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Abstract

Target tracking in high clutter or low signal-to-noise environments presents many

challenges to tracking systems. Joint t\/Iaximum Likelihood estimator combined with

Probabilistic Data Association (Jt\IL-PDA) is a well-known parameter estimation

solution for the initialization of tracks of very 10\v observable and low signal-to-noise­

ratio targets in higher clutter environments. On the other hand, the Joint Proba­

bilistic Data Association (JPDA) algorithm, which is commonly used for track main­

tenance, lacks automatic track initialization capability. This paper presents an algo­

rithm to automatically initialize and maintain tracks using an integrated JPDA and

J~IL-PDA approach that seamlessly shares information on existing tracks between

the Jt\IL-PDA (used for initialization) and JPDA (used for maintenance) components.

The motivation is to share information between the maintenance and initialization

stages of the tracker, that are always on-going, so as Lo enable the tracking of an

unknown number of targets using the JPDA approach in heavy clutter. The effec­

tiveness of the new algorithm is demonstrated on a heavy clutter scenario and its

performance is tested on negibouring targets with association ambiguity using angle­

only measurements.
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Notation and Abbreviations

Abbreviations

AI

CJl\IL-PDA

CRLB

FHd

IMM
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Notations

V
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T

A

pi
d

/3J (i)

N[fl,o-]

U[a,b]

Q(-)

J

Track validation test statistic

Possion expected value

Probability of detection of target t

Probability of false alarm

Signal- to-noise ratio

Sensor noise standard deviation (angle-only)

Target process noise standard deviation

Marginal association probability (jth measurement, tth target, ith time)

Normal distribution with mean J1 and standard deviation 0-

Uniformly distributed in [a, b]

Information reduction factor

Fisher information matrix

Vll



Contents

Abstract

Acknowledgements

Notation and Abbreviations

111

IV

v

1 Introduction

1.2 :Motivation and Contribution of the Thesis

1.3 Organi:6ation of the Thesis

1A Related Publications ...

2 Problem Fornmlation

2.1 Dynamic lVlodels

2.2 Association Events

2.3 :\IL-PDA Tracker

2A Jr-IL-PDA Tracker

2.5 JPDA Tracker .

1.1 Introd uction

1

1

<1

5

6

7

7

11

14

1

19

Vlll



3 Combined JML-PDA and JPDA Algorithms 23

3.1 JML-PDA Algorithm: N targets. 23

3.2 CJML-PDA Algorithms . . . . . 28

3.3 Log-Likelihood Ratio Optimi:6ation 33

3.4 Track Validation .. 34

3.5 i\Ieasurement Gating 37

3.6 CRLB and Covariance of the Estimates. 38

3.6.1 Information Reduction Factor: 1D Measurement Space. 40

4 Sim.ulation Studies 47

4.1 Test Scenario . . . . . . . . . . . . . . . . 47

4.2 Restricted Direct Subspace Search (RDSS) 50

5 Numerical Results 52

6 Conclusions and Future Work 57

6.1 Conclusions . 57

6.2 Future \Vork . 58

IX



List of Figures

2.1 Validation gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12

3.1 2D view of 4D log-likelihood-ratio with known velocities and angle-only

measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35

4.1 Target and sensor motion ( Y. Bar-Shalom, X. R. Li and T. Kirubara-

jan, 2001, pg. 3 ) .

5.1 Target and sensor trajectories.

5.2 Estimated trajectories of target 2 over 100 runs.

5.3 Estimated velocities of targets 1 and 2 over 100 runs.

5.4 Rr.ISE in position estimates of target states.

5.5 Rr.ISE in velocity estimates of target states.

x

48

52

54

55

56

56



Chapter 1

Introduction

1.1 Introduction

Track Very Low Observable (VLO) targets in high clutter presents mallY difficulties ill

target tracking. The term "VLO targets" is also known as targets with low Signal-to­

Noise Ratio (SNR). One challenge is that choosing a threshold to have desirable target

detection probabiliLy and false alarm probability. A better target detection proba­

biliLy requires a lower threshold. However, lowering the threshold has the opposite

impact on on probability of false alarm. In addition, as the number of false alarms in­

creases Kalman filter based algorithms rapidly lose efficiency and effectiveness. Thus,

new approaches have been introduced for VLO target tracking. Track-Before Detect

(TBD) is one such technique that is useful when the SNR is low (C. Jauffret and

y. Bar-Shalom, 1990), (T. Kirubarajan and Y. Bar-Shalom, 1996), (L. A. Johnston

and V. Krishnammthy, 2002). TBD performs track estimation and track acceptance

simulLaneously without applving any threshold or lower threshold sensor data. TBD

algorithms typically operate on data over several scan.' as a baLch. Therefore, TBD

1
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algorithms are better solutions to initiate or sustain a track (\11/. Blanding, P. V, il­

lett and Y. Bar-Shalom, 2007a). However, the computational complexity of TBD

algorithms are generally much higher than that of conventional trackers like Kalman

fi It.ers.

One TBD that has been used in many practical system is the "t\IIaximum Likelihood

Probabilistic Data Association C'vIL-PDA) estimator. r.ILPDA was first introduced

ill (C. Jauffret and Y. Bar-Shalom, 1990) to estimate single target parameter using

a batch of bearing and frequency measurements in very high clutter or SNR envi­

ronment. The ML-PDA tracker uses data over a batch of measurements to compute

track estimates using a sliding window. This is an effective approach to initialize

tracks in high clutter, but it assumes a deterministic target models (no target process

noise). The algorithm formulates a Log-Likelihood Ratio (LLR) from a set of sensor

data, and then the track estimate is given by target state that maximizes the LLR.

The use of the additional Amplitude Information (AI), a measurement feature, in

J\IL-PDA in (T. Kirubarajan and Y. Bar-Shalom, 1996) facilitated the acquisition of

e\"en weaker targets. Furthermore, in (T. Kirubarajan, Y. Bar-Shalom and D. Lerro,

2001), rdL-PDA was used to provide consistent initialization, whose initial estimate

and covariance were given to an interacting multiple model probabilistic data associ­

at.ion filter with amplitude information (HI'Ii\JI-PDAF-AI) for maintenance. This \-vas

also demonstrated on an angle-only tracking problem in clutter. Note that the funda­

mental assumption in these approaches is that there is only one target. In addition,

the initialization and maintainance phases were independent except for passing the

state from one stage to the next.

2
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An adaptive sliding window in ML-PDA was used in (M. R. Chummun, Y. Bar­

Shalom and T. Kirubarajan, 2002) to detect a fast-moving and possibly maneuvering

target using an imaging sensor. This resulted in better detection capability than an

Interacting Multiple Model estimator combined with Multiple Hypothesis Tracking

(IMt--I-MHT) in high clutter environments. Note that the MHT algorithm is inher­

ently capable of handling multiple targets (X. R. Li and V. P. Jilkov, 2003), (D.

Lerro and Y. Bar-Shalom, 2002).

A multi target ML-PDA algorithm known as the Joint ML-PDA algorithm (JML­

PDA) was used in (V/. Blanding, P. \1\ illett and Y. Bar-Shalom, 200730), (W. Bland­

ing, P. Willett and Y. Bar-Shalom, 2007b) for simultaneous track maintenance. This

approach is an extension of the standard ML-PDA technique, but here the LLR is

formed as a combination of state vectors in order to simultaneously estimate the

confirmed tr::tck estilTmtr-s. For detection. the measurements ::lssociated with the con­

formed tracks "'ere removed [rom each frame of data and the optimization was done

with those measurements with ML-PDA. The process was repeated until no more

targets were found in a window. This assumed that new targets are well separated

in the measurement space. However, this JrI'IL-PDA implementation lacks track ini­

tialization capability of neighboring targets.

In presence of clutter, another effective approach to data association issue is a

Probabilistic Data Association (PDA) tracker, a single target tracker in clutter (Y.

Bar-Shalom and X. R. Li, 1995). The PDA framework calculates a probability for

each measurement being target originated. Then, measurement-to-track association

handled softly with those probabilities among all possible measurements. A multi­

target ,·ersion. the Joint Probabilistic Data Association (JPDA) approach is same

3
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as PDA approach, except that, probabilities are computed as joint probabilities to

account for the fact that measurements can associate to more than one target. The

JPDA algorithm has been reported in (Y. Bar-Shalom and X. R. Li, 1995), (A. Rod­

ningsdy, Y. Bar-Shalom, O. Hallingstad and J. Glattetre, 2007) , (Y. Bar-Shalom, F.

Damn and J. Huang, 2009) to be suitable for tracking of multiple targets in presence

of high clutter. However, the assumption in these algorithms is that the number

of targets in the surveillance region is known. The main motivation of JPDAjPDA

algorithm is that for track maintenance.

1.2 Motivation and Contribution of the Thesis

In this thesis, a new way of initializing and maintaining tracks for multiple targets

within the PDA framework through the seamless integration of the JtvIL-PDA and

the JPDA is presented. The motivation is to develop a multi target tracker capable of

handling the initiation and maintenance of low observable tracks in high clutter envi­

ronments. The novelty of this Combined Jr-dL-PDA (CJML-PDA) and JPDA tracker

is in the sharing of information between the two tracking modules, which in previous

batch-recursive approaches were treated as two independent (and consecutive) stages

of tracking. Past research assumed that the new targets are well separated in the mea­

surement space (\TIl. Blanding, P. \"-Tillett and Y. Bar-Shalom, 2007a). The flIIL-PDA

is repeated on residual measurement set for single target initiation and JML-PDA is

used for track maintenance of possible neighbouring targets.

As the main contribution of this thesis, the nIL-PDA algorithm is extended

to estimate an\' number of ne\\' targets' estimates with the aid of conformed track

information in JPDA. With the presence of many targets in high clutter, tracking

4
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with JML-PDA requires a higher computation time to calculate new and confirmed

targets (detection and maintenance) estimates. Also, the processing time in JML­

PDA exponentially increasing as the numbers of targets and measurements increase.

However, an advantage of the Jr-1IL-PDA algorithm is that have been shown to be

powerful for tracking single and multiple targets in high clutter. Consequently, a new

version of the JML-PDA algorithm called the CJML-PDA, for track initialization

with JPDA is presented in this thesis. The advantage of JPDA is that it can handle

high clutter and miss detections by considering all possible data association between

targets and measurements and meantime, the JPDA tracker does not require an

exponentially increasing amount of processor times as in JML-PDA.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 starts with symbols and notations

useful in reporting, and follows with a brief introduction of ML-PDA, JML-PDA and

JPDA algorithms. Chapter 3.2 presents the formulation of the new algorithm, in­

cluding track validation, the Cramer-Rao Lower Bound (CRLB) for the estimator and

rnea,'::iurement gating. The calculation of the CRLB, which quantifies the accuracies

achievable by any estimator, requires an information reduction factor that accounts

for the loss of information due to false alarms, missed detections and the presence

of multiple targets. The information reduction factor considers not only non-zero

false alarm probability and non-unity detection probability, but also the inter-target

distance is presented in Section 3.2. Simulation results validing the theory are given

in Section 5.

5
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Chapter 2

Problem Formulation

This chapter consists of the necessary notations for the tracker implementation which

includes the kinematic model and measurement models. A brief summary of 1\I1L­

PDA. multitarget ~1L-PDA (Ji\1L-PDA), and JPDA algorithms are also presented in

this chapter.

2.1 Dynan1.ic Models

The Lth target.'s state at any discrete time i is defined by

(2.1)

where f(-) is the t.arget's motion model. possibly a nonlinear function of target state

at current time i anel sampling interval T. In the above vi(i) is known as the target's

7
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process noise, and, assuming zero mean Gaussian, its variance is given by

(2.2)

Linearized model of the target motion model can be found using the Taylor ex-

pansion of f{(xt(i), T) (Y. Bar-Shalom, X. R. Li and T. Kirubarajan, 2001) as

(
8fi(Xl( i), T))

oxt (i)
xL(i)=il'(i)

(2.3)

To ensure observability criteria, bearings-only tracking requires a sufiiciellt COll-

dition on sensor motion (T. I<irubarajan and Y. Bar-Shalom, 1996). State of the

sensor platform at discrete time i is defined hy

y(i + 1) (2.4)

As in the target case, r (.) could be a nonlinear function of sensor state at current

time i and sampling interval T. It is assumed that sensor position is known perfectly.

Now, the relative state of a target from the sensor, can be written as

xlS(i) = xt(i) - y(i) (2.5)

Vhndow based JflIL-PDA and ML-PDA algorithms require a data measurement

set of NIl' frames of recent. data (W. Blanding, P. \i\ illett and Y. Bar-Shalom, 2007a).

Let Z·v". be a batch of measurements from time 70 to iI;, the reference time and current
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time, respectively. Such a batch is given by

McMaster - Electrical Engineering

{Z(io), Z(io + 1), ... , Z(i), "'J Z(i k )}

where Z(i) is the set of all measurements at time i, and it is given by,

(2.6)

Z(i) (2.7)

where 1ni is the number of measurements at time t i . Also,

Depending on the origin of measurement zj(i), it is given by

. _ { h(xtS(i), i) + w(i) target-originated
Zj(2) -

v( i) false alarm

(2.8)

(2.9)

where hC) is the measurement model, which is a function of target state, sensor state

and current time i. Measurement noise w( i) is independent of target process noise

and assumed to be white Gaussian with z;ero means and with variance

R(i) = E[w(i)w(i)'] (2.10)

In the above. v(i) is assumed to be a uniformly distributed random variable across

the surveillance region's volume 11.

A lineariz;ed version of the measurement model can be obtained using the Taylor

9
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expansion of h(xlS(i), i), same as

Ivldvlaster - Electrical Engineering

(2.11)

Amplitude Information (AI) can be included in the measurement to increase the

observability of targets. The amplitude measures the intensity of the signal at the

output of the signal processor. Here, the AI is used to validate the measurement with

a threshold. The output signal is usually Rayleigh distributed, (T. Kirubarajan and

y. Bar-Shalom, 1996). The probability density function of amplitude measure a due

to noise only measurement (false alarm) can written as

po(a) = aexp ( _ ~2)

The signal generated from a target is given by

where cl is the value of target SNR.

(2.12)

(2.13)

A threshold r is chosen to declare the probability of detection and is given by

(2.1 Ll)

Similarl~', the probability of a false measurement can written a.

(2.15)

10
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It is clear that the probability of detection and probability of false alarm will

increase with a decreasing threshold. A suitable T is necessary for a given SNR to

satisfy certain level of Pd and Pfa . With that threshold, the validated measurements

probability density function due to noise only and target generated, po(a) and pI(a),

respectively, are given by

1 1 (a 2
)p~(a) = -po(CL) = -Paexp --

PIa fa 2

1 a (a2
)

p~(a) = PIa Pl (a) = P
d
(1 + cl) exp - 2(1 + cl)

Then, Pd and P ra satisfy

exp ( - -2-(1-
T

+_2-cl-) )

exp ( _ ~2)

2.2 Association Events

(2.16)

(2.17)

(2.18)

The PDA approach uses all possible joint association events corresponding to measmement-

to-target association possibilities and track is computed with all preservations. For

the process of deri \'ation, introduce a variable called "association vector"

(2.19)

'i\There event E(i) indicates which measurement originated fro111 which target. For

11
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example, If ej(i) = t, it indicates that the jth measurement is originated from the

ith target. If ejO) equals zero is a false alarm.

Figure 2.1: Validation gate

Neighbouring targets in heavy clutter generate many association vectors, and all

of them should be accounted for data association. For instance, consider the multiple

validations in Figure 2.1. It shows two target gate.' and three measurements. It

is clear that measurement 1 is common to both gates. This measurement can be

associated with either targets, but the assumption in this paper is that at most one

measurement from each target and vise versa. Measurement 2 is only in the second

validation gate. The measurement 3 is not considered to have come from any target.

12



M.A.Sc. Thesis - K. Harishan l'vIdvIaster - Electrical Engineering

,~ ith these facts, the set of all possible association events can written as

E(i) =

(0,0)

(1,0)

(2,0)

(0,2)

(1,2)

(2.20)

This indicates which targets are detected in an association event. Element dt(i) ~

D(E(i), t) is one if the tth target is detected in the association event. Note that this

does not include track initiali~ation.

1\ow. dr-A n(' a dr.tr.ction v('ctor of an associat(' r.vr.nt, giv('n by

(2.21)

Thus, the total number of detections in an event E(i), i.e d(D(E(i))), can be

evaluated as

N

d(D(E(i))) = L D(E(i), t)
t=l

(2.22)

Again, consider the example given in ( 2.20). The detection vector for each given

13
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association events can be written as

D(E(i)) =

2.3 ML-PDA Tracker

(0,0)

(1,0)

(0, 1)

(0, 1)

(1, 1)

MdvIaster - Electrical Engineering

(2.23)

A detailed derivation of the l\IL-PDA algorithm incorporating amplitude information

can be found in (T. Kirubarajan and Y. Bar-Shalom, 1996). Summery of a generalized

ML-PDA version is presented this section.

Usually, the i\IL-PDA algorithm uses the following assumptions:

• Only single target is present in each data frame with a given detection proba­

bility PcL, and detections are independent across frames

• At most one measurement per frame corresponds to the target

• The target operates according to deterministic kinematics with no process noise.

The target's kinematic state at a given reference time i o is related to the target's

state at anytime. Therefore, equation ( 2.1) can be rewritten as

x( i) f(x(io), i) (2.24)

• False detections are distributed uniformly in the search volume V
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• The number of false detections is Poisson distributed with a known expected

number of false measurements /\ in the volume V with probability mass function

being gi ven by

(2.25)

• Amplitude of the target originated and false detections are distributed according

to Reyleigh probability density function ]Jl(a) and ]Jo(a) , respectively. The

target SNR, which affects ]Jl(a), is either known or estimated in real time.

• Target-originated measurements are corrupted with additive zero-mean white

Gaussian noise

• l'vleasurements obtained at different times are conditionally independent, i.e.,

(2.26)

The probability density function of target-originated measurement given the target

state using ( 2.9) can be written as

(2.27)

15



l\I.A.Sc. Thesis - K Harishan McMaster - Electrical Engineering

Expanded version of the above function is given by

p(Zj (i) Ix (io) )

k 1 . 1 exp (-~[Zj(i) - h(x(io),y(i),i)]R(it 1 [zj(i) - h(X(io),Y(i),i)]')
(27f)2IR(1.)12 2

(2.28)

where k is the dimension of the measurement space.

Having the above ML-PDA assumptions and definitions, the likelihood function

P(Z (i) Ix( i)) of a single frame of data is fonned as weighted sum of all possible target

detection events, that is,

J.t(mi) J.L(mi - 1) Lmi

P(Z(i)lx(i)) = (1 - Pd)-v. + PdV-I p(Zj(i)lx(io))
lH, 1n, rTL-

, j=1

(2.29)

The likelihood function over Nw frames is the product of single frame likelihood

functions. Thus, it can be given as

ik

IT P(Z(i)lx(i))
i=io

Dividing ( 2.30) by the likelihood gl\ren all measurements are false detections

which is given by

(2.31)

16
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and taking the logarithm of the resulting function results in a dimensionless and more

compact form, given by

(2.32)

The function i.' known as the maximum likelihood probabilistic data association

log likelihood ratio (ML-PDA LLR) (\~. Blanding, P. Willett and Y. Bar-Shalom,

2007b). The maximum likelihood approach finds the target parameter x(io) that

maximizes log likelihood ratio function. That is,

x(io) = argmax <I>(ZNw,x(io))
x(io)

(2.33)

When amplitude information is incorporated ( 2.34) can be rewritten as (T.

Kirubarajan and Y. Bar-Shalom, 1996)

(2.34)

where P.i(i) is the amplitude ratio of the jth measurement is given by

(2.35)

17
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2.4 JML-PDA Tracker

l'vlcl\!Iaster - Electrical Engineering

This section consists of a detailed derivation of the JlvIL-PDA for i\ number of targets.

A detail derivation of the Jl\IL-PDA algorithm incorporating amplitude information

can be found in (\11/. Blanding, P. Willett and Y. Bar-Shalom, 200730). This was

given only for two target scenarios, but JML-PDA can be formulated for any number

of targets. The JMLPDA uses the assumptions in the ML-PDA, but the multitarget

version makes the fotlo'vving additional assumptions:

• N conformed targets are present in each data frame with a given detection

probability, and detections are independent across frames

• At most one measurement per frame corresponds to each target

• A measurement cannot be associated with more than one target

• l\Iea:mrements originating from different targets are independent

• Target originated measurement errors have the same distribution for all targets,

that is, they are a function of the sensor, and not the target.

The formulation the JLLR to jointly estimates track estimates of the two targets

can be found in (\11,1. Blanding, P. Willett and Y. Bar-Shalom, 2007b) and (W.

Blanding, P. \iVillett and Y. Bar-Shalom, 200730). JML-PDA Joint LLR (JLLR) of

1
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N w frames can be found as

tdcl\!Iaster - Electrical Engineering

(2.36)

+

+

<l>IIZ, a]Nm
, lx' (io), x'(io)JJ = ~ In [(1 - PJ)(l ~ plJ

Pl(l _ P2) I/li p2(1 _ PI) mi

eI /\ d L pj(i)p(Zj(i)lx1(i)) + d /\ d L pj(i)p(Zj(i)lx2 (i))
j=1 j=1

plp2 n~ mi ]

:~2 eI f; ~p(Zj(i)lxl (i))p(Zj(i)lx2 (i))

I#j

The extension of above JLLR to an arbitrary number of targets is given in Section

3.1. This includes all possible target detection events given measurements and number

of targets.

2.5 JPDA Tracker

In t.his section, the core equations in the JPDA tracker is presented. The detailed

derivation of this algorithm can be found in (Y. Bar-Shalom and X. R. Li, 1995).

The JPDA is used for to maintain existing tracks with no buitin capability to initiate

new tracks. Here, the parametric version of JPDA is used since the assumption is

that false alarms are Possion distributed. The nonparametric version does not require

prior knowledge of the spatial density of the false measurements, a realistic method

where the false measurements (D. Leno and Y. Bar-Shalom, 1993).

Generallv, the JPDA algorithms makes the following assumptions:

• N est.ablished targets are present at. any time i, and the target tate is estimated

as i;t(ili) with associate covariance pl(ili)

• The past. information about tth target is summarized approximately by the
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Gaussian distribution, i.e.,

McMaster - Electrical Engineering

(2.37)

• The number of false detections is Poisson distributed as in JML-PDA/ML-PDA

The marginal association probability of jth measurement being associated to tth

target can be written as

/3j(i) = L P(Ej(i)IZ i
)

VEjU)

The term P(EJ(i)IZ i
) is the probability of an individual event is given by

(2.38)

1 (m'i - cl(D(E(i))))! ( l(D(E('))))- x I MFA mi - C ~
C 171,i.

N

. II(PcDD(E(i).t) (1 - Pj)(1-D(E(i),t)) IIp(Zj(i)IXej(i)(i)) (2.39)
t=l j=l

where C is the normalizing constant and Ej(i) is the association event that jth

measurement associated to tth target.

The tth target JPDA estimate at time i can be written as

1l1j

x'(ili) = Lf3j(i)itj (ili)
j=1

(2.40)

where :1;tJ(ili) is the updated state estimates conditioned on the event that the jth

measurement is correct, and /1] is the probability of event j. Thus, i tj (iii) is given
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by
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(2.41 )

where xi
( iii -1) is the predicted estimates of the state at time i, vJ (i) is the innovation

associated with the jth measurement and Wi (i) is the Ka.lman filter gain, (Y. Ba.r­

Shalom and X. R. Li, 1995).

The innovation can be written as

vJ(i) = zj(i) - z'(ili - 1) (2.42)

where zi(ili - 1) is the predicted measurement of the tth target and is given by

zi(ili - 1) = h(xi(ili - 1), y(i), i)

The gain is given by

where Pi(ili - 1) is the predicted target sLaLe associated covariance given by

(2.43)

(2.44)

and 5(i)' is the innovaLion covariance given by

5(i/ = (H(il(ili -l).y(i).i))Pi(ili -l)(H(ii(iji -l),y(i),i))' + Ri(i) (2.46)
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The state estimation covariance is updated as

McJVIaster - Electrical Engineering

pt(ili) rJ6(i)Pt(ili - 1) + (1- ~6(i))(Pt(ili - 1) - Wt(i)(S(i)t)-l(Wt(i))')

+ HI' (i) [~ 13i(i) v: (i) (v; (i))' - (~,3;(i)V:(i)) (~13;(i)V;(i)y]
(2.47)
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Chapter 3

Combined JML-PDA and JPDA

Algorithms

3.1 JML-PDA Algorithm: AT targets

In this section a J)\/IL-PDA JLLR formulation for arbitrary number of targets is

presented. The assumptions from Section 2.4 are kept for any number of targets

as well. Thus, the joint likelihood function of i\ targets, which is the probability

density function of measurements in Z(i) conditioned on all target states, using the

total probability theorem can be written as

P( Z (i) IxN (i)) L P(Z(i)lxN (i), E(i))P(E(i)lxN (i))
\fE(i)

(3.1)

where x N (i) is the st.ack vector of N targets given by

N(.) [1(.) 2(.) N(.)]X 1 = X 1., X 1, ... , x ~
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E(i) is an association event (see Section 2.2). Then, term P(Z(i)lxN(i), E(i)) is

written as

P(Z(i)lxN(i), E(i)) P(Z(i)lxN(i), E(i), 7ni)

IT p(Zj (i) IXej('i) (i))
j=]

(3.3)

where PS is the probability of detection of the tth target. If the targets are identical

then the detection probability may assumed to be equal.

The term P(E(i)lxN(i)) can be also written as

P(E(i)lxN(i)) P(E(i)lxN(i), mi)P(m.;jxN(i))

P(E( i) Im'i)P(m'i) (3.4)

An association event E(i) has cl(D(E(i))) number of target detections and (mi -

cl(D(E(i)))) number of false alarms. Then, P(E(i)lmJ is given by

P(E(i)lmJ 1 (m'i - cl(D(E(i))))1 ( (( (.))))
-P() I /J,F A m'i - cl D E 2

7ni mi.

N.IT (pJ)D(Eo),t)(l - pJ)(l-D(E(i),t))

t=l

(3.5)

Thus, the joint likelihood function of N targets can be written as (R. Tharmarasa,
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T. Kirubarajan, M. L. Hernandez and A. Sinha, 2007)

P(Z(i)lxN (i)) = ~ (mi - d(D(E(i))))! ~lFA(mi - d(D(E(i))))
~ m'VE(i) t

N.I1 (Pc;) D(E(i).t) (1 - pcD(l-D(E(i),l)) I1 p(zj(i) Ixej(i) (i)) (3.6)
t=l j=l

The jth element of association event E(i) is ej(i). If the value of ej(i) equals zero

represents a false alarm, which is uniformly distributed in volume 11 with pdf

1
p(z7(i)lxO(i)) = -. 11 (3.7)

If the value of ej(i) equals t, means that the corresponding measurement is found

with target t pdf

p(Zj(i)IJ/('i))

k I (1 )(2n)-2!R(i)!-2 exp -"2[zj(i) - h(xt(i), y(i), i)]R(it 1 [zj(i) - h(xt(i), y(i), i)]'

(3.8)

Then, the joint likelihood function can be rewritten as

P(Z(i)lxN(i)) = L (nlf - d;~(E(i))))! MFA (m'i - d(D(E(i))))
VE(i) t

N ( ) d(D(E(i))) Tni.g(pJ)D(E(i).t)(l - pc;)(l-D(E(i).I)) 1~ Dp(Zj(i)lxej(i)(i))

ej(i)#O

(3.9)
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The term
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(. l(D(E( .)))) I ( ) d(D(E(i)))
mi-

G
Z '/-LF,.\(mi-d(D(E(i)))) ~

mil 1/

can reduced to

/IFA(m,J 1
1/m; N/(D(E(i)))

However,

{LFA(mi)
1/m;

is the likelihood function that all measurements at time i are false alarms.

Thus, the joint likelihood ratio of a frame with i\ targets is given by

(3.10)

(3.11)

A(Z(i)lxN(i))
N ~

~ 1. II(pt)D(E(i).t)(l _ pl.)(1-D(E(i),L)) II p(z](i)lxej(i)(i))
~ /\d(D(E(i))) d d

VEri) 1=1

(3.12)

For a window, the joint log-likelihood ratio (JLLR) is given by

26

(3.13)



M.A.Sc. Thesis - 1<. Harishan i\tIcMaster - Electrical Engineering

\i\l hen amplitude information is incorporated then ( 3.7) can rewritten as

(3.14)

Also, ( 3.8) can be rewritten as

(3.15)

Finally, the joint likelihood function in ( 3.12) becomes

i\([Z(i), a(i)]lxN (i))
N mi

~ 1 II'(pl)D(E(i).t)(l - pt){1-D(E(iJ,t)) II {l)-(i)p(z)·(i)lxej(i)(i))
~ NI(D(E'(i))) d d

liE(i) t=1 j=1
ej(i)#O

(3.16)

Steps leading to ( 3.16) are summarized below:

P([Z(i), a(i)]lxN (i)) = L (rni - cl:~~E(i))))ll-tFA(rni - cl(D(E(i))))
liE(i) !

N ( _ ) d(D(E(i))).II(pb)D(E(i),t)(1_ pb)(1-D(E(i),1,)) 1~

1=1
rHi IlLi

. II p~(aj(i)) II pI(aj(i))p(zj(i)lxej(i)(i))
j=J j=1

ej(i)=O ej(i)#O
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P([Z(i), a(i)]lxN (i)) = L (mi - d(D~E(i))))! ~[FA(mi - d(D(E(i))))
\fECi) m'i'

N.II (p(DD(E(i).t) (1 - pb)(l-D(E(i),I))

t=l

(

1 )d(D(E(i))) n1j 771; T( .('))
. - IIpT(a.(i)) II PI a)~ p(z(i)lxej(i)(i))

11 . 0 J . pT(a .(~)) )
)=1 )=1 0 )

ej(i)io°

The term

( ( ( ( '))))1 ( ) d(D(E(i))) 771;

mi - d DIE ~ '~Fjj(n/'i - d(D(E(i)))) ~ I1p~(aj(i))
mi· 11

)=1

re luces to

The probability of all measurements being false alarms is given by

3.2 CJML-PDA Algorithn1.s

(3.18)

(3.19)

(3.20)

(3.21)

The nIL-PDA is a multi target parameter estimator, which is used here to initialize

tracks of multiple targets, whose estimates and covariances are then fed to the JPDA

tracker in a sliding window fashion. The novelty of this Combined JML-PDA and

JPDA (CJ1\IL-PDA) tracker is in the sharing of infonnation between the two tracking

modules. which is differellt in previous batch-recursive approaches that treated the

2
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initiali~ation and maintenance phases as two independent (and consecutive) stages

of tracking. In real tracking problems, targets can enter and leave the surveillance

region at any time. As a result, track initiation has to be considered at every sam­

pling time. That is, track initialization does not occur during only the first few scan.

Similarly, the fact that track maintenance stage has been activated does not obviate

the need for further track initiations. Both have to be carried out simultaneously

throughout the entire tracking interval. Because of this, the track initialization mod­

ule (here, the JML-PDA) needs to take into account the number, states and qualities

of the established tracks being retained by the track maintenance module (here the

JPDA). Otherwise, spurious tracks and track seduction will ensue, damaging the

overall quality of the tracker.

The rest of the chapter organi~ed as follows. Section 3.2 presents the formulation

of the algorithm for any measurement and target spaces. Next, a restricted direct

Sllh.·p::tCf' search (R.DSS) is presentf'd t.o find est.im::t,t.es at glob::t,} estimates using the

CJML-PDA JLLR in Section 3.3. Sections 3.5 and 3.4 present, track validation

and measurement gating for CJJ\IL-PDA. Finally, CRLB of CJi\IL-PDA estimates

are presented in Section 4.

The combined JML-PDA algorithm holds the same assumptions as in the JML­

PDA. However, the following additional assumptions are made:

• An unknown number (assume N*) of targets with N number of them being

confirmed ill a batch with a given detection probability.

• All measurements are to be associated to new targets

The standard JPDA tracker assumes that the number of target is known (N)

and that of for each target a track has been formed (initiated). However, in the
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CJlvII<:L-PDA tracker objective is to of track initialize tracks of any number (N*) of

targets in a window. According to the above assumption, N* estimates need to be

estimated using the CJML-PDA algorithm with the aid of JPDA. Thus, the required

CJi\1L-PDA JLLR based on i\r* number of targets can be written as

ik

<D[ZN"'I(x*)N'(io)] = II (<D[Z(i)l(x*)N'(i),xN(i)]) II(XN(i))

i=io

(3.22)

where xN(i) and (x*)N'(io) are stacked vectors of all confirmed and existing targets'

sLates, respectively. In the above, I(xN (i)) is the information on N targets in the

JPDA tracker, whose incorporation in the JML-PDA, the main component in the

combined algorithm.

Information from the JPDA are

• Number of existing targets (iV)

• Validated measurements of the confirmed targets

• Track likelihoods

This information is then fed into the conventional J1\11L- PDA to improve the de-

tection capability.

In the JPDA the tth target likelihood is

where 5';(i) is the innovation covariance matrix given in ( 2.46).
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(3.24)

The expanded CJi'dL-PDA JLLR ( 3.22) can be written as

The single target CJ?vIL-PDA JLLR (N* = 1), to extract the best estimate of a

single target while there are N already conformed tracks in the region can be found

as

ik

q)[ZNwlx*(io )] = IT (<D[Z(i)lxN(i),x*(i)]) II(xN(i))

i=io

(3.25)

The new targets' estimate (x*)N*(io), is 'vvhich maximizes the CJML-PDA JLLR

function, can be found by

(x,V')"(io) = argmax <D[ZNw, (x*)N*(io)]
(x·)N*{iO)

(3.26)

Tracks for the unknown number N* of targets are initialized at time i o if and only

if they pass the track validation (see Section 3.4). A simple way to find ir is to use

the CJi'I'lL-PDA repeatedly, starting with iV* = 1 and then incrementing N' by 1 at

Llntil track valida Lion is violated.
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The important steps in the CJML-PDA and JPDA tracker in a window are pre­

sented below:

RECEIVE Z(id

GET x(il.li,yV
, P(iklid N FROr-I JPDA

iV* f-- 1

repeat

GET (x*)W (io) IN CJML-PDA

VALIDATE <D[ZNw
, (x*)N* (io)]

if SUCCESS; Y f-- 1 then

GET (p*)N' (io)

STORE [(x*)W(io), (P*)W(io)]

iV* + +

else

Y f-- 0

ir f-- r--.T* - 1

if iV* i- 0 then

GET [(x*)N' (i;.), (p*)N* (i,J]

JPDA f-- [(x*)W (id, (p*)W ('id]

end if

end if

until Y i- 0

DELETE Z(io)

:'\e\\' target extension is done with the CJI\IL-PDA assumption a deterministic
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targets' motion model. The covariance P* of the CJML-PDA estimate x* is detailed

in Section 4.

Notice that the CJTvIL-PDA approach 1 uses JPDA information up to the time

t/,;. Thus, CJML-PDA has to wait until JPDA completes it calculation in order to

geL the very recent (i/,; th time) estimates. However, this can be avoided. One way is

by using the JPDA predicted measures at the wanted time instead of real estimates.

The other way is by adjusting the window length from i o to ik - 1. This ensures a

simultaneous process on both CJML-PDA and JPDA.

3.3 Log-Likelihood Ratio Optimization

The track estimate in CJML-PDA is a parameter, which maximizes the CJML-PDA

JLLR, is a highly non-convex function consisting of a large number of local maxima

(possibly thousands for heavy clutter) and extended regions of near-zero gradient is

difficult to optimize. Figure 3.3 shows the single target CJML-PDA JLLR surface for

a batch of angle only measurements. The LLR plot with respect to target parameter

position in x and y coordinates with a 4-dimensional target parameter vector (2

position and 2 velocity components) at fixed velocity is considered.

Three techniques that have been used in CJML-PDA JLLR optimization: Ge­

netic algorithm. multi-pas.' grid search and direct subspace search. In grid search,

surwillance region is divided into multiple of regions to find the global LLR maximum

via region wise local maximum. The number of grids is chosen based on measure­

ment. noise standard deviation. The prior works in (C. Jauffret and Y. Bar-Shalom,

1990), (T. Kirubarajan and Y. Bar-Shalom, 1996), (M. R. Chummun, Y. Bar-Shalom

and T. Kirubarajan. 2002) have used multi-pass grid to get LLR global maximum.
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Genetic Search (GS) is a stochastic technique performed over a discrete parameter

spacc usiug a rulc based ou biological cvolutioll alld survival of the fitness, (\Al.

Blanding, P. V\ illett and Y. Bar-Shalom, 2007a). GS has seen little use in tracking

community, and further a description about this method can be found in (Goldberg,

19 9).

Directed Subspace Search (DSS) is an optimization tool to guide the search process

in a way that identifies areas in para.meter space that are more likely to conta.in local or

global maxima. A real time tracker needs to obtain the global efficiently. Thus, in this

report a restricted directed subspace search (RDSS) is introduced for fast process. In

DSS, each measurement in ZN", is converted to parameter space, and a maximization

search is done according to those potential points. However in RDSS, measurements

a t reference time (Z (io)) are converted to the parameter space to identify potential

parameter points. RDSS type of mapping leaves more free parameters than of the

DSS. Thell. the free parameters ilre grided to find globill maximum. Section 4.2

ha' this RDSS in 1D parameter space and angle measurement space, which is also

our test condition. Note that this method is not suitable for targets with very low

proba.bility of detection since the potential points are observed by only Z(io).

3.4 Track Validation

CJI\IL-PDA a!\\'ays returns an estimate. Because of the nature of highly non-convex

function, the optimization algorithm may converge into a local maximum resulting in

a false track. Thus, a hypothesis testing is required to determine if there is a track

alld the result x is the global maximum, to determine if it is due to a target or due

to noise only measurement.
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Figure 3.1: 2D VIew of LiD log-likelihoocl-ratio with known velocities and angle-only
measurements.
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The estimate from the CJML-PDA JLLR is tested with hypothesis HI and Ho

hypothesis which are given by

HI {here is a track and x is the global maximum}

Ho {There is no track} (3.27)

According to Neyman-Pearson lemma, the optimal test of hypothesis HI versus

Ho i' by comparing CJML-PDA LLR at global maximum with a threshold Cr."" and

the threshold is selected by a predefined miss probability 1I"m

1 j.e"", ?

11m = ~ e~'~- cl \
V 211" . -

(3.28)

where AH1 / Ho is the Gaussian test statistic defined in terms of E[cD[Z(i), HI]] and

E[<.I1[Z(i) ,H I j2]. The first and second moment of log-likelihood ratio under hypothesis

HI, is given by

ik

L Y Hl/Ho(i)
i=It (cD[Z(i), x] - E[cD[Z(i), HI]])
i=I JE[cD[Z(i), J-h]2]

(3.29)

The k'h moment of log-likelihood ra.tio under hypothesis HI is given by

E[cD[Z(i), HI]"] =

f j ... j[cD[Z(i), H1]]"P(Z(i)lx) clZ(i)
rni==]
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Finally, the track is accepted if

3.5 Measurement Gating

iVlci\tlaster - Electrical Engineering

(3.31)

Another way of reducing the computation time in CJML-PDA is by applying gating,

which reduces the measmement set for consideration. Here, gating is set up on

existing tracks based on iVlahalanobis distance, which uses prior track estimate and

its covariance. A measmement is called "validated measmement" if it s::ttisfics

(3.32)

i l (iii - 1) is the predicted measurement of target t given in 2.43. The term S( i)t

is the innovation covariance of target t at frame i, given in 2.46. ~(is the limiting

threshold and chosen based on a desired probability of containing the target originated

measmement within the gate.

Existing targets' measurements are validated before they are feed into CJiVIL-PDA

optimization and in the presented combined tracker this is done in the JPDA module.

CJI'vIL-PDA assumes that the new targets could be anywhere in the smvival region

since there is no prior information about these targets. Thus, all measurements are

associa ted in new targets.

To fmther understand, think of a two target scenario, that is i\ = 1 and i\T* = l.

\Yith possible gating on target 1 (assume it is the existing object) CJl\IL-PDA LLR
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becomes (a similar equation can be found in (\7'./. Blanding, P. vVillett and Y. Bar-

Shalom, 2007b))

+

A(ZN"lx"(io)) ~ ~ In [(1- PJ)(1 - p1J

pl(1_p2) b; p2(1_Pl) mi

d ,.\ d LP(zj(i)lx1 (i)) + d /\ d LP(zj(i)lx*(io))
j=l j=l

pi p2 b; mi 1

+ (~2 d L L p(z.li)lx1(i))p(Zj(i)lx*(io))
j=l i~g p(zj(i)lx J (i));Vi

(3.33)

where Z is the existing target's validated measurement, and there are bi number of

such measurements in the set.

3.6 CRLB and Covariance of the Estimates

l'vIultitarget Cramer-Rao Lower Bound (CRLB) calculation is more computationally

complex than [or single target. The single target case is computationally equivalent to

well-separated multitarget ca. e. Further, multitarget CRLB is worse in bearing-only

case because, even i[ targets are well separated in state space they could be closely

spaced in measurement space. In such an environment, the CRLB of the estimates

is significantly different from thaJ, nnder single ta,rget condition. ,vvhich is now

reflects by the neighboring targets. Clearly, the inter-target distance has an impact

on CRLB. Thus, the information reduction factor (IRF), which accounts for the loss

of information due to association ambiguity. is not only in the function of probability

of detection and probability of false alarm, but also a function of inter-target distance

in measuremenL space.

3
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Let, x and x be the standard true targets stack state vector, and their estimates

respectively. Then, the error x in the estimate can be written as

x x-x (3.34)

The CRLB of an unbiased joint maximum likelihood estimate x is given by

(3.35)

where J is Fisher Information Matrix (FIM) is given by

(3.36)

For a valid track in CJj\iIL-PDA, the covariance of the estimated state is approx-

imately equal to the CRLB bound. Thus, the covariance of the estimated state is

given by

where yV", is the sum of Fisher information matrices given by

(3.37)

I N ,,.

ik

LJ(i)
i=l
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where
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J(i) E{ [Vx In p(Zei) Ix)][vx In P(Z(i) Ix))'} \x=x (3.40)

(3.41)

For the batch estimate CJJ\iIL-PDA, the estimates in the window (CJIvIL-PDA

track) are driven by

x (i) = f(x (io), y (i) , i - io)

and t.he estimates· covariances are given by

P(i) = F*(x(io), y(i), i - io)P(io)F*(x(io), y(i), i - io)

(3.42)

(3.43)

Note that, for simulated data the FIM J can be calculated from the true states.

Therefore, for simulated scenario J can be written as

(3.44)

3.6.1 Inforl11.ation Reduction Factor: ID Measuren1ent Space

The measurements in the validation region are taken into consideration in the calcu-

lation of the Information Reduction Factor (IRF).

\i\Tith m; angle measurements, J; can be written as an mAold integral form,

J, = ~ / .... /. [V:cP(Z(i)lx)] [VxP(Z(i)IX)]' P(Z(i)I::c) ()
L . . P(Z( i) Ix) P(Z(i) Ix) cLZ i

1'11;=1
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(3.47)

In our simulation, track initialization using CJI'vIL-PDA has two phases. Single

target initialization ( 4.5) and single target initialization in the presence of previous

targets ( 4.7).

The calculation of the CR LB includes the IRF that reflects the loss of information

due to false alarms, missed detections and the presence of multiple targets. In the

multitarget CRLB, the proximity of negibouring targets is factored as a normalized

inner-target distance in measurement space in the calculation of IRF.

Consider the case two where x* and x are new and existing target dynamic states

respectively. Thus, the FIM at time i can be written as

J
i

= ~J... J[v:c.P(Z(i)lx*)]] [v.-c,P(Z(i)lx*)]' P(Z(i)lx*) dZ(i) (3.46)
~ P(Z(i)lx*) P(Z(i)lx*)

1"1'1;=]

The term V:c·P(Z(i)lx*) can be found using

J.Lf(mi) {pcr(1 - p.d )

Vmi A!2ifCJo

.~ . (_(Zj(i)-h(X*(i),y(i),i))) zj(i)-h(x*(i),y(i),i)[ h("¥(') (-) .)]
~ exp 2 2 Vx' X z, y z ,z
. ~ ~.1=1

P(~Pd ~~ . ( (zj(i) - h(x*(i), y(i), i)) (zl(i) - h(x(i), y(i), i)))
+ 2 ') ~~ exp - 2 - ')

A 21fCJii )=1 1=1 2CJo 2CJii
1#.7

.z)(i) - h(x*(i), y(i), i) [ 1 ( .*(.) (.) .)]}
---'--=------'--------;:-2----'-----------'-----'---------'--- V x' 1 X Z, Y Z ,Z

(Jo
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Now, introduce a new variable ~i such that

NlcNlaster - Electrical Engineering

~il

~i = ~ij

(Z[ (-i) - hex' (i),y(i),i))
au

(Zj (i) - hex' (i).y(i). ill
an

(Zm; (i)-h(x' (i),y(i),i))
ao

(3.48)

The term corresponding to the second target, (Zj(i)-h~;i).Y(i).i)), is given by

(2j(i) - h(x(i), y(i). i)) (Zj(i) - h(x*(i), y(i), i) + h(x*(i), y(i), i) - h(x(i), y(i), i))

c'ij + d(h(x*(i), y(i), i), h(x*(i), y(i), i), 0"11)

~ij + di(l,2) (3.49)

where cl(h(x*(i), y(i). i), h(x*(i), y(i), i). (Jo) is a normali~ed distance between the tar-

gets (normali~ed inner-target distance) in the measurement space. To simplify the

notation, it is denoted as d.i(l, 2).

The differential term d:~(ji) in integral is given by
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(3,51)

\N'ith the variable transformation, gradient can be rewritten as

( ( ')1 *) fJJ('rn;) {P,/(l - Pd) ~ ((fj) 1 ['7 h( *(') (') ')]\lx'P Z ~ x = Tn J2if LexP -- ~ij- V x' X ~ ,y ~ ,~
11, ,\ 27fao, 2 ao

J=1

P*P m; m; e (~ cl Y 1 }
+ ,\2~_ d2 L L exp( - ')'J - tl +') 0, )~ij-[\I x·h(x*(i), y(i), i)]

/lao - ~ a()
j=1 1=1

I/-j

Then ji can be written as

(3,52)

For one dimensional measurement space Zj (i) is a scalar. Therefore, the above

integral of Ji can be rewritten as

/J-J(m;) /H; 1= j'= /+g r+
g

L 11 m , ao ·.. ... J-
m;=1 T T' ~g . -g

x
(

",m; r (_ ej ) c" (P,i(1-P'!l + P,i Pol ",m; r ( (~;/+di(1.2))2))) 2
~J'=1 exp 'J <",.7 \ 0= ,\22n~2 ~1=1 exp 2

- ~V~7ran'vo l/-j

(1 - P*)(l - P ) + _1_ ",m; (p (1 _ P*) r (_ (~ij+di(1.2))2) ..
d d '\~ao 0j=1 d d exp 2

) ~~
.. +P*(l _ P) r (_ ~?j) + POPD ",m; ",mi r (_ ~lj _ (;,+d;(1,2))2)

d d exp 2 '2? 2 07=1 ~1=1 exp 2 2
~ _nan, li-j

1 I

X -;dV',,-,·h(x*(i), y(i), i)][\lx·h(x*(i), y(i), i)] (3,53)
aij
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The IRF be denoted by Q is given by
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x

(1 - P*)(l - P) + _1_ '\'111; (p (1 _ P*) exp(- (~;j+d;(1.2))2) ..
d d >'V2T.ao D)=1 d d" 2

..
.. ~dC

? ) ?' <",.. +P*(l - P) exp(- ~ij) + PDPD '\''111; '\'"In; eXI)(- ~~i _ (~;f+d;(1,2))2)
d d" 2 >.227'(72 D]=1 DI=1 2 2

o l#j

(3.54)

Thus, J i can be written as

Ji Qi(Pd , PIcil (70, di(l, 2)) x ~[\7x.h(x*(i), y(i), i)][\7x-h(x*(i), y(i), i)]'
0"0

(3.55)

For the test scenario, \7x.h(x*(i), y(i), i) is given by

(3.56)

For any single scan estimator, the above term can be found by

(3.57)
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For the batch estimator CJML-PDA the corresponding term is given by,

[
. 1. }3.58)
t - 20

As seen in ( 3.55), the information reduction factor (Q) is not only function of

Pel, F po and (Jo but also a function of eli(i, 2), the normalized inter-target distance in

llleasurelllent space. The IRF values for different Pd, Pro and eli(i, 2) are summarized

in T::thlr 3.1 for R fixc:d sc:nsor stRndm-d dcvi::ttion.

Table 3.1: Qi(Pel , Flo, (JII, el i(l, 2)) values for (Jo = 0.02(rad)

Pel PIa eli = 0 eli = 3 eli = 6 eli = 9

0.8 0.1 0.359Ll 0.6797 0.7173 0.7243

0.9 0.1 0.4051 0.7312 0.7500 0.7866

0.9 0.15 0.3879 0.7011 0.7501 0.7675

The above R.pproach can be extended to find the kLh moment of log-likelihood

ratio under test hypotheses HI' The equation 3.30 values as function of normalized

distance are summarized in Table 3.2.

Table 3.2: Mean and standard deviation (s.d.) under test hypotheses HI for fixed
(JO = 0.02(rad)

Pd PIa r.loments eli = 0 eli = 3 eli = 6 eli = 9

0.8 0.1
mean 9.9779 9.3133 9.275 9.2206
s.d. 11.3281 10.6821 10.6555 10.6128

0.9 0.1
mean 11.4763 10.7675 10.5585
s.d. 12.5989 11.9142 11.7858

0.9 0.15
mean 10.3140 9.7062 9.6675
s.d. 11.60 3 10.9841 10.959
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The single target IRF is same as the case where targets are well separated. Thus,

IRF single target can be found using

Qsingle == Q 1l1ulti
d; (1.2)-+00
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Chapter 4

Simulation Studies

4.1 Test Scenario

Angle-only tracking is a challenging estimation problem because of the nonlinearity in

the measurement model. Therefore, to ensure the target's observability the sensor's

platform needs relative maneuvers or acceleration. Also, due to low information

content of the measurement there can be high estimation error. Higher false alarm

rate makes the condition ev n worse.

The simulation study was conducted on an extended version of the scenario in Y.

Bar-Shalom, X. R. Li and T. Kirubarajan, 2001, pg. 387 to tracking two neighbouring

targets with an angle-only sensor. Both the sensor and targets follow a constant

yelocitv motion model, but the sensor at a constant altitude while the targets are on

the ground. This ensures observability.

A target dynamic state donated with position and velocity at time i is given by

(4.1 )
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where e(i) and ~11(i) are the position and velocity, respectively.

Target motion matrix F for the above target state can be expressed as

(4.2)

It is assumed that E[vn(i)vn(i)/] = a;'

.J .. .)( 1.: . {I -:-] I'ae): L (i) (I'ud)

(i;" (i)( In ) .,)' (i )(n I) )

I((m)

am

• Sen':'Ol
)< Target

Figure 4.1: Target and sensor motion ( Y. Bar-Shalom, X. R. Li and T. Kirubarajan,
2001, pg. 3 8)

The sensor platform is assumed to be moving horizontal with constant velocity.

Figure 4.1 illustrates target and sensor motion for time i to i + 1 (discrete). The

state of the sensor platform can be defined by

yS (i) (4.3)

where 118 (i) is the alt.itude of the platform.
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Angle-only measurements are taken by the sensor. Thus, a target generated mea-

surement can written as

(4.4)

Simulation studies were done on two neighbouring targets. Thus, there are three

po.-sible circumstances in track initialization:

• Single target initialization

• Two targets initialization (jointly estimate two targets states)

• Single target initializa tion in the presence of an existing target

The LLR with respect to single target state can be written as

i k pI Illi .

Lin [(1- pJ) + ;1 LP(Zj(i)lxl(i))]
i=io j=1

(4.5)

The JLLR of two new targets can written as

(4.6)+

cD [zN,,, , Xl (iO),x2 (io)] = tin [(1- Pc!)(l- p}) + p(t(l /~ peT) fp(Zj(i)lx 1(i))
i='io j=l

p 2(1- PI) Ill; . plp2 m; Illi

d /\ d LP(zAi)lx2(i)) + ~\2 d L LP(Zj(i)lx1(i))P(zj(i)lx2 (i))]
j=1 j=1 1=1

li-j

In the third case. single target initialization presence of a target, JLLR can be
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written as

McMaster - Electrical Engineering

i])[ZN", x'(io)J ~ t, In [(1- PJJ(l - pl) + Pl(l; Pll t p(zj(i)lx' (i))

P2(1 _ PI) nt, pI p2 bi m, ]
+ d d L. p(Zj(i)lx2 (i)) +~ L LP(zj(i)lx1(i))p(zj(i)lx 2 (i))

A A
j=1 j=1 )f3 p(Zj (i)lx 1 (i))

(4.7)

where x*(io) and x(io) are new target and existing target states, respectively.

4.2 Restricted Direct Subspace Search (RDSS)

Position grids are calculated from measurements to reduce computational load. 1n-

stead of searching the whole surveillance region, the likelihood calculation is done only

at those potential points. Velocity component that cannot be generated from mea-

surement set Z(io) are considered as free component. Therefore, velocity is bounded

between a possible minimum and maximum.

For the above scenario, the zjth measurement's position estimate can be written

as

(4.8)

Tlic thc drcCtivCllC.'S of DSS algorithm could bc improved by Hot rcstricting com-

ponenLs to the mapped parameters, but also provide a range as in (\N. R. Blanding,

P. K \".Tillett, Y. Bar-Shalom and R. Lynch, 2008). Therefore, the RDSS estimates

are bounded according to the estimate's variance. This is to avoid the errors at those
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potential points due to the sensor noise. The variance of estimate ~ (Zj) is given by,

( Y. Bar-Shalom, X. R. Li and T. Kirubarajan, 2001, pg. 140). Then

where

8h
8~

(4.9)

The 95% confidence region of the estimate is considered as a grid to optimize

CJML-PDA.
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Chapter 5

Numerical Results
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Figure 5.1: Target. and sensor t.raject.ories.

Simula t.ed t.arget. t.raject.ories are shown in Figure 5.1, where the targets cross
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Table 5 l' Scena rio Parameters. ,
Parameter File

PJ = PeY 0.9
PJe, 0.1
ao (sensor noise s.d.) 0.02 rad
avg. no. of false alarms 12
T (sampling time) 4s
at (process noise s.d.) 0.05 m/s
target 1 starting time of Is
x1 (1) (initial state) [100 m 30 m/s)
target 2 starting time of 81s
.:r2 (81) (initial state) r2200 m 33 m/s)
yl(l) (initial state) Om 31 m/s 500 m)
V [0,1f]
Total time 300s
No. of J\lonte-Carlo runs 100
i\w (Number of frames) 10

1fm (miss probability) 5%
cr.,,, (confidence region) 95%

one another and they are closely-spaced. Initially the process noise is a very low

\"Cllue. This is increased after some time. The platform is kept at a fixed altitude and

assumed to be moving parallel to targets.

Table 5.1 provides the scenario parameters. On average 12 false alarms are

presented in each scan. Figure 5.2 shows the estimated trajectories of Target 2 over

100 [donte Carlo runs in both CJML-PDA and JPDA modules, respectively. It can

1)(' sr~n t.haJ trarks ar~ "'ithin th~ 0G% ('onfid~n('~ r~gion, m~~Uling that the proposed

~stima.tor m~~ts t'h~ CR LB. ThaJ, is tha~ rstimator i,' ~ffi('i~nt.. Th~ same nature was

also found for t.he velocity estimates as shown in Figure 5.3.

Figures 5.4 and 5.5 show the Root Mean Squared Errors (RMSE) in position

and velocitv estimates of both targets. respectively. Also, the figures include the
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Figure 5.2: Estimated trajectories of target 2 over 100 runs.
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Figme 5.3: Estimated velocities of targets 1 and 2 over 100 runs.

corresponding Cramer-Rao Lower Bound that were described earlier. It is noticed

that the Rl\ISE of CJML-PDA position estimates are very close to the CRLB. Thus,

it is clear that track initialization is well handled by CJML-PDA in heavy clutter

and in the presence of a neighboming targets. Initialized targets were maintained

by the JPDA tracker, and it is clear that the estimated error are larger than the

CRLB in some runs. The same was also observed for the RMSE velocity component.

These results show that the mulitarget CJl\IL-PDA and JPDA trackers perform well.

l\Ioreover, the detection component CJML-PDA handled the track detection success-

fully in high clutter and in the presence of neighbouring targets with the proposed

information sharing technique between the modules.
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Figure 5.4: Ri\ISE in position estimates of target states.
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Figure 5.5: Ri\ISE in velocity estimates of target states.
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Chapter 6

Conclusions and Future Work

6 .1 Conclusions

In this thesis a new PDA based multitarget algorithm, called "Integrated CJj\llL-PDA

and JPDA tracker" was presented. Simultaneous track detection and maintenance

were performed on two integrated modules CJML-PDA and JPDA, respectively, with

sharing of information between the two tracking modules. The new CJML-PDA al­

gorithm is a modified version of the JML-PDA technically that was used to handle

track maintenance. Due to the lack of JlvIL-PDA maintenance capability and higher

computation complexity, CJML-PDA algorithm is formulated to handle track detec­

tion with the help of JPDA tracker. The thesis also included a real-time CJ IlL-PDA

JLLR optimi~ation technique with a restricted directed subspace search (RDSS) that

selecti vely maps measurements to the parameter space to provide restricted locali~ed

search among those points.

The tracker was tested on a simulated scenario consisting of two closely-spaced

(crossing) targets with an angle-only sensor. The data also has a high number of
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false alarms. The result obtained from ~IIonte Carlo simulations prove the capability

of the proposed algorithm. It was found that the CJML-PDA RMS errors of both

distance and velocity estimates are close to the CRLB. The algorithm handled the

track detection and maintenance under heavy clutter and in the presence of neigh­

bouring targets. This approach is not only restricted to angle-only problem as in the

presented simulation, but also to any target and measurement space.

6.2 Future Work

Further work is required to evaluate the performance of the tracker with different

types of targets as well as for different types of sensors. Additionally, the AI of

measurements can also be added into the tracker. The AI is useful not only to

validate measurements, but also in tracking. The strength of the CJML-PDA is

track initialization presence of targets in heavy clutter. However, a track termination

method is also ne ded for a complete tracker. The standard JPDA uses only a single

scan of data. The JPDA could be extended to multiple scans.
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