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Abstract

Target tracking in high clutter or low signal-to-noise environments presents many
challenges to tracking systems. Joint Maximum Likelihood estimator combined with
Probabilistic Data Association (JML-PDA) is a well-known parameter estimation
solution for the initialization of tracks of very low observable and low signal-to-noise-
ratio targets in higher clutter environments. On the other hand, the Joint Proba-
bilistic Data Association (JPDA) algorithm, which is commonly used for track main-
tenance, lacks automatic track initialization capability. This paper presents an algo-
rithm to automatically initialize and maintain tracks using an integrated JPDA and
JML-PDA approach that seamlessly shares information on existing tracks between
the JML-PDA (used for initialization) and JPDA (used for maintenance) components.
The motivation is to share information between the maintenance and initialization
stages of the tracker, that are always on-going, so as to enable the tracking of an
unknown number of targets using the JPDA approach in heavy clutter. The effec-
tiveness of the new algorithm is demonstrated on a heavy clutter scenario and its
performance is tested on negibouring targets with association ambiguity using angle-

Olll}' measurenients.
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Notation and Abbreviations

Abbreviations
Al Amplitude Information
CJML-PDA  Combined Joint Probabilistic Data Association
CRLB Cramer-Rao Lower Bound
FIM Fisher Information Matrix
INMM Iterative Multiple Model
IRF Information Reduction Factor
JLLR Joint Log Likelihood Ratio
JML-PDA Joint Maximum Likelihood Probabilistic Data Association
JPDAF Joint Probabilistic Data Association Filter
LLR Log Likelihood Ratio
ML-PDA Maximum Likelihood Probabilistic Data Association
NHT Multiple Hypothesis Tracker
PHD Probabilistic Hypothesis Density
RMSE Root Mean Squared Error
SNR Signal-to-Noise Ratio
TBD Track-Before-Detect



Notations

1% Volume of surveillance region (measurement space)
N Number of existing targets

N* Number of new targets

£ Position

f Velocity

1 Altitude

v Gating threshold

E[-] Expected value

f(-)  Target/sensor motion model
F(:) Linearized plant matrix

h(-) Nonlinear measurement model
H(-) Linearized H

H, Target-present hypothesis

H, No target-present hypothesis
T Detection threshold

T Miss probability

i Discrete time step

T Sampling time

10 Reference time (discrete)
i Current time

N, Length of a window (discrete)
®(-) Log-likelihood ratio

A(+)  Likelihood ratio

p(-)  Possion distribution

a;(-) Amplitude measurement vl
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Ty

Track validation test statistic

Possion expected value

Probability of detection of target ¢

Probability of false alarm

Signal-to-noise ratio

Sensor noise standard deviation (angle-only)

Target process noise standard deviation

Marginal association probability (jth measurement, tth target, ith time)
Normal distribution with mean g and standard deviation o
Uniformly distributed in [a, 0]

Information reduction factor

Fisher information matrix
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Chapter 1

Introduction

1.1 Introduction

Track Very Low Observable (VLO) targets in high clutter presents many difficulties in
target tracking. The term “VLO targets” is also known as targets with low Signal-to-
Noise Ratio (SNR). One challenge is that choosing a threshold to have desirable target
detection probability and false alarm probability. A better target detection proba-
bility requires a lower threshold. However, lowering the threshold has the opposite
impact on on probability of false alarm. In addition, as the number of false alarms in-
creases Kalman filter based algorithms rapidly lose efficiency and effectiveness. Thus,
new approaches have been introduced for VLO target tracking. Track-Before Detect
(TBD) is one such technique that is useful when the SNR is low (C. Jauffret and
Y. Bar-Shalom, 1990), (T. Kirubarajan and Y. Bar-Shalom, 1996), (L. A. Johnston
and V. Krishnamurthy, 2002). TBD performs track estimation and track acceptance
simultaneously without applyving any threshold or lower threshold sensor data. TBD

algorithms typically operate on data over several scans as a batch. Therefore, TBD



M.A.Sc. Thesis - K. Harishan McMaster - Electrical Engineering

algorithms are better solutions to initiate or sustain a track (W. Blanding, P. Wil-
lett and Y. Bar-Shalom, 2007a). However, the computational complexity of TBD
algorithms are generally much higher than that of conventional trackers like Kalman
filters.

One TBD that has been used in many practical system is the Maximum Likelihood
Probabilistic Data Association (ML-PDA) estimator. MLPDA was first introduced
in (C. Jauffret and Y. Bar-Shalom, 1990) to estimate single target parameter using
a batch of bearing and [requency measurements in very high clutter or SNR envi-
ronment. The ML-PDA tracker uses data over a batch of measurements to compute
track estimates using a sliding window. This is an effective approach to initialize
tracks in high clutter, but it assumes a deterministic target models (no target process
noise). The algorithm formulates a Log-Likelihood Ratio (LLR) from a set of sensor
data, and then the track estimate is given by target state that maximizes the LLR.
The use of the additional Amplitude Information (AI), a measurement feature, in
ML-PDA in (T. Kirubarajan and Y. Bar-Shalom, 1996) facilitated the acquisition of
even weaker targets. Furthermore, in (T. Kirubarajan, Y. Bar-Shalom and D. Lerro,
2001), ML-PDA was used to provide consistent initialization, whose initial estimate
and covariance were given to an interacting multiple model probabilistic data associ-
ation filter with amplitude information (INIM-PDAF-AT) for maintenance. This was
also demonstrated on an angle-only tracking problem in clutter. Note that the funda-
mental assumption in these approaches is that there is only one target. In addition,
the initialization and maintainance phases were independent except for passing the

state from one stage to the next.
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An adaptive sliding window in ML-PDA was used in (M. R. Chummun, Y. Bar-
Shalom and T. Kirubarajan, 2002) to detect a fast-moving and possibly maneuvering
target using an imaging sensor. This resulted in better detection capability than an
Interacting Multiple Model estimator combined with Multiple Hypothesis Tracking
(IMM-MHT) in high clutter environments. Note that the MHT algorithm is inher-
ently capable of handling multiple targets (X. R. Li and V. P. Jilkov, 2003), (D.
Lerro and Y. Bar-Shalom, 2002).

A multitarget ML-PDA algorithm known as the Joint ML-PDA algorithm (JMIL-
PDA) was used in (W. Blanding, P. Willett and Y. Bar-Shalom, 2007a), (W. Bland-
ing, P. Willett and Y. Bar-Shalom, 2007b) for simultaneous track maintenance. This
approach is an extension of the standard ML-PDA technique, but here the LLR is
formed as a combination of state vectors in order to simultaneously estimate the
confirmed track estimates. For detection, the measurements associated with the con-
formed tracks were removed [rom each frame of data and the optimization was done
with those measurements with ML-PDA. The process was repeated until no more
targets were found in a window. This assumed that new targets are well separated
in the measurement space. However, this JML-PDA implementation lacks track ini-
tialization capability of neighboring targets.

In presence of clutter, another effective approach to data association issue is a
Probabilistic Data Association (PDA) tracker, a single target tracker in clutter (Y.
Bar-Shalom and X. R. Li, 1995). The PDA framework calculates a probability for
each measurement being target originated. Then, measurement-to-track association
handled softly with those probabilities among all possible measurements. A multi-

target version, the Joint Probabilistic Data Association (JPDA) approach is same
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as PDA approach, except that, probabilities are computed as joint probabilities to
account for the fact that measurements can associate to more than one target. The
JPDA algorithm has been reported in (Y. Bar-Shalom and X. R. Li, 1995), (A. Rod-
ningsdy, Y. Bar-Shalom, O. Hallingstad and J. Glattetre, 2007) , (Y. Bar-Shalom, F.
Daum and J. Huang, 2009) to be suitable for tracking of multiple targets in presence
of high clutter. However, the assumption in these algorithms is that the number
of targets in the surveillance region is known. The main motivation of JPDA/PDA

algorithm is that for track maintenance.

1.2 Motivation and Contribution of the Thesis

In this thesis. a new way of initializing and maintaining tracks for multiple targets
within the PDA framework through the seamless integration of the JML-PDA and
the JPDA is presented. The motivation is to develop a multitarget tracker capable of
handling the initiation and maintenance of low observable tracks in high clutter envi-
ronments. The novelty of this Combined JML-PDA (CJML-PDA) and JPDA tracker
is in the sharing ol information between the two tracking modules, which in previous
batch-recursive approaches were treated as two independent (and consecutive) stages
of tracking. Past research assumed that the new targets are well separated in the mea-
surement space (W. Blanding, P. Willett and Y. Bar-Shalom, 2007a). The ML-PDA
is repeated on residual measurement set for single target initiation and JML-PDA is
used for track maintenance of possible neighbouring targets.

As the main contribution of this thesis, the JML-PDA algorithm is extended
to estimate any number of new targets” estimates with the aid of conformed track

information in JPDA. With the presence of many targets in high clutter, tracking
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with JML-PDA requires a higher computation time to calculate new and confirmed
targets (detection and maintenance) estimates. Also, the processing time in JML-
PDA exponentially increasing as the numbers of targets and measurements increase.
However, an advantage of the JML-PDA algorithm is that have been shown to be
powerful for tracking single and multiple targets in high clutter. Consequently, a new
version of the JML-PDA algorithm called the CJML-PDA, for track initialization
with JPDA is presented in this thesis. The advantage of JPDA is that it can handle
high clutter and miss detections by considering all possible data association between
targets and measurements and meantime, the JPDA tracker does not require an

exponentially increasing amount of processor times as in JML-PDA.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 starts with symbols and notations
uselul in reporting, and follows with a brief introduction of ML-PDA, JML-PDA and
JPDA algorithms. Chapter 3.2 presents the formulation of the new algorithm, in-
cluding track validation, the Cramer-Rao Lower Bound (CRLB) for the estimator and
measurement gating. The calculation of the CRLB, which quantifies the accuracies
achievable by any estimator, requires an information reduction factor that accounts
for the loss of information due to false alarms, missed detections and the presence
of multiple targets. The information reduction factor considers not only non-zero
false alarm probability and non-unity detection probability, but also the inter-target
distance is presented in Section 3.2. Simulation results validing the theory are given

in Section 5.

(W1
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Chapter 2

Problem Formulation

This chapter consists of the necessary notations for the tracker implementation which
includes the kinematic model and measurement models. A brief summary of ML-
PDA. multitarget ML-PDA (JML-PDA), and JPDA algorithms are also presented in

this chapter.
2.1 Dynamic Models
The (th target’s state at any discrete time 7 is defined by
2ii+1) = f(2'(i), T) + v'(3) (2.1)

where f(+) is the target’s motion model, possibly a nonlinear function of target state

at current time 7 and sampling interval 7. In the above v/(i) is known as the target’s
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process noise, and, assuming zero mean Gaussian, its variance is given by
Q'(i) = B[ (i)' ()] (2.2)

Linearized model of the target motion model can be found using the Taylor ex-

pansion of f'(xf(i), T) (Y. Bar-Shalom, X. R. Li and T. Kirubarajan, 2001) as

F'(a'(i),T) = <—( <7))’T)> - (2.3)

/\.\

To ensure observability criteria, bearings-only tracking requires a suflicient con-
dition on sensor motion (T. Kirubarajan and Y. Bar-Shalom, 1996). State of the

sensor platform at discrete time i is defined by

y(i+1) = £(y@l),T)+v(>) (2.4)

As in the target case, f°(-) could be a nonlinear function of sensor state at current
time i and sampling interval 7. It is assumed that sensor position is known perfectly.

Now, the relative state of a target from the sensor, can be written as

a®(i) = 2'(i) — y(9) (2.5)

Window based JML-PDA and ML-PDA algorithms require a data measurement
set of Ny frames of recent data (W. Blanding, P. Willett and Y. Bar-Shalom, 2007a).

Let ZY be a batch of measurements from time iq to iy, the reference time and current

o0
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time, respectively. Such a batch is given by

ZNv = 1 Z(iy), Z(ig + 1), ..., Z(i), ..., Z(ir)} (2.6)

where Z(i) is the set of all measurements at time 7, and it is given by,

20) = {21(0),22(0) o 5 (8), s 2 (1)} &)

where m; is the number of measurements at time ¢;. Also.

Ne = ip—1i9+1 (

!\3
(09)
28

Depending on the origin of measurement z;(7), it is given by

. h(x'(i),4i) + w(i) target-originated
2ili) = (2.9)
(1) false alarm
where h(-) is the measurement model, which is a function of target state, sensor state
and current time 7. Measurement noise w(7) is independent of target process noise

and assumed to be white Gaussian with zero means and with variance

R(i) = E[w(i)w(7) ] (2.10)

In the above, v(i) is assumed to be a uniformly distributed random variable across
the surveillance region’s volume V.

A linearized version of the measurement model can be obtained using the Taylor
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expansion of h(z'(i),7), same as

(2.11)

H(z'"(i),i) = <——8h($alfi)’i)>

r=3t5(i)

Amplitude Information (Al) can be included in the measurement to increase the
observability of targets. The amplitude measures the intensity of the signal at the
output of the signal processor. Here, the Al is used to validate the measurement with
a threshold. The output signal is usually Rayleigh distributed, (T. Kirubarajan and
Y. Bar-Shalom, 1996). The probability density function of amplitude measure a due
to noise only measurement (false alarm) can written as

(1.

pola) = aexp (~?> (2.12)

The signal generated from a target is given by
(5] S O 9,

) ( )_ a i (12 5 13
A = Ed ™\ o0+ a) (2:13)

where d is the value of target SNR.

A threshold 7 is chosen to declare the probability of detection and is given by

P, :/ pi(a)da (2.14)

Similarly, the probability of a false measurement can written as

Pg = /v pola)da (2.15)

10
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It is clear that the probability of detection and probability of false alarm will
increase with a decreasing threshold. A suitable 7 is necessary for a given SNR to
satisfy certain level of Py and Pr,. With that threshold, the validated measurements
probability density function due to noise only and target generated, pf(a) and pj(a),

respectively, are given by

(@) = 5—pole) = o - (2.16

1, (] = ) — [ BX — :

pola P,(,“’ a P aexp | — )
a) = — Q) = —F——=€x — =T =

< P,,,’” ) Py(1+d) e 2(1 + d) )

Then, Py and Py, satisfy

Pre. = &xp

T‘Z
]—){ — X S N Y
d “‘)< 2 +(1)>
( 2

2.2 Association Events

The PDA approach uses all possible joint association events corresponding to measurement-
to-target association possibilities and track is computed with all preservations. For

the process of derivation, introduce a variable called “association vector”
E(@i) = |e1(i), ea(i), ..., em, (i) (2.19)
Where event E(7) indicates which measurement originated from which target. For

11



M.A.Sc. Thesis - K. Harishan McMaster - Electrical Engineering

example, If e;(i) = t, it indicates that the jth measurement is originated from the

tth target. If ¢;(i) equals zero is a false alarm.

Figure 2.1: Validation gate

Neighbouring targets in heavy clutter generate many association vectors, and all
of them should be accounted for data association. For instance, consider the multiple
validations in Figure 2.1. It shows two target gates and three measurements. It
is clear that measurement 1 is common to both gates. This measurement can be
associated with either targets, but the assumption in this paper is that at most one
measurement from each target and vise versa. Measurement 2 is only in the second

validation gate. The measurement 3 is not considered to have come from any target.
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With these facts, the set of all possible association events can written as

—~ — —
—
(=)
~— ~— e
—
o
o
(e=]
~—

This indicates which targets are detected in an association event. Element d,(i) =
D(E(i).t) is one if the tth target is detected in the association event. Note that this
does not include track initialization.

Now, define a detection vector of an associate event, given by

D(E(i)) = |dy(i), dy(i), ..., dn (i) (2.21)

Thus, the total number of detections in an event E(i), i.e d(D(FE(i))), can be
evaluated as
N
d(D(E(i))) = > D(E(i),t) (2.22)

t=1

Again, consider the example given in ( 2.20). The detection vector for each given

13
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association events can be written as

(==} —_
— o
S— SN—r N’ p—
FEI
[N)
(]
w
SN—

2.3 ML-PDA Tracker

A detailed derivation of the ML-PDA algorithm incorporating amplitude information
can be found in (T. Kirubarajan and Y. Bar-Shalom, 1996). Summery of a generalized
ML-PDA version is presented this section.

Usually, the ML-PDA algorithm uses the following assumptions:

e Only single target is present in each data frame with a given detection proba-

bility P;, and detections are independent across frames

e At most one measurement per frame corresponds to the target

e The target operates according to deterministic kinematics with no process noise.
The target’s kinematic state at a given reference time iy is related to the target’s
state at anytime. Therefore, equation ( 2.1) can be rewritten as

2(i) = fa(io), i) (2.24)

e [‘alse detections are distributed uniformly in the search volume V

14
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e The number of false detections is Poisson distributed with a known expected
number of false measurements \ in the volume V' with probability mass function

being given by

exp(—AV)(AV)™

m;!

fpa(m;) = (2.25)

e Amplitude of the target originated and false detections are distributed according
to Reyleigh probability density function p;(a) and pg(a), respectively. The

target SNR, which affects p;(a), is either known or estimated in real time.

e Target-originated measurements are corrupted with additive zero-mean white

Gausslan noise

e \easurements obtained at different times are conditionally independent, i.e.,

P(Z(iv), Z(i2)|z) = P(Z(ir)|x) P(Z(is)|2) (2.26)

The probability density function of target-originated measurement given the target

state using ( 2.9) can be written as

p(zj(@)|x(io)) = Nz (i); h(a' (o), y(i), 1), R(7))] (2.27)



M.A.Sc. Thesis - K. Harishan McMaster - Electrical Engineering

Expanded version of the above function is given by

~12300) — (i) (), DIRG) ™ [) ~ h(a(io). y(0). )Y

—
Do
=
i
[NIE
- |
=
o[-
@
e
T
A
o |

where £ is the dimension of the measurement space.
Having the above ML-PDA assumptions and definitions, the likelihood function
P(Z(i)|x(7)) of a single frame of data is formed as weighted sum of all possible target

detection events, that is,

m;

P(Z(i)|e(i)) = (1 — Pyl m) 4 p plmi — 1 Zp~1 (2.29)

1V mi 1/ mi —1]”

The likelihood function over N, frames is the product of single frame likelihood

functions. Thus, it can be given as

P(ZN|x(i)) = [ P(2(
i p(m;) g (m;
= J]|@-ry o e ,,sz_l Z :(i0)) | (2.30)

[2i() 1=

Dividing ( 2.30) by the likelihood given all measurements are false detections

which is given by
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and taking the logarithm of the resulting function results in a dimensionless and more

compact form, given by

(2N x(ip)] Zln (1—Py) Zp (2 (2.32)

i=lg

The function is known as the maximum likelihood probabilistic data association
log likelihood ratio (ML-PDA LLR) (W. Blanding, P. Willett and Y. Bar-Shalom,
007h). The maximum likelihood approach finds the target parameter z(ip) that

maximizes log likelihood ratio function. That is,

i(ip) = argmax &(ZV, (i) (2.33)
z(io)
When amplitude information is incorporated ( 2.34) can be rewritten as (T.

Kirubarajan and Y. Bar-Shalom, 1996)

m;

(D[[Z.u]‘\.“'..r(i)] = Zln \Z/)J )p(z; (@) |« (i ))} (2.34)

1=1p

where p;(7) is the amplitude ratio of the jth measurement is given by

p;(1) (s 8))
_ _Pra A |
- P+a) P (“-l(’)H(,) (2.35)

17
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2.4 JML-PDA Tracker

This section consists of a detailed derivation of the JML-PDA for N number of targets.
A detail derivation of the JML-PDA algorithm incorporating amplitude information
can be found in (W. Blanding, P. Willett and Y. Bar-Shalom, 2007a). This was
given only for two target scenarios, but JML-PDA can be formulated for any number
of targets. The JMLPDA uses the assumptions in the ML-PDA, but the multitarget

version makes the following additional assumptions:

N conformed targets are present in each data frame with a given detection

probability, and detections are independent across frames
e At most one measurement per frame corresponds to each target
e A measurement cannot be associated with more than one target
e Measurements originating from different targets are independent

e Target originated measurement errors have the same distribution for all targets,

that is. they are a function of the sensor, and not the target.

The formulation the JLLR to jointly estimates track estimates of the two targets
can be found in (W. Blanding, P. Willett and Y. Bar-Shalom, 2007h) and (W.
Blanding, P. Willett and Y. Bar-Shalom, 2007a). JML-PDA Joint LLR (JLLR) of
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Ny frames can be found as

®[[Z, a)™, [z (o), 2%(ip)]] = Z In[(1-P}H)(1- P2

i=ig
m;

M ; /)j(i)])(zj(iﬂ-rl(in

LRI S ot i)

m m
PlP?2 & &
dld o (N (NNl o (2 5 qp

+ 2 > > ()] (0)p(z(0)]7 (7)) (2.36)
A =Sy
I#]

The extension of above JLLR to an arbitrary number of targets is given in Section

J o o]
3.1. This includes all possible target detection events given measurements and number

of targets.

2.5 JPDA Tracker

In this section, the core equations in the JPDA tracker is presented. The detailed
derivation of this algorithm can be found in (Y. Bar-Shalom and X. R. Li, 1995).
The JPDA is used for to maintain existing tracks with no buitin capability to initiate
new tracks. Here, the parametric version of JPDA is used since the assumption is
that false alarms are Possion distributed. The nonparametric version does not require
prior knowledge of the spatial density of the false measurements, a realistic method
where the false measurements (D. Lerro and Y. Bar-Shalom, 1993).

Generally, the JPDA algorithms makes the following assumptions:

e N established targets are present at any time 7, and the target state is estimated

as #'(i|i) with associate covariance P'(i|i)

e The past information about {th target is summarized approximately by the

19



M.A.Sc. Thesis - K. Harishan McMaster - Electrical Engineering

Gaussian distribution, i.e.,
p(z' ()| Z7Y) = Nzt (i); @' (i]i — 1), P'(ili — 1)] (2.37)

e The number of false detections is Poisson distributed as in JML-PDA/ML-PDA

The marginal association probability of jth measurement being associated to tth

target can be written as

BL(i) Z P(EL(i)|Z") (2.38)

VEL(i
The term P( E( t(4)|Z") is the probability of an individual event is given by

I (m; —d(D(E(1))))!

PEWDIZ) = Gx =g #ralm: —dDED))
\ m;
TIyPEanq - prya-pE )Hp ) O(@)) (2.:39)
t=1

where €' is the normalizing constant and Ej(i) is the association event that jth
measurement, associated to tth target.

The tth target JPDA estimate at time 7 can be written as

m;

v (i) = BA()E (i) (2.40)

J=1

where %/ (i[i) is the updated state estimates conditioned on the event that the jth

measurement. is correct, and 3 is the probability of event j. Thus, 2 (ii) is given
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by
B (ili — 1) = @'(ili — 1) + W' ())vi(i) (2.41)

where &' (i|i—1) is the predicted estimates of the state at time i, /(i) is the innovation
associated with the jth measurement and W'(i) is the Kalman filter gain, (Y. Bar-
Shalom and X. R. Li, 1995).

The innovation can be written as
vi(i) = z;(i) — 2(ili — 1) (2.42)
where Z(i|i — 1) is the predicted measurement of the tth target and is given by
2(ili — 1) = h(z'(i|i — 1), y(i), 1) (2.43)
The gain is given by
Wii) = P'(ili = D@l - 1), y(0),) (S@)") ™ (2.44)
where P'(i]i — 1) is the predicted target state associated covariance given by
P'(ili — 1) = (F(a'(i]i — 1),4))P'(i — 1)i — 1)(F(&'(i]i — 1),9)) + Q)  (2.45)
and S(7)" is the innovation covariance given by

S(i) = (H(&' (ili — 1), y(i). 1)) P'(ili — 1)(H(@(]i — 1), y(i), 1)) + R'(G)  (2.46)
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The state estimation covariance is updated as

P'(ili) = 35(0)P(ili — 1) + (1 = 33(0))(P'(ili — 1) = WH@)(S(@)) " (W'(D)))

+ W) [ B () - (Z -ﬁ-(i)vj—(z’)) (ZJ}(i)u}(z‘)) }

Vi vj

o
[SN)



Chapter 3

Combined JML-PDA and JPDA

Algorithms

3.1 JML-PDA Algorithm: N targets

In this section a JML-PDA JLLR formulation for arbitrary number of targets is
presented. The assumptions from Section 2.4 are kept for any number of targets
as well. Thus, the joint likelihood function of N targets, which is the probability
density function of measurements in Z(7) conditioned on all target states, using the

total probability theorem can be written as

P(zZ(i)|xN(i) = > P(Z@)xN (), E(i)P(EG)x" (i) (3.1)

YE(i)

where xV (i) is the stack vector of N targets given by
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E(i) is an association event (see Section 2.2). Then, term P(Z(i)|x™ (i), E(i)) is

written as

P(Z@)xN ), BG)) = PZ0)|xN6), EG),my)

m;

- Hp(zj(i)l;zrei(i)(i)) (3.3)

where P is the probability of detection of the tth target. If the targets are identical
then the detection probability may assumed to be equal.

The term P(E(i)|[x"(i)) can be also written as

PEGKN@) = PEG)X (@), m)P(mx" (i)

= P(E()|m;)P(my) (3.4)

An association event E(i) has d(D(E(7))) number of target detections and (m; —

d(D(E(2)))) number of false alarms. Then, P(E(i)|m;) is given by

1 (m; —d(D(E(i))))!

P(E@)|m;) = Pl o pipa(m; — d(D(E(i))))
H d 1__p )(1 D(E(2).1)) (3.5)

Thus. the joint likelihood function of N targets can be written as (R. Tharmarasa,
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T. Kirubarajan, M. L. Hernandez and A. Sinha, 2007)

P(Z(i)xN (@) = S L _d(,f,(E( DD me — d(D(E()))
YE(i) b

.H(p(ﬁ)D(E(i)-’)(l 1 D(E().t Hp |z J() (1)) (3.6)

The jth element of association event (i) is e;(z). If the value of e;(i) equals zero

represents a false alarm, which is uniformly distributed in volume V' with pdf
i O 1 o
Plz(i)le"()) = & (3.7)

If the value of ¢;(i) equals ¢, means that the corresponding measurement is found

with target ¢ pdf

(3.8)
Then, the joint likelihood function can be rewritten as
od g m; — d(D(E(2))))! .
P(z(i)N (i) = 3 LT ADEDIN, o, — a(p(EG)
, m;!
VE(i)
N o 1\ UDE@D)  mi
(1— ¢ e i)
TP eEon - pp-oeon () [T #e @l 0)
=1 J=1
e;(i)#0
(3.9)

(8}
at
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The term

(m; — d(D(E(7))))!

m;!

1 d(D(E(1)))
pra(m; — d(D(E(i)))) <—>

174

can reduced to

ftpa(my) 1
1/ mi M\(D(E(7))) (310)
However,
#FA("”:‘)
) 3.11
A (3.11)
1s the likelihood function that all measurements at time 7 are false alarms.
Thus, the joint likelihood ratio of a frame with N targets is given by
A(Z(D)|xN(4))
N m;
D(E 1-D(E N .ej(i) (s
Z A\l 1)(1‘ H Pt VA P : H (’)ll '()(7'))
YE(i) t=1 :)
(3.12)

For a window, the joint log-likelihood ratio (JLLR) is given by

B2, x"(ip)] = 3 " n [MZ(,-HX»\*(.,-))} (3.13)

1=
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When amplitude information is incorporated then ( 3.7) can rewritten as

p(zi(0), ai()=z°(@) = p(5(0)|2°(2))pg(a;(i))

1 a;(i)? _
= V Pf(, ()e\p< 5 ) (3.14)

Also, ( 3.8) can be rewritten as

Pz (0), (D" (8)) = p(z; (@) (0))p] (a;(2)) (3.15)
Finally. the joint likelihood function in ( 3.12) becomes

A(1Z(i), a ]IX )) =

m;

D . SIBEE H FON(1 - pie-PEDD T ps()p(2;(0)la=D(3)

YE(i) =1 j=1
e; ()70

(3.16)

Steps leading to ( 3.16) are summarized below:

(m; —d(D(E(7))))!

m;!

P(Z(0). a(@)x¥ () = 3

YE(i)

pra(m; — d(D(E(7))))

%

pola; (@) T pia;(0)p(z(0)|2= D)) (3.17)

o
~
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(m; —d(D(E(7))))!

P([Z(i). a(D)][x" (i) = ptra(m; — d(D(E(i))))

, m;!
VE(i)
N
'H(PI)D(E ( P! ) (1-D(E(i).t))
t=1
1 )\ WO ZE, e pi(a;(i)) _
| = pola;(i ————_pl (1) 240 (7)) (3.18)
(v) e I e
' e;(i)7#0
The term
m; — d(D(E(7))))! . 1§ AR - i 3
e A st = D) () @) (319
i j=1
reduces to
i ,
e Hpo (a; (3.20)

The probability of all measurements being false alarms is given by

L (m;) 1 N ) .
{( ) [ #6(a;(i) (3.21)

J=1

3.2 CJML-PDA Algorithms

The JML-PDA is a multitarget parameter estimator, which is used here to initialize
tracks of multiple targets, whose estimates and covariances are then fed to the JPDA
tracker in a sliding window fashion. The novelty of this Combined JML-PDA and
JPDA (CJML-PDA) tracker is in the sharing of information between the two tracking

modules. which is different in previous batch-recursive approaches that treated the

o
o0
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initialization and maintenance phases as two independent (and consecutive) stages
of tracking. In real tracking problems, targets can enter and leave the surveillance
region at any time. As a result, track initiation has to be considered at every sam-
pling time. That is, track initialization does not occur during only the first few scan.
Similarly. the fact that track maintenance stage has been activated does not obviate
the need for further track initiations. Both have to be carried out simultaneously
throughout the entire tracking interval. Because of this, the track initialization mod-
ule (here, the JML-PDA) needs to take into account the number, states and qualities
of the established tracks being retained by the track maintenance module (here, the
JPDA). Otherwise, spurious tracks and track seduction will ensue, damaging the
overall quality of the tracker.

The rest of the chapter organized as follows. Section 3.2 presents the formulation
of the algorithm for any measurement and target spaces. Next, a restricted direct
subspace search (RDSS) is presented to find estimates at global estimates using the
CJML-PDA JLLR in Section 3.3. Sections 3.5 and 3.4 present, track validation
and measurement gating for CJML-PDA. Finally, CRLB of CJML-PDA estimates
are presented in Section 4.

The combined JML-PDA algorithm holds the same assumptions as in the JML-

PDA. However, the following additional assumptions are made:

e An unknown number (assume N*) of targets with N number of them being

confirmed in a batch with a given detection probability.
e All measurements are to be associated to new targets

The standard JPDA tracker assumes that the number of target is known (V)

and that of for each target a track has been formed (initiated). However, in the
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CJMKL-PDA tracker objective is to of track initialize tracks of any number (N*) of
targets in a window. According to the above assumption, N* estimates need to be
estimated using the CJML-PDA algorithm with the aid of JPDA. Thus, the required
CJML-PDA JLLR based on N* number of targets can be written as

78

2 |(x)™ (o)) = [T (@[Z@I)™ ()%™ | ey 327

=iy

where xV (i) and (x*)™ (ig) are stacked vectors of all confirmed and existing targets’
states, respectively. In the above, I()A(‘\Y(i)) is the information on N targets in the
JPDA tracker, whose incorporation in the JML-PDA, the main component in the
combined algorithm.

Information from the JPDA are

e Number of existing targets (V)

e Validated measurements of the confirmed targets

e Track likelihoods

This information is then fed into the conventional JML-PDA to improve the de-
tection capability.

In the JPDA the tth target likelihood is

Pz (D)2 (1)) = Nz;(0): h(@ (ild), y(@), 1), S(0) (3.23)

where S*(7) is the innovation covariance matrix given in ( 2.46).
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The expanded CJML-PDA JLLR ( 3.22) can be written as

N. #\N* /. . ]- z (2 = 3
e[z |(x) Y ()] = ]] <Z ~zm | [ F) 7L — BYU-TERH)

i=ip \VE(i) t=1

H ])(Zj(f.) ’.p“j(i) (1)) ,1)(%('_)]."01(1({))) (3.24)

Jj=1
e (i)#0

The single target CJML-PDA JLLR (N* = 1), to extract the best estimate of a
single target while there are N already conformed tracks in the region can be found

as

i
O[ZN|a* (i) = [ ] (@[2() % (i), 2" (i)]) |1(s<-\'(,->> (3.25)
The new targets” estimate (X*)™ (ig), is which maximizes the CJML-PDA JLLR

function, can be found by
(x7)"(ig) = argmax ®[ZV, (x")N*(ig)] (3.26)
(=)= (io)

Tracks for the unknown number N* of targets are initialized at time ¢y if and only
if they pass the track validation (see Section 3.4). A simple way to find N* is to use
the CIML-PDA repeatedly, starting with N* =1 and then incrementing N* by 1 at

until track validation is violated.
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The important steps in the CJML-PDA and JPDA tracker in a window are pre-
sented below:
RECEIVE Z(iy)
GET x(ig|ir)N, P(ixix)¥ FROM JPDA
N* 1
repeat
GET (x*)" (ip) IN CIML-PDA
VALIDATE ®[Z¥ (x7)"" (ig)]
if SUCCESS : T + 1 then
GET (PN (dp)
STORE {()’{*)'\N(i(,). (P*)'\‘”(z’n)]
N* 4+ +
else
T« 0
N*« N* -1
if N # 0 then
GET [(x*)N (ix), (P*)N" (i)
JPDA « [(5‘(*)"\"(”), (P‘)“\“('[,L.)]
end if
end if
until T # 0
DELETE Z(ig)
i < i+ 1 AND 45 < ip+ 1

New target extension is done with the CJML-PDA assumption a deterministic
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targets’ motion model. The covariance P* of the CJML-PDA estimate x™ is detailed
in Section 4.

Notice that the CJML-PDA approach 1 uses JPDA information up to the time
;.. Thus, CJML-PDA has to wait until JPDA completes it calculation in order to
get the very recent (7,th time) estimates. However, this can be avoided. One way is
by using the JPDA predicted measures at the wanted time instead of real estimates.
The other way is by adjusting the window length from iy to 7, — 1. This ensures a

simultaneous process on both CJML-PDA and JPDA.

3.3 Log-Likelihood Ratio Optimization

The track estimate in CJML-PDA is a parameter, which maximizes the CJML-PDA
JLLR, is a highly non-convex function consisting of a large number of local maxima
(possibly thousands for heavy clutter) and extended regions of near-zero gradient is
difficult to optimize. Figure 3.3 shows the single target CJML-PDA JLLR surface for
a batch of angle only measurements. The LLR plot with respect to target parameter
position in x and y coordinates with a 4-dimensional target parameter vector (2
position and 2 velocity components) at fixed velocity is considered.

Three techniques that have been used in CJML-PDA JLLR optimization: Ge-
netic algorithm, multi-pass grid search and direct subspace search. In grid search,
surveillance region is divided into multiple of regions to find the global LLR maximum
via region wise local maximum. The number of grids is chosen based on measure-
ment noise standard deviation. The prior works in (C. Jauffret and Y. Bar-Shalom,
1990), (T. Kirubarajan and Y. Bar-Shalom, 1996), (M. R. Chummun, Y. Bar-Shalom

and T. Kirubarajan, 2002) have used multi-pass grid to get LLR global maximum.

33



M.A.Sc. Thesis - K. Harishan McMaster - Electrical Engineering

Genetic Search (GS) is a stochastic technique performed over a discrete parameter
space using a rule based on biological evolution and survival of the fitness, (W.
Blanding, P. Willett and Y. Bar-Shalom, 2007a). GS has seen little use in tracking
community, and further a description about this method can be found in (Goldberg,
1989).

Directed Subspace Search (DSS) is an optimization tool to guide the search process
in a way that identifies areas in parameter space that are more likely to contain local or
global maxima. A real time tracker needs to obtain the global efficiently. Thus, in this
report a restricted directed subspace search (RDSS) is introduced for fast process. In
DSS, each measurement in ZV* is converted to parameter space, and a maximization
search is done according to those potential points. However in RDSS, measurements
at reference time (Z(ip)) are converted to the parameter space to identify potential
parameter points. RDSS type of mapping leaves more free parameters than of the
DSS. Then. the free parameters are grided to find global maximum. Section 4.2
has this RDSS in 1D parameter space and angle measurement space, which is also
our test condition. Note that this method is not suitable for targets with very low

probability of detection since the potential points are observed by only Z(i).

3.4 'Track Validation

CJML-PDA always returns an estimate. Because of the nature of highly non-convex
function, the optimization algorithm may converge into a local maximum resulting in
a false track. Thus, a hypothesis testing is required to determine if there is a track
and the result x is the global maximum, to determine if it is due to a target or due

to noise only measurement.
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Figure 3.1: 2D view of 4D log-likelihood-ratio with known velocities and angle-only
measurements.
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The estimate from the CJML-PDA JLLR is tested with hypothesis H; and Hy

hypothesis which are given by

H, = {hereis a track and x is the global maximum}

Hy = {There is no track} (3.27)

According to Neyman-Pearson lemma, the optimal test of hypothesis H; versus
Hy is by comparing CJML-PDA LLR at global maximum with a threshold ¢, , and

the threshold is selected by a predefined miss probability 7,

= 2 1 (2
\/9_/ S aA (3.28)

where Ay, /p, is the Gaussian test statistic defined in terms of E[®[Z (i), H]] and
E[®[Z(i), Hi]*]. The first and second moment of log-likelihood ratio under hypothesis

H,. is given by

ik
Yoy, = § T hy/1,(1)
=1

s [Z(i),x] — E[®[Z(i), H]]
B 3.29
; ( VE[2[Z(i), Hi]?] ) o

The & moment of log-likelihood ratio under hypothesis H; is given by
E‘(D[Z (i), H,]*] =

> [ ez (2@ dZ(i) (3.30)

=1
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Finally, the track is accepted if

Y, /Hy 2 Cx (3.31)

Tm

3.5 Measurement Gating

Another way of reducing the computation time in CJML-PDA is by applying gating,
which reduces the measurement set for consideration. Here, gating is set up on
existing tracks based on Mahalanobis distance, which uses prior track estimate and

its covariance. A measurement is called “validated measurement” il it satisfies
(zj(@) = 2'(ili = 1)) (S()") M (z;(d) — 24(ili — 1)) <~ (3.32)

Z'(ili — 1) is the predicted measurement of target ¢ given in 2.43. The term S(i)'
is the innovation covariance of target ¢ at frame 7, given in 2.46. 7 is the limiting
threshold and chosen based on a desired probability of containing the target originated
measurement within the gate.

Existing targets’ measurements are validated before they are feed into CJML-PDA
optimization and in the presented combined tracker this is done in the JPDA module.
CJML-PDA assumes that the new targets could be anywhere in the survival region
since there is no prior information about these targets. Thus. all measurements are
associated in new targets.

To further understand, think of a two target scenario, that is N = 1 and N* = 1.

With possible gating on target 1 (assume it is the existing object) CJML-PDA LLR
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becomes (a similar equation can be found in (W. Blanding, P. Willett and Y. Bar-

Shalom, 2007b))

A(ZN"|2* (i) Zhl (1-PH(1 - P?

=10

. AP'Z b; - m;
¥ szwnw-(')) il v > p(s(0ls" (i)

+ P('Af?fz'z'p i)p(z ()l (io)) (3.33)

j=1 i;i p(Z; (@) | (2)):vi

where Z is the existing target’s validated measurement, and there are b; number of

such measurements in the set.

3.6 CRLB and Covariance of the Estimates

Multitarget Cramer-Rao Lower Bound (CRLB) calculation is more computationally
complex than for single target. The single target case is computationally equivalent to
well-separated multitarget case. Further, multitarget CRLB is worse in bearing-only
case because, even if targets are well separated in state space they could be closely
spaced in measurement space. In such an environment, the CRLB of the estimates
is significantly different from that under single target condition. , which is now
reflects by the neighboring targets. Clearly, the inter-target distance has an impact
on CRLB. Thus, the information reduction factor (IRF), which accounts for the loss
of information due to association ambiguity, is not only in the function of probability
ol detection and probability of false alarm, but also a function of inter-target distance

I measurement space.
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Let, x and x be the standard true targets stack state vector, and their estimates

respectively. Then, the error x in the estimate can be written as
X = X—X (3.34)
The CRLB of an unbiased joint maximum likelihood estimate Z is given by
Exx'] > J! (3.35)
where .J is Fisher Information Matrix (FIM) is given by
J = B{[VyIn P(Z""|x)][Vx In P(Z™"|%)] }x=x (3.36)

For a valid track in CJML-PDA| the covariance of the estimated state is approx-
imately equal to the CRLB bound. Thus, the covariance of the estimated state is

given by
P(ig) = (J¥)~! (3.37)

where JV is the sum of Fisher information matrices given by

I =N (i) (3.38)

(3.39)
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where

J(i) = E{[VxInP(Z(i)|x)][VxIn P(Z(i)|x)] }|x=x (3.40)

(3.41)

For the batch estimate CJML-PDA, the estimates in the window (CJML-PDA

track) are driven by

x(i) = £(x(io), y(i), 1 — io) (3.42)

and the estimates’ covariances are given by

Note that, for simulated data the FIM .J can be calculated [rom the true states.

Therefore, for simulated scenario .J can be written as

J = E{[VieIn P(ZY|x)][V In P(Z[%)] Hamsorsese (3.44)

3.6.1 Information Reduction Factor : 1D Measurement Space

The measurements in the validation region are taken into consideration in the calcu-
lation of the Information Reduction Factor (IRF).

With m; angle measurements, .J; can be written as an m-fold integral form,

’

l2)] [VaP(Z(i)]x) dles. <ige .
e Z/ /[ P(Z H P(Z0)]z) } P(Z(i)x) dz(i)  (3.45)

m;=1
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In our simulation, track initialization using CJML-PDA has two phases. Single
target initialization ( 4.5) and single target initialization in the presence of previous
targets ( 4.7).

The calculation of the CRLB includes the IRF that reflects the loss of information
due to false alarms, missed detections and the presence of multiple targets. In the
multitarget CRLB, the proximity of negibouring targets is factored as a normalized
inner-target distance in measurement space in the calculation of IRF.

Consider the case two where x* and z are new and existing target dynamic states

respectively. Thus, the FIM at time 7 can be written as

Z/ /[V =& Iil))]] FP{DZ((ZI.)(ELZ[I)*)]IP(Z(i.)l.z:*) dZ(i) (3.46)

m; =1

The term V.. P(Z(i)|z") can be found using

e kg(my) | Pi(1 = Py)
V;,:‘P(Z(l)|'1 ) - ‘/m, { /\\/E(f()
'ZGXD< (2(3) — h(%: i),y(i),i ))) :_,»(i)—h(;;;(i)ay(i),i) (Vo-h(z*(3), y(i), )]
p, 2 () = h(z* (i), y(@),9)  (z(i) = h(z(), y(i), )
/\z)lfguzllz;cxp< 202 ’ - 121(73 - )

i (V.-h(z*(2), y(i), 1)]} (3.47
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Now, introduce a new variable &; such that

(z1(1)—h(="(i).y(?).7))

&in =
=g |= <z,u>—h(ﬁ}iyyu>in (3.48)

(2, (i) =h(a" (). (0).0))

a4

L Eim, ]

(zj () =h(z(i).y(i).1))

00 , 1s given by

The term corresponding to the second target,

(z(1) = h(x(@).y(2).7) _ () — h(@"(), y(i),4) + h(z"(i), y(i), i) — h(z(i),y(i),7))

Ty gg

& +d(h(z(2), y(2), 1), h(z™(7), y(i), 1), o)

— f,‘j + ([i(l. 2) (349)

where d(h(xz*(z), y(7). 1), h(x* (i), y(7),1). 0¢) is a normalized distance between the tar-
gets (normalized inner-target distance) in the measurement space. To simplify the

notation, it is denoted as d;(1, 2).

P . . i . . .
I'he differential term —”5—’ in integral is given by
dz;(i) S S} v

iy = P (3.50)

Ty
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With the variable transformation, gradient can be rewritten as

Ny f(ma) | Pi(L = Pa) < &y 1 M il 4
V.-P(Z()|z*) = g exp(——=)&;—|V.-h(z™(2), y(i),2
- P(Z(0)]r") = W,{Aﬁ%og;l(Qx%J (" (0), (), )]
P{de m; m; ’ fllj ({i/ - (l()l) G
+Aymﬂﬂ§;w(2 ——7—%U[Vh<mew1 (3.51)
T

Then j; can be written as

JEZ'”/ /[v P&h”}Pﬁiﬁgﬂ]PQMU ds (352)

m;=1 g |l

For one dimensional measurement space z;(i) is a scalar. Therefore, the above

integral of .J; can be rewritten as

o
5 o= /lr:i / / / /
| SR

mi=1

5 2
m; & P;(1-Py) PiF; m; (&i1+d;(1,2))?
(Z e\l)(_TI)fi,, ( Pty + 53 210’_ ZI, 1L\p ! r2 ) )))

X . .
U—Em—m+wﬁﬁ?«&w%mmwﬁﬂ¥£%
e s (laidfi
¥ o 2 i m; 5 a+di(1,2))2
#Pi (0= Piesp(-5) ) + FBy T S exp(— - Gzt
X (Ve h(a (i), y(i), ][ Va-h(a*(3), y(i), i)] (3.53)

oy 0
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The IRF be denoted by Q is given by

,llf +9
QI(P([' Pf{,.O'(;.(l,-(l_Q)) == ‘fm ”l, / / / /

m; =1
c2 =
m; Sive [ Pi(l=Pa) PiPa mi (€a+di(1,2))*
(Zj——l (/A\I)(—T)Sl_[ ( )\\/.27{70 + X')Qﬂ‘(fz 5;(1\1)( #)
J

X

2

(L - B~ Po) + 5700 it (Pdu ~ Piexpf— ot ATy .

. e da;d§;
" 5“1 [ 5P, > m; m; ,, i+di(1,2))?
P - P exo(-5) ) + F3E S T exp(-§ - Gzt
(3.54)
Thus, J; can be written as
Ji = Qi(Pu, Pra, 70, di(1,2)) X ﬁ[v (2" (2). y(0), D[Vl (1), y(0). 9))
9
(3.55)
For the test scenario, V., -h(xz*(7), y(i), ) is given by
90i(z~)
Voeh(2* (i), y(i), i) = ,m”({ : (3.56)
ol
For any single scan estimator, the above term can be found by
1 —hs(7) 1
Velilzs") = : - (3.57)
1+ (gmae)? €@ —€@)* | ¢
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For the batch estimator CJML-PDA the corresponding term is given by,

1 —hA(i L
V.0:(z%) = - R e (1) - 3.58)
1+ <g(m)+(i—iu)£(io)—£-‘*(zi)) (E(io) + (i —i0)&(i0) — &5(2))2 | 4 — i

As seen in ( 3.55), the information reduction factor (Q) is not only function of
P;. Pp, and o, but also a function of d;(i,2), the normalized inter-target distance in
measurement space. The IRF values for different Py, Py, and d;(i,2) are summarized
in Table 3.1 for a fixed sensor standard deviation.

Table 3.1: Q;(Py, Pra. 0y, d;(1,2)) values for oy = 0.02(rad)
Py Ppe di=0 d;=3 di=6 di=9
0.8 0.1 0.3594 0.6797 0.7173 0.7243

0.9 0.1 04051 0.7312 0.7500 0.7866
0.9 0.15 03879 0.7011 0.7501 0.7675

The above approach can be extended to find the & moment of log-likelihood
ratio under test hypotheses H;. The equation 3.30 values as function of normalized
distance are summarized in Table 3.2.

Table 3.2: Mean and standard deviation (s.d.) under test hypotheses H; for fixed
op = 0.02(rad)

Py Pj, Moments d; =0 d; =3 di =06 d; =9
mean 99779  9.3133  9.2758  9.2206

S )
8 W1 s.d. 11.3281 10.6821 10.6555 10.6128
09 0.1 mean 11.4763 10.8243 10.7675 10.5585
' ' s.d. 12,5989 11.9540 11.9142 11.7858
et .31« 9.79: 9.7062 6675
09 015 mean 10.3140  9.7930 9.706 9.6675

s.d. 11.6083 11.0468 10.9841 10.9598
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The single target IRF is same as the case where targets are well separated. Thus,

IRF single target can be found using

Qsingle =Q i (359)

d;(1.2)—00
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Chapter 4

Simulation Studies

4.1 Test Scenario

Angle-only tracking is a challenging estimation problem because of the nonlinearity in
the measurement model. Therefore, to ensure the target’s observability the sensor’s
platform needs relative maneuvers or acceleration. Also, due to low information
content of the measurement there can be high estimation error. Higher false alarm
rate makes the condition even worse.

The simulation study was conducted on an extended version of the scenario in Y.
Bar-Shalom, X. R. Li and T. Kirubarajan, 2001, pg. 387 to tracking two neighbouring
targets with an angle-only sensor. Both the sensor and targets follow a constant
velocity motion model, but the sensor at a constant altitude while the targets are on
the ground. This ensures observability.

A target dynamic state donated with position and velocity at time 7 is given by

T()) =€) €0) (4.1)
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where £'(7) and &,(i) are the position and velocity, respectively.

Target motion matrix F for the above target state can be expressed as

17 &
#(i+1) = 26+ | 2 | o) (4.2)
0 1 T
It is assumed that E[u,,(i)z/n(i)’] = G,
e Sensor
x Target
(& {my o (i)om)) (&G +Dmy.g i+ 1)(m))

i) i) (rad) s4i + 1) {rad)

U

Fal LY
(i) (m) i+ 1)(m)

Figure 4.1: Target and sensor motion ( Y. Bar-Shalom, X. R. Li and T. Kirubarajan,
2001, pg. 388)

The sensor platform is assumed to be moving horizontal with constant velocity.
Figure 4.1 illustrates target and sensor motion for time i to 7 + 1 (discrete). The

state of the sensor platform can be defined by

v = 1eG) €6 () (4.3)

where 1)°(i) is the altitude of the platform.
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Angle-only measurements are taken by the sensor. Thus, a target generated mea-

surement can written as

() = s n° (i) ) - 4.
) = ta (em—e(n T .

Simulation studies were done on two neighbouring targets. Thus, there are three

possible circumstances in track initialization:
e Single target initialization
e Two targets initialization (jointly estimate two targets states)
e Single target initialization in the presence of an existing target
The LLR with respect to single target state can be written as

®[ZN, 2" (ig)] Zln[ i ip ))] (4.5)

=19

The JLLR of two new targets can written as

O[22t (ig), 2% ()] Z In { PH(1—-P3)+ ;[% Zp(zj(i)h:l(i))

= LU j:]
1_1—) m; . 13{1 () m; m; | o
+ Z 117 ZZD )])(;,-(1)|,UZ(1))] (4.6)
=1 j=1 I=1
l#j

In the third case, single target initialization presence of a target, JLLR can be
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written as

. PY(1 - P2 o
Oz, 4 (ig)] Z In | (1~ Pp)(1—Pj)+ % Zl)(zj(z)ll'lﬁ))
i=10 j=1
m b m
21 — P : ) P, A o

- Zp ! IZZP (i)p(z;(0)|=* (7))
=1 =1
7]

where 2 (ig) and x(iy) are new target and existing target states, respectively.

4.2 Restricted Direct Subspace Search (RDSS)

Position grids are calculated from measurements to reduce computational load. In-
stead of searching the whole surveillance region, the likelihood calculation is done only
at those potential points. Velocity component that cannot be generated from mea-
surement set Z(ip) are considered as free component. Therefore, velocity is bounded
between a possible minimum and maximum.

For the above scenario, the z;th measurement’s position estimate can be written

as
: N -5
§(z) = ——+¢ (4.8)

The the effectiveness of DSS algorithm could be improved by not restricting com-
ponents to the mapped parameters, but also provide a range as in (W. R. Blanding,
P. K. Willett, Y. Bar-Shalom and R. Lynch, 2008). Therefore, the RDSS estimates

are bounded according to the estimate’s variance. This is to avoid the errors at those
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potential points due to the sensor noise. The variance of estimate £(z;) is given by,
(Y. Bar-Shalom, X. R. Li and T. Kirubarajan, 2001, pg. 140). Then

. 1 (on\>
E[£(2)*] = ?(f)

where

oh % =1
ke — 4.9
%~ T+ (e (E(z) - &) -

The 95% confidence region of the estimate is considered as a grid to optimize

CJML-PDA.



Chapter 5

Numerical Results
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Figure 5.1: Target and sensor trajectories.

Simulated target trajectories are shown in Figure 5.1, where the targets cross

ot
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Table 5.1: Scenario Parameters
Parameter File

Py P2 0.9

P 0.1

ay (sensor noise s.d.) 0.02 rad

avg. no. of false alarms | 12

T (sampling time) ds

a; (process noise s.d.) 0.05 m/s

target 1 starting time of | 1s

x'(1) (initial state) (100 m 30 m/s]
target 2 starting time of | 81s

2?(81) (initial state) (2200 m 33 m/s]
y'(1) (initial state) 0m 31m/s 500 m]
V [0, 7]

Total time 300s

No. of Monte-Carlo runs | 100
N, (Number of frames) | 10
T, (miss probability) 5%
¢y, (confidence region) | 95%

one another and they are closely-spaced. Initially the process noise is a very low
value. This is increased after some time. The platform is kept at a fixed altitude and
assumed to be moving parallel to targets.

Table 5.1 provides the scenario parameters. On average 12 false alarms are
presented in each scan. Figure 5.2 shows the estimated trajectories of Target 2 over
100 Monte Carlo runs in both CJML-PDA and JPDA modules, respectively. It can
be seen that tracks are within the 95% confidence region, meaning that the proposed
estimator meets the CRLB. That is thae estimator is efficient. The same nature was
also found for the velocity estimates as shown in Figure 5.3.

Figures 5.4 and 5.5 show the Root Mean Squared Errors (RMSE) in position

and velocity estimates of both targets. respectively. Also. the figures include the
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Figure 5.2: Estimated trajectories of target 2 over 100 runs.
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Figure 5.3: Estimated velocities of targets 1 and 2 over 100 runs.

corresponding Cramer-Rao Lower Bound that were described earlier. It is noticed
that the RMSE of CJML-PDA position estimates are very close to the CRLB. Thus,
it is clear that track initialization is well handled by CJML-PDA in heavy clutter
and in the presence of a neighbouring targets. Initialized targets were maintained
by the JPDA tracker, and it is clear that the estimated error are larger than the
CRLB in some runs. The same was also observed for the RMSE velocity component.
These results show that the mulitarget CJML-PDA and JPDA trackers perform well.
Moreover, the detection component CJML-PDA handled the track detection success-
fully in high clutter and in the presence of neighbouring targets with the proposed

information sharing technique between the modules.

o
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Figure 5.4: RMSE in position estimates of target states.
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Figure 5.5: RMSE in velocity estimates of target states.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis a new PDA based multitarget algorithm, called “Integrated CJML-PDA
and JPDA tracker” was presented. Simultaneous track detection and maintenance
were performed on two integrated modules CJML-PDA and JPDA, respectively, with
sharing of information between the two tracking modules. The new CJML-PDA al-
gorithm is a modified version of the JML-PDA technically that was used to handle
track maintenance. Due to the lack of JML-PDA maintenance capability and higher
computation complexity, CJML-PDA algorithm is formulated to handle track detec-
tion with the help of JPDA tracker. The thesis also included a real-time CJML-PDA
JLLR optimization technique with a restricted directed subspace search (RDSS) that
selectively maps measurements to the parameter space to provide restricted localized
search among those points.

The tracker was tested on a simulated scenario consisting of two closely-spaced

(crossing) targets with an angle-only sensor. The data also has a high number of

=l

ot
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false alarms. The result obtained from Monte Carlo simulations prove the capability
of the proposed algorithm. It was found that the CJML-PDA RMS errors of both
distance and velocity estimates are close to the CRLB. The algorithm handled the
track detection and maintenance under heavy clutter and in the presence of neigh-
bouring targets. This approach is not only restricted to angle-only problem as in the

presented simulation, but also to any target and measurement space.

6.2 Future Work

Further work is required to evaluate the performance of the tracker with different
types of targets as well as for different types of sensors. Additionally, the Al of
measurements can also be added into the tracker. The Al is useful not only to
validate measurements, but also in tracking. The strength of the CJML-PDA is
track initialization presence of targets in heavy clutter. However, a track termination
method is also needed for a complete tracker. The standard JPDA uses only a single

scan of data. The JPDA could be extended to multiple scans.

(@3]
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