
A Regression Test Selection Technique

Applied to Legacy Systems

A REGRESSION TEST SELECTION TECHNIQUE

APPLIED TO LEGACY SYSTEMS

BY

AKBAR ABDRAKHMANOV, B.Eng.

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTING AND SOFTWARE

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF ApPLIED SCIENCE

© Copyright by Akbar Abdrakhmanov, April 15, 2011

All Rights Reserved

Master of Applied Science (2011)

(Computing and Software)

McMaster University

Hamilton, Ontario, Canada

TITLE: A Regression Test Selection Technique

Applied to Legacy Systems

AUTHOR: Akbar Abdrakhmanov

B.Eng., (Organization and Technology of Information Se­

curity)

Kazakh National Technical University, Almaty, Kaza­

khstan

SUPERVISOR: Dr. Tom Maibaum and Dr. Alan Wassyng

NUMBER OF PAGES: x,80

ii

Abstract

Software testing is a necessary step in both the software production chain and

during future maintenance. Testing can be performed using many different tech­

niques. It is much easier to test a piece of software during the original development

process, rather than after the system has been deployed and in use for many years.

However, testing must be performed whenever software is altered. How should testing

be performed on legacy software? The answer to this question is the focus of this

thesis.

Regression testing is performed on software during its maintenance stage. Usu­

ally it is done after changes have been made to the software or its environment. The

concept of regression testing does not assume the existence of a test suite for the

software. It might be the case that test cases have to be created from the scratch.

However, when software with a huge existing test suite is under consideration, then

it is not always a good idea to run the whole test suite in order to perform regression

testing. This might be too expensive both in time and human effort. This problem

motivate the concept of regression test selection, which tells us that by using certain

selection criteria it is possible to select a subset of an existing test suite and run that

subset on the software instead.

Our project involves reducing the burden of regression testing for a legacy

system that is built on top of the Oracle E-Business Suite and Oracle database. The

changes are made through patches that are sent by Oracle. Most of the time, patches

do not introduce big changes to the E-Business Suite. Also, it is likely that the legacy

software application uses a relatively small portion of Oracle's Enterprise Resource

Planning (ERP) system. In this case, it is crucial to be able to select a subset of the

test suite for regression testing. Running the whole test suite can be very costly, and

iii

is almost always not necessary.

The approach we adopted relies on building the access dependency graph of

the whole system first. An access dependency graph is a control flow graph but with

fields and methods of classes as nodes. Then, after identifying which places in the

Oracle E-Business Suite changed after patching, the inverse calling paths are built

with changed places as starting points and functions in the customer's application as

end points. Now, when affected functions have been identified, it should be possible

to select a subset of the existing test suite which will exercise functions that have been

directly or indirectly changed by the patch, and which will not include tests that are

not impacted by the changes to the software system embodied in the patch. We also

demonstrate that the selection technique proposed in this work is safe (does not miss

tests that should be included). This gives us some confidence about the applicability

of the algorithm.

iv

Acknowledgements

I would like to acknowledge my supervisors Dr. Maibaum and Dr. Wassyng

for their incredible support throughout my study at McMaster University. That was

an unbelievable experience for me and I appreciate them for always providing me

with motivation to sharpen my knowledge.

I highly appreciate support from my colleagues Wen Chen and Asif Iqbal.

Together we could carry the project to its current state. That was a good team work.

I would also like to acknowledge my colleagues Hao Xu and Quang Tran for their

friendship and invaluable feedback on my thesis.

Thanks to all my friends and colleagues who made my days here in Canada

unforgettable. Thanks to my parents for their endless support. You always believed

in me and I never get tired of meeting your expectations.

v

Contents

Abstract

Acknowledgements

1 Introduction

1.1 Definition of the Problem

1.2 Scope and Goals of This Research.

1.3 Contributions ..

1.4 Summary

1.5 Literature Survey

2 Theoretical Foundations

2.1 Software Testing .

2.2 Regression Testing .

2.3 Regression Test Selection Techniques

2.3.1 Linear Equation Techniques .

2.3.2 The Symbolic Execution Technique

2.3.3 The Path Analysis Technique ...

2.3.4 Dataflow Techniques

2.3.5 Program and System Dependence Graph Techniques

2.3.6 The Firewall Technique.

2.3.7 The Cluster Identification Technique

2.3.8 Slicing Techniques .

2.3.9 Graph Walk Techniques .

2.3.10 The Modified Entity Technique

vi

III

v

1

1

3

4

6

7

9

9

12

14

18

20

21

22

23

25

26

27

28

30

2.4 Legacy Systems .

2.5 Challenges of Legacy Systems

2.6 Summary .

31

33

34

3 Problem Description and Challenges 36

3.1 System Under Test (SUT) 36

3.1.1 Three Layers of the System . 36

3.1.2 Interrelations between Layers 42

3.1.3 Patching Process 42

3.2 Problem Description 44

3.3 Challenges...... 44

3.3.1 Availability ofthe SUT . 44

3.3.2 Existing Test Suite Representation 45

3.3.3 Specifics of OOP Languages, Particularly Java. 45

3.3.4 Trade-Off between Inclusiveness, Preciseness and Efficiency of

RTS Techniques . 47

3.4 Summary 48

4 Proposed Solution Description 49

4.1 Building Access Dependency Graph 49

4.1.1 Converting Binaries into XML . 50

4.1.2 Building ADG . 50

4.2 Patch Analysis 53

4.3 Identifying Changed Entities . 54

4.4 Impact Analysis. 55

4.5 Test Selection . . 57

4.5.1 Test Case Generation. 57

4.5.2 TestSelect....... 59

4.6 Inclusiveness, Preciseness, Efficiency and Generality of the Proposed

RTS Technique 59

4.7 Summary . . . 63

Vll

5 Future Work 65

5.1 Adding the Database Layer 65
5.2 Analyzing Other Kinds of Files that Come with Oracle Patches 67
5.3 Test Suite Augmentation. 68
5.4 Summary 69

6 Conclusion 71

A Sample of JUnit File Generated by JCrasher 74

viii

List of Figures

1.1 3~ layer representation of the system 2

1.2 Dependencies in the system 3

1.3 5~step solution chart 4

1.4 Identifying changed and affected parts of the system. 6

2.1 The V~model [RH96] 11

2.2 Test suite consisting of different test cases [RH96] 16

2.3 Depiction of inclusiveness and precision properties [RH96] 17

2.4 Depiction of inclusiveness and precision properties for retest~all and

optimum methods [RH96] 18

2.5 Inclusiveness and precision diagrams for the linear equation technique

[RH96] .. 19

2.6 Inclusiveness and precision diagram for the symbolic execution tech-

nique [RH96] 21

2.7 Inclusiveness and precision diagram for the path analysis technique

[RH96] .. 22

2.8 Inclusiveness and precision diagram for dataflow techniques [RH96] 23

2.9 Inclusiveness and precision diagram for program dependence graph and

system dependence graph techniques [RH96] 24

2.10 Inclusiveness and precision diagram for the firewall technique [RH96] 25

2.11 Inclusiveness and precision diagram for the cluster identification tech~

nique [RH96] 26

2.12 Inclusiveness and precision diagram for slicing techniques [RH96] . 29

2.13 Inclusiveness and precision diagram for graph walk techniques [RH96] 30

ix

2.14 Inclusiveness and precision diagram for the modified entity technique

[RH96] . 31

3.1 Overview ofthe E-Business Suite applications [PAlO] 40

3.2 Three-tier architecture of the E-Business Suite [PAlO] 41

3.3 Example of two versions of the program 46

4.1 ADG for program P from figure 3.3 . 52

4.2 ADG for program P' from figure 3.3 52

4.3 Snapshot of sample "lgi" file contents 54

4.4 Impact analysis in ADG 56

4.5 Total percent of mutants killed by each test set [W009] 58

4.6 Inclusiveness and precision diagram for proposed RTS technique 62

4.7 Solution diagram . 64

x

Chapter 1

Introduction

In this chapter we provide a definition of the given problem, identify what the

scope of the research is and list the contributions that were made in this work.

1.1 Definition of the Problem

Today, many companies around the world use a form of software that is called

a legacy system. A legacy system is software that resists modification and evolution

[SPL03]. In most cases legacy systems have been produced many years ago. And

because of rapid development of technology these software become outdated, even

though they still do their job and represent a certain asset for a company. There

are lots of problems around maintaining such systems including the uncertainty in

ways of testing them. For instance, to keep up with demands of a modern market a

company wants to change some artifact of the software or its environment. Examples

of such changes are numerous: migrating to another operating system, upgrading

to another hardware platform, switching to a different DBMS 1, performing minor

changes to the source code (if it is available), and so on. Doing regression testing

after each such change is very crucial, because any kind of change might introduce a

new fault, and thus the behaviour of modified software might not be as expected.

The legacy system that is given in our project is a software product imple­

mented on top of the Oracle E-Business Suite and the Oracle database. It is assumed

1Database Management System

1

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

that it is written in Java. At a very high level, the whole system looks like the one

depicted in the figure 1.1.

Oracle DB

Figure 1.1: 3-layer representation of the system

From time to time Oracle releases patches that, if applied, eventually change

parts of the E-Business Slrite or the database. The customer's application on the

other hand might directly or indirectly reference those changed parts. Figure 1.2

shows an example of dependencies that might exist in the system [AlCIO].

Certainly, the customer needs to perform regression testing on its application

after each such patch. Otherwise some faults in the functionality of the system might

go undetected and would appear when they are least expected. Now, assuming that

the customer has a test slrite for its application, the following problems might occur:

1. Rumling the whole test slrite might be very expensive both in terms of time

and human effort, which would eventually cost a company a great amOlmt of

money.

2. Even if the whole test slrite had been run, it would be very difficult to pinpoint

where the detected faults come from because the testing is essentially "blind"
2

2It is black-box testing where the customer does not have any insights about the application and
the results of the tests are only relied on for the input-output correspondences of each test case.

2

M.A.Sc. Thesis - Akbar Abdrakhmanov

Customer's Application

McMaster - Software Engineering

E-Business Suite

Oracle Database

*Application
functions

c
E-Business

• suite
functions

• Database
objects

c

m Coverage
of the test cases

Figure 1.2: Dependencies in the system

In general this is a very large problem. So, before we discuss the details of

how we solved the problem, we need to identify the scope of our work.

1.2 Scope and Goals of This Research

First, our object of concern is a 3-layer system as shown in figure 1.1 where

we have an Oracle database, the E-Business Suite ERP system built on top of the

database and the customer's application that accesses the objects in the E-Business

Suite and the database.

The legacy system in our case is the customer's application that we assume

is fully written in Java. It is shown in [Abd10a] that the Oracle E-Business Suite

patches consist of many different file types that potentially change the E-Business

Suite or the database. In this work we limited our focus only on parts that were

written in Java, i.e. we are only concerned about files with a "class" extension (Java

binaries). We have also excluded from our focus accesses to the database objects,

e.g., all types of SQL statements and calls to stored functions/procedures.

It is worth noting that the basic configuration of the E-Business Suite that

3

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

we installed on our test server consists of around 230,000 Java classes and almost 4

million methods.

The goal of this research is to overcome the problems described in the previous

section and provide a cost-effective solution that would certainly benefit the customer

in performing the regression testing of their system. The method we propose is to

select a subset from the existing test suite that would include all test cases that might

expose faults in a changed version of the system. More details are in the next section

with explanation of contributions that were made in this research.

1.3 Contributions

In this work we propose a safe regression test selection technique where the

safety property means that a technique selects all test cases from the test suite which

might expose faults in the changed system. The technique consists of the steps

illustrated in figure 1.3.

Identifying Changed
Entities

Irnpact Analysis

Figure 1.3: 5-step solution chart

The contributions to this work made in this thesis are those steps that are

4

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

shaded in figure 1.3, i.e., patch analysis and test selection. The following is a brief

explanation of each step:

1. Build an access dependency graph (ADG) of the whole system where nodes are

methods and fields of the classes (entities) and edges are dependencies between

those nodes [Iqbll].

2. Run Oracle's "Auto Patch" command line tool in test mode to generate a log

file that includes information on which existing files of the E-Business Suite and

the database change [AIClO]. Then execute the LGIParser tool to output that

information to the database in appropriate format [AbdlOb].

3. Run the ClassDiff tool to compare original and modified versions of changed

files to identify changed entities and output this information to user-defined

XML files [Iqb11].

4. Get the names of changed entities from the XML files and, using ADG informa­

tion, run an inverse calling path searching tool called InversePathGenerator to

identify the entities in the customer's application that are directly or indirectly

dependent on the changed entities in the E-Business Suite and the database

and therefore are affected. Also load the output to the database [Chell].

5. Get the names of affected entities in the customer's application and run the test

selection tool called TestSelect to identify which test cases need to be rerun and

which entities miss being tested.

At an abstract level, identifying changed and affected parts of the system is

illustrated in figure 1.4:

The figure 1.4 represents the steps of building the access dependency graph,

identifying changed parts of the system (red coloured shapes), identifying affected

parts that are directly or indirectly dependent on those parts that changed (yellow

coloured shapes) in the E-Business Suite and the database and eventually identifying

parts of the customer's application that are affected too (yellow stars). Now, knowing

about which entities of the customer's application are potentially of concern, we can

run the program for test selection to identify which test cases to rerun and for which

5

M.A.Sc. Thesis - Akbar Abdrakhmanov

Customer's Application

E-Business Suite

Oracle Database

McMaster - Software Engineering

c
fJ: Red color indicates

direct changes caused
by the patch

c
f£ "if;lk""v color indicates

places that depend
on the direct changes

G

f£ ~indicates
dependency on
the affected places

Figure 1.4: Identifying changed and affected parts of the system

methods there are no test cases in the existing test suite. Currently in this work we

excluded the database layer from our analysis.

The other contribution in this work is establishing the relationship of our test

selection algorithm to existing techniques and used the same framework to assess

its properties. More details about the regression test selection techniques and the

framework are provided in Chapter 2. Assessment of our technique is provided in

Chapter 4.

1.4 Summary

In this chapter we identified the problem that we have been working on in 0l.U'

project. The legacy system in our case is the customer's application that is dependent

on the Oracle E-Business Suite and the database. Since Oracle's patches are issued

with certain regularity and rmming the whole regression test suite to verify if the

behaviour of the system did not change is very expensive, there is a huge need in

performing cost-effective regression testing of the system.

We have also narrowed the scope of this research as it is in general a very large

problem. We assume that the customer's application is written in Java and as for the

6

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

E-Business Suite layer we only consider its Java classes. We also reduced our 3-layer

system down to two layers by omitting the database part.

Then we briefly explained our technique for solving the problem. By building

an access dependency graph (ADG) of the whole system, where nodes are methods

and fields of the classes (entities), we could identify all dependencies among nodes.

And thus from changed parts of the system we could also identify affected parts of

the customer's application. Then we run OUT test selection program to identify only

necessary test cases and also output those customer's application entities that the

tests miss.

In the next chapter we provide theoretical foundations necessary to lmderstand

tIlls research.

1.5 Literature Survey

In this section we provide information about literature sources that were used

throughout tills work.

In Chapter 2 we elaborate on some theoretical aspects of this work. The

materials about general aspects of software testing were mainly from [Mye04; Bei90;

A008] willch are prominent books in tills area. Aspects about regression testing were

mainly obtained from [A008; LH08; YH10]. [A008] gives a general idea about what

regression testing is. [LH08] presents empirical studies about how accurate random

regression testing can be using Chernoff's bOlmd concept for measuring the accuracy.

[YH10] is a survey for all the existing techniques that deal with optimization of

regression testing. All the information about different existing regression test selection

techniques was obtained from [RH96; Rot96; YH10). We used [Ulr02; SPL03; Fea04]

for general information about legacy systems as these are the most prominent books

in this area. [Al109] was a good source of some statistical information about using

legacy systems in modern industry. [OM07] provides a good example of a real legacy

system that is still being used in NASA.

In chapter 3 we describe our problem and discuss some challenges of solving

it. [AACM09; ZRW09] are really good books for a novice to get acquainted with the

Oracle database. Information about the Oracle E-Business Suite was obtained from

7

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

[PAlO]. Oracle patching process details on release 12.1 are well explained in Oracle's

technical report [Far09].

In chapter 4 we explain the details of our solution. We basically describe every

step of our five step solution. The first and third steps, namely building the access

dependency graph and identifying changed entities (methods and fields of the classes)

are explained in detail in [Iqbll]. The tool that is used in the second step, called

LGIParser that parses Oracle's log files after patching and outputs a list of changed

files, is documented in [AbdlOb]. The details about Oracle's tool that applies patches

and generates log files can be found in [ThcOO]. The fourth part of our solution, which

is an impact analysis, is obtained from a colleague via private communication [Chell].

Details about the fifth step are explained in this work. The tool called JCrasher that

we used to generate test cases is well described in [CS04]. The comparison of existing

open source test case generation tools is provided in [W009], which contributed to

our decision to use JCrasher.

In chapter 5 we discuss some aspects that need to be considered in future

work to make our solution better and complete. The details about different file

types that Oracle patches consist of are provided in [AbdlOa]. [TSC+06; SCT+08]

present an approach for test suite augmentation and provide a tool that implements

it. [C004] provides an explanation of the tool that can instrument the Java code that

contributes to performing test suite augmentation. Particularly this tool is used in

[TSC+06; SCT+08] to instrument the code and analyze if the defined requirements

are covered.

8

Chapter 2

Theoretical Foundations

The following sections consist of a review of some basic concepts of software

testing, regression testing, regression test selection, legacy systems and their chal­

lenges.

2.1 Software Testing

We are all human beings and therefore it is natural for us to make mistakes.

It is generally accepted, and also noted in [Bei90] that for programmers it is natural

to introduce bugs into software during the development process. Beizer also high­

lights the statistic that says for every 100 statements written by a good programmer

there are still 1-3 bugs. In our modern life software is used in almost everything that

surrounds us. Take, for example, home appliances like microwave ovens or washing

machines, cell phones; take your car that alone might have up to several dozen com­

puters installed in it, and so on. Bugs revealed in some of those would make one feel

upset, but in others it might cost human lives. And that is why software testing is an

important stage of the development process that cannot be omitted or ignored. The

following is the definition of software testing from [A008]:

Definition 1. Testing: Evaluating software by observing its execution.

When one executes software while performing its testing, the goal should be

to find bugs, not to assure oneself about the correct execution of the program. This

9

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

latter way of thinking makes the process of testing somehow destructive [Mye04],

that can put a stumbling-block between testers and programmers. But when the

main concern is the quality of the produced software and when both sides accept

that, following the former strategy will benefit the whole company. Unfortunately,

in many cases people do not differentiate testing from debugging, which leads to

producing unreliable software [AGOS].

Although testing is intended to find errors in software, it has been shown to be

infeasible to find all of them even for trivial programs [Mye04]. The reason for this is

the infeasibility of covering the whole domain of possible inputs. For example, if the

function takes a real number as a parameter, it is impossible to check the execution

of that function with all possible values, because it is invariably an infeasibly large

set.

We need to add a notion of test case which represents each single test run on a

software artifact using a specific set of test inputs, execution conditions and expected

results. A test suite is a set of all existing test cases. As was mentioned above,

sometimes it is impossible to cover all possible inputs, so that is why there is also a

notion of test coverage. The number of faults we may reveal during testing directly

depends on what the coverage criteria for testing is. For example, there is a node

coverage criterion that requires test cases to walk through every single statement in

a program. Node coverage is considered as being the weakest coverage criterion and

therefore it does not give a good warranty that errors will be revealed.

There are two well-known testing strategies:

• Black box testing is performed without knowing internal structure of the pro­

gram and so test cases are obtained from program requirements and specifica­

tions.

• liVhite box testing is performed based on the source code of the program.

Black box testing is sometimes also called data-driven [Mye04] because essen­

tially it is done without knowing what the implementation of the program is and its

purpose is to verify if the behaviour of the program satisfies functional requirements.

So the purpose of this testing strategy is to find such conditions that would make the

program behave unexpectedly. Meanwhile, white box testing is performed considering

10

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

the internal structure of the program under test. It is also called logic-driven [Mye04]

testing. So its main concern is to test a program's logic as thoroughly as possible.

Neither black box nor white box testing can provide exhaustive testing, which

means there is never a warranty that the program will behave correctly and will not

introduce any faults after the testing has been done. The reason is the same as that

mentioned above - it is theoretically infeasible to cover the whole domain of valid and

invalid input to the program.

Depending on the stage of the development process of a piece of software, these

two testing strategies might both be used providing a chance that more faults would

be revealed during the testing process. Let us review the so called "V model" , which

is a graphical representation of the different stages in the evolution of software.

Figure 2.1 shows all the development and testing activities during software

ReqUirements
Analysis

---..
Test

Acceptance
Test

Architectural
Design

Design
--.

Information

System
Test

SUbsystem
Design

---------------------------------------. Integration
Test

- Detailed Design --------------------...

Implementation

Module
Test

Unit
Test

Figure 2.1: The V-model [RH96]

evolution. Specifically, this figure illustrates that for every stage of the development

process there is a corresponding testing activity. It is considered good practice to

follow the steps shown in the figure when developing a software. Unit testing in the

figure follows a white box testing strategy, as its main concern is to test implementa­

tion of the program. And acceptance testing is essentially black box testing because

11

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

its test cases are written after the requirements and specifications of the program had

been finalized, and so it does not consider the implementation at all.

The next section is about one of the variants of testing which is performed

during maintenance of a software after certain changes have been introduced into it.

It is called regression testing.

2.2 Regression Testing

Regression testing is done after certain changes have been introduced to a

piece of software. It did not appear in the "V-model" above (figure 2.1) because it is

performed during the maintenance phase of the evolution of the program. Regression

testing's purpose is to verify that modified software preserves the expected behaviour

and does not introduce errors. Even if the change is very small, the impact caused

by that change can be very tangible and would affect the behaviour of the software,

perhaps by introducing new unexpected faults.

One obvious way to perform regression testing is to run an existing test suite

of the program on its modified version. This is the so called "retest all" technique.

It has one drawback: during evolution of some software products, their test suites

become extremely large. So it would be very costly to run the whole test suite both

in terms of time and human effort, which eventually ends up being very expensive

in terms of money as well. On the other hand, if only a few test cases are run, it

might be insufficient for identifying many of the faults in a modified software, so the

whole regression testing will fail as being unreliable. In a paper Harrold et al. [LH08]

investigate a random test selection technique, where using the mathematical concept

of Chernoff bound, they calculate what the number of test cases should be to gain a

certain percentage of confidence in performed regression testing. This technique does

not depend on the size of the test suite. But because the selection of the test cases is

random, there is still a danger that some software faults might go undetected.

Even if some test cases fail during regression testing, it still does not mean

that this is a fault. It might be the case that the test case is not satisfactory for the

modified software as it was for a previous version. This is why, after identifying such

test cases, further analysis is needed to see if those test cases are adequate [A008].

12

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

A lot of approaches to optimizing regression testing have been invented, but

there are three techniques that are considered to be most importnat [YHI0]:

1. Test suite minimization

2. Test case selection

3. Test case prioritization

Following are the definitions of the problems that explain each of these tech­

niques, taken from [YHI0]:

Definition 1. Test Suite Minimization Problem

Given: A test suite T and set of requirements {rl' rz, ... , rn } that have to

be satisfied for an adequate regression testing of the program, and also subsets of T

TI , Tz, ... ,Tn where all test cases of ~ satisfy requirement rio

Problem: Find a subset T' ~ T where test cases satisfy all riS.

A test requirement is a certain part of a software that the test case must satisfy

or cover [AG08]. For the minimization problem, the set of test cases T' need to be

a minimal hitting set of all ~s. The minimal hitting set problem is known as being

NP-complete [YHI0].

Definition 2. Test Case Selection Problem

Given: A program P, its test suite T and modified version of P, P'.

Problem: Find T' ~ T with which to test pl.

Both the selection and the minimization technique's goal is to reduce the size

of the test suite; however, the difference is that in the selection technique we try to

select test cases that are "modification aware" , which means that they are relevant to

modified parts of the software and thus this technique is related to white box testing

where software's source code is examined.

Definition 3. Test Case Prioritization Problem

Given: A test suite T, the set of permutations of T, PT and function f
PT-t ~.

Problem: Find T' E PT s.t. V(T"IT" E PT, T" f:: T' : f(T') ~ f(T")).

13

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

The test case prioritization technique's goal is to put test cases in an order

such that this order would allow the detection of the maximum number of faults

sooner. So it is assumed that, if the order is followed, then execution of test cases

can halt any time and early detection of faults is guaranteed.

Since from patches we can retrieve information on which parts of the code

changed and our aim is to select a subset of an existing test suite, the approach of

optimizing regression testing that we used in our work is regression test selection.

The next section explains the concepts underlying this approach, its properties and

the different techniques on which it depends.

2.3 Regression Test Selection Techniques

As was mentioned above, regression testing is an expensive procedure. One of

the approaches that aims to optimize regression testing of a software is called regres­

sion test selection (RTS). Its main purpose is to select a subset of an existing test

suite which can be used to test a software instead of using "retest all" technique. If

the subset is smaller in comparison to the size of the test suite, then tangible savings

in testing can be achieved.

Before we describe the properties of the RTS techniques, it is worth explain­

ing some variants of test cases that are relevant to this topic. The following formal

definitions and notations are taken from [Rot96; RH96].

Let P be a program, pi its modified version and T a test suite for P. Also let

S stand for specified output of P, S' stand for specified output for pi and D denote

the domain of some specification. A test case t is a three-tuple < n, i, S(i) >, where

n is a number (identifier) of the test case, i is a set of inputs and S(i) is a set of

specified outputs.

There is a notion of obsolete test cases which either specify invalid input for

pi or specify an invalid input-output relation for P'. It can be formalized as follows:

t is obsolete if i tJ- D(S') V S'(i) -1= S(i)

Test case t is called fault-revealing if it makes pi fail and thus detects a fault in

P'. pi fails when, after executing t, the output of pi does not satisfy its specification.

14

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

Formally:

tis faul-revealing if -,obsolete(t) /\ Pl(i) =I- B'(i)

Unfortunately, there is no effective procedure for selecting fault-revealing test

cases from T [Rot96].

t is called modification-revealing if it generates different outputs for P and pl.

Modification-revealing test cases are formalized as following:

t is modification-revealing if -,Obsolete(t) /\ PI(i) =I- P(i)

Modification-revealing test cases are fault-revealing under the following two

assumptions:

1. t E T when P was tested with t, P halted and produced a correct output.

2. There is an effective procedure for identifying obsolete test cases for P'.

Even if these two assumptions hold, there is still no effective procedure for

precisely identifying modification-revealing test cases.

Another variant of test cases is modification-traversing. They execute new or

modified code in pI or used to execute deleted code in P. These test cases can be a

superset to modification-revealing test cases under the following assumption:

• When P is tested with t, all factors that might affect output of P except the code

are kept constant in exactly the same state as they were when t was executed

onP.

The following figure 2.2 visually illustrates the relations between different types

of test cases.

As can be seen from figure 2.2 fault-revealing test cases can be both obsolete

and non-obsolete. Obsolete fault-revealing test cases are those that do not halt for

pI, but were supposed to halt and produce a certain output. This itself is a fault

and the only way to identify this kind of test case is to execute every obsolete test

case to check if they do not exceed a certain time limit. If they do then they are

fault-revealing. Also note that all modification-revealing and modification-traversing

test cases are non-obsolete, because they specify valid inputs and valid input-output

15

M.A.Sc. Thesis - Akbar Abdrakhmanov

TestSuiteT

CIault-Rev~alit~

McMaster - Software Engineering

Obsolete

Nonobsolete

Modification-Traversing

Figure 2.2: Test suite consisting of different test cases [RH96]

relation for P.

There are several properties of RTS techniques that describe their effectiveness

and indicate why one would choose one RTS technique over the others [RH96; Rot96].

They are:

1. Inclusiveness: the extent to which an RTS technique includes modification­

revealing test cases in a subset. If an RTS technique chooses all modification­

revealing test cases from T then it is called safe.

2. Precision: the extent to which an RTS technique omits non-modifIcation-revealing

test cases in a subset.

3. Efficiency: is estimated from the computational time that a RTS technique

requires. Any effective RTS technique should satisfy the following:

Tall > Tselection + Tsubset

where Tall - time to run the whole test suite; Tselection - time spent to effectively

select a subset of a test suite that will test only necessary part of a software;

16

M.A.Sc. Thesis - Akbar Abdrakhmanov

Tsubset - time to run a subset of a test suite.

McMaster - Software Engineering

4. Generality: is the ability to handle different languages, language constructs and

the ability to test real applications.

When discussing different existing RTS techniques it is very convenient to

show their inclusiveness and precision properties in a graphical way such as shown in

figure 2.3. In this figure circles represent modification-traversing test cases such as

those that execute new or modified code in pI or used to execute code in P that was

deleted in P'. Some test cases can execute some or all of them, that is why circles

intersect in the figure. Dashed area represents modification-revealing test cases. Since

there are modification-traversing test cases that are not modification-revealing there

are areas inside of the circles that are not dashed.

T-obaolelc

M - tests that execute modified code

N - tests that exe~ntenew code

D - tests that execute deleted code

B - modification-revealing tests

Figure 2.3: Depiction of inclusiveness and precision properties [RH96J

The following figure 2.4 depicts the worst case selection which is basically a

retest-all technique, and best case selection when only modification-revealing test

cases are selected (optimum). Shaded areas in the figures represent selected test

cases. The A-part of the figure shows that all test cases of the test suite are chosen

and thus no selection was applied. The B-part shows the RTS technique where only

modification-revealing test cases are chosen, so it is safe and 100% precise.

17

M.A.Sc. Thesis - Akbar Abdrakhmanov

(A) retest~allmethod

McMaster - Software Engineering

T-obsolete

(B) optimummethod

Figure 2.4: Depiction of inclusiveness and precision properties for retest-all and op­
timum methods [RH96]

Following are different RTS techniques that have been invented since the re­

gression testing optimization problem arose. Their analysis and comparison were

discussed in [YHI0j RH96j Rot96]. The description of techniques provided here is

taken from those papers. All the information including the developers of techniques

can also be found there.

2.3.1 Linear Equation Techniques

The linear equations technique uses systems of linear equations from matrices.

These matrices represent relations between test cases and program segments, and mu­

tual relations between program segments. Here segment means single-entry single-exit

block of code with sequential execution of its statements. There are two approaches

for applying the technique: intraprocedural and interprocedural. Intraprocedural

technique uses a 0-1 integer programming algorithm to select the subset T I from T

where for each modified segment of the program pi that does not change its control

flow at least one test case is selected such that it covers every program segment that

statically reaches a modified segment or that are statically reachable from it including

18

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

the modified segment itself. One drawback of this approach is that it cannot handle

changes in control flow. But the interprocedural approach does not have that problem

because it considers every subroutine of the program as a segment, so it essentially

deals with subroutine coverage and thus does not depend on the type of modification.

The linear equation technique is essentially a minimization approach because

it only selects one test case per a segment under concern as was described earlier.

However, as was shown in [RH96; Rot96], it need not deal with only minimizing the

set of test cases, but can also be used for selecting test cases. Figure 2.5 illustrates

inclusiveness and precision diagrams for the intraprocedural minimization technique

(part A) and interprocedural non-minimization technique (part B).

T-obsolm

(A) minimization versions

T-obsclela

(B) non-minimization versions

Figure 2.5: Inclusiveness and precision diagrams for the linear equation technique
[RH96]

The minimization approach of the linear equation technique omits modification­

revealing test cases and thus is not safe. In both intraprocedural and interprocedural

approaches the technique is not precise. The intraprocedural approach does not han­

dle control flow modifications, and in the interprocedural approach the technique

might select test cases that traverse modified subroutines but not the modified blocks

of the code in those subroutines and thus is also imprecise. Considering the efficiency

part of the technique, it can take a while to compute a system of linear equations for

19

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

large systems, and the 0-1 integer programming algorithm can take exponential time

for computation. As for the generality aspect of the technique, it was initially created

for Fortran and later for C. But it can be used for any other procedural languages as

well.

2.3.2 The Symbolic Execution Technique

The technique performs test case selection using input partitioning and data­

driven symbolic execution. At first a program's code and specifications are statically

analyzed to identify input partitions. After that, test cases are selected that execute

each input partition at least once, and it also generates test cases if some input parti­

tions are not covered with existing test cases. Given the places where code is modified,

the technique identifies edges in the control flow graph from which the modified code

is reachable. After that, all test cases are symbolically executed. If some test cases

were determined not to reach modified code, then they are halted. Meanwhile those

that actually reach modified code are executed until their termination. Thus this

technique selects all test cases that reach new and modified parts of the code.

Unfortunately the symbolic execution technique does not select test cases that

used to traverse deleted code. Since these test cases can be modification-revealing,

the technique is not safe. Although the technique selects all tests that reach new

code, there might be an addition of new code that does not introduce a different

sequence of statements for a given test case. And therefore this technique also selects

non-modification-traversing test cases. These comments are depicted in an inclusion

and precision diagram in figure 2.6.

Authors of the technique themselves admitted that it is very costly to run their

method. For example the symbolic execution tree that is built by the technique is

exponential in the size of the program itself. Therefore it requires much time to build

it. Because of this, cost the symbolic execution technique is deficient in generality as

well.

20

M.A.Sc. Thesis - Akbar Abdrakhmanov

T -obsolete

McMaster - Software Engineering

Figure 2.6: Inclusiveness and precision diagram for the symbolic execution technique
[RH96]

2.3.3 The Path Analysis Technique

This technique uses a notion of exemplar path which represents a path from

program entry to program exit without having any cycles. So for both P and pI

the technique gets a set of all exemplar paths obtained from existing paths in each

version of the program, represented by an algebraic expression. By comparing two

sets of exemplar paths it classifies paths as new, cancelled and modified. After that

the technique selects only those test cases that traverse modified exemplar paths.

The path analysis technique omits all test cases that traverse new or cancelled

paths among which there could be modification-revealing ones. Therefore it is not

safe. For modified paths all test cases that traverse them get selected, but the tech­

nique does not omit non-modification-traversing test cases. These inclusiveness and

precision aspects of the technique are illustrated in figure 2.7.

Path analysis technique is expensive in terms of computation. The amount of

exemplar paths for P and pI and for each test case in T can be exponential to the

size of the programs. The technique requires programs that are written in languages

that can be designed using language-independent algebraic expressions. Also it does

not handle modifications where new or deleted code is introduced. Thus it lacks

21

M.A.Sc. Thesis - Akbar Abdrakhmanov

T -obsolete

McMaster - Software Engineering

Figure 2.7: Inclusiveness and precision diagram for the path analysis technique [RH96]

generality.

2.3.4 Dataflow Techniques

Dataflow analysis relies on definition-use pairs of the variables in programs.

There are several proposed techniques that perform dataflow analysis to select test

cases, both on the intraprocedural and interprocedurallevels. If there was a modifica­

tion to a definition-use pair, then test cases that traverse that pair would be selected.

If a statement that is not part of any definition-use pair was deleted then

no test case would be selected. Also, if some new or modified code that does not

use any variables was introduced then again no test case would be selected. These

above mentioned test cases might possibly be modification-revealing and therefore

dataflow techniques are not safe. Although the techniques select all tests that reach

a new, modified or deleted definition-use pair, there might be an addition of a new

definition or use that does not introduce a different sequence of statements or a differ­

ent definition-use pair for a given test case. And so non-modification-traversing test

cases will also be selected. Therefore these techniques are not precise as well. Their

inclusiveness and precision diagram is shown in figure 2.8.

When performing dataflow analysis two versions of a program are compared

22

M.A.Sc. Thesis - Akbar Abdrakhmanov

T -obsolele

McMaster - Software Engineering

Figure 2.8: Inclusiveness and precision diagram for dataflow techniques [RH96]

for correspondence, then their definition-use pair associations are also compared. And

so the time spent on the analysis is quadratic in the size of the largest among two

versions of the program times size of the test suite. Dataflow techniques can be

applied to any procedural languages. If there is no change in definition-use pairs then

it is not the best choice to use these techniques.

2.3.5 Program and System Dependence Graph Techniques

Test selection techniques that use program dependence graph (PDG) consider

two different components of a PDG: nodes and edges. Components of two versions

of a program are grouped into execution classes via slicing so that any test case that

executes a given component will certainly execute all other components of the same

execution class. After that slices of P and pI are compared to identify affected com­

ponents. Finally, the technique selects all test cases that traverse all components of

execution classes that have affected components. This technique is intraprocedural.

There is also an interprocedural extension to the PDG technique that uses a

system dependence graph (SDG). It uses a so called calling context slicing to identify

common execution patterns in components of both versions of the program. Then

the technique selects all test cases that examine those components in P that have

23

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

cornman execution patterns with new or modified components of P'.

Both PDG and SDG techniques select test cases that traverse new and modi­

fied code, but skip those that examine deleted code. Therefore both are not safe. With

respect to their precision property, both techniques have the same problem as with

symbolic execution and dataflow techniques by selecting non-modification-traversing

test cases that examine new code which does not introduce a different sequence of

statements for a given test case. The inclusiveness and precision diagram for PDG

and SDG techniques is the same and is shown in figure 2.9.

T -obsolete

Figure 2.9: Inclusiveness and precision diagram for program dependence graph and
system dependence graph techniques [RH96]

Depending on which criterion is used, whether it is PDG-node or PDG-edge,

the computational cost of the whole analysis for both PDG and SDG techniques can

be up to the power three or even four of the size of the program. It also requires

tools for generating program dependence and system dependence graphs for P and

P'. Generally these techniques can be used for any procedural languages. The major

problem is that they do not deal with code deletions.

24

M.A.Sc. Thesis - Akbar Abdrakhmanov

2.3.6 The Firewall Technique

McMaster - Software Engineering

The firewall technique identifies where to put a firewall around modified mod­

ules in the code so that only test cases that for given modified modules are within the

firewall get selected. The modules that directly interact with modified modules, Le.,

direct ancestors and direct descendants, are included in the firewall with modified

modules themselves. The technique specifically deals with unit tests and integration

tests. It performs the selection on the interprocedurallevel.

If all unit and integration test cases of the given test suite are reliable then

this technique will select only modification-revealing test cases which makes it safe.

However, as authors of the technique note, in practise existing test cases are not reli­

able and therefore the firewall technique will lack safety. For some modified module

in a code, all test cases that examine that module will get selected, even though

not all of them actually traverse the modification. Thus the technique selects non­

modification-traversing test cases and is therefore not precise. Its inclusiveness and

precision diagram is shown in figure 2.10.

T -obsolete

Figure 2.10: Inclusiveness and precision diagram for the firewall technique [RH96]

Performing the firewall technique's selection can take time proportional to

the size of the program's call graph times the size of the test suite. This is quite

efficient compared with all previous techniques. The only drawback is that it requires

25

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

a database setup which might be expensive. But on the other hand that setup is

performed only at the initial phase of the analysis and it is done once. The initial

firewall technique is applicable to any procedural languages. Later, there were some

extensions that also deal with object-oriented languages and even GUI.

2.3.7 The Cluster Identification Technique

The cluster identification technique uses a notion of cluster, which is a single­

entry single exit subgraph of a control flow graph (CFG) of the program. The tech­

nique compares clusters of P and pI for their correspondence and selects those test

cases that examine new, deleted or modified clusters. It also selects test cases that

execute the code that is control dependent on clusters with modifications.

The cluster identification technique selects all modification-traversing test cases

and therefore is safe, but it is not precise. Its precision also suffers from the fact that

it can also select test cases that are non-modification-traversing. The reason for

this is that the technique selects all test cases that examine identified clusters, but

some of those test cases might not traverse the actual modification in the code. Its

inclusiveness and precision diagram is illustrated in figure 2.11.

T-obsolele

Figure 2.11: Inclusiveness and precision diagram for the cluster identification tech­
nique [RH96]

26

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

The computational time of the selection part of the cluster identification tech­

nique is proportional to the size of the largest of two versions of the program to the

power of three times the size of the test suite. Since it deals with control flow graphs,

it can be used for any procedural languages.

2.3.8 Slicing Techniques

Slicing techniques have four different slicing criteria for test cases. An execu­

tion slice includes all statements that were executed by a test case. A dynamic slice

includes only statements that affect output of the execution slice. Thus a dynamic

slice is essentially a subset of the execution slice. A relevant slice is a dynamic slice

that includes all predicates of the execution slice that if changed could have caused

a different output. And there is also an approximate relevant slice which is a dy­

namic slice with all predicates of the execution slice. For a given modified statement,

depending on which slicing criterion is chosen, the techniques select those test cases

that include that statement in their slice.

Unfortunately, slicing techniques cannot handle situations when there is a

modification in control flow of the program. If there is no such change, then the tech­

niques are safe. Also, since the initial variant of the technique could not deal with

additions of code, there was an extension which could handle situations when a new

statement or a new predicate were introduced. The problem was overcome by means

of analyzing all the statements that are control dependent on a new predicate and all

the statements that use the value of a variable in a new statement. Still that did not

make the techniques safe enough because if a statement that does not use any variables

is added, the techniques will not select any test case for that, even though test cases

that examine that new statement might be modification-revealing. Another drawback

of the techniques is that it cannot properly deal with multiple modifications as it an­

alyzes each one of them in a separate step. This also decreases the slicing technique's

inclusiveness. When there is no change in control flow of the program and no new

code is introduced slicing techniques select only modification-traversing test cases.

Since dynamic, relevant and approximate relevant slicing criteria restrict their test

cases to examine the output of the slice, they exclude some modification-traversing

but not modification-revealing test cases. With the extension that deals with changes

27

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

in control flow the techniques also select some non-modification-traversing test cases

as well. The inclusiveness and precision diagrams of slicing techniques for all four

different slicing criteria are shown in figure 2.12.

When there is no addition of a new code or change in control flow, slicing

techniques take time proportional to the size of the test suite. But if such modi­

fication exists then it needs time proportional to the size of the modified program

squared times the size of the test suite. And this is the time estimation for a single

modification. When there are several changes then the test selection algorithm is not

worth running because it would require recalculation of test traces after analyzing

each modification. Slicing techniques can be applied to any procedural languages.

But its generality is lacking because it deals badly with multiple modifications and

changes in control flow.

2.3.9 Graph Walk Techniques

Graph walk techniques use the control flow graph (CFG) of the program to

perform test case selection. Given programs P and pi and also a test trace of all test

cases in T of P, the techniques compare edges of two CFGs G and G' of respective

programs to identify new, modified or deleted nodes. Then techniques select all test

cases that traverse those nodes. There is also an extension of the techniques that uses

data dependence information for more precise test selection.

Graph walk techniques select all modification-traversing test cases and there­

fore are safe. As not all modification-traversing test cases are modification-revealing

the techniques are not 100% precise. When an extended technique that uses data de­

pendence information is used then some modification-traversing test cases are omitted

and thus the technique becomes more precise. The inclusiveness and precision dia­

grams for both versions of the techniques are illustrated in figure 2.13.

Graph walk techniques can be very efficient in comparison with other tech­

niques. An analysis and selection can take a time proportional to the size of the

test suite times the least size among the two versions of the program (when data

dependence information is not used). Since control flow graph and data dependence

information can be obtained for any procedural language, the graph walk techniques

28

M.A.Sc. Thesis - Akbar Abdrakhmanov

T-ob.olele

(A) execution slice technique

T-ob.oll>1l!

(C) relevantslice technique

McMaster - Software Engineering

T - o1>rolete

(B) dynamic slice technique

T-01>rolele

(0) approximate relev<IIlt slice technique

Figure 2.12: Inclusiveness and precision diagram for slicing techniques [RH96]

29

M.A.Sc. Thesis - Akbar Abdrakhmanov

(Al withoutdata dependence

McMaster - Software Engineering

(B) with data dependence

Figure 2.13: Inclusiveness and precision diagram for graph walk techniques [RH96]

can be used for any of them. Also there are extensions that can work with object­

oriented languages like Java and C++.

2.3.10 The Modified Entity Technique

The modified entity technique performs test selection through identifying mod­

ified code entities and selects tests that examine those entities. A code entity can be

a function or some storage locations. It performs test selection on an interprocedural

level. Authors of the technique developed a tool called TestTube that implements

this technique and works with programs written in C.

The modified entity technique selects all modification-traversing test cases and

therefore is safe. It selects test cases that examine modified procedures but which

might not examine the modified part of that procedure. That is why the technique

allows some non-modification-traversing test cases as well. The inclusiveness and

precision properties of the technique are illustrated in the diagram in figure 2.14.

This technique is the most efficient among all of those above mentioned. Its

selection can take a time proportional to the size of the test suite times the number of

modified entities in the program, which is usually less that the length of the program

30

M.A.Sc. Thesis - Akbar Abdrakhmanov

T -obsolete

McMaster - Software Engineering

Figure 2.14: Inclusiveness and precision diagram for the modified entity technique
[RH96]

itself. It can be used with any procedural language. It also requires the use of a

database where it keeps the information about modified entities in the code.

The next section is about software called legacy software. We elaborate on

what they are and why they are still in use.

2.4 Legacy Systems

As was mentioned in the first chapter of this work, legacy systems are those

that resist modification and evolution [SPL03]. Let us examine a bit what this means.

Software can be considered legacy software for several different reasons: it was

written a long time ago, it has poor documentation or does not have it at all, it works

on outdated hardware, it is large and monolithic, it was written in an old language

which is not in use any more, it does not meet contemporary design requirements,

and so on. It might be the case that only one or few of the reasons hold for the system

under consideration or it might be a combination of all of them - it is still considered

a legacy system. As was stated in [All09] that nowadays there are approximately

200-300 billion lines of legacy code being used in industry. 70% of that amount is

31

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

written in COBOL - a programming language that has existed since 1959 and which

is currently known by only few programmers. This statistic raises a question - why

are there still so many legacy systems in use? There are several reasons for this:

• The system does its job by satisfying users' demands.

• Introducing changes to a system, whether it is a partial change in the code or a

complete refactoring of the whole system, could cost a company a large amount

of money and might also going to take a long time.

• Making changes to the system might be very challenging because of its mono­

lithic and complex nature.

• It might also going to be expensive both in terms of time and money to teach

the company's personnel to work with a new system.

• The system might be working on a real-time basis (like banking systems, air

traffic control systems, etc.), and introducing changes to it would require a time

delay in its operation which could cost a company a lot of money.

• The system is working on its own and there is nobody who thoroughly under­

stands how it works. It might be the case that it was not fully documented or

the documentation was lost.

One good example of an existing legacy system is provided in [OM07] which

talks about NASA's 1 flight control system which mostly consists of software that

was written in the 1970s. While it was being written, it went through a huge amount

of testing and certification before it actually started to be used. So definitely the

system is old and it requires a lot of upgrades. But the main problem is that any

kind of change to that system would require conducting a huge amount of testing and

certification again, and by the time the whole process ends the system would already

be considered as being legacy.

The next chapter is about problems associated with using legacy systems.

1National Aeronautics and Space Administration

32

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

2.5 Challenges of Legacy Systems

M. Feathers [Fea04] defined a legacy system as software without tests. We

believe he does not mean that all software that has tests cannot be called legacy.

But rather he means that if software has tests, we can make changes and verify if

the behaviour changes or not. Whether those tests that come with the software are

adequate and thorough is another question. It might be the case that none of the test

cases would be able to examine newly introduced changes and therefore there is no

warranty that the software will behave as expected. Unfortunately, there are many

more difficulties around legacy systems other than just an absence of tests.

In his book Ulrich [Ulr02] presents a list of disadvantages of legacy systems:

• Understanding the system's functionality is hard and time consuming.

• Hard to identify business logic from the system's data logic and presentation.

• Difficult to find technical and functional documentation.

• Difficult to integrate with the legacy system because of software and hardware

incompatibilities.

• Hard to perform modifications because of the lack of documentation and regres­

sion tests.

• There is no data integrity and consistency because of using an Information Man­

agement System (1M3) or Integrated Database Management System (IDMS)

which does not support a relational database.

We can add to this list more disadvantages:

• Hard to find spare parts for the hardware which legacy systems run on.

• It might be less expensive to completely change both software and hardware

than to keep maintaining the legacy system.

• After having decided to change or modify an existing system, it usually does not

meet deadlines and costs much more than what was budgeted in the beginning.

33

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

In general, maintaining a legacy system is itself a big challenge. Companies

trying to keep up with always emerging business requirements and practises will even­

tually need to make changes in their legacy system. Seacord mentions Lehman's first

law to justify this fact [SPL03]: "A large program that is used undergoes continuing

change or becomes progressively less useful". There are four different types of changes

that can be made to legacy code [SPL03]:

1. perfective - adding new features, performing enhancements to the system.

2. adaptive - performing upgrades to the system, e.g., changing the operating

system or the database management system.

3. corrective - fixing bugs in the system.

4. preventive - these changes are made to improve future maintainability and

reliability of the system.

Depending on the complexity and source code availability of the legacy system,

different types of those changes can be performed. There is one approach that is

called the "big bang" approach that implies changing both hardware and software

while preserving existing business requirements. For large and complex systems,

most of the time this approach is not worth doing. It is very costly both in terms of

money and time. What companies have practiced so far and gained certain results

in modernizing legacy systems is an incremental modernization approach when the

focus is to perform step by step modernization of separate artifacts of the system.

2.6 Summary

In this chapter we provided some background on topics such as software test­

ing, regression testing and legacy systems that this work is mainly focused on. Soft­

ware testing is a crucial part of the development process of any kind of software. As

for the regression testing we showed that there are three popular approaches of opti­

mizing the regression testing process: test suite minimization) test case selection and

test case prioritization. In our work we chose to use the test case selection approach.

34

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

We provided some details about some aspects of regression test selection and differ­

ent types of regression test selection techniques. As for legacy systems, we explained

what they are and why they are still in use. We also provided challenges that are

associated with using legacy systems.

In the next chapter we provide the description of the problem that we faced

in our project in detail. Also we are going to discuss the challenges associated with

solving that problem.

35

Chapter 3

Problem Description and

Challenges

This chapter is devoted to a description of the problem addressed in this thesis

and also the challenges faced tackling the problem.

3.1 System Under Test (SUT)

In this section we will provide the description of the problem by explaining

three layers that our system consists of, their mutual interrelations and the patching

process that is performed on a system.

3.1.1 Three Layers of the System

Our system consists of three layers which are the Oracle database, the Oracle

E-Business Suite and the customer's application. Following are some details about

each of these layers.

Oracle Database

In the beginning the company was called Software Development Laboratories

which in 1979 produced the first commercial SQL relational database management

system (RDBMS) [AACM09]. Now Oracle is one of the biggest computer technology

36

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

corporations in the world. Oracle is especially known for its RDBMS of the same

name. The latest Oracle database version is llg, and was introduced a few years ago.

Oracle is the most used and sold database in the world [ZRW09].

Oracle is a relational database management system, where relational means

that it uses tables to store the information. Tables are related with each other through

primary keys and each table consists of columns. The relational model fully replaced

the formerly used hierarchical data model. Data in Oracle llg has the following

attributes [AACM09]:

• Data types - defines the type of the data, e.g., numeric, string, date, etc..

• Column size - defines the maximum size of the data in a certain column.

• Ownership - defines who is the owner of the information.

• View and manipulation rights - defines who has the right to view the data

and which users can perform which actions on it.

Other than tables Oracle llg consists of stored program objects such as

[AACM09]:

• Views - these are the predefined subsets of the data. SQL statements that

define views allow us to see only the necessary amount of information that was

filtered by certain constraints.

• Triggers - these are the stored objects that are executed after a certain event

occurs. Each trigger is bound to only one table and each table can have several

triggers.

• Procedures - these are stored program units that can accept parameters and

interact with Oracle objects.

• Functions - these are like procedures but they return a value to the code that

they are called from.

• Packages - these merge procedures and functions together in one programming

unit.

37

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

Triggers, procedures and functions are written in the PL/SQL procedural pro­

gramming language that has been developed by Oracle to operate with the Oracle

database.

The letter "g" in the version of the database stands for grid and was first

introduced with Oracle version 109. Grid is a kind of distributed system that works

with large numbers of files. Grids are normally more loosely coupled, heterogeneous

and geographically more spread out, which distinguishes grid computing from other

high performance computing systems [ZRW09].

Oracle E-Business Suite

The Oracle E-Business Suite (EBS) is a software package that allows organi­

zations to manage most of their business processes. A big advantage of having such

a system deployed is that it provides centralized data storage in conjunction with

integrated software applications that have a consistent look and feel.

EBS consists of several product lines such as [PAlO]:

• Financials

• Procurement

• Customer Relationship Management (CRM)

• Project Management

• Supply Chain Planning and Management

• Discrete Manufacturing

• Process Manufacturing

• Order Management

• Human Resources Management System (HRMS)

• Applications Technology

38

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

Each of the listed product lines consist of several applications, e.g., Oracle

Financials consists of General Ledger, Payables, Receivables, Cash Management, iRe­

ceivables, etc.

The EBS release that we are going to talk about in this work is R12, the latest

release. In R12 there are several different user interfaces, such as forms, an HTML­

based interface and also a mobile interface to use from PDA devices. Each of these

interfaces have their own features. Forms work better for people that work with the

EBS intensively and operate on a lot of data. The HTML-based interface works well

for people who infrequently use the system.

The EBS also has development applications like Oracle Forms and Oracle Re­

ports that enable the creation of new objects (forms, reports, concurrent programs)

or customizing existing ones. An illustration of components of the EBS is provided

in figure 3.l.

R12 is based on a three-tier architecture [PAlO] which consists of the:

• Client tier - this is the user interface layer, i.e., screen representation of the

system.

• Application tier - also called middle tier, it contains business logic that op­

erates on data. It is a bridge between the client tier and the database tier.

• Database tier - this is the layer that stores and retrieves the data.

The following figure 3.2 illustrates the three-tier architecture of the EBS.

Customer's Application

The customer's application in our case is the legacy system because of the

following reasons:

• There is a lack of technical and functional documentation that would help un­

derstand its structure and requirements.

• It is currently being used by the customer on a daily basis and represents a

real-time system.

39

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

Applications

r

Oracle
Flnancials

Oracle Human
Resources

Customer
Supply Chain RelaUonshlp
Management Management

-- . j'----

Project
Management

/

I
'-

ApplicatIons Foundation Layer/Applications Object Library

Oracle Tools and JDeveloper
Components

OA FrameworklBC4jHI PublisherOracle Forms Oracle Reports

Oracle Dafabase server

Figure 3.1: Overview of the E-Business Suite applications [PAlO]

40

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

Figure 3.2: Three-tier architecture of the E-Business Suite [PAlO]

41

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

What is known about the application is that it is written in Java and is built

on top of the E-Business Suite and Oracle database. It has a huge test suite that

consists of many regression tests. Currently, running the whole test suite after a

certain modification is costing the customer a very large amount of money and takes

a lot of time. So definitely there is a critical need for efficient and safe ways of testing

it.

3.1.2 Interrelations between Layers

The high level representation of our system that consists of three layers is

illustrated in figure 1.1. The relation between the Oracle database and the EBS

is provided by Oracle itself and is depicted in figure 3.2 where the client tier and

application tier together represent our EBS layer. On top of the Oracle database and

the EBS layers there is the customer's application layer.

In our three-layer system there is a "top-down" dependency relation which

denotes the following:

• The EBS accesses database objects, e.g., Java methods retrieve data from the

database through embedded SQL statements.

• The customer's application accesses the EBS stored objects, e.g., method in the

customer's application calls a Java method in the EBS.

• The customer's application accesses database objects, e.g., a method in the cus­

tomer's application stores data in the database through embedded SQL state­

ments.

So essentially our "top-down" dependency relation means that the database

objects do not access the EBS stored objects or the customer's application methods or

the EBS stored objects do not access the customer's application methods. However,

there might exist internal relations in each of the layers, e.g., among the EBS methods.

3.1.3 Patching Process

Periodically throughout the life cycle of the EBS, Oracle releases patches to

maintain the system. There are several reasons for this [FarOg]:

42

M.A.Sc. Thesis - Akbar Abdrakhmanov

• Fixing an existing error

• Introducing a new functionality or a feature

• Upgrading to a higher maintenance level

• Applying latest enhancements

• Determining the source of an error

• Applying online help

McMaster - Software Engineering

Patches can change both the EBS and the database objects. They differ not

only in size but in their format, which can be as follows [FarOg]:

• Individual bug fix - a patch that fixes an existing error

• Product family release update pack - a pack of patches for all products of

a specific product family.

• Release update pack - a pack of patches for the whole EBS.

• Pre-upgrade patch - all upgrade-related high-priority patches for all products

of a specific product family.

• Consolidated upgrade patch - all upgrade-related patches for all products

of a product family. These patches are only available for release R12 to upgrade

from one point release 1 to another.

There are several tools provided by Oracle for applying the patches. There

are ones that can be launched from command line, also there are tools that are Web­

based. Each patch comes with a "readme" file that contains information like what

the patch is for and how it should be applied. Some patches require manual steps

and some can be automatically run using patch application tools.

1Here point release means an upgrade of one specific release of the EBB, e.g., R12.1, R12.2, etc.

43

M.A.Sc. Thesis - Akbar Abdrakhmanov

3.2 Problem Description

McMaster - Software Engineering

As was mentioned before, the customer's application is dependent on both

the EBS and database. Currently after each Oracle patch, the customer runs the

whole regression test suite in order to verify that the functionality of the customer's

application did not change. As the test suite is very large, it is very expensive both in

terms of time and money to perform such regression testing. Considering that patches

are being released quite regularly (particularly at the company we were working with,

patches were applied each quarter) it becomes incredibly expensive to keep testing the

application that way. In this case, regressing testing definitely needs an optimization

which if proved to be efficient would save the customer a lot of time and would

significantly lower their budget for testing.

3.3 Challenges

This section is about the challenges that are associated with the problem.

First we are going to discuss the availability of the system that we were dealing with,

then some aspects of the Java language that needed to be taken into account. We are

also going to discuss the test suite aspects and some considerations about preciseness

and inclusiveness of RTS techniques.

3.3.1 Availability of the SUT

Our SUT is a three-layer system with the customer's application on top. It

is necessary to note that as for the EBS and Oracle database layers it was more or

less clear how they work and what kind of relations between them might exist. There

were enough materials both from Oracle Corporation and other sources about the

architecture and functional aspects of those objects. But we did not have any kind of

information about what the customer's application looked like. All we knew was that

it was built on top of the EBS and the database and serves as a "wrapping" program.

The reason for the customer having this kind of application could have been the need

for additional functionality or a specific look and feel or both. So needless to say that

there was no clear picture of the whole system.

44

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

So we did not have any choice other than make assumptions regarding what

the customer's application might look like. The assumption was that it is fully written

in Java and has only binaries without any source files. That partially reflected the

EBS as it also mainly consists of Java binaries.

3.3.2 Existing Test Suite Representation

As we did not know what the customer's application looked like, an additional

challenge was to identify what kind of test suite the customer had. All we knew was

that they have a regression test suite which they currently run via the "retest-all"

method each time modifications are introduced to the system. This is a really im­

pOl'tant aspect of our work, because it actually defines which method of optimization

to use to reduce the cost of regression testing for the customer. Considering the

application is written in Java, the test suite might be as follows:

• Test suite that consists of test cases that test requirements of the application.

• Test suite that consists of test cases that test the relations between different

classes.

• Test suite that consists of test cases that test the classes.

• Test suite that consists of test cases that test methods of classes.

It was decided to work with unit tests (those that test methods) in our re­

search. After identifying which entities in the EBS and the database changed we need

to be able to track back to the customer's application methods using dependency in­

formation and then select necessary unit test cases.

3.3.3 Specifics of OOP Languages, Particularly Java

In our work we built an access dependency graph (ADG) , which is a method­

level control flow graph (CFG), but with the addition of fields of the classes that

we have in the EBS. The techniques for building the CFG, like ones that are used

for procedural languages like C and Pascal, cannot be used for Java or any other

object-oriented programming languages because procedural and OOP languages use

45

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

different concepts. 00 programs consist of classes that encapsulate not only methods

but also fields and there are aspects like inheritance and polymorphism that need to

be considered when building a CFG. Let us elaborate on some details of this statement

by providing an example.

In the following figure 3.3 two versions of the program are shown. pi here is

the modified version of P.

Program P
1: public class SuperA {
2: int i =0;
3: public void dummy() {
4: System.out.p~inttn(i);

5: }
6: }

Program pi

1: public class SuperA {
2{ int ~ =.; .
3: public void dummy() {
4: System. out. println (i I;
5: }
6:).

8.:).

7" public eta!>!> A extends SuperA {

}

public clan A extends SuperA {
. public void dummy () {

i++"
System. out. printlnCi);

7:
Ba:
Bb:
Be:
Bd:
Be:).

}

pubHe dan SubAextends A {
public void dummy () {

i '" i - 2; .
System.out.printtn{i);

.9:
10:
n:
12:
1~3:

14: }

public class suM extends A {
public voin dummy() {

i; i + 2;
System .out. p rintln (I) ;

}

9:
Ill:
1.1:
12:
13:
14: }

}

publi.c cla!>s B {
public void bare) {

Aal '" LibC1.ass. getAnyA () ;
a1. dummy{) ;

15:
16:
17:
18:
19:
20: }

}

public class B {
pubtic void barO {

Aal ;; UbClass.getAnyA();
a1.dummyO;

15:
16:
17:
IB:
19:
20: }

Figure 3.3: Example of two versions of the program

There are two changes in pi, namely the statement on line 11 and a deleted

method in class A on lines 8a-8e. Suppose now that we only have a change on line

11. We are safe with this change (known as statement-level modification [OSH04])

because every test case that traverses method dummy() in class SubA will reveal a

fault if there is any. But the second change is a more interesting case (also known

as a declaration-level modification [OSH04]). The statement on line 17 represents

an initialization of a variable "a1" to the result of static method getAnyAO of class

LibClass where LibClass is a library class which has a static method getAnyA() that

46

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

randomly returns an instance of either SuperA, A or SubA. So if we choose only

the test cases that examine method dummyO of class A we might omit the situa­

tions when method getAnyAO returns an instance of class SubA or SuperA since

these classes also have method dummyO. SubA overrides this method and SuperA

is the superclass that defines method dummyO. Therefore test cases that instantiate

variable "al" to instances of SubA and SuperA would not be selected and thus the

technique would be unsafe. This is a dynamic binding problem and the solution would

be to select all test cases that examine method dummyO of SubA, A and SuperA.

Assume now if the initialization of variable "a1" was: "A a1 = new AO".

In this case the type of the variable is always A. But in pI class A does not define

method dummyO explicitly any more, it only inherits it from SuperA. Thus selecting

only the test cases that examine method dummyO in A would miss possible errors,

because method dummyO of SuperA would be called. This is an inheritance issue

and it can be solved by selecting test cases that examine method dummyO of both

A and SuperA.

In order to overcome these polymorphism and inheritance issues of OOP lan­

guages when building an ADG, we need to analyze the whole hierarchy of each class

or interface. So in the example above all test cases that examine classes SuperA, A

and SubA should be selected. Also we need to select test cases that examine method

barO of class B because it has an explicit call to the modified method. In this way we

ensure safety of the selection technique that we are about to propose. This method

is also known as static analysis of the code under examination, Le., we are analyzing

the worst case scenario of the code execution and therefore do not miss any necessary

test cases.

3.3.4 Trade-Off between Inclusiveness, Preciseness and Effi­

ciency of RTS Techniques

As was shown in Chapter 2 none of the existing RTS techniques are safe and

100% precise. In order to be like these, the technique needs to select only modification­

revealing test cases. Although this might be a possible aim, there is an issue of

efficiency of the technique. For instance, for safe techniques, increasing their precision

requires more time for analysis which decreases efficiency. For the techniques that are

47

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

not safe, increasing either precision or inclusiveness also decreases efficiency of those

techniques. It might be the case that by means of increasing a certain technique's

precision or inclusiveness the time that is spent on analysis gets bigger than the time

spent to perform the "retest-all" method of regression testing. And that is not worth

it [RH96].

In our work we came up with a safe technique of selecting test cases (shown in

the next chapter) that selects all modification-traversing test cases. It might seem to

be inefficient for large systems, but for our three-layer system where regular patches

usually change only a bit of code in the EBS, our technique is actually much more

efficient than the "retest-all" method. Some empirical data will also be provided in

the following chapter.

3.4 Summary

In this chapter we elaborated on the details of our system of concern which is

a three-layer system consisting of the Oracle database, Oracle E-Business Suite and

the customer's application. The legacy code in this case is the customer's application

which is dependent on the other two layers. We also showed how patches are being

applied to EBS that can affect the customer's application functionality. Before tack-

. ling the problem in the next chapter, we went through several different challenges

that one would face in solving the problem. We are going to go through them again

explaining how we handled those challenges in our solution in the next chapter.

So the next chapter is about the details of our solution to a given problem. It

consists of several steps and we are going to present and explain each one of them in

detail.

48

Chapter 4

Proposed Solution Description

In this chapter we present the details of how we solved the problem. As was

indicated in Chapter 1 our solution is partitioned into 5 consecutive steps. First we

build an access dependency graph (ADG). Then we analyze a patch to identify what

parts of the system will be changed. From that we obtain information about which

entities (methods and fields) were modified in the changed files. By knowing this we

can trace back to the customer's application methods via our impact analysis. And

for our last step we select only the test cases that examine those methods and also

output names of the methods that do not have tests. All these steps are described

below.

4.1 Building Access Dependency Graph

To determine if patches affect functionality of the customer's application we

need to know the dependencies between the layers in our three-layer system. Because

in this work we are not considering the database layer, we are only concerned about

relations between the EBS and the customer's application. We also mentioned that

we are specifically concerned about class files, Le., Java binaries. So we obviously

need a tool that would parse all those binaries to retrieve their dependency informa­

tion.

In [Iqbll] Iqbal proposes to build an access dependency graph (ADG) which

is basically a control flow graph, but with the addition of the fields of the classes.

49

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

The reason for including the fields is because in classes methods can access fields of

the classes and changes can occur in fields as well. This procedure for building ADG

is explained in detail in [Iqbll] and here we provide only a brief explanation of its

steps.

The idea is to build ADG for all classes of the EBS and the customer's appli­

cation and save it in a database for later use. It is the most expensive procedure in

our overall analysis, but it need be done only once for the first application of regres­

sion testing. Following testing processes would require only a modified ADG with

corrections after the last analysis. So the process begins by (1) finding class files and

converting them to an appropriate XML format; (2) parsing XML files to identify all

existing entities (methods and fields) and the relations between them. The following

are some details about each of these steps.

4.1.1 Converting Binaries into XML

In [Iqbll] Iqbal uses a tool called ClassReader of the Dependency Finder

toolset [TeslO] that takes any class file (Java binary) as an input and outputs an

XML file that consists of information about all attributes of that class. That infor­

mation is essentially the same as for the Java bytecode. ClassReader is called from

our program for each class file in the system, even for those that are contained in

jar and zip files specified in "classpath" environmental variables. All XML files are

saved into a user specified directory under the same path hierarchy that corresponds

to ones that the class files have in the system.

4.1.2 Building ADG

Building the ADG is accomplished using a tool written by Iqbal [Iqbll] which

is called the Dependency Analyzer. This tool builds the graph by parsing all the

XML files that were created in the previous step. First, it creates nodes by filling in

an ENTITY database table, which consists of all methods and fields of all classes.

Secondly, it creates edges by filling in a DEPENDENCY-RELATION database table

which consists of all dependency relations between the nodes. These dependency

relations are ones that satisfy the following conditions [Iqbll]:

50

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

• For classes A and B (B can also be an interface), if method a() of class A

calls method b() of class Busing invokeinterface, invokestatic, invokespecial or

invokevirtual l, then the following edge is added to ADG:

A.aO -t B.bO

• For classes A and B (B can also be an interface), if method a() of class A

calls method b() of class Busing invokeinterface or invokevirlual and B has

transitive subclasses or implementations (in the case when B is an interface)

B l , B 2 , ... , Bn that override or implement b(), then the following edges are added

to ADG:

B.bO -t Bl.bO

B.bO -t B 2 .bO

B.bO -t Bn.bO

If method b() is inherited by class B and there is no overriding of b() in B then

the following edge is also added to ADG:

B.bO -t S.bO

where S is a direct superclass of B.

• For classes A and B, if method a() of class A accesses field b of class B then

the following edge is added to ADG:

A.aO -t B.b

If b is a static field then the following edge is also added to ADG:

A.aO -t B. < clinit > 0
where < clinit > 0 is a bytecode method that contains static initializers of the

given class.

By considering all above mentioned cases of relations and via obtaining the

nodes for every single entity in every class file (even those that are stored in jar and

zip files) we statically build a graph using conservative analysis. This graph will be

used later for impact analysis and safe regression test selection. To show what ADG

looks like using an example, let us take already used code snippets from figure 3.3

IJava Virtual Machine specifies that a method can be invoked in these four different ways; which
way is certain method invoked would be specified in our XML files

51

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

and build ADGs for both versions of the program.

For P, the ADG is shown in figure 4.1. And for pI, the ADG is shown in

figure 4.2.

SygerA.aummyO SubA. ummyO

Figure 4.1: ADG for program P from figure 3.3

,B.lla(()

1
SunerA..dummu (••)...

~.

SYb~A.d~mmyO

Figure 4.2: ADG for program P' from figure 3.3

The ENTITY table assigns each method and field a unique number which is

then used in the DEPENDENCY_RELATION table. So instead of using names with

paths of methods and fields, we use identification numbers for them to describe their

interrelations (edges). By doing so, we simplify and also speed up our impact analysis

process that is going to be described in further steps.

52

M.A.Sc. Thesis - Akbar Abdrakhmanov

4.2 Patch Analysis

McMaster - Software Engineering

Oracle patches can introduce new files or change existing files or both. This

can be observed using such interactive tools as Patch Wizard that comes with the

EBS and allows us to see the details of what kind of changes the patches introduce.

Because the goal of this research is to select test cases from an existing test suite, it

is out of the scope of this work to analyze newly introduced files of patches. We are

only concerned about changed files of the EBS after patching. As far as we know,

Oracle patches do not delete their existing files, so we do not have to consider that

scenario.

There is an Oracle tool called Auto Patch [ThcOO] that can be used from the

command line to apply patches. Its advantage over other tools is that it has two

modes of execution:

1. Normal mode

2. Test mode

When used in normal mode the Auto Patch actually applies the patch. But

in the test mode, a patch does not get applied, rather it is analyzed to retrieve

information on what modifications would have been done to the system if the patch

was applied. Both in normal mode and test mode Auto Patch outputs two log files:

• The one that has the "log" extension contains information about the process

of running the tool. It shows all the steps that were taken during the execution,

such as the user's answers to the Auto Patch's prompts.

• The one that has the "lgi" extension contains information on which files from

the patch were applied and which were not.

The latter log file with the "lgi" extension is the one that we are interested in.

It contains information on which existing files changed, as shown in figure 4.3.

For each changed existing file, the "lgi" log file has two lines: one saying

"Backing up ..." shows that the existing file in the system is being backed up for cases

when we need to roll back; and the other saying "Copying file ..." shows that the new

file from the patch is going to overwrite the existing file. This log file can be parsed

53

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

Backing up Idal/oracle/VIS/apps/apps_st/~~p.!/alr/12.a.a/help/US/ALRaaaala56.htm

Copying file Ihome/oracle/73a3a32/aLr/help/US/~1R~~~@A~~~~nt~

Backing up Idal/oracle/VIS/apps/apps_stlp~p.!/alr/12.a.a/help/US/ALRaaaala57.htm

Copying file Ihome/oracle/73a3a32/~lr/help/US/~1R~~~~~~~z~nt~

Backing up Idal/oracle/VIS/apps/apps_stlp~p.!/alr/12.a.a/help/US/ALRaaaala58.htm

Copying file Ihome/oracle/73a3a32/aLr/help/US/~~R~~~~~~~~~nt~

Backing up Idal/oracle/VIS/apps/apps_st/a9p.!/~Lr/12.a.a/help/US/ALRaaaala59.htm

Copying file Ihome/oracle/73a3a32/alr/help/US/~1R~~~@A~~~~nt~

Backing up Idal/oracle/VIS/apps/apps_st/a9p.!ialr/12.a.a/help/US/ALRaaaala6a.htm

Copying file Ihome/oracle/73a3a32/aLr/help/US/~1R~~~~~~~~~nt~

Figure 4.3: Snapshot of sample "lgi" file contents

to get the list of all files that were changed. The tool called LGIParser [AbdlOb] does

this job. It parses a certain "lgi" file and outputs the names of the files and their

paths in the EBS and the patch to the database table called AA_CHANGED_FILES.

This table will be used to identify changed entities in the following step.

4.3 Identifying Changed Entities

As for the first step where we built our ADG, we used only one version

of the system, which is before applying a patch. Now we need to identify those

methods and fields that changed after applying a patch. For that we parse the

AA_CHANGED_FILES database table that was filled in during the previous step to

get names and locations of the files that the patch changed. There are two different

locations (paths): one is the location in the EBS, the second is the location in the

patch. By knowing this information we can get both versions of all changed files

without applying a patch and using additional resources for keeping old files.

There is a tool that was written by Iqbal [Iqbll] called ClassDiff that takes

54

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

as an input two versions of the class file, analyzes them to identify changed methods

and fields and then outputs those entities to an XML file for that specific class file.

Changes can be of the following type [Iqbll]:

• Changes in a super class that the class inherits from;

• Changes in interfaces that the class implements;

• Changes in an access flag of the class;

• Changes in methods;

• Changes in fields.

By using the tool we obtain XML files for all changed class files in the EBS

that contain information on what entities changed. Knowing that helps us to further

analyze using the ADG what entities are affected by the changes.

4.4 Impact Analysis

The goal of impact analysis is to trace back through the edges of the ADG and

identify all methods that are affected by the changes in the EBS. It is worth noting

that fields of the classes can only be leaves in our ADG, Le., they have no edges from

them to other entities. The reason is that changes to a field can be changes in access

flags, changes of its type or deletion of a field. If changes are in their initialization

then those changes would appear in a <clinit>O method if the field is static and in

a <init>O method if not. Those two methods are obtained from the Java bytecode

and will appear in our ADG as separate methods for a given class [Iqbll]. Therefore,

all affected entities will be methods.

Chen [Chell] built a tool called the InversePathGenerator that takes as an

input XML files that were obtained from the previous step, which contain informa­

tion about changed entities in the EBS, parses them and, using a depth-first search

algorithm, identifies what methods are dependent on those changed entities, up to

the methods in the customer's application. The next figure 4.4 illustrates the process

of identifying affected methods in the ADG.

55

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

r.. i..

o EBS entities

....JL... Customer's app~

N Ilca;ijon,methods

• Changed entities

o Affected methods

o Unaffected entities

----JIo- CaU relation

-+ Cal!ed~by relation

Figure 4.4: Impact analysis in ADG

In the figure 4.4 A, B, C, D, E, F, G, H, I are entities of the ADG and

black arrows between them are dependencies. So if the arrow goes from B to A it

means that entity B calls or accesses entity A. A red circle shows that it is a changed

entity of the EBS which was modified after applying a patch. Yellow circles show

those methods that are transitively dependent on a red circle, which is A in our case.

Red arrows illustrate how the dependencies are revealed, leading to method F which

belongs to the customer's application.

The InversePathGenerator outputs information about all dependent methods

to the DFS-.n database table where n is the number of the patch. The table consists

of rows that include two identification numbers 2: one for the entity that is accessed

or called, the second for the entity that accesses or calls. In the next step this table

is used for identifying methods that belong to the customer's application in order to

perform test selection.

2Identification numbers here represent unique numbers that were assigned to each entity in EN­
TITY database table

56

M.A.Sc. Thesis - Akbar Abdrakhmanov

4.5 Test Selection

McMaster - Software Engineering

Now after we have identified which entities changed and which were affected

by those changes, it is time to determine the affected customer's application methods

and perform regression test selection.

Our tool called TestSelect does two things:

• Identifies affected methods in the customer's application by parsing the DFS-.n

database table that was filled in in the previous step. Identification is performed

through mapping caller methods to those methods that belong to the customer's

application.

• Selects the test cases that examine those affected methods.

Here we need to point out one more time that we knew nothing about what the

customer's application looked like, nor we know how its test suite was represented. In

order to perform test selection for the customer's application, we needed test cases for

it. It was decided to create them as well, as we did when we created the application

itself. Rather than creating every single test case manually it was decided to find a

tool that could generate test cases for us. The idea was that even if the customer

already has test cases that examine, for instance, requirements, it would still be useful

to have a tool that could generate unit tests and, as such, provide additional coverage

which is an examination of the code. There are several tools for Java, most of which

are proprietary, that can generate test cases for Java.

4.5.1 Test Case Generation

Among those tools that were open source, we found three tools, namely JUB

(JUnit test case Builder), TestGen4J and JCrasher. An empirical comparison ofthese

three tools is provided in [W009] where authors introduce mutants into code and then

let each tool generate test cases and at the end compare which tool has revealed the

greatest number of mutants. Manually written test cases that provide edge coverage

and a set of random test cases were also subject to comparison. According to the

empirical results, edge coverage test cases revealed the highest number of mutations

in the code. The worst results were shown by JUB. These results are illustrated in

57

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

the figure 4.5 by means of the total percent of mutants that were revealed by a certain

set of test cases.

100O/C •
Percent mutants killed

80%-+-~-~-~-~--~-~-----t

66%

Figure 4.5: Total percent of mutants killed by each test set [W009]

Because among other open source test generation tools the JCrasher showed

better results according to [W009] and also because of lack of documentation for the

other two tools, it was decided to use JCrasher in this work.

JCrasher is an automatic test case generation tool for Java that examines

the type information of classes. It generates random test cases that pass the type­

correct inputs to the program's public methods so that the program would eventually

"crash", Le., output an unexpected exception. Its main advantages among other tools

are [CS04]:

• it transitively analyzes methods, calculates the size of each method's parameter

space and randomly selects parameters in accordance with time allocated for

testing.

• it heuristically decides whether the program's crash is a bug or it is a violation

of the program's preconditions.

• it returns a program to its initial state after each test case in an efficient way.

• test cases it produces support JUnit.

58

M.A.Sc. Thesis - Akbar Abdrakhmanov

• it can be integrated in the Eclipse IDE.

McMaster - Software Engineering

JCrasher takes as an input the folder where all class files or source files are

located and outputs a set of Java source files with test cases. Each such Java source

file examines one public method of the application. An example of such a file is

presented in Appendix A.

4.5.2 TestSelect

As was mentioned above, we created the TestSelect tool that finds affected

customer's application methods and performs test case selection. Additionally, it

indicates which methods of the customer's application are missing tests, Le., in the

existing regression test suite there is no test case that examines it. The latter point

is especially interesting because it gives a hint to the customer about which methods

were affected and might possibly introduce a fault after a patch has been applied.

So there will be a target on which further test suite augmentation process should be

focusing.

See pseudocode 1 for the TestSelect tool that shows the basic steps of how the

test selection is performed.

4.6 Inclusiveness, Preciseness, Efficiency and Gen­

erality of the Proposed RTS Technique

Now it is time to perform an analysis of our technique in regards to its proper­

ties, which are inclusiveness, precision, efficiency and generality, described in Chapter

2.

As was mentioned in Chapter 2, the RTS technique's inclusiveness shows to

which extent the technique selects modification-revealing test cases. There is a the­

orem and corresponding proof in [Rot96] that there is no algorithm that for given

P, pi and T solves the modification-revealing test identification problem. Therefore

we reduce the problem to identifying modification-traversing test cases such that any

technique that selects all such test cases is 100% inclusive or safe.

Since when patches are applied, they only change the code in the EBS and the

59

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

Input: patch number n
Set of test cases in existing test suite T
The location of test cases path

Output: Set of selected test cases B
Set of methods that miss tests M

1 begin
2 get methods from table DFS_n that belong to customer's application
3 foreach m E methods do
4 foreach file f in path do
5 if f tests m then
6 mark m that it has tests
7 tesLcases = tesLcases U f
8 end
9 end

10 end
11 foreach m that is not marked to have tests do
12 M=MUm
13 end
14 foreach t E tesLcases do
15 B = But
16 end
17 return B, M
18 end

Algorithm 1: Pseudocode for TestSelect tool

60

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

database layer, the specification for the customer's application does not change, and

therefore all the existing test cases still specify valid inputs and valid input-output

relations. This means that test cases are not obsolete. Thereby there is no need to

check if the test cases are obsolete. Also there are no obsolete fault-revealing test

cases such as those that are shown in figure 2.2.

The modification can be either an addition of new code, modifying existing

code or deletion of code from P in P'. Our technique can deal with all of these types

of changes. Our ClassDiff tool compares two versions of all changed class files and

identifies modifications at an entity-level granularity. So coming back to our figure

1.4, we identify all red circles first. After that our impact analysis, implemented in

the InversePathGenerator tool, finds all methods that are affected by those changed

entities, which corresponds to yellow objects in the figure 1.4. Now the TestSelect

tool determines which affected methods belong to the customer's application, which

corresponds to identifying yellow stars. Finally, the TestSelect tool selects all test

cases that examine affected customer's application methods. Considering that exist­

ing regression test cases are written for examining only the customer's application

methods and the analysis that we perform is static, as it considers all possible ac­

cess dependencies among entities in both the customer's application and the EBS

layers, we can conclude that our proposed technique is therefore safe as it selects all

modification-traversing test cases.

In relation to our technique's precision, it is obvious that it is not 100% precise

as it selects all modification-traversing test cases, which may not be modification­

revealing. Just to remind the reader, a technique is 100% precise if it omits all

non-modification-revealing test cases. Our technique admits some non-modification­

traversing test cases as well because, even though we choose all test cases that examine

a given affected method in the customer's application, those test cases may not reach

the modified code and so would not reveal a fault. Our technique's inclusiveness and

precision diagram is exactly like the one for the cluster identification technique that

was shown in Chapter 2. It is also illustrated here in figure 4.6. Since it is safe, all cir­

cles are shaded, meaning that all modification-traversing test cases get selected. The

shaded areas outside the circles illustrate admitting some non-modification-traversing

61

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

test cases that can happen when existing test cases do not actually examine the mod­

ified part of the code.

T - obsolete

Figure 4.6: Inclusiveness and precision diagram for proposed RTS technique

Even though our technique is not 100% precise it is still efficient for a given

SUT 3. It is because the EBS layer consists of a huge amount of classes. The one

that we used in our project consists of 230,000 classes and almost 4 million methods.

Patches that are released by Oracle normally change only a tiny bit of the system.

And so the number of affected customer's application methods can be really small.

The time spent on analysis in our technique is also small compared to the time spent

by the customer to perform the "retest-all" technique after each patch. Building the

ADG took us approximately 7 hours on a Quad Core 3.2 GHz machine with 32 GB

RAM running 64-bit Linux and the impact analysis in the worst case took about

30 minutes, while typically taking only 3 seconds. The time spent on test selection

is proportional to the number of affected customer's application methods times the

number of test cases. With the application that has one affected function and 21 test

cases it took 2 seconds to perform test selection by launching the TestSelect tool on

a local machine 4. The technique is quite efficient, especially considering that the

ADG can be built just for the first instance of regression testing, as the following

3System Under Test
4Also takes into consideration the time to connect to the server.

62

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

testing processes would use a modified ADG that is already built with consideration

of changes from the last patch.

Our technique can be applied in cases when nothing except the code of the

SUT changes, which means that it does not consider cases when there is a change in

platform or migrating to another operating system and so on. So, basically, the as­

sumption that should hold for modification-traversing test cases, which was mentioned

in Chapter 2, should also hold in our case. Our technique was applied specifically

to Java classes, but can be used for programs written on any OOP language. Even

though the architecture we used was a three-layer system, it does not need to be

as such, and that makes the approach applicable to many kinds of applications and

increases its generality.

4.7 Summary

In this chapter we showed how we solved the problem by providing details

about each step that was mentioned in Chapter 1. We explained how we build the

access dependency graph (ADG) for all entities in the EBS and the customer's ap­

plication using our own DependencyAnalyzer tool which builds the graph via conser­

vative analysis. It then serves as a knowledge base of dependencies in further steps.

The ADG does not need to be rebuilt for each regression testing process. There is a

possibility to change some parts of it after finishing analysis in correspondence with

changes that a patch introduced. Each patch can be analyzed for which files it changes

using an existing Oracle tool and our own tool called LGIParser. Using our ClassDiff

tool, we are able to identify which entities are changed by comparing two versions of

every class file. We then perform our impact analysis using our InversePathGenerator

tool that detects all methods that are affected by changed entities. Its output is an

input for our TestSelect tool that identifies affected customer's application methods

and selects corresponding test cases that examine them and also outputs information

about which affected customer's application methods do not have tests. At the high

level the whole solution is illustrated in figure 4.7.

In this chapter we also provided an analysis of our technique's properties like

inclusiveness, preciseness, efficiency and generality to show that (1) it is cost-effective

63

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

LGlfile
Test cases

Class file
ClassReader

Dependency
Analyzer

XML1 - bytecode representation of class files
stored in XML files

XML2 - information about changed entities
stored in user-defined XML files

ADG - access dependency graph
S - list of test cases that need to be rerun
M - list of affected customer's application

methods that are missing tests

Figure 4.7: Solution diagram

for the system that we worked on in our project and that (2) it can be applied to

other projects and can be a good alternative to existing RTS techniques.

The next chapter is about some aspects that need to be considered to make our

proposed RTS technique even better and further steps in dealing with the problem.

64

Chapter 5

Future Work

In this chapter we are discuss some aspects of our research that were left out

because of the overall burden and lack of time but still need to be done. One of

them is adding the database layer to our analysis. Even though we considered only

Java classes from class files, there are also several other file extensions that come with

Oracle patches and which might introduce changes to either the EBS or the database

and thus potentially introduce a fault to our system. Also performing only regression

test selection can not reveal all the faults that were introduced with modification.

It might happen that we do not have tests for some affected customer's application

methods. Test suite augmentation deals with that kind of a problem and we are also

going to discuss that in this chapter.

5.1 Adding the Database Layer

As was shown in figure 1.1 of Chapter 1 our system consists of three layers,

namely the Oracle database, Oracle E-Business Suite (EBS) and the customer's ap­

plication. However in this work we only considered interaction between two of them:

the EBS and the customer's application.

Oracle patches can also introduce modifications to the Oracle database layer.

Changes can be as follows:

• Changes in data

65

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

• Changes in table structure like an addition of a new column or a modification

of the type of a column and so on

• Changes in triggers

• Changes in PL/SQL functions or procedures

If modifications are introduced to the database there may exist dependencies

between different entities in the database, the EBS and the customer's application

that can get affected from those modifications and therefore may affect the customer's

application methods and introduce faults to our system. Some of the dependencies

that may exist between our three layers (excluding dependencies between the EBS

and the customer's application):

• Dependencies between two tables through foreign keys

• Dependencies between PL/SQL functions/procedures

• Dependencies between tables and triggers

• Dependencies between triggers and PL/SQL functions/procedures

• Dependencies between the customer's application methods and PL/SQL func­

tions/ procedures

• Dependencies between the customer's application methods and the database

tables

• Dependencies between the EBS entities and PL/SQL functions/procedures

• Dependencies between the EBS entities and the database tables

All above mentioned kinds of dependencies need to be included in our access

dependency graph (ADG) so that when changes are introduced in either the EBS or

the database layer we can safely trace back to all affected objects up to the customer's

application methods taking into an account all possible dependencies between all three

layers of the system.

66

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

5.2 Analyzing Other Kinds of Files that Come with

Oracle Patches

In this work we only considered class files and performed our analysis only

on Java classes. Even though Oracle E-Business Suite is mainly written in Java, the

patches come with variety of kinds of files that need to be analyzed for they might also

introduce certain modifications to the system and therefore it is potentially dangerous

not to consider them.

We surveyed which kinds of files may be patched, and checked over 40 different

patches of different size and format [AbdlOa]. We found 32 different kinds of files

that we think could potentially change the EBS or the database functionality. We

intentionally excluded from the list documentation files such as those with extension

"doc", "htm", "rtf', because it is quite obvious that they can not change functionality

of the system and introduce a different behaviour. Among those 32 file extensions

we distinguished ones that can potentially change the EBS or the database or both.

Through thorough analysis of real samples of the files and searching information about

them on the Internet led us to the results that 6 file extensions potentially change the

database layer ("etl", "let", "odf', "pIs", "sql", "xdf'), 6 file extensions potentially

change the EBS layer ("drv", "fmb", "jsp", "rdf', "wft", "wfx") and 4 file extensions

potentially change both ("pkb", "pI", "pll", "xml"). The details can be obtained

from [AbdlOa].

Some work has been done towards analyzing some file extensions, namely we

took "ctl" file extension under consideration which was shown to potentially change

the database layer. CTL files are control files for Oracle's SQL Loader tool that consist

of information about a structure of a certain table in the database and might also

include data that needs to be loaded into the database. Our tool called CTLParser

gets the list of all CTL files from the database table that changed after the patch

(database table is filled in by our LGIParser tool that was used in the second step of

our solution) and parses them to obtain names of the tables. From there, it is possible

to add those table names to ENTITY table and also search for dependent entities to

put information about dependencies in DEPENDENCY-RELATION table to extend

our ADG.

67

M.A.Sc. Thesis - Akbar Abdrakhmanov

5.3 Test Suite Augmentation

McMaster - Software Engineering

After certain changes to the system have been introduced, performing regres­

sion test selection and running selected existing test cases do not guarantee that there

would be no fault in the system. It might happen that the changes introduced a part

of the code that was never examined before and therefore does not have any tests.

Such modifications can give a birth to unexpected faults and cause a lot of problems,

because it would be very hard to identify where exactly those faults came from af­

terwards. It is much more effective to be able to create new test cases that would

complement the existing ones. So after each modification running the selected test

cases and new ones would provide an assurance that every piece of code that could

potentially introduce a fault was examined.

In our particular case, where patches change the EBS or the database layer

entities, it might happen that from tracing back up to the customer's application

methods we might reveal that these methods were never examined before and there­

fore do not have any tests. Another possible case is when test cases that examine

affected customer's application methods do not reach changed parts of the EBS and

the database. This is an interesting scenario, because it would mean that the exist­

ing test cases are not adequate any more for that particular case or that particular

patch. And, because we are essentially performing static analysis on what kind of

dependencies we have in our system, it is possible to eventually get to those changed

parts from the customer's application methods and end up with faults. Whether that

kind of scenario would be realistic is another question. It might be the case that the

customer does not even use that particular functionality of the EBS or the database

where the changes had been introduced and so there is no need to examine it. But

knowing what has changed and where the effects are is definitely useful as it can

leave the customer a choice what to do next. That is why in our work we included

the part where, after applying our tools, the customer would know which customer's

application methods are affected and also which miss tests.

In order to know whether a certain test case reaches some part of the code

in a system the code needs to be instrumented. Instrumentation is a process that

allows to record the steps overtaken by a certain program (in our case it is a test case)

during its execution. There are lots of ways and tools to instrument the code. One of

68

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

such tools is called InsECT [C004] that works with Java programs and instruments

the code on Java bytecode level using Byte-Code Engineering Library (BCEL). It can

instrument the code either statically or dynamically. Instrumentation is very impor­

tant for test suite augmentation, because it gives us details about execution of each

test case. And so, if we create a new test case, we will know if it reaches a certain

point in the code after we execute it.

Harrold et al. [TSC+06; SCT+08] propose their own approach and tools for

test suite augmentation problem which works with Java. Their first tool called Ma­

trix for given two versions of the program and requested distance of dependence from

changes outputs set of testing requirements that can be used for creating new test

cases. This tool uses data and control dependence information, generates testing re­

quirements only when the execution follows different paths in P and P' and works

only on a single change. The upgraded version of the tool called MatrixReloaded is

able to handle multiple changes at once and performs state analysis of statements

that are data or control dependent on changed parts based on symbolic execution.

The tool also checks if existing test cases satisfy generated testing requirements by

instrumenting the code and running all test cases of the test suite and leaves only

those requirements that were not satisfied by any test case. Both tools use InsECT

to instrument the code and obtain coverage of the requirements produced by instru­

mented program. Applying similar approaches to our work would be beneficial as it

would not only check if existing test cases are adequate for a given modification, but

also give us an idea of how to write new test cases if there is a need.

5.4 Summary

In this chapter we discussed different aspects that were either left out during

implementation of our solution because of lack of time and lack of information about

the system, or would be beneficial for our project to make the solution of the problem

better. The database layer is a part of the whole system and Oracle patches possibly

introduce modifications to it. So adding it to our analysis is thus very important, as

there are dependencies between all three layers. Patches come with several different

file extensions aimed to different functionality of the EBS and the database. Omitting

69

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

some of them can be dangerous as it might potentially change the system's behaviour.

Our analysis of different file extensions showed those that can introduce a change

to the EBS or the database or both. Performing effective regression test selection

certainly saves the customer a time when performing regression testing. But existing

test cases may not be adequate for a given modification and thus many faults can go

undetected. The test suite augmentation concept deals with that kind of a problem.

We mentioned few recent papers on how it is performed and what is the rationale

behind it.

70

Chapter 6

Conclusion

In this work we presented a regression test selection technique that is applied to

three-layer system consisting of the Oracle database, Oracle E-Business Suite (EBS)

and the customer's application. The customer's application is a wrapper program

that is dependent on the database and the EBS. It represents a legacy system be­

cause it was written long time ago and lacks an appropriate technical and functional

documentation. Patches that Oracle introduces to its database and ERP system can

change the customer's application behaviour and introduce faults. But running the

huge test suite during regression testing process is currently costing the customer a

lot - both in terms of time and money. The customer's application is a real-time

system that is being operated on a daily basis and so holding it for a long time to

perform testing is a big pain. Obviously there is a need in optimizing the regression

testing and this work presents a partial solution to the problem.

The three-layer system that we were dealing with represents a huge amount

of code. To reach a feasible stage in our solution we had to limit ourselves to only

two layers, namely the EBS and the customer's application. Also we assumed that

the customer's application is written in Java and so we analyzed only Java classes in

the EBS and the customer's application.

The solution that we propose consists of five consecutive steps:

• Converting all class files of the system to their bytecode representation in XML

files and from parsing those files building an access dependency graph (ADG)

that consists of information about what kind of entities (methods and fields of

71

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

the classes) we have and what are dependencies between them.

• Analyzing Oracle patches without applying them to identify which existing files

change.

• By knowing which files change, we parse bytecode representation in XML files

of both versions of each file to identify which entities have changed.

• Changed entities are the input to our impact analysis part that identifies which

methods are affected by those changes in the system using depth-first search

algorithm on information from the ADG.

• From affected methods we identify those that belong to the customer's appli­

cation and run the test selection program for them that will identify which

test cases need to be executed and which affected methods of the customer's

application did not have tests.

In our analysis we built an access dependency graph (ADG) which is basically

a method-level control flow graph but with addition of fields of the classes. Building

the ADG represents a static analysis for Java as it counts for every possible scenario

that can happen during execution. Because of that the test selection algorithm that

we propose is safe, i.e., it selects all test cases from the existing test suite that can

reveal a fault in the system after modification. We also showed that our technique is

very efficient. It only takes a while to generate the ADG, but that can be done just

once, before the first regression testing process. After each regression testing ADG

can be updated with regards to changes that a patch introduced and so updated ADG

can be used for further regression testing processes. Oracle patches usually do not

introduce a lot of changes to the EBS and the database and so the amount of affected

customer's application methods would be relatively small. Thus selecting those test

cases that examine only the affected customer's application methods would dramati­

cally reduce the time spent on regression testing, especially comparing to «retest-all"

approach that is currently being used by the customer. The time spent on analysis

and selection is also minor and thus lets us deduce that our technique is efficient.

Empirical results were provided in Chapter 4.

In Chapter 2 we showed several existing regression test selection techniques.

72

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

Our technique is unique in that it specifically deals with three-layer system and can

be very efficient. There is no restriction on using our technique only on that kind of

architecture.

In Chapter 5 we discussed some aspects that need to be taken into considera­

tion to make our technique better and more suitable for the whole problem. Namely,

we talked about a need to add the third layer of our three-layer system which is the

database layer. We also showed that Oracle patches can include not only class files

but several different file types that potentially change either the EBS or the database

functionality or both. Performing regression test selection and thus reducing the cost

of regression testing is very useful, but it might not be enough because existing test

cases may not reveal a fault introduced by a change from the patch, or it might be the

case that the existing test suite does not have a test for a given affected customer's

application method. These kinds of issues are handled by a test suite augmentation

problem that was also discussed in Chapter 5.

Let us conclude this work with quotation from Barbara Hall: "The path to

our destination is not always a straight one. We go down the wrong road, we get

lost, we turn back. Maybe it does not matter which road we embark on. Maybe what

matters is that we embark."

73

Appendix A

Sample of JUnit File Generated by

JCrasher

/**
* Test cases for compareTo

*/
public class MyCodeTest3

FilteringTestCase {

1 package codeundertest;

2

3

4

5

6 extends edu. gatech . cc . j uni t .

7

8 /**
9 * Executed before each testXXX{).

10 */
11 protected void setUp () {

12 /* Re-initialize static fields of loaded classes. */
13 edu. gatech. cc. junit . reinit . ClassRegistry. reset Classes () ;

14 / /TODO: my setup code goes here.

15 }

16

17 /**
18 * Executed after each testXXX () .

19 */

74

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

}

}

}

catch (Throwable throwable) {throwIf (throwable) ;}

}

catch (Throwable throwable) {throwIf (throwable) ;}

(wps . g an t t . common.

}

protected void tearDown () throws Exception {

super. tearDown () ;

//TODO: my tear down code goes here.

/**
* JCrasher-generated test case.

*/
public void testO () throws Throwable {

try{

wps. gantt. common. data. JobPrimaryKey j 1

data. JobPrimaryKey) null;

MyCode m2 = new MyCode () ;

m2. compareTo (j 1) ;

/**
* JCrasher-generated test case.

*/
public void test1 () throws Throwable {

try{

wps. gantt. common. data. JobPrimaryKey j 1 = new wps. gantt.

common. data. JobPrimaryKey(-1);

MyCode m2 = new MyCode () ;

m2. compareTo (j 1) ;

/**
* JCrasher-generated test case.

*/

31

32

33

34

35

36

37

38

39

40

41

42

20

21

22

23

24

25

26

27

28

29

30

43

44
45

46

47

48

49

50

51

75

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

52 public void test2 () throws Throwable {

53 try{

54 wps. gantt. common. data. JobPrimaryKey j 1 = new wps. gantt.

common. data. JobPrimaryKey (0) ;

55 MyCode m2 = new MyCode () ;

56 m2 . compareTo (j 1) ;

57 }

58 catch (Throwable throwable) {throwIf (throwable) ;}

59 }

60

61 /**
62 * JCrasher-generated test case.

63 */
64 public void test3 () throws Throwable {

65 try{

66 wps. gantt. common. data. JobPrimaryKey j 1 = new wps. gantt.

common. data. JobPrimaryKey ((wps. gantt. common. data.

JobPrimaryKey) null) ;

67 MyCode m2 = new MyCode () ;

68 m2. compareTo (j 1) ;

69 }

70 catch (Throwable throwable) {throwIf (throwable) ;}

71 }

72

73

74 protected String getNameOfTestedMeth () {

75 return" codeundertest . MyCode. compareTo" ;

76 }

77

78 /**
79 * Constructor

80 */
81 public MyCodeTest3 (String pName) {

82 super (pName) ;

76

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

83 }

84

85 /**
86 * Easy access for aggregating test suite.

87 */
88 public static junit. framework. Test suite () {

89 return new junit . framework. TestSuite(MyCodeTest3. class);

90 }

91

92 /**
93 * Main

94 */
95 public static void main (String [] args) {

96 junit . textui. TestRunner; run (MyCodeTest3 . class) ;

97 }

98 }

77

Bibliography

[AACM09] Ian Abramson, Michael Abbey, Michael J. Corey, and Michelle Malcher.

Oracle Database 11g: A Beginner's Guide. The McGraw-Hill Companies,

Inc., 2009.

[AbdlOa] Akbar Abdrakhmanov. Analyzing file extensions from the patches. Tech­

nical report, McMaster University, 2010.

[Abdl0b] Akbar Abdrakhmanov. Parsing adpatch LGI log files. Technical report,

McMaster University, 2010.

[AICI0] Akbar Abdrakhmanov, Asif Iqbal, and Wen Chen. Reducing the risk of

patching. Technical report, McMaster University, 2010.

[All09] Tyler Allman. How should government IT professionals manage legacy

code. Enterprise Innovation (http://www.enterpriseinnovation.net).

2009.

[A008] Paul Ammann and Jeff Offutt. Introduction on Software Testing. Cam­

bridge University Press, 2008.

[Bei90] Boris Beizer. Software Testing Techniques. International Thomson Com­

puter Press, 2 edition, 1990.

[Chell] Wen Chen. Private communication. 2011.

[C004] Anil Chawla and Alessandro Orso. A generic instrumentation framework

for collecting dynamic information. ACM SIGSOFT Software Engineering

Notes, 29(5):1-4, September 2004.

78

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

[CS04] Christoph Csallner and Yannis Smaragdakis. Jcrasher: an automatic

robustness tester for java. Software - Practise fj Experience, 34(11):1025­

1050,2004.

[Far09] Robert Farrington. Oracle E-Business Suite Patching Procedures, Release

12.1. Technical report, Oracle Corporation, 2009.

[Fea04] Michael C. Feathers. Working Effectively with Legacy Code. Prentice Hall

PTR, September 2004.

[Iqb11] Asif Iqbal. Identifying modifications and generating dependency graphs

for impact analysis in a legacy environment. Master's thesis, McMaster

University, 2011.

[LH08] Wanchun Li and Mary Jean Harrold. Using random test selection to gain

confidence in modified software. In Software Maintenance, 2008. ICSM

2008., pages 267-276, 2008.

[Mye04] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons,

Inc., 2 edition, 2004.

[0M07] Andres S. Orrego and Gregory E. Mundy. A study of software reuse in

NASA legacy systems. Innovations in Systems and Software Engineering,

3(3):167-180, July 2007.

[OSH04] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling regression

testing to large software systems. In ACM SIGSOFT Symposium on the

Foundations of Software Engneering, pages 241-252, Newport. Beach, CA,

November 2004.

[PAlO] Anil Passi and Vladimir Ajvaz. Oracle E-Business Suite Development

and Extensibility Handbook. The McGraw-Hill Companies, Inc., 2010.

[RH96] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selec­

tion techniques. IEEE Transactions on Software Engineering, 22(8) :529­

551, August 1996.

79

M.A.Sc. Thesis - Akbar Abdrakhmanov McMaster - Software Engineering

[Rot96] Gregg Rothermel. Efficient, Effective Regression Testing Using Safe Test

Selection Techniques. PhD thesis, Clemson University, May 1996.

[SCT+08] Raul Santelices, Pavan Kumar Chittimalli, Apiwattanapong Taweesup,

Alessandro Orso, and Mary Jean Harrold. Test-suite augmentation for

evolving software. Automated Software Engineering, International Con­

ference on Automated Software Engineering, pages 218-227, 2008.

[SPL03] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing

Legacy Systems: Software Technologies, Engineering Processes, and Busi­

ness Practises. Addison Wesley, 2003.

[Tes10] Jean Tessier. The Dependency Finder User Manual.

http://depfind.sourceforge.net/Manual.html, 2010.

[TSC+06] Apiwattanapong Taweesup, Raul Santelices, Pavan Kumar Chittimalli,

Alessandro Orso, and Mary Jean Harrold. Matrix: Maintenance-oriented

testing requirements identifier and examiner. In Testing: Academic and

Industrial Conference - Practise and Research Techniques, pages 137-146,

2006.

[TucOO] Sean'Thck. Adpatch Basics, 2000.

[Ulr02] William M. Ulrich. Legacy Systems: Transformation Strategies. Pearson

Education, Inc., 2002.

[W009] Shuang Wang and Jeff Offutt. Comparison of unit-level automated test

generation tools. Software Testing Verification and Validation Workshop,

pages 210-219, 2009.

[YH10] Shin Yoo and Mark Harman. Regression testing minimisation, selection

and prioritisation: A survey. Software Testing, Verification and Reliabil­

ity, 2010.

[ZRW09] Chris Zeis, Chris Ruel, and Michael Wessler. Oracle iig for Dummies.

Wiley Publishing, Inc., 2009.

80

'141'7849

