at any point in

the future. The estimation of the current state of a dynamic system from noisy data

is called filtering and estimating the future state is called prediction (Y. Bar-Shalom,

X. Li 1)11(1 T. Eirubamjan. 2001). In I)dditioll to the estimates. the tracking system

should prod uce some me8sure of the accuracy of the state estimates.
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2.2 Multitarget Tracking

McMaster - Electrical Engineering

A track is a symbolic representation of a target moving through an area of interest. In

the tracking s.\·stem, a track is represented by a filter state that gets updated on each

ne\\' measurement. Figure 2.1 illustrates the b8sic clements of a conventional Multiple

Target Tracking (J\ITT) ::iystem. A sign81 processing llnit converts the signals from

the scn::iOl" to measurements, which become the input data to the MTT system. The

incoming measurements are used for the track maintenance.

Track n18intenance refers to the functions of track initiation, confirmation 8ncl

deletion (Y. Bar-Shalom and X. R. Li. 1995). Observations not assigned to existing

tracks can initiate ne\\' tentative tracks. A tentative track becomes confirmed when

the nllmbcr and the quality of the measurements included in that track satisfy the

confirmation criteria. Similarly, a track that is not updated becomes degraded, and

it must be deleted if not updated within some reasonable interval. Gating tests

evah18te \\'hich possible measurement-to-track pairings are reasonable and a more

detailed association technique is llsed to determine final pairings. After the inclusion

of new observations. tracks are predicted ahead to the arrival time for the next set of

observatiolls. Gates arc placed arouud these predicted positions aud the processing

c"cle repea ts.

If the trllC meaSllr0ment conditioned on the past is normally (Gaussian) dis­

tributed \\'ith its Probability Density Fllllction (PDF). it is given by

(2.1 )

G
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I raCK
Scan IProcess r---- Observation· to·Track r---- Mainlenance(lniliation.
Measurements Association Confirmation and

Deletion)

Gating Computation f4- Filtering and Prediction

Figure 2.1: Multitmget tracking system

(me<1l1) llJeH~lll'ement- at time /; + 1 and S(k + 1) is the measurement prediction

covariance. then the true mea uremcnt will be in the following region

1i(k + 1. ,) = {z : [z"zk+llk]S(k + l)-1[z .. 2"+lld < I'}

\\'i th the prob8 bility determined by the g8.te threshold ry.

(2.2)

The region defined by (2.2) is called gate or v8lid8tion region (\I) or association re-

gion. The region is ;:l1so kno\\'l1 as the ellipse (or ellipsoid) of probability concentration:

the region of minimum volume that contains a given probability mass. The validation

procedure limits the region in the measurement space where the information proces-

sar looks to fine! the rneaSlll'ement from 1'lle target of interest. j\JIeasurernents outside

the valid,1tion region Ciln be ignored since they are too far from the predicted location

ami very unlikely to have originated from the target of interest. It can so happen

thi-lt more than one measurement is found in the vi11ida.tion region.

Figmes 2.2 and 2.:3 illust.rate the gating far t\\·o well-separated and closely-spaced

targets. respectively. In the Figmes 2.1 :-md 2.2. indic8tes the expected measlll'ement

'\lld the * indicates the received me8Slll'ement (R Tharmaras8., T. Kirubarajan, M.L.

Hernandez and A. Sinha. 2(07).

7
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Figure 2.2: Well-seper8ted t8rgets' validated regions

A I
Z •

l

Figure 2.3: Closely-.·pClccd targets' validated regions
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Any measmement falling inside the validation region is called a validated mea­

surement. In Figure 2.3: Validation region' of two closely spaced targets and the

measurcments inside those validation regions are shown (Y. Bar-Shalom and X. R.

Li. 1995) . .\Iore than one measurement is v81idated in Figure 2.2: there is an aSSO­

cintion uncert.ainty. Tlwt is, there is ambiguity as to which, if any, of the validated

me3surements is target originated, assuming that at most one measurements is target

gencrated.

In tracking multiple targets, the basic idea is the same as in single target tracking

provided thnt the targets are well-separated (Figme 2.2). However. if the targets are

closely spaced. which causes the corresponding validation regions to overlap (Figure

2.3). the vnlidation region for a particular target may also contain detections from

nearby targets ()s \\"cll as clutter detection.. I-Ience: there is a need for a data associ8­

tion tecllllique in order to resolve the measme11lent origin uncerta,inty. In this thesis.

in order to simplif,v the analysis. it is assumed that the targets are well-separated so

that no lllcasmcment-origin uncertainty with respect to the targets.

2.2.1 Data association

Data Associrltion is rln algorithm designed to handle measmement origin uncertainty

by determining which track a me()surement should belong to. It is also called mea­

smement to track rlssociation . Several methods have been discussed in the literature

\\"ith the issue of target initiation. existing target update and track termination (Y.

Bar-Shalom. X. Li and T. I\:irubarajan. 2001). Among the strategies available to

solye data association problems. l\Iultiplc Hypothesis Tracker (.\IHT) attempts to

9
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keep track of Rll possible association hypotheses over time. :-,IHT can be computa­

tionally complex as the number of association hypotheses grows exponentially over

time. The nearest neighbor method associates each target with the closest mea,<;ure­

ment in the target space. This procedure has the shortcoming of pruning away many

feC1,<;ible hypotheses. A more appealing Joint Probabilistic Data Association Filter

(JPDAF) uses a gating procedure to prune away infeasible hypotheses.

The problem of tracking multiple targets in clutter considers the situation where

there arc po, sibly 'everal measurements in the validation region of each target. The

set of validated measurements consists of:

• the correct measurement (if detected and falls within the gate)

• the llndesired measurements: false alarms

Then the problem of data association is that of associating the measurements in

each validation region with the corresponding track (target). The simplest possible

approach Nearest :\'eighbor (NN), is to use the measurement nearest to the pre­

dicted measurement RS if it were the correct one. An alternative approach, Strongest

:\eighbor (S:\). is to select the strongest measurement among the validated ones (Y.

Bar-Shalom. X. Li and T. Kirubarajan, 2001).

Since any of the validated measurements could have originated from the target.

this suggests thRt all the measmements from the validation region should be used

in some fashion. A Bayesian approach. called Probabilistic Data Association (PDA),

associ:-1tes probahilisticall r all the neighbors to the target of interest (Y. Bar-Shalom,

X. Li Rnd T. Kil'1lbarajan. 2001). This is the standard technique used for data

<Issociation in conjunction \\'ith the Kalman filter or the extended Kalman filter.

The I\:alman filter can be applied only if the models are linear and measurement and

10
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process noises are independent and white Gaussian (Y. Bar-Shalom, T. Kirubarajan

and C.Gokberk. 2005).

2.2.2 Filtering Algorithms

In order to annlyze and make inferences about a dynamic system, at least two models

are required: first, a model describing the evolution of the state with time (the

system model). second. a model relating the noisy measurements to the state (the

measurement model).

(2.3)

(2.4)

where TJ.- is the state of the target and Zk' is the measurement vector at revisit time k. It

is assumed that these models are aW1ilable. The probabilistic state-space formulation

and the requirement for the update of information on receipt of new measurements are

ideally suited for the D8yesian approach. This provides a rigorolls general framework

for dynmnic state estimation problems.

In the Bayesinn approach to dynamic state estimation, one attempts to COllstruct

the posterior probability density function of the state based on all a\'ailable infor­

mation. including the set of received measurements. Siuce this PDF contains all

aV8ilable statistic81 information. it can be considered to be the complete solution to

the estiuwtion problem. In principle. an optiulRl estimate of the state may be ob­

tained from the PDF. A recursive filtering approach means that the received data can

11
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be processed sequentially rather than as a batch so that it is not necessary to store

the complete data set nor to reprocess existing data if a new measurement becomes

available. Such a filter consists of essentially two stages: prediction and update. The

prediction stage uses the system model to predict the state PDF forward from one

rcYisit time to the next. Since the ::;Ul.te is usually subject to unknown disturbances;

prediction generally translates; deforms and spreads the state PDF.

Suppo::;e that the required PDF p(:tk!Zd at revisit time I,; is available, where

Z,. = [ZI' ::2 ..... zJ;j. The prediction stage involves using the system model (2.3) to

obtain the prior PDF of the state at time k + 1 and is given by

(2.5)

The update operation uses the lCltcst measurement to modify the prediction PDF.

At revisit time k, Cl measurement Zk becomes Clvailable and will be used to update the

(2.6)

In the <lbove. the likelihood function p(zk+lITIc+!) is defined by the measurement

model (2.-1).

The above recursive propagation of the po. terior density is only a conceptual

solution in that. in general. it cannot be determined analytically. Solutions do exist

but in a re::;trictive set of Cflses.

12
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2.2.3 Kaln1an Filter
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The Kalmml filter a:->smnes that the state and measurement models are linear and

the initial. tate error and all the noises entering the system are Gaussian and, hence.

parameterized by a mORn and covariance (:-1. S. Arulampalam. S. Maskell, :\i. Gordon

and T. Clapp. 2002). under the above assumptions, if p(xkIZk) is Gaussian, it can

be proved that p(T',+lIZlc+d is also Ganssian.

Then. tlte state and measurement equations are given by

F"x" + nk

I"h~tk + 'Wk

(2.7)

(2.8)

If FI. ancl I-h arc known matrices, Vk rv N(O, f,J ancl Wk rv (0. I:k ), the Kalman

hlter algorithm can then be vie\\"ed RS the follo\\"illg recursive relationship (M. S.

Arul8mpalam. S. :-Iaskell. N. Gordon ancl T. Clapp. 2002).

where

p(.1:kI Z,J

p(Tk+lIZd

p(:rk+lIZd

N(x/,; mkl/,;· Pklk)

N(~Ck+l; mk+llk. P"+llk)

j\ (T/,-+1; mk+llk. PI.:+llk)

(2.9)

(2.10)

(2.11)

'In/,- 11k

13
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\\'ith

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

In the a,bovc..VCr:?n. P) is a Gaussi<lll density with argument .c. mean m and

covariance P.

This is the optimal solution to the tracking problem if the above assumptions

hold. The implication is that no algorithm can perform better than a I<alman filter

in this line~n Gaussian environment.

In }J1(lny situatiollS of interest the assumptions made above do not hold. Hence the

Kalman filter cannot be used as described above: and approximations are necessary.

2.2.4 Extended Kaln1an Filter

If the functions in the (2.3) and (2.4) arc nonlinear, then a local linearization of the

cCjuations n1<l.'· be a sufficient description of the nonlinearity. Local linearization of

t 11(' (l baH' funct ion.' Me

A (Uk (.7')
F k =-­

cIT

1-1

(2.1 )
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• dhk(x)fh = -- (2.19)
dx

The Extended K81man Filter (EKF) is based on that p(xklZd is approximated

by a GaussiAn. Then all the equations of the Kalman filter can be used with thi.

npproximatioll (md the linea.rized functions C'd. S. Arulampala.m, S. rdaskell, N.

Gordon amI T. Clapp, 2(02).

If the tmc density is :·mbstanti311y non-Gaussian, then a Gaussian can never de-

scri be it ,,·ell. In such cases. particle filters \\'ill yield An improvement in performance

in comp8rison to the EKF.

2.3 Multiframe Assignlnent

2.3.1 Overview

The .\Iulti Fr8me Assignment (:\IFA) nlgorithm associates the latest S - 1 scans of

lllei:lSUl"f:'menh.; (fr8mes) to the tracks, i.e" when the frame at scan k is received, the

associatioll is performed between the track list at scan k - S + 1 and meAsurements

,It scans (k - S + 8);~2' The MFA is often implemented as a sliding window (Y. Bar-

Shalom. T. Kimbauljan 3nd C.Gokberk. 2(05). After performing the association at

kth scan. tracks are updated only \\"itb the measurements from the (k - S + 2)th

sum. \\"hcn the next frarne at scan k + 1 is received. the windO\\' is advanced to cover

the frmncs at scans (I; - S +.'i);~J <'Ind association is performed bet\\'een these frames

fmd the tracks at (k - S + 2).

Observe that at scan k the T\IFA assignment algorithm makes a hard decision to

only a single frame of data. i.e. after the association at scan k the tracks are updated

15
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\\'ith onlY the frame at scan k - S+ 2. The a~sociation between the tracks at k - S+ 1

and the rest of the frames is only tentative (i.e., soft decisions), and can be changed

in the sub~equent processing in light of the new measurements. This soft decision

capability gives the f\IEI\ advantage over the 2-D assignment. where the tracks are

associated and updated with the latest frame. The price paid for this advantage is

the delayed decision making and increased computationa.! cost (R Tharmarasa, S.

Sutlwrsan and T. Killibarajan. 2009).

The r-IFA algorithm formulates the data association as a constrained global opti­

mization problcm. The objective is to minimi:w the total assignment cost of associat­

ing sequence~ of measurements to tracks. The minimization of total assignment cost

of associClting the mei1snrements to the tr8cks is gained by parallelizing the :'IIFA al­

gorithm in multilc\·cl. and implementation of :'IIFA algorithm in the Gener81 Purpose

Graphical Processing Gnit (GPGPu).

2.3.2 2-D Assignn1ent

The data associ8tion yields decisions as to which of the received measurements should

1)(' used to update each trade In as~ignment, the data association is formulated as

a constr8ined optimiza.tion problem, where the cost function to be minimized is a

combined lH'gative Log-Likelihood Ratio (LLIl) evaluated using the results from the

state estim8tor.

The 8ssignll1('nt het\\'een the list of tr8cks 8nd the l8test list (sc8n/fr8l11e) of me8­

,urements is fOrInul8ted 85 8 discrete optilllizMion (matching) problem to m8ximize a

dimen.'ionlcss global likelihood ratio of the mea~urcments-to-tracksas~ignment. The

likelihood.' ar(' obtained from the st8te estimator such 8S the Kalman filter or the

16
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Interacting \Illltiple Model (IlVIM) estimator (Y. Bm·-Sha.lom ftnd X. R. Li, 19(5), for

the target kinematic state and the classifier outputs for the target types.

In 2-D assignment the measurements from the scan list H(k) are matched (or

deemed to have come from) the tracks in Ii, t T(k - 1) by formulating the matching

as a COll, trained global optimization problem. The optimization is carried out to

minimize the cost of associating (or not 8ssociating) the measurements to tracks.

2.3.3 S-D Assiglunent

In 2-D assignment only the latest scan is lIsed and information about target evolution

through multiple scans is lost. Also it is not possible to change an association later

in light of subsequent measurements. A data association algorithm may perform

better when a number of P8st scans are used. Thi.. corresponds to multidimensional

assignment for data <1ssociation.

In S-D ()ssignment. which is the optimization-basecll\Iultiple Hypothesis Tracking

(\IHT) with () sliding ,,'indow the latest S - 1 scans of measurements are associated

\\'ith the estr)blished track list (from time /,; - S + 1, where k is the current time, i.e"

\\'ith a sliding \\'indO\\' of time depth S - 1) in order to upc1at;e the tracks.

17



Chapter 3

GPGPU PROGRAMMING

3.1 What is GPGPU?

A recent trend in computer architecture iti the move from trRditional. single-core

processor::; to multi-core processors nlld further to many-core or massively multi-core

processors. This is primm-ily due to the difficulties in mRking individual processors

fnster. ,,-hite it is possible to provide m.ore processing power by putting more cores

onto a single die. The result of this trend is that complltational problems which can

take 8dvcmtHge of multiple threads C81l see significant linear speedup with the number

of com.; m'nilable (Oxford University. 2010).

Since GPUs ]wve been independentl,Y developed to perform dnta-par811el com­

put',ltioll using multiple cores. the scientific computing community is keen to take

advant8ge of this technology by performing some computation on GPUs thnt has trn­

ditionalh' been done on CPUs. This is referred to a::; Genern]-Purpose complltation

on GPUs (GPGPC) (F. \Vu. f\I. C8brn] 8nd J.Bra7;elton: 2010).

1
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3.2 GPU Architecture

McMaster - Electrical Engineering

From a traditional standpoint of graphics processing, GPU is designed to process

graphics madc lip of gcometric primitives sllch as points, line, and triangles. J\Iodern

graphics pipeline shown in Figure 3.1 is mainly composed of Vertex Processor (VP),

Rasteri7,er and Fr!-lgmcnt Processor (FP).

Vertex Data Vertex Processor

Frame Buffer I

Texture

Rasterizer

Fragment
Processor

Figure 3.1: Progr8lnmable graphics pipeline

GPUs operate according to the standardi7,ed graphics pipeline (see Figure 3.1),

which is implcmented at. hardware level (C. Thompson, S. Hahn, and M. Oskin,

2(02). This pipeline. which defines how the graphics should be processed, is highly

optimized for thc typical graphics application. i.e., displaying 3D objects.

The vcrtex processor receives vertices, i.e .. comers of the geometric!-ll objects to

displa\". ,11ld tr!-lmJonn and project them to determine hm\" the objects should be

Shm\"ll on the screcn. All \"ertices arc processed independently and as mLlch in parallel

;-1S there <'Ire pipelines m"ailable. In the rasterizer it is determined \\"hat fragments, or

potential pixels. the geometrical shapes may rcsult in. and the fragments are passed

19
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on to the fragment proces:::;o1'. The frRgments Rre then processed independently Rnd

as much in pRrallel R' there are pipelines Rvailable. and the resulting color of the

pixels is stored in the frRme buffer before being shown on the screen.

At the 118rchHlre level the graphics pipeline is implemented using a number of

processors. each having mnltiple pipelines performing the same instruction on different

data. Thnt is. CPUs are Single-Instruction, I\lultiple-Data (SIMD) processors, and

('eICh processing pipeline can be thought of as a parallel sub-processor.

From an alterneltive point of view, CPu can be seen as a streaming processor

containing arrays of VPs and FPs operating in parallel (NVIDIA Corporation, 2010).

\Vhen the programmer specifies a shader program which is called kernel and a data

stream. CPU maps this data onto the aVRilable proce:::;sors t.o compute the result. Cm­

rent. CPU l18s ;'\Iultiple-In:::;tructiotl, \lultiple-Dat8 (I\III\LD) VPs 8nd Single-Progmm,

i\Iultiple-Data (SP\lD) FPs. CPU execute batches of fragment threads in SI\/LD ex­

ecution style (on8 threRd per pixel). Both VPs and FPs are highly computationally

capable (1. Buck. 2000).

\luch research on CPGPU has been presented. CPU is a large amount of pro­

gnnl1111able floating-point horsepower that CRn be exploited for compute-intensive

applications completely uurelRted to graphics processing. But CPU is hardly a C0111­

plltatiowli panacea. Its mitlunetic power results from a highly specialized architec­

tme (C. Thomp:::;on, S. Hahn. 8nd \1. Oskin. 2002). Today, with the rapid devel­

opmcnt of CPU, many programming cl1811cllges and limitations of architecture hRve

been solvecl by hnrch\"me design RllCl programming techniques. A new issue associated

\\"ith the' usage of CPu for gcneral-pmpose computation is how to integrate \\'ith CPU

to elchievc better performance.
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3.2.1 GPGPU cards
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GPGPU cards provide an abundance of computa.tional cores (240 on a Nvidia GTX

280) associated with a limited amount of memory and memory band\\·idth. Each

core can compute three single precision floating point operations per clock for a tota.l

maximum performance of 109 floating point operation per second (TFLOPS). This

is roughly 20 times more computational power than an Intel i7 CPU. Each GPGPU

cmd Ulll have from 512:--IB to -1GB of memory with a bandwidth of 140GB/sec. The

hand\\'idth available per core is 140(GB/sec) / 240 cores = 0.5 GB/sec/core. An

iCore7 CP . can acce..s up to 64 (GB/sec) / 8 cores = 8GB/sec/core. Each GPGPU

corc h<1:; acccss to 13. less data per second than an Intel i7 CPU (NVIDIA Corpora­

tion, 2010). For this reason, illgorithms tha.t are more computationally intensive than

memory intcnsive me particularly suited for GPGPU cards. It is important to note

that. in this thesis, :--IFA illgorithms is a memory intensive algorithm due to the high

cilpacity of data involvcd. So that I\IFA algorithm is re\\Titten to minimize memory

transfer and maximize computational loads.

3.2.2 GPGPU MelTIOry Model

GPGPU cmds have six different types of memory. each with its own characteristics:

global (large. read/\\Tite. no cached. slo\\o). texture (lmge. only reac1. cached). con­

stilllt (sm<111. only reac1. cachcel). registry (small. read/write. fast), local (like global),

Rnd shared (small. read/write. fRst. temporary). Shared memory ilncl registry are em­

plu~;ecl ilt runtime to st"ore the tcmpormy information for threads (1\. Govindaraju.

S. Larseu ..J. Gray und D. :--Ianocha , 2007).
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3.3 CUDA Framework

l\lci\laster - Electrical Engineering

3.3.1 CUDA progranlming environnlent

High-level progr8111ming languages are prepared for p8r811el programming in CPU.

III the CRse of NVlDIA's CPU products, C-like language called CUDA is prepared.

CUDA employs R programming model called single program multiple data. stream

(SP?dD). This is a direct reflectioll of the limitation such that a warp h8s to execute

<I single operation. A sample pseudo code is given below. In this pseudo code, the be­

havior of threads ill CPU are defined. First. data used in CPU code is transferred by

call cllda;"lelllcPYO. Then copies of kernal fooO are spawned by a special calling syn­

tax foo«< ... »>O, where the llumber of copies is specified in the bmcket. \Vhile

CPt:" works, CPu does some computation or simply waits by calling cudaStream­

SmchronizeO. Finally. the host PC brings back the result of CPU's computation by

calling again cuda)'lell1cpyO.

Threads are grouped illtO a block and blocks are further grouped into a grid. A

rongh image of task distribution is the following: a block is assigned to a multiproces­

sor. it is divided into warps, and then warp is processed by thread processors. Here,

uote that t.hreads ill a hlock are guaranteed to be executed synchronously, whereas

blocks are not. If 011e has to synchronize amollg blocks after some task, they should

prepare a CPu code that ends at the task alld a CPU code that waits all tasks of all

blocks. b\· c:'111ing cudclThreaclsSyuduonizeO.
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IIGPU(device) code

float (*g) [N] ;

_global_ void foo(){

I I \.]ho am i 7

int tid=blockDim.x * blockldx.x + threadldx.x;

int Nthreads=blockDim.x * gridDim.x;

assert(Nthreads==N);

II do my own task

for(i=O; i < M; i++ ){

g [i] [tid] =g [i] [tid] + ... ,

II do special task, if I am a special thread

if(tid==O){ ... }

}

IICPU(host machine) code

float c [M] [N] ;

int main(int argc, char** argv){

cudaMalloc(&g, sizeof(float)*N*M);

cudaMemcpy(g,c,sizeof(float)*N*M, cudaMemcpyHostToDevice);

nblocks = N*M/32;

nthreads=32;

foo«<nblocks, nthreads»>();

cudaStreamSynchronize(O);

cudaMemcpy(c,g,sizeof(float)*N*M, cudaMemcpyDeviceToHost);

}
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3.3.2 Data Parallelism
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A elata-parallel computfltion is wherc computation has been panl11elized by distribut­

ing the dHta c'Hlongst computing nodes. It can be contrasted with a task-parallel

computatioll, in which thc distribution of computing tasks is emphasized as opposed

to the data. One framework that is used to accomplish data-parallelism is Single

Instrnction. \Iultiple Data (SDID). in which multiple processors execute the same

instructions on different pieces of data. This is the architecture used in GPUs, since

it a.llows flow control computation to be shared amongst processors a.nd thus Hllows

more of the hmd ware to be devoted to instruction execution.

:\lot all computi1tion must be completelv paralleli;;mble. Although typically every

thread \\'ill run identical function,', the functions themselves can condition on thread

identifiers and data so that different instructions arc executed in some threads. How­

ever. in SDID architectures this leads to a performance hit since computation only

occurs in pc)l'cI11cl when the same instructions arc being performed (J. Owcns, D.

Luebke. ~. Govinclaraju. \1. Hanis, J.Kruger, A. Lefohn, and T. Purcel, 2005).
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Chapter 4

MFA TRACKER

IMPLEMENTATION IN

CPU-GPUINTEGRATED

ENVIRONMENT

4.1 Overview

To implement r-IFA algorithm based on CPU-GPU integrated computation, tasks

pcHtition cem be divided into two categorics: computing tasks and communicating

tasks .

• Computing task~ run in CPl~ or GP \\'hereby several instructions act on data,

and then retrieve computing results.
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• Communicating tasks are responsible for controling the data. input and output

of computing tasks.

MFA Algorithm can be divided into multiple sub-tasks, and these sub-tasks are

implemented through a certain processing flow. The structure of sub-tasks consists

of data and operation. Therefore, snb-tasks are mapped to CPU implementation

or GPU implementation by scheduling sub-tasks to different hardware. Hierarchical

Control Data Flow Graph [HCDFG] can be used to describe compnting model of

GPU-CPU heterogeneous environment. HCDFG allows nesting of the traditional

data How hier8rchic811y (K. N. Levitt and W. T. Kautz, 1972). Especially, it is

not only 8 good description of multi-tasks in 8n algorithm, but can also optimize

perfonnance of scheduling fine-grained sub-tasks between CPU and GPU. As shown

in Figure 4.1, and computing t8sks are operating nodes, 8nd communicating tasks

Rre tr8nsmitting nodes .. and edges bet\veen nodes describe direction of da.ta flow (L.

'Nang. YZ HlU1l1g, X. Chen: and C.Y Zhang, 2008).

In order to exploit task par811elism on coarse gra.in decomposition, MFA algorithm

can be divided into many sections. e.g., segments 81 to 86. Therefore, implementation

of each segment is mapped to CPU or GPU

For silnplicity, the C8se of one CPU and one GPU is eva.luated. The execution time

Tiol is defined in (4.1). The execution time of CPU is denoted as Tel'''' the execution

time of GPU as T,J/"I> a.nd the communication time between CPU and GPU as ~,om'

Then

(4.1 )

From (4.1) (L. W8ng. YZ HllRng, X. Chen, and C.Y Zha.ng, 2008), the following
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essential characteristics are identifIed and associated with how to minimize Tlot to

achieve maximized performance while we are implementing the lVIFA algorithm in

CPU-CPT) integrated environment:

• Communication time between CP . and CPU, which might be a bottleneck of

CPU-CFC integrated computing environment.

• The paradigm of mapping sub-tasks of lVIFA tracker to CPU implementation or

CPU imph~mcntationby scheduling sub-tasks to different hardware.

( ~

~1
Task 1

CPU

"'---

/

82
Task 2

GPU

/'~ 53

y S4) 55 N Task 3
CPU

~- //
~

Figure 4.1: Paradigm of ta.sk partition in CPU-CPU intergrated environment
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4.1.1 Bottleneck of CPU-CPU intergrated con1puting enVI­

ronment

From the implementittion point of view of the CPU-CPU integration, CPU is consid­

ered as a host processor that can both distribute tasks and execute tasks, while CPU

can only C'xecute tasks (NVIDIA Corporation, 2010). In order to analyze the per­

formance bottlenecks of CPU-CPU integrated computing, the data communication

speed of uploMl-bandwidth (transfer results of CPU to CPU memory) and download­

bandwidth (transfer data, of CP to CPU memory) are examined to investigate the

delta traw,;fers performance a.nd data communication bottleneck in the CPU-CPU

integnlted computillg environrnent while we implement such MFA algorithm with

massive amount of data processing.

In order to experiment the data upload and download speed between host (CPU)

and device (CPU), massive amounts of data from ta.rget measurement sets are gener­

ated and lIsed for analyzing the data communication bottleneck. The large capacity

of target measurement sets with different capacity of data transferred from CPU to

CPU as well as CPU to CPU The time taken for the data transfer from CPU to

CPU as well as CPU to CPU is calcul8ted. Table 4.1 shows the data obtained from

this bandwidth test experiment. Two different graphs Figure 4.2 and Figure 4.3 are

plotted using the Table 4.1.

As shown in Figme 4.2 and Figmc 4.3, experiment results of bandwidth are much

lower than the theoretical bandwidth of PCI-Express 1Gx (4CBjs). Therefore, data

transfers efficiellcy between CPU and CPU is a bottleneck and it is more of a bot­

tleneck tl18n the h8l'dwares capacity for computation in CPU-CPU integrated envi­

ronment. For the purpose of finding the da ta communication bottleneck experiments
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TPlblc 4 l' CPt; to CPU Bandwidth Test
Dataset(MB) Upload Speed(Mbjs) Download Speed(Mbjs)
1.08 2(0.71 1220.58

2.16 346.08 2020.78

3.24 661.67 2720.·58

3.84 768.97 3181.62

4.44 754.88 2150.23

5.04 721.89 2380.83

5.64 987.26 2348.13
6.24 930.4 2440.44

Bandwidth Test - Host to Device
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Figme -1.2: Data transfer rate from host (CPU) to deYice (CPU)
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Figmc 4.3: Data transfer rate from device (GPU) to host (CP

PCI Express

I

CPU GPU

< ~

, ? ;:.

Memory Memory

Figme ..1.-1: CPl-GPu intergratecl computing model.

30



r-LA.Sc. Thesis - K Herathlwmar J\llcMaster - Electrical Engineering

presented in this \\·ork. ::\VIDIA GeForce 2 5GTX as graphics card (GPU Device)

i,' used. This card 118, 2'ci0 graphics processors clocked at 1476i\lHz, 1GB GDDR3

video memory clocked at 1242r-lHz and the data transfers between CPU and GPU

device occur through the PCI-Express 16x interface, which is the connecting bridge

in the PC and the [lOst (CPU) and device (GPu) as shown in the Figme 4.4. This

processor includes 5 VPs and 12 FPs. As for the computer systems, Intel Pentium D

820 based system with 2GB RAJ'll hardware specification has been used.

4.1.2 Parallel task optin1ization (PTO) algorithlTI

P:'ll'allcl task optimizing algorithm of CPU-GP integrated environment indicates

relationship Rmong computing capability of processor. communicating cost, a.nd size

of data sets. At first. in this work, three assumptions are made as the basis of parallel

tc1sk optimization of pmRllel processing in CPu-GPU integrated environment, and

then an algorithnl (L. Wang. YZ Huang. X. Chen. and C.Y Zhang; 200 ) is given

in this section later.

The computing capability of processor is denoted as PCP'I> communicating or data.

transferring cost of GPU (communication or data transferring between host CPU and

device GPe as T)'yp" , comrnunicating cost of CPU (communication between host CPU

nll([ mclin n1('morv) ciS T1'c/JlL' size of data. sets as d. the following four llmthema tical

assumptions are ma.de in order to optimize the time taken for the data communication

het\\'(~en the host. CPt; and the device GP (1. Wang. YZ Huang. X. Chen; and

c.Y. Zhang. 200 ):

31



l\I.A.Sc. Thesis - K Herathkumar McMaster - Electrical Ellgineering

d ex T1'gplJ (4.2)

d , Trcpu (4.3)

D.(P) 6.TTcpll
<

6.TTgpll
(4.4)--<

D.dD.d D.d

Trd « Trd (L1.5)
C/Hl gpu

As fm as the i'lbove mentioned assumptions are considered. there are two major

characterist"ics. First. when the size of dati'l sets changes. the communication or di'lta

transferring cost "'ill be considered as a major factor of performance. Second. the

CPu allCl CPu both lIave independent local memory. Communication can be divided

into three parts: communication between CPU and video memory. CPG and main

111elllor\·. and illterhLCe bet\\'een CPu Hnd CPU. As described in Section -l.1.1. data

transfers efficiency between CPU and CP . is a bottleneck. Therefore, communication

cost bet\\'een host (CPU) and device (CPU) is far more important than other costs (1.

''Nang, YZ Huang, X. Chen: and C.Y Zhang, 2008).

On the hasis of the concept mentioneo i:1 hove, an optimization algorithm is clevel-

opecl for p<lrallel t<lsk optimization \vhich is implemented in MFA tracker algorithm of

pmallel clata processing ill CPU-CPU integrated environment.The parallel task opti-

mization (PTO) steps <He f01l0\\"s (1. Wang. YZ Huang: X. Chen. and C.Y Zhong.

200 ):

Step 1: If the time taken to the traffic or communication time Tr is ignored. the

executed time of CPu and CPU conkl be mC'i:1sured sepnratclv. \\"hiclt is Tgpu(Pi ) and

Tqw(P;) uncler some calculational measures by 8lwlyzing the different measures of the
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task. Supposing 7.~p,,(Pi) < T~p,,(~) is right when i is located in the interval of ['In, n],

CPU will execute this task, otherwise CPU will do.

Step 2: By iUutlyzing the different calculational measures of Pi and corresponding

tr8ffic TTi of the task, under some calculational measures, the executed time of CPU

and CPU is obtained, which is TyjJ"(Pi) + 7.~pu(Tri and TcjJ,,(Pi) + Tcpu(Tri), if the

following equation (4.6) is right when i is located in the interval of ['In, n], CPU "vill

execute this task, otherwise CPU execute the task.

(4.6)

Step 3: Based on step 2, the parallel task scheduling is further optimized, that

code segments can be divided into subtasks Tas/;;Sl, TaskS2 , , TaskSn . Under

the premise that the size of data sets is the same both on CPU and CPU for each

suhtask. the compute-intensive subtask will be executed by CPU.

4.2 Parallelization of MFA Thacker Tasks

In order to resolve the computational complexity issues in the MFA tracker algorithm,

the multilevel parallelizi:ltion in TvIFA tracker is introduced, in order to implement the

trAcker in the parallel computation gener8l pnrpose CPU systems. l\'Iultilevel paral­

lclization enables many independent and highly parallelizable tasks to be executed

conc:mrentJy. including: 1) multiple frame Assignment problems via a parallelization

of the partitioning tASk. and 2) the numerous gating tests, state estimates, covari­

illlCC calcnla bOllS. and likelihood function evallla tions (used as cost coef£cients in the

Inultiframe assignment(MFA) problem) via a parallelization of the dAta association
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interface task (ILL. Popp, K.R Pattipati, Y. Bar-Shalom, and RR. Gassner, 1998).

4.2.1 Parallelization of data association task

D:HJ ils:iocialion problC'lIl l1Ht:rl~l(e

SoIn 2-D

nssigJllIlcUI

proLJ~lll

Figure 4.5: [VIM/mllltiframe shared memory parallelizaion

Even though it 118s been a historical and widely held belief that the most computa-

tionally intensive aspect of rnultitarget tracking has been the task of solving the data

associ"tion problem. contnlry to conventional wisdom, the interface to the data asso-

ciation problem also comprises a significant fraction of the workload. Consequently,

(is illustrated in Fig. 4.5 (RL. Popp, K.R Pattipati, Y. Bar-Shalom, and RR

Gnssner. 1998), in m-best multifrnme, in particular, based on the supervisor/worker

model, a supervisor thread initially forks a specified number of worker threads, say

p. to process the set of candidate associations, i.e., C(k). Once forked, the supervisor

(iW(iits processing of C(k) to be completed by the p worker threads via a joint oper-

Pltion. \Vorker threads, asynchronously Rnd in parallel, process a specified number of

candida te a,ssocia tions per serialized cri tical section access across mutually exclusi ve

track ,"mel mensurement data. The processing of a candidate association primarily

cOllsists of computing the llumerous independent gating tests (which consists of a

coarse maximnm velocit.y gating test and a fine Kalman filter elliptical gating test),
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stiLte estimiLtes, covariance calculations, and likelihood function eva.lua.tions used as

assignment cost coefficients in the 2-D assignment problem. Since the processing cost

corresponding to ea.ch cmlClidate associiLtion is not uniform (depends on the results of

gating), dynamic scheduling of candidate associations across threads is employed. In

this wa.y, because candidate associations are dyna.mically scheduled, maximum loa.d

balancing is 8chieved.

4.2.2 Parallelization of cost calculation task

Track

Dummy ,- ----~

track --~, -)

Sensor 1

,
I

Sensor 2 SensorS

,-----, Dummy
(, ~ ,"-measurement

o o o o

D~Dp

crY Q dO
I I 'j
I I I
I I I
I I I
I I Io : 0 Io 0

Figure 4.6: Assignment tree for (5 + 1) - D

In nl1lltifrmne assignment. measurements from multiple (say, S) sensors are matched

to the tracks in the track list. Tha t is, elements of (5 + 1) lists are matched together

through a optimi:c;ation algorithm to solve the d8ta association. The number of lists

in the assignment determines the dimension (D) of the optimization problem. This

assignment can be done in two ways. The first one, called S-D + 2-D assignment, is a
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two-stcp approach in which mcasurements from all the sensors are grouped together

first a.nel then the grouped measurements are associateel to the tracks (R. Tharmarasa,

S. Suthm'sc)J1 and T. Kirubarajan, 2009). The second approach called (S + 1) - D

i:lssignment is a one-step algorithm in which measurements are directly assigned to

the tracks. In the (S + 1) - D formula tion, if S is equal to one then it will be same

as 2-D. In this tracker,(S + 1) - D assignment is usee! since it does not require a

maximum likelihood eVIL) estimate, which is used in measurement-to-measurement

nssociation in S - D. A sample assignment tree for (S + 1) - D is shown in Figme

4.5.

The cost of assigning measmements i 1 , i 2 , ... , i 2 to track t is given by

{

0 is = 0
Li(i.• ) =

1 otherwise

(4.7)

(4.8)

(4.9)

(4.10)

where 'uU$) takes value 0 if is = 0 and 1 otherwise. P D is the probability of detection

ane! s is the volume of the measurement space of sensor s.

The most likely hypothesis is detennined by the (S+I)-D assignment formulation

b," solving the following constrained optimization (R. Thannarasa, S. Sutharsan and

T. Kirub8l'ajan, 2009):
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T N, N2 N"

x min. L L L ... L Ctili2isXUli2.is
• tI112 .. ·I$ i=O il=012=O 1s=O

subject to

(4.11)

N, N s

L L J:Liti2 .i.,
il=O ,",=0

T N2 N s

L L ... L :/;(i,i2 .,·i,
1.=0 ;2=0 ;,;=0

T NI NS-I

L L'" L 1:lili2.;';
L=Oil=O ;'S-I=O

where Thd2,i, can be given b.y

1,t=1, ... ,T

l,j = l, ... ,N1

l,j = l, ... ,Ns

(4.12)

(4.13)

(4.14)

{~
Zi 1i2 .. i)S from target t

otherwise
(4.15 )

In the above formulations. is = 0 indicates the dummy measurement, t = 0

indicRtes the dummy track, T is the total number of tracks and Ns is the number of

measurements from sensor s.

According to the above mentioned cost calculation in (4.7) and the optimization

in 4.11 are very high computational tasks. Also, the data such as measurement and

track lists used in this task computation are very high compute-intensive. Hence when

performing the cost ccllculation operation in the single CPU computing environment,

it takes massive amount of time for the completion of particular computation. By

implementing this cost calculation task in CPU-CPU integrated environment, high

computational efficiency is gained using the PTO optimiz8tion algorithm as demon-

strated in the simu18tion.
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Computational load of the (5+1) - D assignment can be reduced by approximately

decomposing and assigning multiple threads for the individua.l (5 + 1)D assignment

into 5 individual 2-D assignments. That is, each sensor's measurements are associated

to the tracks sep8rately.

4.2.3 When to Use the GPU for Data Association?

To perform the data association in the CPU, estimates of a.ll the tracks and a.ll

the measurements must be transferred to the CPU. The track information conta.ins

estinlitted stilte and corresponding cova.riance for each IMM mode. Hence, the size of

a track information is

B t = (17,:,)\1 + n~j\I) x 64 (4.16)

where Ill: is the size of the state and j\I is the number of Ii'vIM modes. In the above,

64-bits me used for a. double value.

For each measurernent, following information must be transferred:

• time

• mCilsurements

• viLrii-lnces

• S\TR

• PFA

• sensor state
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Hence, the size of the measurement information is

McMaster - Electrical Engineering

(4.17)

where n z is tJlC size of the measurement and 'ns is the size of the sensor state.

The cOt11nlllnication load for 'ni targets and 'n m ,; measurements is

(4.18)

Then. communication time will be

(4.19)

where 1"1 is the data transfer rate between the CPU and the CPU.

The computation time of the data association in the CPU will depend on the pro-

grmnming language, for example, implementing in lVIATLAB might take fevv hundreds

times than that of C implementation. Hence, it is hard to quantify the computation

time. A lookup table may be created from experiments.

If the data association computation time for ni targets and n"'k measurements in

the CPU is T8j~~(nl' nm ,), the corresponding computation time in the CPU will be

(4.20)

where .f~J is the improvement factor of the CP .
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Then, it is beneficia.l to perform the data association in the CPU if and only if

TPA ( ) < Tg;;~;(nt, n mk )/f 9 + Tc(nt, nm.,) (421)CPU nt.,nmk

TOil ( ) (1 1) < Tc(nt, nmk) (4.22)CPU nt, n lnk + f~

T DII
( ) <

Tc(nt, n lnk ).t~
(4.23).c ,'>u nt, n 1llk

1 + f 9

4.2.4 Parallelization of new track initialization task

In terms of forming the new tracks, the measurements that are not associated to

81reacly existing hacks from all the sensors are used. If the probabilities of detections

of the t<ugets are high for all the sensors, then the measurements at one time step

from 8.11 the sensors can be used to initialize ne\v tracks using the logic of at least n

measurements from III sensors. However, this approach will fail in low probability of

detection cases. Hence, measurements over multiple time steps nlllst be considered

in trac], initialization. as shown in Figlll'e 4.6.

The above approach will be computation8.lly demanding even with few sensors. A

suboptimal approach, in which new tracks are formed first for each sensor separately

by considering llluitiple time steps and then the new tracks from all the sensors are

fused together, can be used to reduce the computational load so that track initializa-

tion can be done in real-time.

Since this above process requires high computational power for forming the new

tracks from each sensor and then for fusing together each formed tracked, this process

is implemented in paralleL for gaining the power of CPU-CPU integrated computer

environment. Here the PTO algorithm is a.pplied while implementing in the integrated

environment.
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Track 1 Track 2 Track 3 Track 1 Track 2 Track 3

Dummy \ 1

'- ~ - ---

Q
I
I
Io

Q
I
I
I
I
I

o
Time step k

Q
I
I

o I
I
I
I

o
Time slep k+1

Figl1l'e 4.7: Assignment tree with multiple transmitter-receiver pairs and time steps

In this tracker, distributed tracking is used for track initialization and centralized

tracking is llsed to update the already initialized tracks. The distributed tracking for

initialization might result in slight performance degradation compared to the central­

ized tracking. However, the advantage of diversity of sensor field is not totally lost.

It is rCclsonable to assume that target-sensor geometry will not change significantly

in t\\'O or three meaSl1l'ement time steps. Hence, even if only one sensor has better

detections of 8 target due to target-sensor geometry, a track will be initialized at least

hy tl18t sensor. After initializing. the measmements from all the sensors will be used

in tile followi ng timc steps to confirm the track.

4.2.5 When to Use the GPU for Initialization?

This decision making is same i1S the one given for data association. However. for

track initialjzation. only the mem;urements lleed to be transferred to the CPU. Then,
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it is beneficial to perform the data association in the CPU if and only if

T~pu(nm,) < T~·pu(nm,)/ fq + Tc(nm,) (4.24)

T~PUCnmk') (1 + ;~) < Tc(nm, ) (4.25)

T!.:pu(n mk.) <
Tc(nm,)fq

(4.26)1+ .t~

where T/;pu (n m ,) is the track initialization computation time for nm , measurements

in the CPU

However, if the data association for the existing target is already performed in

the CPU, then there is no need to transfer the measurement to the CPU. Hence,

it is always beneficial to perform the track initialization in the CPU, if the data

association is performed in the CPU.

The process of flIFA tracker sequential computation on a stand-alone CPU is

shown in Figure 4.8 and Figure 4.9. As can be seen in the process flow chart Figure

4.0, a nested iteration of computations is performed in the sequential IvIFA algorithm.

Because of this nested iteration and the tracker's measurement data set capacity is

also high ill size, there is a computational overhead in this sequential process. In

order to avoid this computational bottleneck, the process is partitioned into multiple

threads. and each task is assigned to separate threa.ds. The measurement association

(lnd the cost calculation are performed in parallel as shown in Figure 4.10

The process of lVIFA tracker is parallel algorithm is shown in Figure 4.10 FirstJy,

initialize all parameters: and transport the parameters to CPU for computing the

cost of associating multiple targets. Then, initialize CPU and start multiple threads

to compute cost calculation with many different data sets for the multiple targets.
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Figure 4.8: Flow cha.rt of T'vIFA tra.cker
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Figure 4.9: Flow chart for sequential !'vIFA tracker computation in stand-alone CPU
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According to the results, retain the most likelihood path and transport the path

parameters back to host. The CPU is ma.inly responsible for CPU initialization;

memory ma.na.gement, data preparation, and receiving the results from CPU. The

CPU is mainly responsible for p8rallel computing and transporting the results to host.

Due to the CPU accessing memory device only by PCI-E interfa.ce, the tra.nsmission

is slow as shown in the previous section became of the bottleneck in the CPU-CPU

data communication. Frequent clata exchanging between host and device should be

a.voided in the data pa.rallel algorithm.
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Parallel
computation on

GPU
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End

Figure 4.10: Flo\\' chart for parallel l\IFA tracker computation on CPU-GP
grated environment
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Chapter 5

RESULTS AND DISCUSSIONS

5.1 Perforn1.ance Measures

The perfonmlllcc ll1easlll'CS that show the effectiveness of an ~IFA parallel algorithm

are the speedup factor and parallel efficiency. These measures depend on how a given

set of tasks is assigned and executed onto the GPGPU architectlll'e. The speedup of

a pm-allel algorithm is given by

~ _ E:c(c)
/ - E:J.:(cg) (5.1 )

Where is E.r(c) Execution time on CPU and E:l;(Cg) is execution time on CPU-GPU

integrated em·ironment.
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5.2 SilTIulations
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This section presents a two dimensional tracking example to illustrate the new paral-

lei task scheduling technique on CPU-GPU integrated environment and to compare

with the direct implementation of the sequential algorithm on CPU only computing

environment. The single target rvlarkov transition model that characterizes the j'h

target dynamic at time k is given by

X i - 'Ii .,j + 'lUi
. /,; - r /';'''(Ie-I) k (5.2)

where T{ = [TL, y{, iL,iJ{] is the state of the the j'h target, which consists of target

position (xi,yi) anel target velocity (:i:{, iJD at time step k, and wi is R,n i.i.d. sequence

of zero-mean Ganssian noise vectors with covariance r;{. The matrix Ai is given by

1 T 0 0

Ai -
0 1 0 0

k-

0 0 1 T

0 0 0 1

The Irw trix r;i is given byk

T'l ]'2
0 0:3 2

]'2
T 0 0)',i _ 2

'"-'k -
T~ :r2

0 0 3 2

0 0
T2 T2

where l = 1 X 1O-"m2s- 3 .

(5.3)

(5.4)
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Figure 5.3: Efficiency of parallel MFA algorithms

5.3 Results

This simulation considered a. varying number of targets in the scenario to illustrate

the .\IFA p8rcdlelization efficiency. Simulation results show the improved speedup of

the CPU-GPU integrated environment when compared to the traditional CPU only

comput8tiollC1l environment.

The CPU piuallel platform that is llsed to analyze the performance of the MFA

algorithm consists of a ?\VIDlA GeForce 285GTX as graphics card (GPU Device).

This cmd has a 240 graphics processor clocked at 1476MI-Iz, 1GB GDDR3 video

memory clocked at 1242i\'II-Iz and the data ransfers between CPU and GPU device

occur through the PCl-Express 16x interfC1ce. which is the connecting bridge between

the host (CPT. ) and device (GPU)

Figure 5.1 shows the commllllica bOll char:1Cteristics of the p8rallel (:1,rchitecture on
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which simulations are performed. The communication speedup is calculated from the

communication characteristics graph.

As the dimension of the state vector of the target increases, the data. transmission

between the host (CPU) and device (CPU) increases linearly. Hovvever, the computa­

ticmal req1lirement for each target increases exponentially due to the data. association

in each tr8ck.

The sin1111ation res1l1ts presented in Figures .5.2 shows that the computational

time of parallel i\IFA implementation on CPU-CPU integrated environment is always

below the direct implementation on CPU only environment. This time reduction is

a.chieved by red ucing the huge amount of data. transmission at each time step using

PTO algorithm.
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Chapter 6

CONCLUSIONS AND FUTURE

WORK

6.1 Conclusions

This thesis considered thc parallelization of a i\IFA tracker for multi target tracking

problems. The high computational load of the standard j"IFA tracker, which typica.lly

cOll::;ists of \/pet-ors. is llwde tractable for real-time npplications through panl11elization

ill a primary-sccolldilly mchitectme using optimization techniques.

Tilis \york focused all how to exploit COlllputation performance in CPU-CPU in­

tegrated environment. The contribntions of the work presented in this paper are

bnl-fold. First. this \\'ork presents CPu-CPU intcgrated computing model nnd al­

gorithm to opti 1l1i7,C trad itional implementa tion of tlIFA on CPU computing model.

Sccolld. this ,,'ork allH!.\7eS the performancc of the parallel task optimization meth­

ods to pro\'e the model and <:1lgoritlml. The results of the experiment.' indicate that

am p,mdkl task algorithm can better adapt to the collaboration of heterogeneous
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computing processors.

Furthermore, the proposed Parallel Optimization Algorithm (PTO) design method

is ShO\\"I1 to be more efficient in terms of resource utilization. In the parallel MFA

algorithm using PTO design technique. the data transfer between the host computer

(CPli) and the parallel computation hardware device (GPU) is reduced significantly

without any nppnrent degra.dation in trClcking performance. However, the proposed

PTO illgOlithlll lllRkes the overall algorithm efficient and real-time feasible.

6.2 Future Work

In the future, the performance of multiple CP s ancl GPUs in an integrated environ­

ment could be evaluated. and the optimizeltion of load balancing to achieve higher

pcrfonmmce cab be anah-zed. Testing of the parallel ~IFA algorithm on different

CPU-GP"e integrated environments and exploring the new performance opportuni­

ties offered b,- newer generations of CPus and GPUs ,voulel be more beneficial. It

would also be interesting to test parallel J\IFA algorithm on large number of targets

to get more experimental results. Finally, another interesting direction is exploring

this pmallcl ~IFA ;-llgorithm on multiple GPGPUs.
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