MODELING, IDENTIFICATION AND CONTROL OF A BELT DRIVE SYSTEM



MODELING, SYSTEM IDENTIFICATION AND CONTROL OF A

BELT DRIVE SYSTEM

BY

SHENJIN ZHU, B.S. (MECH. ENG.)

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Applied Science

McMaster University

© Copyright by Shenjin Zhu, March 2011



MASTER OF APPLIED SCIENCE (2011) McMaster University

(Mechanical Engineering) Hamilton, Ontario

TITLE: Modeling. System Identification and Control of

a Belt Drive System

AUTHOR: Shenjin Zhu, B.S. in Mechanical Engineering

(Harbin University of Science and Technology)

SUPERVISOR: Professor Dr. Saeid Habibi

NUMBER OF PAGES: Xxiv, 205



Abstract

Belt drives have been serving the industry for a long period. Certain features of
belt drives such as slippage, tension fluctuations, and sliding of the belt on the pulleys
lead to highly nonlinear deformation, large rigid body motion, dynamical contact with
sticking and slipping zones and cyclic tension. The performance of motion control for belt
drives is important in many industrial fields and is affected by these factors. Advanced
control can improve robustness of belt drive and result in a faster dynamic response and
more accuracy. The Purpose of this project is to develop a mathematical model of an
experimental belt drive system through physical modeling and system identification. This
model is then used for the design of an advanced robust discrete-time controller. An
extensive literature review is provided, covering modeling and control of belt drive
system as well as sliding mode control (SMC) theory. Physical modeling is carried out for
an experimental system followed by system identification. Both the physical and the
identified models are used to analyze and investigate the characteristics of the system.
Different control approaches such as discrete-time proportional integral derivative (DPID)
and discrete-time sliding mode control (DSMC) are designed and implemented. The

results are compared and conclusions are drawn from both control approaches.
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Chapter 1 Introduction

1.1 Background

The sliding mode control (SMC) technique has been serving control engineering for
over half a century since its origin in the former Soviet Union in the 1930s. Its
development has undergone several stages. The SMC has been applied to different types
of systems such as linear, nonlinear, discrete-time, stochastic, large-scale and infinite
dimensional systems. It has been applied to numerous industrial problems including
control of electric drives, power systems, robot manipulators, mobile drives, autonomous
underwater vehicles, aircrafts, and space crafts. The essential feature of the SMC
technique is the definition of a switching surface in terms of the state variables and
associated desired closed-loop dynamics. A control law is designed in such a way that the
state trajectories reach the surface in a finite time and remain on it thereafter assuring the
desired dynamics specified by the switching hyperplane. The main advantages of the
SMC are as follows (Perruquetti & Barbot, 2002): (1) the system becomes robust to
external perturbations and internal parametric uncertainties, (2) the closed-loop system
dynamics mimic a simplified reduced-order system, and (3) stability.

The primary motivation of this research is to take advantage of the robustness and
the stability of the SMC by applying it to the control of a laboratory-scale belt drive
system. The reason for choosing the belt drive system as the experimental device for this

research is as follows.
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The belt drives are currently a popular form of material transportation. They have
been used in industry for over 200 years and have played an important role in the
industrial revolution. The flat belts of leather and cotton ropes running in V-grooves
transmitted power from steam engines or water wheels to various production machineries
through a series of line shafts (Timing, 2009). Nowadays the belt drives are common in
products such as home appliances, pumping equipment, heating, ventilation, and air
conditioning systems. The synchronous belt drives, also called timing belts, are most
commonly used technology in Europe for modern engine overhead camshaft drives
(Abrate, 1992).

Some special features of the belt drive systems have made their modeling and
control challenging. The belt drives have the following advantages compared to chain
drives and gear trains: low price, cleanliness, simple installation, lubrication free, minimal
and infrequent maintenance, ability to absorb sudden shocks or changes in loading,
quietness and smoothness in operation, longevity, wide range of speed ratios, small power
loss, relatively long distances between the drive and driven pulleys, and provision of
visual warning of failure (Cepon & Boltezar, 2009). They also bear several drawbacks: (1)
the belt usually can not be repaired after breaking; (2) slippage can occur, in particular.
when the belt is not tensioned properly; (3) belts can be damaged in adverse service
environments such as extreme temperature ranges, high moisture, oily or chemically
filled atmospheres and result in severe slippage; (4) belt drives can demonstrate complex
dynamical behaviours such as rotational and transverse vibrations, tension fluctuations,

and sliding of the belt over the pulleys (Cepon & Boltezar, 2009); (5) even in a case of a
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belt-drive transmitting a constant torque, the translating belt is subject to a cyclic tension
variation (Dufva, Kerkkanen, Maqueda & Shabana, 2007). Such behaviours often lead to
sliding wear, angular velocity loss between the drive and the driven pulleys, noisy
operation and fatigue of the belt. In summary, belt drives possess peculiar features that
make their dynamics nonlinear and their models highly uncertain (Leamy, 2002). This
makes the control of a belt drive to be challenging.

The early belt drive studies were mainly focused on the belt drive mechanics to serve
the belt drive design and manufacturing. The belt drive dynamic response studies
appeared in 1980s due to a wide application of serpentine belt drives in the automotive
industry. Nowadays, the study of the belt drive mechanics and dynamics have been
merged together to generate a more accurate model for control design.

An alternative to obtaining a mathematical model of the belt drive system is the
system identification method. In this method, a model is experimentally generated that
does not relate directly to the detailed composition of the system. This model is generated
by analyzing the responses of the system to certain input signals such as step signals,
sinusoidal signals, and PRBS signals. In comparison to system identification, physical
modeling is often unpredictable, costly, time consuming and often less accurate. System

identification is fast, predictable, universal and can be very accurate (Habibi, 2009).

1.2 Objective of This Research

A motivation of this research is to use system identification techniques to investigate

the linearity of belt drive systems and if possible to obtain a mathematical model of the
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belt drive system for control designs. A further objective of this research is to determine
the stability and the benefits of applying sliding mode control to belt drive systems. As
such, a mathematical model of the belt drive system is physically derived and compared
to an identified model obtained by using the system identification technique. A discrete-
time sliding mode control (DSMC) and a proportional-integral-derivative (PID) controller
are then designed using the identified model. The performance of the two controllers is

then compared.

1.3 Outline of the Thesis

This thesis is organized as follows. A general classification of belt drive systems is
provided and a laboratory-scale experimental set-up is introduced and modeled in Chapter
2. The physical model provides the a-priori information needed for the system
identification. In Chapter 3, a parametric model of the belt drive system is obtained
through system identification. An extensive literature review on sliding mode control is
provided in Chapter 4. Control of the experimental belt drive system using the DSMC and
the PID methods is presented in Chapter 5. A state observer and a Kalman filter are
designed, for the DSMC, based on the identified model. These controllers are
implemented and tested on the system without and with added modeling uncertainties.

Conclusions on the performance of the controllers are provided in Chapter 6.
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Chapter 2 Belt Drive Systems and Their Modeling

2.1 Belt Classification

There are a wide variety of belts classified according to their constructions. These
include:

e Flat belt: it has been widely used in factories to drive machines in the past. Now
flat belts are mainly employed in low power and high speed transmissions and belt
conveying. The flat belt was generally made of leather. Nowadays it is mainly
made of elastomer. An example of a flat belt drive is shown in Figurel (Flat Belts,

2009).

Figure 1 Flat Transmission Belt

e Round belt: it has a circular cross section and runs in pulleys with a circular
groove. Round belts are supplied in various lengths or cut and jointed by stapling,

gluing or welding. Round belts are used in low torque applications. An example is
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shown in Figure 2 (Round Belt, 2009).

Figure 2 Round Transmission Belt

e Vee belt: it has a cross-section shaped like a trapezoid, and is also called the V-
belt or the wedge-rope. The application of the Vee belt solved the slippage and the
alignment problems, and is now commonly used for power transmission. It
provides the best combination of traction, speed of movement, load bearing and
long service life. An example of a Vee belt is shown in Figure 3 (Belt Drive,

2009).

Figure 3 A Pair of Vee Belts

e Film belt: it is a new ultrasonically welded belt of film. A film belt provides
uniformly high strength for instrumentation and light power transmission
applications. It has excellent chemical resistance, so that it is applicable in areas

6
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with contaminated solvents, acids, and oils. It is highly flexible and has length
stability, making it ideal for disc memory drives, turntables, and miniature
precision drives (Film Belts, 2009). Some film belts are shown in Figure 4 (Film

Belts, 2009).

Figure 4 Samples of Film Belts

e Timing belt: it is a flat belt with integral teeth, used for high power transmission,
especially in situations that require specific drive ratios. With proper tension, the
timing belt provides a no-slip operation. A timing belt is shown in Figure 5 (Belt

Mechanical, 2009).

Figure 5 A Timing Belt

e Wire Belt: It is normally made of stainless steel. Wire belts usually have

exceptional thermal and chemical resistances and allow lateral and longitudinal
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flow of air or liquid. They are ideal for applications involving coating, drying,
cooling, heating, washing, flushing and draining in food processing, bakery,
ceramic and glass industry (Belt and Chain Drives, 2009). A wire belt conveyor is

shown in Figure 6 (Belt and Chain Drives, 2009).

Figure 6 A Wire Belt Conveyor

2.2 Modeling of the Belt Drive System

Extensive research has been done on the modeling of belt drives over the past few
decades. According to Leamy & Wasfy (2002), belt drive research can be categorized
into belt-drive mechanics studies (Bechtel, Vohra, Jacob & Carlson, 2000) and dynamic-
response studies (Leamy & Perkins 1998).

Representative papers of belt drive mechanics have been reviewed up to 1992 in
(Abrate, 1992). These studies cover the topics: (1) fractional mechanics of the belt drives
under steady operating conditions (Fawcett, 1981), (2) the classical creep theory of belt
drive operation (Leamy & Wasfy, 2002a), (3) the mechanics of the belt drive with belt
shear effects, seating/unseating effects and radial compliance effects (Firbank, 1970), (4)

derivation of the power loss expression and the efficiency limit of a belt drive assuming
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the validity of the classical creep theory (Bechtel, Vohra, Jacob & Carlson, 2000).

Dynamic Response studies of the belt drives initiated in the 1990s due to the wide
application of automotive serpentine belt drives to crankshaft excitation. These studies
have concentrated on the rotational response of the pulleys and/or the transverse response
of the axially moving belt with the simplified linear stretching and viscous damping
models of the belt-pulley contacts. Barker, Oliver and Brieg (1991) studied the belt drive
tensions resulting from engine acceleration. Hwang, Perkins, Ulsoy and Mechstroth
(1994) studied the periodic response of the serpentine belt drive systems. Beikmann,
Perkins and Ulsoy (1996) studied the coupled rotational and transverse response of a
prototypical serpentine belt drive system. Leamy and Perkins (1998) studied the periodic
response of serpentine belt drives to harmonic excitation from the crankshaft. Kraver, Fan
and Shah (1994) studied the effects of damping on the rotational response of a multiple
pulley/flat belt systems.

Two groups of studies on the belt drive mechanics and the belt drive dynamics have
little connection to each other due to: (1) the omission of dynamic excitation in the belt
drive mechanics studies and (2) the lack of the true fractional belt pulley modeling in the
serpentine drive dynamic response studies (Leamy & Wasty, 2002). Some efforts have
been made to bridge the gap by studying simplified dynamic models for small and large
rotational speeds. Leamy, Barber and Perkins (1998) investigated the dynamic response
of a belt drive subject to a train of harmonic tension waves by using a simplified model
for the belt pulley contact. Leamy and Wasfy (2002) developed a dynamic finite element

model to determine the transient and steady state response of a prototypical belt drive
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system. In the dynamic finite element modeling, the belt is modeled using truss elements,
the pulleys are modeled as rotating circular constraints and the fractional contact between
the pulleys and the belt is modeled using a penalty function together with a Coulomb-like
tri-linear creep-rate dependent friction law. Kerkkanen, Vallejo and Mikkola (2006) used
an approximate Coulomb friction law to model the belt-pulley contact forces. This
approximation avoided the numerical problems caused by the discontinuity of the
Coulomb’s friction law and removed the need for different sets of equations to model the
sticking contacts. Stewart and Trinkle (1996) introduced a time stepping method to
address unilateral contact problems. This method was applied by Jean (1999) to model
contacts between deformable bodies, and has been widely employed in recent years
(Heemels, Camhbel & Schumacher, 2000; Chakraborty, Berard, Akella & Trinkle, 2009).

This research is focused on physical modeling, system identification, and control of
an experimental two-pulley laboratory-scale belt drive system. This system consists of an
AC drive, a Permanent Magnet Synchronous Motor (PMSM), a two-pulley belt drive and

two digital encoders as shown in Figure 7.

10
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AC Drive
l —> (SIMODRIVE611) | Computer
motor J, D, 6, T,
Encoder A
I Encoder B

Drive Load
Pulley ‘E& _‘E
J, D, J, D,

Figure 7 Structure of a Belt Drive System

The belt drive consists of a Vee belt and two equal-radius pulleys. The Vee belt is
pre-tensioned by adjusting the centerline-distance between the drive and the driven
pulleys. The drive pulley is rigidly coupled to the output shaft of the PMSM, and grips the
belt through a dry frictional interface. A similar interfacing happens between the belt and
the driven pulley. The driven pulley is made of stainless steel which is treated as the load
of the system.

The belt drive system is mathematically modeled to provide the a priori information
needed for system identification. The AC drive, the electric motor, and the belt drive are
modeled separately, then jointed together to form an overall white-box model. Later in
Section 3, a black-box model of the belt drive system is obtained by using system
identification.

The drive pulley, powered by the PMSM grips the belt through static friction to
move the load. Since the belt drive system operates in one direction only, modeling of

backlash is not considered in this research. The AC drive and the PMSM are modeled as

11
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an electrical sub-system as described later in Section 2.2.1. The belt drive is modeled as a
mechanical sub-system with a torque input and a velocity output as described later in
Section 2.2.2. All modeled subsystems are combined to obtain an overall system transfer

function model in Section 2.2.3.

2.2.1 Modeling of the Electrical Subsystem

A synchronous motor operates at a constant speed uniquely related to the AC supply
frequency. A Permanent Magnet Synchronous Motor (PMSM) consists of a stator
containing three phase windings, ether in wye or delta form, and a rotor including a
permanent magnet. The AC motor considered in this research has a wye winding
configuration. The PMSMs are widely used in industry, particularly at low power range
up to 100 kW.

A three-phase motor stator can be represented by an equivalent two-phase

representation with ¢ and ¢ corresponding to the direct and quadrature axes (Bose, 2001)

as shown in Figure 8.

12
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d

Figure 8 Three-Phase Balanced Stator Windings and Two-Phase Equivalent

The variables of the three-phase windings in the stationary frame a-b-¢ can be

transformed into the variables in the two-phase rotatory frame d-¢ by:

v, cos(aw,t) sin(@.1) I,
v, | =] cos(@r—120") sin(wr—-120") 1 v, (2.1)
v, cos(a)\t +120° ) sin((o\t +120° ) L v,

12

where v, v,, and v are the phase voltages in the stator windings, and v,, v, are the

voltages in the d-¢g frame, and v, is the zero sequen(:el component required to yield a

' The zero sequence is a set of components with equal magnitudes and no angular
displacement between the phases. The zero sequence components are always balanced
(Fehr, 2010), so it produces no net flux linkage to rotor permanent magnet, and it may or
may not be present.

13
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unique transformation of the three stator phase quantities; @, is the inverter frequency.

Inversely, the phase variables in d-g frame can be resolved from Equation (2.1) by:

el , cos(w,t) cos((z)}t -1 20") Cos((q + 120“) v,
v, :vg sin(wt) sin(wr—120°) sin(wr+120°)| v, (2.2)
v 0.5 0.5 0.5 v

o ¢

The permanent magnets used in the PMSM are of high resistivity, the current
induced in the rotor is negligible. It is assumed that: there is no inductance leakage in the
rotor; the permeability of the magnetic material is considered unity; the air gap
inductances in the direct axis and the quadrature axis are the same; the magnetic flux
saturation is negligible; the induced electromagnetic force (EMF) is sinusoidal; there are
no field current dynamics; and there is no cage on the rotor. A d-g equivalent circuit of

the PMSM (Shahat & Shewy, 2010) is shown in Figure 9.

= +
0s, O 02, Q
. '

Figure 9 Equivalent d-q Circuits of a PMSM Stator

Application of the Kirchhoff's voltage law to the stator d-¢g frame gives:

dA,

dt

-0 A (2.3)

STy

v, =Ri, +

14
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v, =Ri, +T;’+a)ﬁd (2.4)
A, =L, + /l) (2.5)
A,=Lj, (2.6)

where i, , i are stator currents; L,, L are stator inductances; A4,, 4, are stator flux
linkages in thed andgaxes; Ris the stator resistance; 4, is the flux linkage due to the
rotor permanent magnet (PM) linking the stator. The electric torque generated on the

PMSM is given by (Pillay & Krishna, 1989):

T, =2P,i +(L,-L,)ii,] (2.7)

N | W

where P denotes the number of the pole pairs of the PM on the rotor. The mechanical
dynamics of the PMSM drive system is given as:

do,

T,=T,+Bw,+J (2.8)

dt

where 7, is the load torque, B is the damping coefficient, @, is the rotor angular velocity
related to the inverter frequency by @, =@, /P . and J is the rotor moment of inertia. The

Mathematical model of the PMSM can be summarized in state space representation as:

di,/dt —RiL, Po,L /L, 0 i v, /L,
di /dt \=|-Pw,L,/L, -RIL, —PAIL |i |+|v[/L, (2.9)
dw,/dt -15PA /T 1.5PA,1J  -BlJ || |-T,/J

Taking account of Equations (2.5) and (2.6), Equation (2.9) contains the products of the

states such as @,i,, @, andi,;i, . The mathematical model of the PMSM is a multivariable,

15
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nonlinear, strongly coupled system. Its speed and electromagnetic torque are difficult to

be controlled by external signal.

One effective control strategy is the vector control (Bose, 2001). The vector control

algorithm was invented in the 1970s, in which an induction motor can be controlled like a
separately excited DC motor. The vector control is also known as decoupling control,
orthogonal control, transvector control or field oriented control because of its DC
machine-like performance. With the vector control, the state i, can be governed by a

current controller to satisfy the condition, = 0 so that the PMSM model is decoupled and

simplified. The schematic diagram of the vector controlled PMSM (Zambada, 2010) is

shown in Figure 10.

McMaster university — Mechanical Engineering

QD Pl . Qb »| PI | Inverse | |
L ; 1 Park g ™ 3— Phaese
- + s ) ark ( >
. A « | SVM = Bridge
iy = PI
- i i, )
: Park L « | Clarkels : ()
I(I Il')
Position/ TN
Velocity /
Measurement PMSM

Figure 10 Block Diagram of Vector Control
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In Figure 10, @, is the desired angular velocity of the rotor; i, and i, is the desired
current of the direct axis and the quadrature axis, respectively; i, , iz, v, and v, are

currents and voltages in the Clarke transform. There are two control loops, three PI
controllers, four transforms and one Space Vector Modulation (SVM) in the vector
control process. The outer loop consists of the velocity control. The inner loop consists of

the current vector control. The Clarke transform uses three-phase currentsi,, i and i_to
calculate currents in the fixed two-phase orthogonal axis i, andi;. These currents are
transformed to currents i, and i, in the rotary two-phase orthogonal axis (Zambada, 2010;

Texas Instruments, 1997; Texas Instruments, 1998). The Clarke and Park transforms are
shown in shown in Figure 1. The Clarke and Park transforms and their inversions are
presented mathematically in Table 1. The SVM is to generate pulse-width modulation

signals for 3-pahse motor voltage signals.

Akﬂ

q

Figure 11 Clarke and Park Transforms
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Table | Clarke and Park Transforms and Their Inversions

i(l = iu
Clal‘ke l/)' = ],.\ (iu + 2ii7)
V3
i,+i,+i =0
i, =1,
o ﬁ
Inverse Clarke =73 Slet— 5
e ﬁ
i, ==l ———l

i, =i, cos(0)+ i sin(9)

Park i, =—l, sin(6)+ iy cos(8)

Inverse Park i, =i,cos(@)-i,sin(6)
iy =i,sin(0)+i, cos(6)

With the vector control, the current in the direct axis is governed:

=0 (2.10)

The stator flux linkage in d-axis of Equation (2.5) becomes:

Ay = A (2.11)

The developed electromagnetic torque of Equation (2.7) then simplifies to:
T,=15PA,i, (2.12)

The resulting mathematical model of the PMSM of Equation (2.9) is subsequently

simplified to:

18
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di R. PlLw v
—£ - +

L q

l
@ L' L, L i
do, _15PAi, Bw, T,

dt J J J

The equivalent schematic diagram of the speed loop is determined from Equations

(2.8) and (2.13) as shown in Figure 12, where V/, is the input voltage signal, K, is the gain

constant, K, and K, are the proportional and the integral gains, respectively.

W(s) 1 (s) T,(s)

V,(s)
— & | Ko+t " 1.5P2,

W (s)

o l >
> »

B+Js

Figure 12 Equivalent Schematic Diagram of the PMSM Speed Loop

The model of the vector controlled PMSM can be obtained as:

LV (S‘) ISK(UPA/ (K/’S_*_KI)

r

V,(s) " U+ (B+1.5K,PA, )s+1.5K, P,

(2.14)

2.2.2 Modeling of the Belt Drive

As stated earlier, the belt drive used in this research consists of a Vee belt and two
equal-radius pulleys. The input to the belt drive is the velocity and torque of the drive
pulley and the output is the velocity and torque of the driven pulley. The modeling
objective is to derive the relationship between the input and the output of the belt drive.

A linear coordinate system, following the moving direction of the belt, can be

constructed which decomposes the belt into two spans and two friction interfaces as

19
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shown in Figure 13.

Direction of Rotation

Slack Span

Drive Driven
Friction — =~ Friction
Interface Interface
2 | 3 | .
Drive Pulley Tight Span Driven Pulley

Figure 13 Sketch of a Two-Pulley Belt Drive Structure

The belt is assumed linearly elastic and extensible. The tension of the belt alternates
periodically from the lowest value at the slack span to the highest value at the tight span
during each cycle of operation. Sliding of the belt on the pulleys exists occurs along the
drive and the driven friction interfaces. For a section of the belt on the pulley, occurrence
of slip depends on the difference between the resultant force in the tangential direction
and the kinetic friction force as discussed later in this section. There must be one point
where the resultant force in the tangential direction equals to the kinetic friction force.
This point divides the frictional interface into a slip zone and a non-slip zone. The overall
belt is divided into two slip zones, two non-slip zones and two free spans as shown in
Figure 14. To model the output velocity and the torque of the belt drive, the tension and

the velocity of the belt in different zones need to be determined as follows.
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Drive Pulley Driven Pulley

Slip Zonel €= I+ 7r c=2] 4+ q Non—Slip zone 2

e
Slack Span

Tight Span
‘.._._

Non—Slip Zone l ¢ =1 c=0 Slip Zone 2

Figure 14 Different Zones and Spans of the Two-Pulley Belt Drive

The pulley radius r, the transmitted torque 7, , the driving pulley angular velocity @, .

the initial belt tension F

i the belt elastic modulus k,, and the coefficient of friction
4 between the belt and the pulleys are assumed to be known. The unknowns to be
determined are the angular velocity of the driven pulley @,, the angles S and £, over
which the belt is slipping on the drive and driven pulleys, the belt tension F(c), the
velocity v(c) at all locations along the belt, and the normal and tangential forces per
length n(c) and f(c). The letter ¢ denotes the linear coordinate of the belt.

Modeling of the Belt in the Free Spans

The free spans consist of the tight span (0<c¢</) and the slack
span (/+m < c<2l+m), where [ is the center-distance of the drive and the driven

pulleys. It is assumed that the weight of the belt in free spans is negligible compared to

21
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the belt tension. The free body diagram of a section of the belt in a free span is shown in

Figure 15 (Bechtel, Vohra, Jacob & Carlson, 2000).

F(c) F(c)+dF(c)

< >
« >

o b

‘ v(e) v(e)+dv(e)

Figure 15 Free Body Diagram of a Section of Belt in a Free Span

Application of the Newton’s Second Law to a section of the belt gives the governing
equation as:
(F(c)+dF(c))- F(c) = Q(v(c)+dv(c))-Qv(c)
The above equation can be simplified as:
dF (c) = Qdv(c) (2.15)
where Q = pA(c)v(c) is the mass flow rate, pis the mass per volume and A(c)is the
cross-sectional area of the belt. Integrating Equation (2.15) gives:
F(c)=Qv(c)+c, (2.16)
where ¢, is the constant of integration corresponding to initial conditions.

For a linear elastic belt, the tension at pointc on the belt linearly depends only on the
strain of the belt at that point (Bechtel, Vohra, Jacob & Carlson, 2000). So that a model
which relates the stretch to the tension and the velocity is obtained as:

Fe)=k.elc) (2.17)

v(c)= Vo (1+£(c)) (2.18)
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(4

where v, is the velocity of the belt in the reference state”, k, is the elastic modulus and

€ is the strain of the belt at pointc which is determined as:

g(c):il(-"—)—l (2.19)
dl ,

ref

where dl(c) denotes the length of an infinitesimal section of the belt at location ¢ and
dl,,, denotes the length of the section at the reference state. Combing Equations (2.17)

and (2.18) gives:

F(c)=—v(c)-k, (2.20)

Comparing Equations (2.16) and (2.20), for the coefficient of v(c) the

condition = —% should hold. This condition can not be realized since the mass flow
”

ref

, : . g
rate  is proportional to the velocity v(c), while =~ can not be related to the
Vv

ref
velocity v(c). So a relevant solution of Equation (2.15) in the free span for isothermal
motion can be obtained as (Bechtel, Vohra, Jacob & Carlson, 2000):
F(c) = Constant and v(c)=Constant (2.21)
From Equation (2.21), the tension and the velocity of the belt are constant in the free
spans. It is assumed that the bearings are frictionless and the summing moments on either
pulley is zero. The tight span tension F, and the slack span tension F, can be determined

as (Bechtel, Vohra, Jacob & Carlson, 2000):

Ry - . 3 . s . . . .
- The reference state is a fictitious state in which the strain of the belt is zero.
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F; = F;ru'l +L (222)
2r

F,=F,, —L (2.23)
5 init 2

The belt first enters the non-slip zones when it exits the free spans. The velocities on
the tight span v, and on the slack span v can be determined as (Bechtel, Vohra, Jacob &
Carlson, 2000):

v, =ra,
(2.24)
Vv, = ro,

Applying Equation (2.20) to the tight span gives:

Vyer = : (2.25)

Modeling of the Belt on the Pulleys

An extendable belt on the pulley of radius r and angular velocity @ is shown in

Figure 16.
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Ale+de) /‘ ~ F+dF

v+dy

_\f(() 3 c+dc
‘\ . n(c) -/
\ /

. \ . .
\\ @ ./

<
v\

\ \ 7/

~—A
Figure 16 Free Body Diagram of a Section of Belt on the Drive Pulley

It is assumed that the circumferential point ¢ (IS¢ <l+m or 2l+m <c<2+27m)is
fixed in space and the motion is steady. The condition at location ¢ is independent of time.
Consider a free body of the beltdcat location ¢ subtending an angle d6 . The belt enters
the portion at location ¢ with a tension F(c), a linear velocity v(c) and a sectional
area A(c), and exits the portion at location ¢+dc with a tension F(c)+dF(c), a linear
velocity v(c)+dv(c) and a sectional area A(c +dc). Let f(c) and n(c) be the projections
of the resultant force per unit length in the tangential and normal directions, respectively.
The positive direction of f(c)is opposite to that of the angular velocity of the pulley. The
positive direction of n(c)is radially outward.

The momentum projected in the tangential and normal directions are, respectively

(Bechtel, Vohra, Jacob & Carlson, 2000):

- p(c)cos(ﬁ) +(Flo)+ (IF(('))COS(—(C—HJ ~ f(e)rdo= Qm»(c)cos(ﬁj (2.26)
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- avsin 2)-0lo(e)+ afe))in 22

_F(c)sin[@]_(F(c)ﬂzp(c))sm(iﬁ]+n(c)dc =

where Q = pA(c)v(c) denotes the mass flow rate of the belt, pis the mass per volume.

For steady motion, the conservation of mass requires that the mass flow rate € 1is constant

(Bechtel, Vohra, Jacob & Carlson, 2000). For small 46 with ¥<<l ,

thencos(g) = land sin[#J = # Equations (2.26) and (2.27) can be simplified, with

the products of infinitesimal quantities neglected, to:
dF ()~ f(c)de = Qdv(c) (2.28)

n(c)= F—(C)——Q‘—(C) (2.29)

-

The normal force per unit length n(c)in Equation (2.29) has to be greater or equal to
zero to keep the belt in contact with the pulley, that is:

F(c)=Qv(c) (2.30)
Expression (2.30) sets the lower bound on the belt tension F(c).

In practice the magnitude of the tension F(c) is determined by the torque transmitted
by the belt drive as discussed latter in this section. The tension F(c)is related to the
tangential projection f(c) by Equation (2.28). The tangential projection f(c) has an
opposite direction but quantitatively equals to the fractional force generated between the

contact surfaces. The tangential projection f(c) increases accordingly following the

26



Master’s Thesis — Shenjin Zhu McMaster university — Mechanical Engineering

increment of the torque transmitted by the belt drive. So does the frictional force until it

reaches its upper bound determined by the kinetic frictional force.

For a flat belt, the kinetic frictional force is calculated as f(c)= un(c)
with # denoting a frictional modulus and n(c)denoting the normal force. In case of our

Vee belt, the cross-section of the belt is shown in Figure 17.

Figure 17 Cross Section of Vee Belt

The equivalent fractional modulus of the Vee belt can be calculated as (Solid Mechanics,

2010):
Y= 2n"(c)si
n(c)=2n (C),Smﬂjﬂﬂ:-L 2.31)
n(c),u/, =2n'(c)u sin

where S is the wedging angle of the Vee belt, n'(c) is pressure on the contacting surface
and n(c)is the resultant normal force as shown in Figure 17.

As mentioned earlier in this section, there exists a region in the drive (or driven)
friction interface where the resultant force in tangential direction f(c)is greater than the

kinetic frictional force, the sliding of the belt on the pulley happens; this region is called a

slip zone. The drive friction interface is divided into the non-slip zone | and the slip zone
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1, and the driven pulley is divided into the non-slip zone 2 and the slip zone 2 as shown in
Figure 14.

In the non-slip zone 1, the belt attaches to the drive pulley without slip. The tension
and the velocity of the belt in this zone are the same as that in the tight span. Since there
is no tendency to slip in this zone, the tangential force (frictional force) is zero. The
normal force is calculated using Equation (2.29). In summary, the belt tension, the
velocity, the tangential force and the normal force in the non-slip zone 1 can be obtained
as:

F-Q,

r

F(c)=F.v(c)=v,, flc)=0, n(c)=

(2.32)

In the slip-zone 1, the belt enters this zone with velocity v(c)=v, = r@, and exits the
zone with velocity v(s)=v, = r@, . The velocity is gradually reduced in this zone. The belt

is moving slower than the drive pulley surface. The friction is kinetic with a direction

being the same as that of the pulley motion. Rewriting Equations (2.28) and (2.29) with
flei= —,u/,n(c) gives:

d(F(c)-Qv(c))

Flo)-av(o)

9
(9%
%)
N

=—Ud6 (

Integrating Equation (2.33) over the entire slip-zone 1” and solving for S, produce:

B, :_l_ln F-Qv (2.34)
ll[ﬂ F\ _Q\"\

, . ) F—Qv,
Sn(F(e)- Qo)) =87, = ln[F—Q:'_J =—py(m— (7= B))=~u,

t
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Integrating Equation (2.33) from the entering point ¢ = L+ (7 7—f3,)r to any point in the

slip zone 1" and combining the result with Equations (2.20) and (2.25) give:

Fle)=—%tE (i 4 (F—qu)e @)k (235)

k,+F —Qv, ‘
v, —1,(0(c Hz-p)) &
fe )= —————tk, +F, —Qv Je”* ' 2.36
)= gy e (B -an ) [EET

The normal force n(c) and the tangential projection f(c)in the slip zone 1 are determined
by substituting Equations (2.35) and (2.36) into Equation (2.29) as:

F—=Qv  _y, (008
n(c)= -t Vi o a6l -m=5)) (2.37)

r

/I,B(F Qv ) o8 HT-5)
N

fle)=-

In the non-slip zone 2, the belt attaches to the driven pulley without slip. The
velocity is v, and belt tension is F,. Since there is no tendency to slip in this zone, the
tangential force (friction force) is zero. The normal force is calculated using Equation
(2.29). In summary, the belt tension, the velocity, the tangential force and the normal
force in the non-slip zone 2 can be obtained as:

F(() = F\_' \'(('): v, f((): 0’ II((.‘): F_‘—ﬁ.‘_ (239)

#
In the slip-zone 2, the belt enters this zone with velocity v(c)=v, = r@, and exits the
zone with velocity v(c)=v, = r@,. The velocity is gradually increased in this zone. The

belt is moving faster than the driven pulley surface. The friction is kinetic with a direction

4F((‘)—Q\‘() (F Oy ) ~u,(8(c H=7-4))
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being the same as that of the pulley motion. Rewriting Equations (2.28) and (2.29) with

fle)= yﬂn(c) gives (Bechtel, Vohra, Jacob & Carlson, 2000):

d(F(c)-Qv(c)) /
e = lzd0 (2.40)

)-Qv(c)
Integrating Equation (2.40) over the entire slip zone 2 on the driven pulley * and solving

for [, gives:

157 =_l-1n[Fl_—Q"'z (2.41)
CoHy \F=Qy

Integrating Equation (2.40) from the entering point ¢ =2/ + (27 - 3, )r to any point in the

slip zone 2° and combining the result with Equations (2.20) and (2.25) gives:

k,+F w;(0(c-(27-B.)
Fle)=——"—\k +(F. —Qv_)e™* —k 2.42
= b+ (R - Jk @42)
\‘(C) v, (k +(F _Oy ) uJ(B(rHZJ—/f;H) (2.43)
k,+F —Qv,

The normal force n(c) and the tangential projection f(c)in the slip zone 2 are determined
by substituting Equations (2.42) and (2.43) into Equation (2.29) as (Bechtel, Vohra, Jacob

& Carlson, 2000):

n(c)= l(F —Qp, )l #ET ) (2.44)
N_Hs uy(Be-(27-52)) "
fs)===(F —Qv,)e (2.45)

ii}‘_'J = 12— (27— B,))= 11,8,

F\ - Q"\

> In(F(e) = Q) 15 om0 = 1450 155 = ln(

S Fle)-Qv(c)=(F. -Qv, e #p0leH2-£2))
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In summary, a belt drive consists of two spans, two non-slip zones and two slip

zones. In every zone, the belt demonstrates different characteristics which are

summarized in Table 2.

Table 2 Summary of the Belt Drive Characteristics

Belt tension Belt velocity Belt normal Belt frictional
F(c) v(c) force n(c) Jforce f(c)
Tight span F=F, +i v, =ro, 0 0
mit 2'.
N sli 2= )= —
oty | FO=E | A0=v | g bon [0
zone | r
Slip zone | Equation Equation Equation Equation
(2.35) (2.36) (2.37) (2.38)
Slack span F=F, I, v, =rao, 0 0
o 2r
Nousip | FO=F | W0=v. | oo o 0
zone 2 r
Slip zone 2 Equation Equation Equation Equation
(2.42) (2.43) (2.44) (2.45)

The torque transmitted to the driven pulley can be calculated by combining

Equations (2.22) and (2.23) as:

T, = (Fz ot )"

(2.46)
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The stretching and slipping of the belt on the pulleys cause a portion of velocity loss
which means @, < @, . The relationship of the input and the output velocities can be
determined by applying Equation (2.20) to the tight and slack spans and combining the
results with Equations (2.22), (2.23), as such:

r(k, + F

init

7'(/((, + F

init

)_TL
)+T,

w, 2
10) 2

'

(2.47)

2.2.3 Modeling of the Overall Belt Drive System

The subsystems of the belt drive system: the electrical subsystem and the belt drive
have been modeled in the previous subsections. For a belt drive system consisting of two
equal-radius pulleys, the torque applied to the driven pulley comes from the drive pulley.
The velocity of the driven pulley is reduced compared to that of the drive pulley. These
conclusions infer that the external load added to the belt drive can be directly reflected to
the electrical subsystem without changing the dynamics of the overall system except that
the velocity of the driven pulley is a reduced version. The block diagram of the overall

belt drive system is shown in Figure 18.

Vp (3) (s)

K —1) " W) W)

L 1
B @ K‘ + (] B D conflp 3 e e
"oy L.5P4, B,+J,s K,

Figure 18 Block Diagram of the Belt Drive System
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where B, = B+ B, is a summation of the damping coefficient of the electric motor and
that of the load added on the driven pulley; J, =J +J, is a summation of the moment of

inertia of the electrical motor and that of load added on the driven

W,(s)  2r (k

lley; K, =
pulley: W)

L is the ratio of the velocity of the driven pulley to

that of the drive pulley; and B, , J, is the damping coefficient and the moment of inertia

of the load on the driven pulley, respectively. The transfer function of the belt drive
system is obtained as:

W, (s) 1.5K,K,PA,(K,s+K,)
L ot N (2.48)
Vo(s)  J,5°+(B, +1.5K,PA, )s+1.5K,PA,
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Chapter 3 System Identification of the Experimental

Belt Drive System

System identification is a process in which a mathematical model of a dynamic
system is obtained from a combination of prior knowledge and experimentation involving
select measurements. System identification is a structured method (Habibi, 2009). The
identification process consists of the following steps: (1) experimental design is made
with respect to the intended use of the model and is largely made by a careful selection of
input signals such that maximum level of information can be extracted from
measurements; (2) a model is obtained by optimization which attempts to provide the best
fit to the measurements. The model so generated is known as empirical or black-box
model as the parameters of the model have no physical significance. The black-box
model generated through system identification does not require excessive time, effort and
costs typically associated with physical modeling; yet it is usually accurate, and may be
directly utilized in many applications including control design.

In the following sections the identification process is applied to our experimental

belt drive system.

3.1 System Description and Model Specification

A system is an object with variables that interact and produce observable signals
(Ljung, 1987). The observable signals are of interest and are usually called outputs. The

system is also affected by external stimuli including inputs, and disturbances. The
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disturbances can be divided into measurable ones and non-measurable ones that can only
be observed through their influence on the system. The relationship among the observed
signals is called a model of the system.

The first step in any system identification process is a consideration of a priori
information on the system. This often entails a description of the system under
consideration and an initial specification of its model if available. The model
specification refers to the determination of the independent variables being included in or
excluded from the system model. Non-appropriate inclusion of irrelevant variables or
exclusion of relevant variables often results in model specification error. Another factor
affecting the model specification is the purpose of the system identification. For example,
the identification mainly focuses on low frequency range for the feed-forward control
design and on the closed-loop system bandwidth for the closed-loop control design.

In this research, the system identification is applied to an experimental belt drive

system as shown in Figure 19.

01/28/2008

Figure 19 The Experimental Belt Drive System
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The purpose of the system identification is to develop a single-input single-output model
for closed-loop control design of the belt drive system. The open-loop system

configuration is shown in Figure 20.

DAQ 110
PC
Toolbox Interface

F 3
\ 4

\ 4
\
\ 4

AC drive Plant Encoder

2

Figure 20 Open-loop Configuration of the Experimental Belt Drive System

The input is a DC voltage signal generated in Matlab’s System Identification Toolbox,
and sent through an IO interface to a Field Oriented Control (FOC) AC drive. The AC
drive amplifies the input signal with a factor of 60.55 to a higher power voltage that
actuates a Permanent Magnet Synchronous Motor (PMSM). An encoder is used to
measure the angular displacement of the driven pulley of the belt drive system. Taking
derivative of the encoder measurement gives the corresponding angular velocity which is
treated as the output of the experimental belt drive system. From the input to the output,
the overall belt drive system becomes a Single-Input-Single-Output (SISO) dynamical

system.

3.2 Initial Tests

The initial tests are carried out for the design of experiments used in system
identification and for the determination of the associated elements such as the sampling

rate, the type and the magnitude of the input signal, the duration of tests, and the choice of
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filters. Improper experimental design at this stage is likely to propagate through the
overall identification process and may significantly deteriorate the quality of the
identified models. Since repeating experimentation is an undesirable and costly
proposition, the initial tests on the system build a solid ground for the careful selection of
the parameters related to the final experiment and the data collection. Furthermore, these
initial tests are intended to provide insight into the system characteristics by investigating
delay, deadzone, drift, nonlinearity, noise level, as well as any other factors which may
affect the identification process. The initial tests applied in this research include step

responses, sine wave responses, and PRBS tests.

3.2.1 Investigation of Drift

The output of a system may drift subject to internal or external disturbances, even
when the input is with zero-amplitude. The drift in the belt drive system is investigated by
recording the output signal while the input is set to zero. In this case the drift is constant
and can be suppressed by a non-zero bias input. The drift-suppressing bias for the belt
drive system is -0.012 volt. The addition of this bias is to cancel out the effect of the drift

during all system identification experiments.

3.2.2 Step Response Test

One of the initial tests conducted is the step response. Step inputs varying from O to
7 VDC with 1 volt increment are used, and the output is recorded while ensuring the

duration is sufficient to allow the system to reach its steady state. The step responses for
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the belt drive system are given in Figure 21 and provide several useful pieces of
information as follows.

Step Responses
T
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1V Input i
| 2V Input ||
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Figure 21 Step Response of the Experimental Belt Drive System

Steady-State Analysis

A linear system has two mathematical characteristics: homogeneity and
superposition (Nise, 2004; Smith, 2010). Two properties of linear systems can be
visualized by the steady-state plot of step responses. The steady-state outputs versus the
amplitudes of the input for the belt drive system are shown in Figure 22. As can be seen,
the steady-state gain of the belt drive system is the same for step input amplitudes of up to
5.5 VDC. When the input reaches 5.5 volts, the driven pulley reaches the velocity of 314
radians per second; the incremental encoder reaches its saturation frequency of 200 kHz.
Figure 22 suggests that the magnitude of the input should not exceed 5.5 volts in order to
retain the belt drive system within a linear operating region. The linearity of the belt drive
system will be confirmed by using other methods such as the transient response analysis

and the Empirical Transfer Function Estimate (ETFE) (Ljung, 1987).
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Figure 22 Steady State Outputs versus the Input Amplitudes

Transient Response Analysis

The transient responses of the belt drive system to step inputs of |1 to 7VDC are
plotted in Figure 21. The belt drive system demonstrates the characteristic of
homogeneity when the amplitude of the input is less than 5.5 VDC. The response
characteristics change when the amplitude of the input is greater than 5.5VDC. The
transient response analysis supports the linearity range obtained from the steady-state
analysis of Figure 22. The transient responses also show that it takes about 15
milliseconds for the system to start to response to the inputs. This may be due to a
deadzone or a time delay.
Investigation of the Deadzone

The deadzone of the belt drive system is investigated by gradually increasing the
input amplitude until static friction of the system is overcome and a nonzero output is
obtained. The plot of the input and the output in Figure 23 shows that a non-zero output is
obtained when the input amplitude is greater than 0.02 VDC. The deadzone identified in

the belt drive system is 0.02 volts.
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Figure 23 Investigation of the Deadzone

Investigation of the Time Delay

The time delay of the experimental belt drive system is investigated by using the
same process as that of testing for the deadzone. A time delay is observed in response to
every change in the input. Using the enlarged response of Figure 24, the time delay in the

belt drive system is 2 milliseconds.
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Figure 24 Enlarged Response of the Belt Drive System

Investigation of the Dominant Time Constant
The dominant time constant can be approximately obtained from the settling time or
from the exponential decay of the transient response (Distefano, Stubberud & Williams,

1990). For example, for the first and second-order under-damped systems the transient
terms have the form Ae™'"and Ae™'"cos(w,t + @), respectively. The decay in each case

is governed by the time constant 7 . For the system of higher order than two the dominant
time constant is approximated by that of the under-damped second-order system. Using
the enlarged step response of Figure 25, the settling time of the belt drive system is 0.01
(0.024-0.014) second. The dominant time constant 7 of the belt drive system
approximated from the settling time is 10 milliseconds.

Based on the time constant 7, the sampling time 7 is picked as one tenth of the
time constant, i.e., | millisecond. The period of data recording should be more than 100

times the time constant that is greater than | second.
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Figure 25 Enlarged Step Response of the Belt Drive System

Noise Analysis

The sources of disturbances or noise include measurement noise and uncontrollable
inputs (Ljung, 1987). Measurement noise is due to the sensors. Uncontrollable inputs are
disturbances that act as spurious inputs and that are not controllable by the user. By
measuring the output corresponding to a constant input, an insight is gained into the
system’s noise characteristics. An encoder is immune to noise when measuring
displacement. However, the quantization noise is introduced when taking derivative of

the displacement for velocity. The noise contaminated data is commonly described with

mean ( 1) and variance ( o) which are calculated, respectively, as (Smith, 2010):

H==>x 3.1)

x,—u) (3.2)

The mean and variance of the output of the belt drive system (i.e. its velocity) versus the

amplitude of the input are listed in Table 3.
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Table 3 Mean and Variance of the Output of the Experimental Belt Drive System

Input (volts) Mean (u) (Rad/S) Variance (o°)
0 -0.0807 6.6719
1 64.8991 1.1664
2 129.7806 3.4942
3 182.1712 19.6462
4 235.6950 29.9154
5 287.8570 41.7282

The noise is further analyzed by considering its Power Spectral Density (PSD). The

analysis is performed by first running the system at a constant velocity, recording the

output, removing the mean of the output and then taking the power spectral density of the

remainder. The noise power spectral densities for the input amplitude of 1 to SVDC are

shown in Figures 26 to 31.

Output Noise Power Spectral Density for OV Input
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Figure 26 Output Noise Spectral Density for O Volt Input
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Figure 27 Output Noise Spectral Density for 1 Volt Input
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Figure 28 Output Noise Spectral Density for 2 Volts Input
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Figure 29 Output Noise Spectral density for 3 Volts Input
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Figure 31 Output Noise Specfral Density for 5 Volts InISut

There is a low frequency content in the noise. The frequency increases according to

the input level as shown in Table 4. This is caused by a defect in the encoder itself. This

low frequency element is within the frequency range of interest and can not be filtered

out.

It will be present throughout the system identification process and will affect the

quality of the identified model.
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Table 4 Low Frequency Content in the Noise

Amplitude of input(V) 0 1

o
V)
o
W

S
o
(95}
(@)}
=
W
W
wn

Low Frequency Content (Hz) 0.6 I.

3.2.3 Sine-wave Test

A computationally simple method to estimate a frequency function of a system is the
frequency response analysis or sine-wave testing. A sine wave with a specific frequency
is applied to the system. Neglecting the noise and the transient term, the amplitude and
the phase shift of the resulting output signal with respect to the input are measured
graphically. The magnitude and the phase of the output sine wave are then calculated. The
frequency response function of the system over a frequency range can be obtained by
applying input signals with different frequencies and repeating the above calculation. The
system bandwidth is estimated by using Bode magnitude and phase plots of the frequency
response function of the system. The Bode magnitude plot of the belt drive system is
shown in Figure 32. The open-loop bandwidth of the belt system is estimated

approximately at 70 Hz.
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Bode Magnitude Plot of the Belt Drive Sytem
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Figure 32 Bode Magnitude Diagram of the Belt Drive System

The disadvantages of the frequency response analysis using sine-wave method are:
(1) the test has to be calculated at a range of frequencies making the method very time
consuming; (2) it is not always safe to apply pure sinusoidal signals in industrial
applications. An alternative strategy is the use of Empirical Transfer Function Estimate

(ETEE).

3.2.4 Empirical Transfer Function Estimate (ETFE)

The ETFE is the ratio of the Fourier transforms of the output and the input. It is an
estimate of the frequency response of the system. In the Fourier analysis, the discrete

Fourier transform (DFT) of the finite sequence of the inputu,, k =1,2,---, N, is defined

as (Ljung, 1987):
1 & :
U, o)=—)> ult)e™, w=27/N,k=0,1,2,..,N-1 3.3
v(@) WZ (1) (3.3)

The DFT mapsu, in time domain into U, (@)in frequency domain. The signalu, can be

recovered by using the Inverse Discrete Fourier Transform (IDFT) as:

47



Master’s Thesis — Shenjin Zhu McMaster university — Mechanical Engineering

N
Z v(@e*, o=27IN, k=1,2,--,N (3.4)

1\=
The signal u, is a linear combination of ¢ for N different frequencies @ . Using the
same definition, the output signal vy, , k=1,2,---, N is mapped into and recovered

fromY, (@), respectively, as:

N

—iwk

a):— ve' ', w=2m/N, k=12, N (3.5)
x/N;k

Y\f mx’ =2k/N, k=1,2,--,N (3.6)
NAI

The ETFE of the system can be represented as:

(3.7)

The ETFE allows a user to approximately estimate the frequency response of a system
using experimental data.

The input signals have to contain a wide range of frequencies. The frequency range
should ideally be greater than the system bandwidth by more than 5 to 10 times. With an
estimated bandwidth of 70 Hz from the initial frequency response analysis, a sampling
frequency is of 1500Hz; a frequency range of 233 (700/3) Hz was chosen for the input
signal. The power spectrum of the input signal should be flat for this range. As such, the
following types of signals can be selected: the random binary sequence (RBS), the
random Gaussian sequence (RGS), the chirp signal, or the pseudorandom binary sequence
(PRBS). In this research, a PRBS is adopted as the input signal with a frequency of 700

Hz, amplitude of 1volt, giving a flat power spectrum in the range of O to 700/3 Hz. The
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experiments are conducted using PRBS signals of amplitudes of 1 to 5 volts in | volt
steps.

The output of the system is obtained by taking the derivative of the encoder signal
through the IO interface. The estimated ETFEs are filtered in order to obtain a more
usable representation. The filtering is conducted by using a windowing function. There
are several types of windowing functions available in both time and frequency domains.
In the time domain, the finite sequences u(r) and y(t) are convolved with a time domain
window, respectively. The DFTs are taken from the windowed sequences, and the ETFEs
are obtained from the ratios of the DFTs. In the frequency domain, the DFTs of the
signals u(t)and y(t) are taken. The ETFEs are then obtained from the ratios of the DFTs

and filtered with a Hamming window in the frequency domain (Ljung, 1987) as follows:

S A G G R T
[ (e-a)u,(€faz

(3.8)

1 1 /I V4
Wy(a)):f[Dy(m)+—D,[a)—;)+5D7[a)+;)] (3.9)

; 1

sm[ y+;ja)
Dy(a) = (3.10)

sinw/ 2

where Wr(cf) is the window function in frequency domain, which is centered
around £ =0, and yis the “shape parameter” determining the width of the frequency
window. The width of the frequency window controls the trade-off between bias and
variance: a large value of y corresponds to a narrow window, and leads to a large
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variance of GN(e"‘*’) and small bias. In the discrete-time system, the integrations in

Equation (3.8) are replaced with summations as:
N-1 2 i2zk
ZW(M«AJy“fM}G{eN
N
prnkknmfm]
N

The ETFEs and their filtered versions at different amplitudes of the input signal are

),gzqmwqu (3.11)

GAN (ei% )

shown in Figures 33 to 35.
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Figure 33 ETFE of the Belt Drive System with Input PRBS Level [1 3]
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Frequency response of the driven pulley(PRBS Lewel[2 4])
60 T T T

0~ -
-20 = o
10 10
200
g 100 - =
(o}l 5 4
E -100 - —
-200 = -
10 10
Frequency(Hz)
Figure 34 ETFE of the Belt Drive System with Input Level [2 4]
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Figure 35 ETFE of the Belt Drive System with Input PRBS Level [3 5]
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The objective of the ETFEs is to verify the linearity across the frequency range of
interest and with respect to the input level. The ETFEs demonstrate that the bandwidth of
the system is approximately 70 Hz which is consistent with the result obtained in the
frequency response analysis. Note also that the ETFEs obtained from different levels of
inputs are approximately identical. This further supports the earlier results and indicates

that the system is linear in the input range of 1 to 5 volts.

3.3 Order Estimation

The order of a linear system can be estimated in different ways. The commonly used

methods include the spectral analysis, and the impulse response analysis (Habibi, 2009).

3.3.1 Spectral Analysis Estimate

Spectral analysis uses the Bode plot to provide the DC gain and the break
frequencies. By looking the ETFE plots from Figures 33 to 35, there are no positive-slope
straight lines in the log-magnitude curves and no positive phase angle contributions in the
phase angle curves, which indicate that there are no zeros in the continuous time transfer
function. In the decade from 10 to 100Hz the log-magnitude plot is approximately a
straight line with a slope greater than—40 dB/decade, which means that the number of
poles is not more than two. Furthermore, the phase curves decreasing 180 degrees over
the entire frequency range indicate that there are two poles in the system. All of these

indications demonstrate that this is a second-order system.
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3.3.2 Order Estimation via Impulse Response

Impulse response (IR) is a well-proven method to conduct system identification, and
enables an accurate estimation of the system order (Habibi, 2009; Pitstick & Mulholland,
1986; Vacher, 2010). A discrete linear time invariant system can be represented in a state
space form (Ogata, 1994) as:

X, = Ax, +Bu,
¥, =Cx, +Du,

(3.12)

where 1, denotes the input; X, denotes the state variable; and y, denotes the output. A is
the system matrix; B is the input matrix; C is the output matrix; and D is the feed-forward
matrix. The transfer function of the system of Equation (3.12) can be written as:
G(z)=D+C(zI-A)'B (3.13)

~1

where z denotes the delay operator. Using the geometric series expansion to(zI—A)

Equation (3.13) can be further written as:

G(z)=D+Cz 1+ Az + A% ++)B = D+ih,‘i"" h =CA™B  (3.14)

i=l
Equation (3.14) can also be expressed as a function of matrices P and E such that:

G(z)=D+PE (3.15)

whereP=[C CA CA? - CA"™'|, and E=[B AB A’B - A™BJ . arc the
observability and the controllability matrices (Ogata, 1994), respectively.
For a unit impulseU(z)=1, the system’s impulse response equals to the series in

Equation (3.14). Equation (3.14) relates the system’s impulse response to its transfer
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function G(:), in which, Dis the initial value, and s, = CA™'B, i =1,2---c is the impulse

response at discrete time/. This provides a very useful way of using the impulse response
for identifying the structure of an unknown linear time invariant system (LTI). The
transfer function G(:) can be directly obtained from the impulse response of the system
(Habibi, 2009; Lim & Phan, 1998; Wang, Lee & Zachery, 1996).

Acquiring of Impulse Response

Ideally the impulse response data would be directly measured from a system which
is activated by a unit impulse input signal. This is however not feasible for most real life
systems due to the difficulty of generating an impulse input with a high enough amplitude
to activate the system.

The second option is to numerically differentiate the step response data. Since an
impulse can be generated by differentiating a step input. Given that system identification
deals with linear systems, the impulse response of a linear system can be obtained by
differentiating its step response.

The third option of estimating the impulse response is by using correlation analysis
(System, 2009). The impulse response can be determined by calculating the
corresponding correlation function of input and output signals. The impulse response
function is derived as:

’\‘(1‘)=Zg(k)u(t—k)+l.’(t) (3.16)

k=0
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where u(z) is the input signal, y(r)is the output signal, g(k)is the impulse response
function, and v(t) is the white noise. The equivalent relationship between the input-output

cross-correlation and the input auto correlation is represented as:

o

R, (7)= g(k)R, (r—k) (3.17)

Yu Hu
k=0

where R (7) = E[_v(t + T)u(t)] R, (T)= E[u(t + z')u(t)] , in which, E[O] is the

e

expectation operator. In practice, R, and R, are replaced with their estimated functions:

uu

N-max(7.0)
R, ()=— > ya+0u(), 7=0x1%2... (3.18)

t=l-min( 7.0)

N-t
R ()= %Z u(t+70u(r), R, (-7)=R,(7) (3.19)
=1

The estimated impulse response function is determined by solving Equation (3.17) as:

A

g(k)=R,R, (3.20)

=

In this research, the numerical differentiation approach is applied to estimate the
impulse response from the step response. For the experimental belt drive system, the step
and its impulse response obtained by differentiation are provided in Figures 36 and 37.

Note that the delays in the signals and outliers have been removed.
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Unit Step Response of the Belt Drive System
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Figure 37 Estimated Impulse Response of the Belt Drive System

Order Estimation
For the state space model of Equation (3.12), the impulse response can be easily
found by direct calculation as:

D, k=0

h, = 3.21
*|CA*'B, k>0 3-21)
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Note that in Single-Input-Single-Output (SISO) case, the impulse response consists of
scalar outputs. While in Multiple-Input-Multiple-Output (MIMO) cases, every sample of
the impulse response is a px ¢ matrix where p, ¢ denote the dimensions of the output and
input, respectively. In SISO case, the impulse response terms in Equation (3.21) are
known as the Markov parameters of the state space model.

A n, xn, matrix can be constructed using the Markov parameters in such a way that

each row would contain the Markov parameters shifted in time as:

h  h by s R
h, h; h, - h"”?l

H=|h &k hy h, ., 3.22)
h h h h,,

n, n,+1 ny+2
The matrix H is patterned in a way that every ascending diagonal contains the same value,
and because of this pattern it is called a Hankel matrix. In state space system
identification theory, the Hankel matrix plays an important role. For example, a state
space model can be obtained through a factorization of the Hankel matrix via the Singular
Value Decomposition (SVD) (Lim & Phan, 1998). In the absence of noise, the Hankel
matrix derived from a step response contains only the firstn linearly independent rows
and the remaining rows are linear combinations of the firstn for a n” -order system
(Habibi, 2009). The rank of the Hankel matrix equals the system order. This provides a
way of identifying the model structure using the impulse response data.

However in practice, the impulse response data is contaminated due to perturbations,

noise and numerical methods. The calculated rank of the Hankel matrix may be therefore
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corrupted. In this case the Singular Value Decomposition (SVD) can be used to calculate
the rank of the Hankel matrix. The SVD is a powerful tool dealing with sets of equations
or matrices that are either singular or numerically very close to singular (SVD, 2010). It
decomposes a matrix into a product of three simpler ones. The SVD is defined as:
H=UzV' (3.23)

where U'is a n-by-n unitary matrix (U'U=1), V is a n-by-n unitary matrix (V'V =1),
the superscript 7 denotes the matrix transposition; 2. is a n-by-n diagonal matrix of the
same dimension as the Hankel matrix H. The matrix X consists of the positive singular
values 0, 2 0, 2--- 2 0on the diagonal. The order information of the system is recovered
by counting the singular values that are significantly higher than others (Habibi, 2009).

In this research, 1587 points of impulse response data are taken to build a 794-by-794
Hankel matrix. After the singular value decomposition, the first 20 singular values of the
Hankel matrix are plotted in Figure 38, which indicates that the experimental belt drive
system is a second-order system. This conclusion is consistent with that drawn by

spectral analysis.
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Figure 38 The First 20 Singular Values of the Hankel Matrix

3.4 Main Experiments and Data Processing

Design of the main experimentation is an extremely important aspect of system
identification. The input of the system is a voltage signal to the amplifier and the output
is the derivative of the position encoder. From the initial sine wave test and the analysis
of the ETFEs, it is determined that the system bandwidth is approximately 70Hz. In
selecting an input type which would provide an even power spectrum well beyond this
frequency range of interest, a Pseudo Random Binary Sequence (PRBS) is chosen. The
magnitude of this input is chosen based on the noise characteristics of the system as
considered from the step tests, and is generally a trade-off between a strong signal-to-
noise ratio and remaining in a piecewise linear region. Also from thé steady state gain test
and ETFE, the system is linear in the input range of O to 5 volts. The input amplitude is

hence chosen to be 0 to 5 volts for the main experiments.
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The duration of the experiment is chosen as 5 seconds based on the dominant time
constant discussed in Section 3.2.2. In determining the sampling rate for these
experiments the open loop system bandwidth of approximately 70 Hz is considered. A
1000Hz sampling rate is chosen, that is over 10 times this bandwidth.

Data processing is an important intermediate step. The data must go through a
conditioning process. The conditioning process requires not only filtering but also
including detection of outliers, removal of low frequency trends, and scaling. To detect
outliers, a boundary layer is constructed though time plot of the output data ensuring that
the most data points enclosed inside, and the points located outside are considered to be
the outliers and replaced with the closest upper or lower bound value. The output data is
scaled to the angular velocity of the driven pulley with the unit of rad/s taking into
account the pulley radius and the encoder resolution. The low frequency trend is removed
by subtracting the input and the output data with their respective mean values.

High frequency noise is removed by using a low-pass digital filter. Finite and infinite
impulse response filters always introduce a time delay or a phase lag. They can however
be implemented in a bidirectional filtering mode to realize zero-phase filtering. This is
done by filtering the sequence in the forward direction, then reversing it and passing it
through the filter in its reversed sequence. In the forward direction a phase lag is
introduced. In the reversed direction a reversed lag (or phase lead) results in zero-phase
filtering. According to the ETFEs in Figure 33-35, at frequencies higher than 100Hz, the
signal-to-noise ratio is low; the cut-off frequency of the filter is set to 100 Hz. By cutting

off the high frequency contents, a better fit in the remaining frequency band is expected.
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The type of filter used in this research is the 10” order digital Butterworth filter. The
magnitude plot of the digital Butterworth filter is shown in Figure 39.

Log-Magnitude Plot

Magnitude
o
(4]
T
1

10 10 10 10°
Frequency(Hz)

Figure 39 Magnitude Plot of the 10" Order Digital Butterworth Filter

A 5000-point PRBS input with a switching frequency of 500 Hz is used. This
establishes a flat spectrum of 500/3Hz for the PRBS signal that is greater than the 100
Hz frequency range of interest. The first 300 points of input and output are shown in
Figure 40. The data sets are filtered with the 10™ order Butterworth filter to serve as the
estimation data. The filtering process results in a reduced frequency range of 0-100 Hz.
The first 300 points of the filtered data are shown in Figure 41. An independent validation
data set is generated and filtered in the same way. It is used to validate the estimated

model.
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Figure 41 The First 300 Points of the Filtered Data
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3.5 Model Estimation

Solving the model estimation problem requires: 1) input-output data from the
process; 2) a class of models; 3) a criterion. The model estimation problem can be treated
as an optimization problem, in which a best model can be obtained to best fit the data
with respect to the given criterion (Astrom & Wittenmark, 1997).

A class of models can be represented in the following generalized form (Ljung,

1987):

where y, , 1, and e, are the output, the input and the zero-mean white noise, respectively:
n,,m,,n.n,andn, are the order of the polynomials A(z),B(z),C(z), D(z)and F(z),
respectively, and 7 is the delay operator. The system delay z ™™ enters the model through
the polynomial B(z). By adopting different combinations of the polynomials A(z), B(z),
C(z). D(z). and F(z) in Equation (3.24), special model forms such as AutoRegressive
with Exogenous input (ARX) model, AutoRegressive-Moving Average with eXogenous

input (ARMAX) model, Output-Error (OE) model and Box-Jenkins (BJ) model are

obtained.
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A criterion is intended to measure how well the estimated model fits the
experimental data. Hence the criterion can be defined as a cost function of the prediction
error. With a given form of model, the model parameters are then determined by
minimizing the cost function through optimization methods such as the Least-Squares
method or the maximum likelihood method depending on the form of model that is being

used.

3.5.1 AutoRegressive with Exogenous Input (ARX) Model

The ARX model is the simplest input-output relationship representation that can be

described as the following form:

B(z) I
=6, 3.45
A(:)”k—m —~ & (3.25)

The ARX model is diagrammatically illustrated in Figure 42. The ARX model is derived

-\(‘1\‘ _

by setting C(z), D(z) and F(z) = lin Equation (3.24).

u,

Figure 42 Block Diagram of the ARX Model

The best fit of th second-order ARX model of the experimental belt drive system is

obtained as:
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29.627>-24.077" 1
Ve = =) St =) =
1-1.514z7"+0.6051z7> 1-1.514z7+0.605177>

(3.26)

The ARX model prediction and the measurement are shown in Figure 43.

Measured and simulated ARX model output

.

Amplitude (Rad/S)

! 1 ] 1 1
4 4.05 4.1 4.15 4.2 4.25 4.3
Time (Second)

Figure 43 Measured and the ARX Model Output (70.9% Fit)

3.5.2 AutoRegressive-Moving Average with eXogenous input (ARMAX)

Model

The main disadvantage of an ARX model structure is its restrictive noise model.

More flexibility can be added to the description of noise transfer function by using
C (:)as the numerator polynomial. This changes the ARX model into an ARMAX model.

The ARMAX model is derived by assigning D(z), F(z)asIsuch that:

= (3.27)
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The block diagram of the ARMAX model is shown in Figure 44.

e
()
()

u, B(:) + ¥

Aa

=

2

Figure 44 the Block Diagram of the ARMAX Model

The best fit of an ARMAX model for the belt drive system is obtained as:

9

2958772 -23.68z 1+1.999-7" +0.9986- .
v, = - — iy, + = = (3.28)
[-1.509z7" +0.6061z 1-1.509z7" +0.606 1z

The comparison of the ARMAX model prediction with the measurement is shown in

Figure 45.
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Measured and simulated ARMAX model output
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Figure 45 Measured and the ARMAX Model Output (70.72% Fit)

3.5.3 Output Error (OE) Model

In the ARMAX model, the transfer functions G(z)= B(z) ,Hlz)= (2) have the

same polynomials in denominator; this is not always consistent with most real-life
systems. Setting A(z)=C(z)=D(z)=1 decouples the noise from the system transfer

function and results in the OE model as:

B(z
Ve = %uk t+e, (3.29)

The output-error model structure is diagrammatically shown in Figure 46.
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I, B(z)
- Fz)
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Figure 46 Block Diagram of the OE Model

The best fit of the 2" order OE model is obtained as:

19.277
(t)-—— = —U
1-1.226z7 +0.5311z

(t)+e(t) (3.30)

The comparison of the OE model prediction with the measured output is shown in Figure

47.
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Figure 47 Measured and the OE Model Output (74.9% Fit)

68



Master’s Thesis — Shenjin Zhu McMaster university — Mechanical Engineering

3.5.4 Box-Jenkins (BJ) Model

The BJ model is the most flexible from considered and contains two different
: B . C .8 i .
transfer functions for the system G = Fand noise H = Y Assigning A(z)=1in Equation

(3.24) gives the Box-Jenkins model as:

>,
—
¢
~

i,

Figure 48 Block Diagram of the BJ Model

The best fit of the 2™ order BJ model is obtained as:

19.277 [+z

Vi = = = it A = %
1-1.226z7 +0.5311z 1-1.845z7 +0.9187:

(3.32)

Note from Equations (3.30) and (3.32) that the OE model and the BJ model have the same

system transfer function. The measured and the BJ model output are shown in Figure 49.
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Measured and simulated BJ model output
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Figure 49 Measured and the BJ Model Output (74.9% Fit)
3.6 Model Validation

The performances of the identified models are further validated by using step, PRBS,
and chirp responses. The measured outputs of the step, the PRBS and the chirp responses
are all zero-phase filtered by using a 10™ order digital Butterworth filter with 100 Hz cut-
off frequency. The measured and model outputs are shown in Figure 50. The Root Mean
Squared prediction Errors (RMSEs) are listed in Table 5. The performance of the ARX
and ARMAX models are very close. The performance of the OE and the BJ Models are
very close. The ARX and the ARMAX have better performance on step response.
However the OE and the BJ models have better performance when PRBS or Chirp signals

are used. The OE model is chosen given its best overall performance.
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Figure 50 Measured and Simulated Outputs

Table 5 RMSEs of the Identified Models

Model Step PRBS Chirp
ARX 0.7843 2.1846 5.7443
ARMAX 0.7837 2.1981 5.7415
OE 0.8729 1.8640 4.5282
BJ 0.8891 1.8797 4.4983

3.7 Conclusions on System Identification

System identification is a very useful way of obtaining an accurate model of a

system when it is very difficult to do so through analytical means. The initial tests
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provided information of the belt drive system’s drift, deadzone, time delay, time constant,
linearity, open-loop bandwidth and the order of system as listed in Table 6. Note that the

linear region of the system has been reconfirmed as O to 1volt.

Table 6 Characteristic Parameters of the Belt Drive System

Drift | Dead- Time Time Linear Open-Loop Order of

(V) zone(V) Delay(S) | Constant(S) | Range(V) | Bandwidth(Hz) System

-0.015 0.025 0.002 0.01 0-1 70 2

The final black-box model candidate is a 2" order OE model with 2 ms time delay.

The identified transfer function of the belt drive system is obtained as:

9.2
G Z)= h = '\.'\'s
) 1-1.22627"' +0.53117 (3.33)

This model is used for the design of a robust control strategy.
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Chapter 4 Literature Review of Sliding Mode Control

Systems

Considerable research has been performed on the control of belt-drives in recent
years. Li and Cheng (1994) presented a PID controller with adaptive compensation of
inertial force for a belt-driven high speed positioning table. Li and Rehani (1996)
designed a PID controller with acceleration and Coulomb friction compensation (PIDAF)
for the tracking control of the angular position of the belt drive turning table based on an
identified model. Lee and Rutherford (1999) presented the frequency reshaped linear
quadratic (FRLQ) control in the development of a low-cost human level performance belt
driven robot. In their work, a simple first order filter was chosen for determining a
performance index for the linear quadratic optimal controller that would panelize the
frequencies at or above the first resonance frequency of the belt drive. Jayawardene,
Nakamura and Goto (2003) presented a PID control algorithm with an off-line trajectory
planning under maximum velocity and acceleration constraints with compensation of
delay dynamics and vibrations for accurate position control of belt drives. The same
strategy was utilized for the cooperative control of two industrial robots and belt drive
machines (Jayawardene, 2009). Selezneva (2009) implemented a PID algorithm with
automatic tuning for the tracking control of the belt-drive systems. A. Sabanovic, O.
Sozbilir, G. Goktug & N. Sabanovic (2003) proposed a Sliding Mode Control (SMC)
algorithm based on a predefined structure of the time derivative of Lyapunov function

candidate for a linear timing-belt drive. The related issues were further investigated by the
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same group of the authors (Hace, Jezernik & Sabanovic, 2005; Hace, Jezernik &
Sabanovic, 2007; Hace, Jezernik & Terbuc, 2009).

Among those control algorithms mentioned above, the SMC has gradually sought
more attention in the control community due to its robustness and simplicity. The SMC is

extensively reviewed in this chapter.

4.1 Background of Sliding Mode Control

Variable Structure Systems (VSS) are systems that have discontinuities in the
differential equations that describe their dynamic behaviour. Such systems have a state
space that is segmented by Hyperplanes. In each segment of the state space, the system
may be modeled by a continuous and differentiable function. This continuous
characterization of the system changes as the state trajectory cross a discontinuity
hyperplane.

The following mathematical definition is commonly used for describing a VSS. A

VSS is a discontinuous nonlinear system represented as x=®(x,u,t) where
O(x, 1) =[g(x. u,t), o, (x, 0, 1), -, @, (x, u, £)] : R"™ — R" is composed of piecewise
continuous  nonlinear  function with state vector Xx=[x,x,, -, x,] € R"

controlue R"and time variablete R (Wikipedia, 2010). The state space is divided into

different regions within which the system exhibits continuous behaviour ¢, . At the

boundaries of the regions, ®(x, u, ) is not differentiable and the dynamics of the system

switches abruptly, i.e. the structure of the system varies over different regions.

74



Master’s Thesis — Shenjin Zhu McMaster university — Mechanical Engineering

A good characteristic of the VSS is that they can possess new properties which are
not inherent in continuous systems. For instance, asymptotic stability can be realized by
combining two structures, none of which are asymptotically stable. In variable structure
control, a discontinuity hyperplane is artificially introduced in the system by using a
control input. A special form of variable structure control (VSC) is obtained when the
states are directed toward the discontinuity or switching hyperplane and are forced to
slide along it. This special form of VSC is referred to as sliding mode control (SMC)
(Utkin, 1977). In SMC, the system dynamics is governed by a reduced order differential
equation, and is robust to internal parameter variations and external disturbances.

The design of SMC consists of two tasks. Firstly a switching hyperplanes(x)= 0 is
defined based on a desired dynamic behaviour such that stabilization, tracking and

regularization are attained. Note that s(x)provides a measure of the distance of the state

trajectory from the switching hyperplane located ats(x)=0. Secondly a discontinuous

v . , ; o
control law u(t):{ B is designed to drive the states onto the switching

hyperplane in a finite time and to force them to remain and slide along the hyperplane.
The control is continuous or smooth in every region, but alters its structure when the
dynamics of the state trajectory crosses the boundary defined by the switching hyperplane.
SMC input switches from one value or continuous function to another one based on the

position of the state trajectory with respect to the switching hyperplane. This switching
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can occur at a high frequency. By combining the system model, the switching hyperplane,

and the control law, a SMC system is described as

There are two phases associated with a SMC system. Phase one is called the
reaching mode in which the system dynamics is directed to the hyperplane in a finite time.

The conditions to guarantee the reachablity are called the reaching conditions. For

$s<0 whens>0 :

stability, the reaching condition is given as or ss <0 (Gao, 1990). The

$>0 whens<0
reaching condition ensures the stability, but does not determine how the sliding surface is

reached. The manner in which the sliding surface is reached determines the characteristics

of the transient response. There are three commonly used approaches (Gao, 1990): (1)

Constant approaching law in which, s = —£sgn(s), £ >0so that the switching function

approaches zero with a constant velocity; (2) Proportional approaching law in which

s=—esgn(s)—ks £ >0,k >0 so that the switching function approaches zero with a

velocity equalling to the summation of a constant plus an amount proportional to the

distance of the state trajectory from the switching hyperplane; (3) Exponential

approaching law in which s = —k‘s|a sen(s) k >0,1>a>0so that the switching function

approaches zero with a velocity of an exponential function of the distance of the state

trajectory from the switching hyperplane.
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Once the sliding surface is reached, the system enters its next phase of sliding mode.
When in sliding mode, the system behaviour changes to a reduced order form and robust
to disturbances and plant parameter variations.

The exceptional properties of SMC such as order-reduction and robustness to
disturbances and parametric variations have drawn significant enthusiasm in the control

community both in theoretical development and practical applications.

4.1.1 Brief History of SMC

The SMC theory was originated in the Soviet Union in the early 1930s. Its
development has undergone four stages: the originating stage, the early stage, the multi-
input linear systems stage, and the advanced stage (Gao, 1990; Hung, Gao & Huang,
1993; Utkin, 1999).

The Originating Stage of VSC (1930-1956)

The origin of Variable Structure Control (VSC) can be traced back to the 1930s in
the former USSR (Utkin, 1999). The investigation of systems with discontinuous control
actions remained at a high level during this period. As an example, relay or “on-off”
regulators played an important role in the design of feedback control systems due to its
ease of implementation and high efficiency of hardware. Typical examples included the
vibration control in the context of voltage control for a DC generator of an aircraft
(Kulebakin, 1932) and the sliding mode relays for controlling the course of a ship
(Nikolski, 1934). The concepts of modern control theory such as phase plane, switching

line, and even sliding mode, first appeared in the publications in that time.
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The Early Stage of the SMC (1957-1970)
The SMC was developed in this stage focusing on the systems in phase conical form.
The SMC studied in this period considered systems modeled by high-order, linear

differential equations with a single input, such that:

x(e)+ a”.\'(”"l )+ a, X" 2(e)++a, x(t)+ a,x = bu(t)
The switching surface was defined as a special second-order function:

six)=xc'x=x(cx, +c,x, +--+c x ), and the control law was described as u = Px,
1 1 il 7 e 1

n"n

a when s(x)< 0
(Hung, Gao & Huang, 1993).

with¥ =
B when s(x)>0

The Stage of Multi-Input Systems (1970-1980)
During this period, the theory of SMC for general multi-input linear systems was

firmly established. The general form of a multi-input linear system was represented

asx = Ax+ Bu with state variablexe R", inputue R

m

, system matrix A€ R"™, and input

matrix Be R™ 2 The switching function was depicted

mxn

ass(x) = Cx :[S,(x), sz(x), v, S (x)]Twith a switching matrix Ce R™ . The control law

> “m

was described as u,(x)= % whanslx)>D
W when Si(x) <0

!

th

i=12--,m, with s, denoting the i

scalar switching function (Hung, Gao & Huang, 1993). The SMC theory did not draw
much attention from the control community during this period mainly due to two reasons:
the theory was overshadowed by the popularity of linear control systems design, and the

robustness property of the SMC was not fully recognized.
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The Advanced Stage of SMC (1980-present)

Since 1980, the research and development of the SMC have been greatly accelerated
both in theory and applications. General SMC design methods for complex systems have
been proposed taking advantage of SMC’s robustness property. The achievements in this
period include: the development of SMC for nonlinear systems (Slotine, 1991; Gao, Hung,
1993; Misawa, 1997; Bandyopadhyay & Thakar, 2008), discrete-time systems (Furuta,
1990; Hui & Zak 1999; Chang, 2002), systems with time-delay (H. P. Pang, C. J. Liu & A.
Z. Liu, 2006; Qu & Wang, 2006; Pai, 2008), stochastic systems (Y. Shen, W. Shen & J.
Gu, 2005; Y. Niu, Z. Wang & X. Wang, 2010), large-scale systems (Chaouki & Moncef,
2007) and infinite dimensional systems (Utkin, 1998). The extension of the objectives of
SMC was beyond system stabilization to include motion tracking, model following,
model reaching, adaptive and optimal control and state observation. Sliding mode state
observation was considered in (Raoufi & Zinober, 2008; Alessandri, Cuneo & Punta,
2009). Additional properties of SMC were explored including the invariance of the
sliding mode to system disturbances and parameter variations in (Janardhanan &
Bandyopadhyay, 2006), and robustness of the reaching phase, elimination or reduction of
chattering in (Loh & Yeung, 2010). The applications of SMC have been reported in
numerous industrial problems such as control of electric drives (F. J. Lin, C. H. Lin &
Shen, 2002; Bian, Man, Song & Ren, 2006; Rashid & Zidan, 2008; Claudia & Miguel,
2008; Chuang, Haung, Lee, Kao & Fung, 2009), power systems (Samarasinghe &

Pahalawaththa, 1997; Fernandes & Alcalde, 2007; Wang & Mao, 2009), robot
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manipulators (Hashimoto, Maruyama & Harashima, 1987; Yu & Lloyd, 1997; Pandian,
Hanmandlu & Gopal, 1988; Machado & Carvalho, 1988; Habibi & Richards, 1992;
Khalal, Mellit, Rahim, Salhi & Guessoum, 2007; Vargas & Ledwich, 2010), mobile
drives, autonomous underwater vehicles (Cunha, Costa & Hsu, 1991; Healey & Lienard,
1993; P. M. Lee, Hong, Lim, C. M. Lee, Jeon & Park, 1999; Wang, Liu, Yu & Xu, 2002;
Xiong, Bian, Chang & Zou, 2004; Han, Sun & Mo, 2008), automotive applications
(Moskwa, 1993; Utkin & Chang, 2002; Uchida, Murata, Yabumi, Morita & Kando, 2006;
Mao & Lu, 2008; Kim & Wang, 2009), climate control, aircraft and spacecraft (Young,
1978; Jafarov & Tasaltin, 2000; Shtessel, Buffington & Banda, 2002; Huang, Kuo & Way,
2003; Promtun & Seshagiri, 2009; Ramirez, Thomas & Dwyer, 1986; Ramirez, 1990; Z.

B. Li, Wang & J. F. Li, 2004; Hu & Ma, 2005, Hu & Ma, 2006; Jiang, Hu & Ma, 2008).

4.1.2 Literature Review of SMC

Among the abundant publications in SMC field, Utkin’s work is notable and
outstanding. His early research centered on the design of SMC in phase canonical form
and the design principles for multi-input SMC systems. Utkin (1977, 1983) reviewed the
historical development of the SMC concept, the role of sliding modes in development of
the SMC theory, the stages of SMC development, and the synthesis of SMC using
decomposition principle in sliding modes. Another notable survey paper was published by
Huang, Gao & Huang (1993). They presented the basic notions, historical development,
brief theoretic background of SMC systems, the design of SMC for linear time-invariant

multi-input systems and nonlinear multivariable systems. Kaynak, Erbatur & Ertugrul
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(2001) surveyed how “intelligence” could be incorporated in sliding mode controllers by
using computational intelligence methodologies such as artificial neural networks (ANN),
fuzzy logic (FL) and probabilistic reasoning (PR). The focus of their work was to
alleviate the well known problems of inadequateness of the traditional analytical
techniques for modeling, understanding and predicting the behaviours of complex
systems in practical implementations of SMC. Yu & Kaynak (2009) examined the current
progress and future perspectives of the integration of SMC with the computational

intelligence methodologies.

4.1.3 Lyapunov Stability Analysis in SMC

Stability is one of the most important considerations in the design of a control
system. According to (Nise, 2004), a system is stable if the natural response approaches
zero as time approaches infinity; a system is unstable if the natural response approaches
infinity as time approaches infinity; a system is marginally stable if the natural response
neither decays nor grows but remains constant or oscillates. Using total (natural and
forced) response, the definition of stability is given as: a system is stable if every bounded
input yields a bounded output (BIBO); a system is unstable if any bounded input produces
an unbounded output. Unbounded growth of the natural response of an unstable system
usually causes damage to that system, to adjacent properties, and can be a danger to
human life. The transient response of an unstable system grows infinitely; its total

response does not approach a steady-state value.
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Determination of stability is extremely important to control systems engineering. For
a linear, time-invariant system, there are many stability criteria available such as the
Routh’s stability criterion (Nise, 2004) and the Nyquist stability criterion (Ogata, 1997).
Unfortunately these criteria are only applicable to linear time-invariant systems. If the
system is nonlinear, or linear but time-varying, such stability criteria are not directly
applicable. The second method of Lyapunov, also called the direct method of Lyapunov,
is the most general method for determining the stability of nonlinear, and/or time-varying
systems (Ogata, 1997). This method also applies to linear time-invariant systems.

Lyapunov created two methods, called the first method and the second method, for
determining the stability of dynamic systems described by ordinary differential equations.
The first method of Lyapunov needs an explicit form of solutions of the differential
equations for the analysis. The second method of Lyapunov determines the stability of a
system without solving the differential equations which is very advantageous due to the
fact that the task of solving nonlinear and/or time-varying differential equations is
normally difficult. When applied to the determination of stability of nonlinear systems,
the second method of Lyapunov usually requires considerable experience and ingenuity,
but often succeeds when other methods fail.

Consider a system (Ogata, 1997):

x =f(x,t)
where xe R" is state vector, andf € R"is a function of xand time 7. It is assumed that
the system has a unique solution, starting at the given initial condition denoted

as d(t, (x,.1,)). where (x,.z,) is the initial state and ¢ is time.
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Equilibrium State

If the system is linear, time-invariant, i.e., f(x,z)= Ax, then there exists only one
equilibrium state if A is non-singular and infinitely many equilibrium states if A is
singular. For nonlinear systems, there may be one or more equilibrium states
corresponding to the constant solutions of the system. Any isolated equilibrium state can
be shifted to the origin of the coordinates, i.e., f(0,¢)=0 by a coordinate translation. So it

is only needed to consider the stability analysis of equilibrium at the origin.
Stability in the Sense of Lyapunov

Let a spherical region of radius ¢ about an equilibrium state x, be defined as

Hx—xy“ < ¢, where “0H is the Euclidean norm, and

x-x.|= [(.\'I —x, )+, -x, f +-+(x, - x, )]l . Let S(5)consist of all potential initial
points X, such that ||x,—x,[<& , and S(e) consist of all points such that
||¢(r, (xo,t0 ))-Xe” < efor allt >1,. An equilibrium statex, is called stable in the sense of
Lyapunov if, for any given e, there is an S(J), such that trajectories starting in S(J) would
not leave S(&)as ¢ grows infinitely (Ogata, 1997).

Asymptotic Stability

An equilibrium state x, of the system is called asymprotically stable if the
equilibrium state x, is stable in the sense of Lyapunov and if every solution of
(. (x,.1,)) starting within S(8) converges to X, as t grows to infinity. Asymptotical
stability is a local concept. The region in where the system is asymptotically stable is the
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domain of attraction. Every trajectory originated in the domain of attraction converges to
the equilibrium state x, and asymptotically stable. If the domain of attraction covers all of
the state space, or in other words, trajectories originated everywhere converge to the
equilibrium statex, , the equilibrium x, is asymptotically stable in the large or globally
stable (Ogata, 1997).
Second Method of Lyapunoyv

The second method of Lyapunov is based on the fact that if a system has an
asymptotic equilibrium state x, , then the stored energy of the system within the domain of
attraction decays as time grows until it reaches its minimum value at the equilibrium state
X, . Lyapunov designed a scalar, fictitious energy function, the Lyapunov function v(x,z).
Lyapunov function is continuous, has a unique global minimum at the equilibrium

state x, with respect to all other states, and is non-increasing for all state trajectories

x(t)in time . The sign behaviour of the Lyapunov function v(x,z) and its derivative

{'(x,t)give the information about stability, asymptotic stability, and instability without
solving the differential equations.

The following theorems apply to the second method of Lyapunov. They are restated
here without proof from (Ogata, 1997).

Theoremd.1 For the system: x = f(x.t) with £(0,t)=0 for allf > ¢,, if there exists a

scalar function V(x,7) having continuous, first partial derivatives and satisfying the
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conditions: V(x,r) is positive definite and V/(x,)is negative definite, the equilibrium state
at the origin is uniformly asymptotically stable.
Theoremd.2 For the system: x = f(x,7) with £(0,¢)=0for all¢ > t,, if there exists a

scalar function V(x,f) having continuous, first partial derivatives and satisfying the

conditions: V(x,) is positive definite, V(x,¢) is negative semi-definite for any initial
state (xo(;t 0).t0), then the equilibrium state at the origin of the system is uniformly

asymptotically stable in the large.

Theorem4.3 For the system: x =f(x,7) with £(0,7)=0for allz > 1, if there exists a

scalar function V(x.r) having continuous, first partial derivatives and satisfying the

conditions: V(x.t) is positive definite in some region about the origin and V(x,t)is

positive definite in the same region, then the equilibrium state at the origin is unstable.

4.2 Continuous-Time Sliding Mode Control

Continuous-time sliding mode control systems (CSMC) are feedback systems with
discontinuous feedback control law. The control law switches the input of the system in
order to maintain the state trajectory on a pre-specified switching hyperplane under
sliding mode. By introducing the sliding mode into the system, it is possible to achieve

stability, robustness to disturbance and parametric variations.
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4.2.1 CSMC of Linear Time-Invariant Systems

Consider a linear time invariant system given as:

x = Ax(r)+Bu(r) (4.1)
where xe R"is the state vector, Ae R"™ is the system matrix, Be R™™ is the input
matrix with rank(B)=m , and ue R" is the input vector. The system is assumed

controllable. The design of CSMC can be divided into two steps: (1) design a switching
manifold so that the desired dynamics is achieved when the system is confined on it; (2)
design a control law to drive the state trajectory onto the switching manifold in finite
time and to stay on it thereafter.

Design of the Switching Manifold

Since the input matrix satisfies the condition rank(B)=m , matrix B can be

partitioned by reordering the state vector components as (Utkin, 1999):

Bl
B=| (4.2)

where B,e R | B,e R™ with rank(B,)=m . A non-singular coordinate

transformation can be defined as (Utkin, 1999):

I -B B
T:{"d'” BI‘J (4.3)

With the transformation matrix T, the controllable system (4.1) can be converted to the

regular form as:
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Xp = Apx +ARX, 4.4

X, =A,X +A,X,+u

X Ay Ap| o4 10 . ;
where =Tx, A AT TAT , TB= . The first equation of (4.4) can be
XZ 21 22 mxin

treated as a subsystem with an intermediate inputx, . Since (A,B)is controllable, the pair
(A,.A,,)is controllable also (Utkin, 1999), the subsystem can be stabilized using state
feedback as:

X5 =—GX; 4.5)

The closed-loop dynamics can be obtained as:

xi =(A,, —A,G)x, (4.6)

The eigenvalues of matrix (A, —A,,G)can be arbitrarily assigned by using the pole-
placement technique (Ogata, 1994) to meet the desired dynamic requirements. The
switching function can be obtained from Equation (4.5) as:

s=Gx,+x,=0 4.7)

Design of Control Law

A piecewise linear discontinuous control can be given as (Utkin, 1999):

u= —(C(ix|+5)sgn(s) (4.8)

sen(s, )], and

b= S

where « and O are positive constants, sgn(s)T :[sgn(sl) sgn(s,)

n
=3l
i=1

Stability analysis
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The stability of the CSMC system is investigated by using the continuous-time

Lyapunov stability theory. A Lyapunov function can be defined as:
L7
V=—S§'S (4.9)

Its derivative can be determined with the system model and the control law of Equation

(4.8) as:

v=s's= ST(G ;(H-;(z] =s"{G(A, x, + A X, )+ [A,x, + A, — (a]x|+ S)sen(s)]}

=s"[(GA, + A, )x, +(GA, + A, )x, |- (a|X!+ §}Sl (4.10)
<ISJ(GA,, + A, )x, +(GA, + A, x|~ (dx|+ S )|

With respect to Expression (4.10), for any given d, there exists an ¢ in Expression (4.10)

that makes the derivative v negative; this guarantees the convergence of the state
trajectory to the manifolds = 0. The convergence rate can be made fast by increasing the
parameters & and ¢ in the control law of Equation (4.8).

Taking consideration of disturbances and parametric variations, the linear system of

Equation (4.1) can be rewritten as:
x = (A+AAO)K()+Bu()+Qw(r)  (@.11)
where AA (¢)are parametric variations and w(t)e R'are disturbances. According to Utkin

(1999), sliding modes in any manifold are invariant with respect to parametric variations

AA(r) and disturbance vector w(z)if there exist matrices A , and A, such that:

AA =BA

(4.12)
Q=BA,
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If the conditions (4.12) hold, the system of Equation (4.11) has a regular form similar to

Equation (4.4) as:

XI:AHXI(’)-I_ADXZ(I) 4.13)

°

X, = A, x, (1) + ALx, (1) +ulr)+ A x(e)+ A wi(r)

A control law in the form of Equation (4.8) with a manifold of Equation (4.7) leads to a

sliding mode equation (4.6) with desired dynamics and invariance property if a additional

condition & > w, Where'AQw(rx <SW,.

4.2.2 CSMC of Nonlinear Systems

Modeling inaccuracies have adverse effects on nonlinear control systems. They can
be classified into structural (parametric) uncertainties, and unstructured uncertainties.
Structural uncertainties correspond to inaccuracies on the terms included in the model.
Unstructured uncertainties correspond to inaccuracies of system order and external
perturbations. Two control approaches dealing with the system uncertainties are robust
control and adaptive control (Slotine & Li, 1991). A simple approach to robust control is
SMC for a nonlinear system as discussed in (Slotine & Li, 1991). Consider a nonlinear
single-input system, such that:

A = f(x)+b(x)u (4.14)
o T
where xe Ris the output, u e Ris the control input, X = [,\' X .\‘("‘”} is the state vector.

The nonlinear function f(x)is not exactly known but estimated as f(‘() The estimation

error is assumed to be bounded by a known continuous function F(x):
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7)- ) < Fl)

(4.15)

The control gainb(x)is not exactly known, but is bounded by known, possibly time-

varying or state-dependent bounds:

O < bl'lliﬂ (x) S b(x) S bmﬂx (X) (4'16)

The control input enters the system dynamics multiplicatively; the estimate l;(x) of

b(x)can be chosen as the geometric mean of the above bounds:

Z;(X) B bmin (X)bmax (X) (4 1 7)

The estimate IS(X) is also bounded as:

£ IB’ ﬁ = bmax (X)/bmin (X) (4 1 8)

The control problem is to get state vector xto track a pre-specified time varying state

. T
X, = [,\-d X .\'f,’“”} in the presence of modeling uncertainties on f(x)andb(x).

. x(nal

=

T
The tracking error is defined as X=x-x, 2{3 )} , and a time-varying

switching surface in R" state space is defined as:

n-l
s(i,t):(%+ﬂj ¥=0,4>0 (4.19)

Withn =2, the switching function becomes S(Z\E,I) =X+ Ax =

0. Similarly, withn =3, the
switching function turns into s(¥.1)= ¥+ 2%+ A'¥ =0. So the switching function s is
simply a weighted sum of the components of the tracking error vector X . Since the
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~(n-1)

expression of s(%,¢) contains ¥, one only needs to differentiate s(i,t) once to make

the control input u(¢) to appear, the original n” -order tracking problem is converted to a

simpler first-order stabilization problem as:

s(%,1)=0 (4.20)
The simplified first-order stabilization problem (4.20) can be solved through finding
control input u(¢)based on the Lyapunov stability theory. The Lyapunov function for the

scalar input system (4.14) is defined as:

v(i,t):%sz(i,t) (4.21)

Taking the derivative of Equation (4.21), and making it negative definite through the

selection of the control law will guarantee the asymptotic stability, that is:

v(X,1)=s5<0 (4.22)

For global stability, Equation (4.22) can be redefined as:
V(X t)=ss5< -77|s|, n>0 (4.23)
where H denotes absolute value of (o), the positive constant 77 determines the

convergence rate.
Inequality (4.23) is also called the reaching condition which ensures the existence of
sliding mode.

To illustrate the design procedure clearly, a third-order system is adopted as an
example, that is, n=3. Design of control law is carried out in two steps. In each step

only one parametric uncertainty is considered. Firstly a control law is derived by

91



Master’s Thesis — Shenjin Zhu McMaster university — Mechanical Engineering

setting b(x)=1. Then the control law is modified to account for uncertainties in the
control gainb(x).
Case 1: Control of Systems with Unit Input Gain
By setting b(x) = 1, the third order differential Equation (4.14) is rewritten as:
(3)

2 = F(x)+u (4.24)

Taking the derivative of s(X,#) and combining it with (4.24) give:

s@ )=V 425+ 25 = fx)+u— 2P+ 245+ 23 (4.25)
The equivalent control ueq(t) may be defined as the continuous control law that would

maintain the sliding mode dynamics without accounting for the presence of modeling

uncertainties and external disturbances. In sliding mode, by solving s(X,¢)=0, the

equivalent control is obtained as:

U, (r)= xf,” - f(x)— 215\:—/13 X (4.26)

where f(x)is an estimate of f(x). In practice, the control law has to be discontinuous
across the switching surface s(X,¢)=0 to offset parametric variations and external

disturbances. To satisfy the stability condition, a discontinuous term is added to the

equivalent control, such that:

u(t)= u(,q(t)— K sgn(s) 4.27)

where sgn is a signum function, { , K>0. By choosing K to be large

sgn(s)=—1,5s<0
enough to overcome uncertainties, the reaching condition of Equation (4.22) can be
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satisfied. The magnitude of the constant K must be increased with the extent of parametric

uncertainty. Substituting Equation (4.26) into Equation (4.27) gives:

u(t)= 2% - f(x)-2A3- 2 3I-Ksgn(s)  (4.28)

The sliding mode dynamics of Equation (4.24) may be written as:

W)= f(x)+ 2 - F(x)-24F-2F-Ksen(s)  (4.29)

Combining Equations (4.23), (4.25) and (4.28) gives:

55 = (£ (x) - 700~ K sen(s)) = s (0= F ) Kl <= 430)

Let F(x) be the upper bound on model uncertainty, the reaching condition (4.30) is
satisfied if:

K=F(x)+n (4.31)

Case 2: Control of Systems with Uncertain Input Gains

A third-order nonlinear system with arbitrary control input gain is written as:
X = F(x)+b(x)u,, () (4.32)
whereu, (¢) is the modified control input. As previously mentioned, it is assumed that the

control gain b(x) is not exactly known, but has a known sign, and is bounded by some

known functions as defined in Equations (4.16), (4.17) and (4.18). The switching surface
is defined in (4.19). The objective of design is to modify the control law (4.28) and
condition (4.31) to satisfy the reaching condition of Equation (4.23).

Equations (4.24) and (4.32) are identical except that they have different input gains.

Let:
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From Equations (4.32) and (4.33), the derivative of the switching function becomes:

s 1)= 501225+ A5 :f(x)+b(x)[ (O)-Ksan(o)]- P +22F+ 2% (434)
Since f(x) = f(x)+ f( ). Equation (4.34) can be written with Equation (4.26) as:

; = f(x)+(—[l§— lJum -——Z—ngn(s) (4.35)

Note that time and state variables in Equation (4.35) have been omitted for clarification.

Substituting Equation (4.35) into Inequality (4.23) gives:

A

= s(f —f)+ 5[%_1)% —s%ngn(s)S —77|S| (f f)”‘ UISI (1”‘“}‘ 5SS K|5|

From the above inequality with uncertainty bounds (4.15) and (4.18), a conservative

value for coefficient K is obtained as:

K> ,B(F+77)+(,B—Ijueq

(4.36)

Control law (4.33) with K bounded in Inequality (4.36) satisfies the reaching
condition (4.23). However it is discontinuous across the switching surface frequently
which results in chattering. Young, Utkin and Ozguner (1999) perceived the chattering
phenomenon as motion that oscillates about the sliding manifold due to imperfections in
the implementations of the switching curve. They believed that the chattering is produced
by two possible mechanisms: (1) the presence of parasitic dynamics such as the fast
actuator and sensor dynamics in series with the plant causes a small-amplitude high-

frequency oscillation to appear in the vicinity of the sliding manifold; (2) the switching
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non-idealities, due to time delays of the switching devices and the microprocessor code
executions, cause high frequency oscillations. In general, control chattering is highly
undesirable since it involves extremely high control activity that usually causes
mechanical actuators to wear out prematurely, or excites un-modeled high-frequency
dynamics.
Chattering Elimination

In general, chattering is undesirable, and has to be eliminated for the controller to
perform properly. This can be done by setting a thin boundary layer neighbouring the
switching function to smooth out the control discontinuity as (Slotine & Li, 1991):

Y= |s&)<php>0 (437

where @ is the boundary layer thickness. The sign function in the control law u, (r) of

Equation (4.33) is replaced with a saturation function as:

u,(1)= Bét) [“ lt)- Ksm[éﬂ

A

Rk
,[_j o o
e

oo

<1 (4.38)

>

Note that if @ — 0, thensat(s/ ) — sgn(s). In this case, the perfect tracking is achieved
in the absence of real sliding mode condition. So the control law (4.33) can be viewed as
a particular case of the generalized control law (4.38). Note also that the boundary layer

provides a trade-off between the tracking precision and the level of the control activity.
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The boundary layer can be time-varying, and through monitoring its width, insight
can be gained into uncertainties. The development of control law with variable boundary
layer is partially done in Equation (4.38). What remains is the determination of the gain
that would satisfy the Lyapunov stability condition. For a system to be stable, the
attractiveness of the boundary layer has to be maintained. When the trajectory is outside

of the boundary layer, the distance of the switching function to the boundary layer has to

decrease always, which is ensured by (]—](s—(p)é—l] when s> @ and —(li(s—(— ®)=n
dt dt

when s < —¢, that is:

SER@-T 5> U (4.39)
S2N—-@, s<—U

The time derivative of the Lyapunov function of Equation (4.21) with (4.39) can be found

. . Ss[(p—ﬂjz]s[({p—n), s>
as v(i,t) =88 ; 5 , 1.e. the reaching condition becomes as:
< s(n— cv) = ls\[(o—n} s<—¢
S5 < (go— q];s >0 (4.40)

The reaching condition (4.40) indicates that the time derivative of the thickness of the
boundary layer is superimposed on to the reaching condition as an additional term; and if

the thickness of the boundary layer is time-invariant, the reaching condition is the same as
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(4.23); if the thickness increases[(p>0j, the boundary layer is getting wider, s(X,¢)is
more likely trapped inside the boundary layer, the condition (4.40) is less stringent;

otherwise, if the thickness decreases[(p<0j, the boundary layer is getting narrower,

s(X,t) the condition (4.40) needs to be more stringent to attract s(X,¢). In other words,

the existence condition is more demanding during the contraction of the boundary layer

and less demanding during the expansion of the boundary layer.

To satisfy the existence condition (4.40), an additional term — ¢ has to be added into

the discontinuous control law by modifying the coefficient K into K — ¢, such that the

control law becomes:

u (0)= 5(1[)[1,&, (t)—(K - (;)jm{éﬂ (4.40)

The s -trajectories inside the boundary layer can be expressed directly from Equations

(4.35) and (4.40) as:

y A b b ‘\s

=\f-f )+ =-1 U,y — = K-¢|— (4.41
’ (f f) (b ]"’ b( go)(p )

Every term of the right hand side of Equation (4.41) is continuous inx, the solution of

Equation (4.41) must be continuous in x as well. Thus the chattering is eliminated indeed.
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4.3 Discrete-Time Sliding Mode Control

Most SMC approaches are based on the continuous-time models with discontinuous
control action. In sliding mode, reduced-order dynamics is realized by high frequency
switching control action. The switching action is normally achieved with two options:
analog implementation and discrete implementation (Utkin, Guldner & Shi, 2009). The
analog implementation of SMC needs very fast switching devices such as power
transistors. This method is only suitable for systems with voltage control inputs. The
discrete implementation is realized by using digital microcontrollers with a finite
sampling rate. Direct implementation of a SMC designed for a continuous time system
without modifications will introduce chattering due to the finite sampling rate. In order to
eliminate chattering, one can theoretically increase the sampling rate, which is subject to
limitations of the converting devices and can excite the unmodeled, undesirable high
frequency dynamics within them. Design of SMC based directly on discrete-time systems
is preferred.

Discrete-time sliding mode control (DSMC) can be categorized into two approaches.
In the first, the focus is on mapping CSMC systems into DSMC counterparts (Sarpturk,
Istcfanopulos & Kaynak, 1987; Gao, Wang & Homaifa, 1995). In the second, a new
control algorithm is developed based on the discrete formulation of the Lyapunov
stability condition (Furuta, 1990; Bartolini, Ferrara & Utkin, 1995; Young, Utkin &
Ozguner, 1999). Application of DVSC can be found in a wide spectrum of system types,
including nonlinear systems, multi-input-multi-output (MIMO) systems, large-scale,
infinite dimensional systems and stochastic systems (Kao, 2005). The early stage of
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DVSC were mainly implemented on SISO systems, linear systems with state feedback
and switching surfaces defined in a special quadratic form (Ignaciuk & Bartoszewicz,
2009). Then, the property of robustness of DVSC systems with respect to system
perturbations and disturbances was developed (Kao, 2005).

Compared to CSMC systems, DSMC systems have the following attributes (Gao,
Wang & Homaifa, 1995): (1) starting from any initial state, the s-trajectory moves
monotonically towards the switching plane and crosses it in finite time; (2) once the s-
trajectory crosses the switching hyperplane for the first time, it will cross the hyperplane
again at every successive sampling time which results in a zigzag motion about the
switching plane; (3) the size of each crossing step is non-increasing and bounded in a
fixed width in a subspace around the switching hyperplane.

A DSMC system satisfying Attributes (2) and (3) is called a Quasi-Sliding-Mode
(OSM).The specified band containing the QSM is called the Quasi Sliding Mode Band

(OSMB) which is represented as {x[~ p<s(x)< (p}. The width of QSMB is2¢. A QSM is

an Ideal-Sliding-Mode (ISM) if the width of the QSMB becomes zero. A DSMC system
having all three attributes (1), (2) and (3) is said to be satisfying the reaching condition

(Gao, Wang & Homaifa, 1995).

4.3.1 Design of Discrete-Time Switching Functions

Design of a switching function is the first step in the DSMC design. The techniques
of designing switching functions are covered in (Hwang, 1992; Spurgeon, 1992; Gao,

Wang & Homaifa, 1995; Chen & Chang, 2000; Bandyopadhyay & Thakar, 2008). The
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method used for the design of switching function in continuous time is still applicable for
discrete time systems. One method for the design of a switching function has been
presented in Section 4.2.1. Another method addressed by Chen and Chang (2000) is
presented as follows.

A discrete linear time invariant (LTI) system is given as:

X,,, = Ax, +Bu, (4.42)
wherex, € R"is the state vector, A€ R""is the system matrix, and Be R"is the input

matrix, u, € R” is the input vector. It is assumed that the pair (A,B)is controllable.

Design of a switching function is carried out in two stages. In stage one, a feedback gain
matrix K for the closed-loop system is designed using pole assignment technique. In

stage two, a switching function is determined based on the feedback gain matrix K .
Since the pair (A,B) is controllable, a feedback gain matrix K e R™" can be
obtained by assigning n eigenvalues {4, 4,.---, 4, } for matrix A —BK with the following

three conditions (Chen & Chang, 2000): (1) the matrix A—BK has no common

eigenvalues with matrix A ; (2) the eigenvalues of A —BK are so chosen that the closed-

loop feedback system is stable and valued as{ 4, 4,, -+, 4

n—m?

A - Ap with
N

A#A, =12, n-m0<A<l; (3) the matrix (A—-BK) is diagonalizable with m

repeated eigenvalues. Under these conditions, a switching function can be defined as:

s, =Gx, =0 (4.43)
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where G € R™"is the switching matrix which is determined by using the feedback gain

matrix K with the following important properties (Chen & Chang, 2000), such that:

G=K(A-a1)"
GB=1I (4.44)

m

[I” —B(GB )_1G]A has the eigenvalues {/11,/12,- A0, ~,0}

> n-m?

Substituting Equation (4.44) into Equation (4.43) gives the switching function as:

s, =K(A-AI,)'x, =0 (4.45)

4.3.2 DSMC of Linear Time-Invariant Systems

There are plenty of articles published on DSMC of linear time invariant (LTI)
systems. They cover a wide range from single-input single-output (SISO) to multi-input-
multi-output (MIMO) systems. The DSMC algorithms are implemented by using either
state or output feedbacks.

DSMC of Single Input LTI systems

Reaching Law Approach (RLA) (Gao, Wang & Homaifa, 1995) is a SMC method
first proposed for continuous VSC systems. The RLA specifies an autonomous reaching
condition, and then a SMC law is derived from the reaching condition combined with a
known model of the plant given known bounds no perturbations. For the SMC of a single
input discrete system, the reaching law is specified as:
Sy =(1—qT)s, —€Tsgn(s,).¢>0,>0,0<1—gT <1  (4.46)
where T is the sampling interval. From the definition of the QSM, the state

trajectory s,,, must have a sign that is opposite to that ofs, . The first term of the right
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hand side of Equation (4.46) has a sign that is the same as that of s, . To make the sign of

s, to be opposite to that of s, , the following condition has to be satisfied by the reaching

law, that is:

(1-gT)s, —€r <0, s, >0

S :(1—1qT)sk—gngn(sk)z{(l_qT)s +& >0, s <0:>
k s k

g, < €7 5, >0
T

 >— £ s & %0
1—¢gT

From the above expression, the state trajectory satisfies the following condition:

ET
B 4.47
‘Skt < | ( )

The QSMB is determined from Expression (4.47) as:

_&r
1—¢gT

Q (4.48)

The reaching law (4.46) satisfies the reaching condition and guarantees the stability
of the DSMC system. Given a discrete single input linear system as:

X, = Ax, +Buy, (4.49)

the control law is derived based on the reaching law of Equation (4.46) and the switching

function of Equation (4.43) as:

Se =S, =—qTs, —€Tsgn(s, )= GAX, + GBu, —s, =
i, =—(GB)"(GAx, —s, +¢Ts, + T sgn(s, )

From above equation, the control law is obtained as:

i, =—(GB)'[GA - (1-¢T)Gx, —(GA)'eT sgn(s,) (4.50)
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Substituting (4.50) into (4.49) gives the closed-loop dynamics of the discrete SMC system
as:
X, =(-¢qT)x, -B(GB) 'eTsgn(s,)  (4.51)
Consider the system (4.49) with perturbations:
X, = Ax, + AAx, +Bu, +w, (4.52)
Applying the reaching law (4.46) to Equation (4.52), the control law is then modified as:
i, =—(GB)'[GA - (1-¢T)G]x, —(GA) 'eT'sgn(s,)-(GB) '8, (4.53)
where 6, = GAAx, + Gw,. With these perturbations, the structure of QSM is unchanged

and the system’s invariance property holds. However the control law (4.53) is non-

implementable due to the lack of knowledge of the perturbations. It is assumed
that|5k| </, for k=0,1,---,0o. To make (4.53) implementatable, ¢, is replaced with¢,
such that:

u, =—(GB)'[GA-(1-¢T)G]x, —(GA) 'eT'sgn(s,)-(GB) "¢
Combining the above equation with Equations (4.52) and (4.43) gives:

Sen = (1=qT)s, —€Tsgn(s, )+ 6, —¢ (4.54)
In Equation (4.54), the term &, is out of control. The term ¢ helps the term €7 sgn(s, ) to
make s, to have a sign that is opposite to that of s, to ensure the QSM. This can be
achieved by setting ¢ = I’ sgn(sk) where [5A,| <), for k=0,1,---,0o . The control law
(4.50) becomes:

= —(GB)'[GA-(1-¢T)G]x, - (GA) (e + y)Tsgn(s,)  (4.55)
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With the control law of Equation (4.55), the closed-loop dynamics of the system of
Equation (4.52) becomes:
X, =(1-¢qT), —~B(GB) (e + 7)Tsn(s,) (4.56)
DSMC of Multi-Input-Multi-Output LTI System

Chang (2002) addressed a DSMC for Multi-Input-Multi-Output (MIMO) LTI
systems which uses the switching function of Equation (4.43) to design a DSMC law that
can result in a given rate of convergence. Consider a discrete LTI system model with
matched uncertainty, such that:

X,., = Ax, +B(u, +d,) (4.57)

wherex, € R", u, € R", and rank(B)=m . The matched uncertainty satisfies:

la| <o, =d,+d x| (4.58)

where ”0“ represent the Euclidean norm, d,and d, are positive constants. The switching
surface is defined from Equation (4.43) as:

s, =Gx, =K(A-JI,)"'x, =0, GeR™ (4.59)

where G =K(A-A1,)",GB =1, , and where lI” —B(GB)“GJA has the eigenvalues

m
{A.2,,---,2,,.0,---.0}. For the controller design, the following conditions need to be

satisfied (Chang, 2002):

Condition C1: The matrix A —BK has no common eigenvalues with matrix A .
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Condition C2: The eigenvalues of A —BK are chosen such that the closed-loop feedback
system is stable and valued as {4, A,--, A_,, A A} with A= A,. i=12,-,m,

0<A<l.
Condition C3: The matrix A—BK can be diagonalized with m repeated eigenvalues.

Further to conditions C1 to C3, the dynamics of the equivalent motion’ becomes:
X, = (I, -BK(A- 1) )Ax, (4.60)
For the system of Equation (4.60), the Lyapunov function is defined as v(x, )= “sk"

The global asymptotic stability of system of Equation (4.60) is guaranteed by:

<[] 4.61)

Sk+l
A smoothing boundary layer is designed with Expression (4.58) and condition C2,

such that:

‘P:{xk

The control law is in turn defined as:

Is| < @ = Ukzg}, £50 (4.62)

S,
H’ Ise]l >
u, =-Kx, —Agsat(s,), sat(s,)= S ¢ (4.63)
== Js <o
&

7 Form the nominal system of Equation (4.57) and the switching function of Equation
(4.59), the equivalent control can be obtained as:

S., =Gx,,, =0= GAx, +GBu, =0=u,, = —(GB)"'GAx, Substituting the

eq.k

equivalent control into the nominal system of Equation (4.57), with G = K(A - AI, )t

gives the equivalent dynamics.
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where K is the feedback gain matrix; A is one of the m repeated eigenvalues. The
dynamics of the s-trajectory by combining Equations (4.57), (4.59), and (4.63) becomes:

S, =48, —A@,sat(s,)+d, (4.64)

When the s-trajectory is outside of the boundary layer, i.e., HSL” > @, , such that:
sat(s, ) = ﬁ

Substituting the above equation into Equation (4.64), the s-trajectory becomes:
S = ﬁQISkll_ 9. )+d, (4.65)

Taking the Euclidean norm of (4.65) with Expression (4.58) and the boundary layer

defined in Expression (4.62) gives:

el < s - )+ 0 = Als |+ (A0, +0,)= As,|-e<As| . This condition

boundary layer of Expression (4.62) with the shrinking rate governed by the positive

S </1“sk[| is satisfied with 0<A<1 from above. The s-trajectory shrinks to the

constant 4. When the s-trajectory gets inside the boundary layer,, i.e., ‘Sk” <@,, the s-

trajectory from Equations (4.57), (4.59) and Expression (4.63) as:
S, =d, <0, (4.66)
The above analysis indicates that the s-trajectory approaches the boundary layer in a finite

number of steps and finally stays inside the sliding region.

Adaptive DSMC of LTI system
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Song and Huang (2007) proposed a DSMC algorithm based on the reaching law
approach with on-line adaptive estimation of uncertainty. Consider a single input,
uncertain discrete-time dynamical system:

X, = (A+AAX, +(B+ABu, +w, (4.67)

where x e R"is the state vector; A€ R"™is the system matrix; Be R"is the input vector;
AA, AB are the corresponding uncertainties on in matrix A and the vector B, respectively;
u is scalar input; w(e)is external disturbances.

The sliding surface is defined as
s, =Gx, =0 (4.68)
where G € R™ is the switching surface vector. A Lyapunov function is defined asv, = |sk|.

A control law is determined using RLA to ensure the stability such thatv,,, <v,, as:

Sea = M5, — €T sgn(s,) (4.69)
er
L s> 1+ u
where £ >0, T is the sampling period, O< <1l and p, = . The
2;1\sk| |s < er
7L )

reaching law itself can ensure the s-trajectory to reach the sliding surface of Equation
(4.68) asymptotically. The control law is derived by combining the system model of
Equation (4.67), the sliding surface of Equation (4.68) and the reaching law of Equation

(4.69) as:

i, =—(GB)" (GAxk — uts, + p, €T sgn(s, )+ (?k) (4.70)
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where d, = G(AAx, +ABu, +w, ) is the uncertain part of the s-trajectory, and (?k is the
estimated value of d, determined through a recursive process as:

d=d_+Md_ ~d_)+d +ad_-d.,) @.71)

where I/l] <l, d =d—d is the estimation error on s-trajectory between the measured s-
value and the reaching law as:

(7/<—1 = 5, = (s, = p T sen(s,,)) 4.72)

A modified reaching law can be obtained from the estimation error (4.72) as:

S, = s, — p,eTsgn(s, )+ (7k (4.73)

Equation (4.73) can be interpreted as the modified reaching law consisting of the s-

dynamics and the estimation error dynamics. The estimation error dynamics is decoupled

from the s-dynamics, that is, it is reasonable to represent the reaching law as:
Sert =St FSrpats St = M — PET SN, ) So0 =4, (4.74)
With the definitiond, = (7k + Jk , it can be determined from (4.71) and (4.74) that:

Sakr1 = Jk =d, _((?k—l +Jk—l)—/1l([?k—l +(7k—l )_ ((?k—l +(7k—2 )J: d—d, - Md—d,,), so:

Sopr2 = (7“1 =d, < |dk+l _dk|+/1]dk '_dk—1| 4.75)

+1

~d, ~-Ad, —-d, )= ‘JM

If the condition |dk—dk_|]<m holds for all k and some positive constant m , then

LI :le' <2mholds for allk. The amplitude ofm is dependent on varying rate of the

estimation error dynamics. The estimation error converges to zero asymptotically if the

uncertainty is constant or slow varying.

108



Master’s Thesis — Shenjin Zhu McMaster university — Mechanical Engineering

From Equations (4.71) and (4.74), if s, , > li then:
. T

Span ¥ 81, = (L4 )5, — €T > (l'*'/l)—iT_“fT =0

1+ u
T/ (4.76)
Spn =8, = (w—1)s,, el < (1)L —er <0
' ' ‘ I+ u
T ;
s, < m— then from Equations (4.71) and (4.74):
TH
er
S+, =+ u)s,  +€T < (1 +;1{—1—:—)+ T =0
. 4.77)
er
Sy gy =8y = (W =1)s;, +&T > (,11~1)(—1+—]+€T >0
U

If —li <'s,, <Othen from Equations (4.71) and (4.74):
+ U

Sppn TS = (1 +:U)Sl,k - 2/1151.1\"5%“(51‘&»): (1 _/u)Sl_k < (1 _,U)O =0

(4.78)
Siker TSk = (/1— I)Sl.k - 2/1]SI.k|5gn(51.k): _(1 +/U)Sl.k > —(1 "',U)O =0
- T .
HOoss,; < o then from Equations (4.71) and (4.74):
+u
St 51 = (L 12)s,, _2lulsl.k‘5gn(sl,k): (1=)s, 2 (1=2)0=0 4.79)

All the expressions from (4.76) to (4.79) imply|sl'k+l|2 S\sur which means that

as k — oo | s, converges to zero. From the analysis of both the s-dynamics and the
estimation error dynamics, it can be concluded that the system of Equation (4.67) with
control of Equation (4.70) and the recursive uncertainty estimation of Equation (4.71) is
asymptotically stable.

109



Master’s Thesis — Shenjin Zhu McMaster university — Mechanical Engineering

DSMC of MIMO LTI Systems Using Multi-Rate Output Feedback

A state observer can be used when all of the states are not available. Theoretically
the state estimation error from an observer asymptotically approaches zero in finite time.
Multirate output feedback (MROF) can be used in place of a state observer to compute
the state. In MROF, the measurement of the output and the computation of the control
input take place at different rates. The output is measured at a faster rate than the control
input. The computed state error from MROF is zero at the next control input sample time
(Waterman & Nonami, 2010). Janardhanan and Bandyopadhyay proposed a control
algorithm using the MOF strategy for achieving quasi-sliding mode in discrete-time LTI
systems with bounded unmatched uncertainties.

Consider the discrete-time system representation for a sampling rate of 7 second:

X, =AX,+Bu, +D.w, 4.80)
Y = Cx,

where xe R"is the state vector, ue R"is the input vector, y € R” is the output vector, and

we R? is bounded disturbance vector, with matrices

A.e R™ B,e R™ ,D.e R™ and Ce R” . It is assumed that the pair (A,,B,) is

controllable and the pair (A_,C) is observable. The matching condition

rank(B_) = rank(B_ | D_) may not be satisfied. The switching function is defined as

T > . .
S, = [Su- 53k~--smk] =Gx,=0,se R",Ge R™ and GB, is assumed non-singular and

the disturbance is bounded:
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q, =94 4.81)
7

d[ - du _dl
2

whered, =[d, d, --d, ', d,=|d, d, --d, [ The objective of the control is to achieve

quasi-sliding mode by steering the system states to the vicinity of the sliding
modes, = Osuch that once the states enter the neighbourhood of the switching surface,
stay thereafter.

For state observation a fast output sampling is performed (Bandyopadhyay & Thakar
2008) and the system of Equation (4.80) is resampled at A=7/N , where the

integer N > 0, and o is the observability index® of the system (A, B,C), such that:

X, = Ax, +Bu, +Dw, 4.82)
yi = Cx,

The output measurements are taken at time instantst =I/A,[=1,2,---,N —1. The control
input u(t), kt <t <(k+1)ris constructed as a linear combination of the last N output

measurements, that is:

y(kr—7)

kT—-T+A
.| ) (4.83)

y(kr-A)

¥ The observability index o of a linear time-invariant discrete system of Equation (4.82) is the smallest
natural number for which is satisfied that rank (O, )= rank(0,,, ) where:

O;;:lc CA CA®> ... CAn—lJ
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The multirate system with the input sampling time of 7 and the output sampling time of
Ais denoted as:

X, =AXx,+Bu,+D.w,

(4.84)
Yieu = Cox, +Dgu, + Egw,
c ] 0 0
CA CB CD

whereC, =| CA> |e R"* D, =|CAB+CB |e R"" E,=|CAD+CD |e R"",

on oyam 3 a)
The system state x, can be approximately constructed from the past output y, by using
the second equation of Equation (4.84):

x, =(clc,)'Cly,..-(c'c,)' Dy, -(CIC, ] CIE,w, (4.85)

Substituting (4.85) into the first equation of Equation (4.84) gives the relationship

betweenx, and y, as:
x, =Ly, +Lu_+Lw,_, (4.86)
; _ T~ YT _ T YT _ T~ YT
where L, = A,(COCO) G L, —Br_Ar(COCO) CoDy. L, _Dr—Ar(COCO) GE, . In

Equation (4.86) w,_ is not known, but its bounds are assumed known. The bounds on

. 1 I,=1 N
L w,  can be determined asl, <L w,, <l 1, =~ 1, =- 5 L. The estimation of

the state x, is calculated as:
X, =Ly, +Lu, +]; (4.87)
The relationship between x, and X, is derived with (4.86) and (4.87) as:
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x, =X, —l;+L w, (4.88)
The estimated sliding manifold can be defined as:
$, =Gx, =GLy, +GLu, , +Gl, (4.89)

Following the state estimation of Equation (4.88), a quasi-sliding mode control law can
be proposed as stated in the following theorem (Janardhanan & Bandyopadhyay, 2006).

Theorem4.4: A multirate output feedback based control law is defined as:

uk = _(GB T )_I [G (A r I)‘QI\ * Kfsul (§L ’ ¢)+ df)] (490)

¥ i
. . ; S
£, (..9)= sat(-“—J sat( -‘j Zmk
[ S
: sgn($, ). 5| > ¢ (4.91)
sar ik, = §'k A~ [’:1,2’. ,m
[ i ;’ Sik S¢:
i

where ¢@. is the component of the vector ¢ which sets the widths of the quasi-sliding mode

smoothing boundary layers, and K = diag(k,,k,,--,k, ) with:

> m

k. >(a,+b,+d,), (4.92)
and:
au _al
a=—
a, =2 =GA (4.93)
a, <a, = GA L w, <a,
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b[ - bu —b/

2
b, = 2 ;’bf = Gl, (4.94)
b,<b, =GL,w, <b,

0<2¢ —k —(a,+b,+d,)

,. (4.95)
The controller of Equation (4.90) achieves quasi-sliding mode for the discrete-time

system of Equation (4.84); that is, for any initial statex,, there exists an index k" such

that x,e Qc Q for all k>k" where Q is the quasi-sliding mode defined
as = {x”skl < ¢}.

Proof: Define a Lyapunov functionv, =§,.i, i=12,---,m. The control law (4.90) shall
decrease the Lyapunov function monotonically, that is, the reaching condition is:

Vi =82, <V, =58 = (AS, +25,)A5, <0,V5, 20  (4.96)

where AS,, is the i" component of the vector A, . AS, can be calculated from (4.88) as:
A§, =8, -5, =G(x,,, —%,) (4.97)

Substituting Equations (4.84), (4.88) and (4.90) into Equation (4.97):

Agk = (GA erka -GA rlo )+ (Glo - Gwak )+ (dk - do)_ Kfm, (§k ,¢5)

« (4.98)
= (ak—l —a, )+ (bo -b, )+ (dk - do)‘“ Kf,, (Sk’¢)

Rearranging Equation (4.98):

AS, =(a,, —a,). +(b,—b,). +(d, —d,) —kisat(%;"—] (4.99)

i

Substituting from Equation (4.91):
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ki 5, >
As, = (aa-‘l —a, ),- + (b,, _bl;)i + (dk _du), -1k 2; y PalS 4 (4.100)
—kii 5, <9,

From Equations (4.81), (4.93) and (4.94), then:

_(al+bl +d1){ < (ak—l "ao)i +(b0_bk) +(dk _do)< (al +b, +d1) (4.101)

To determine if the stability and the reaching condition (4.96) are satisfied, the three cases

associated with the saturation function, that is, 5, > @, §, <—9, and|§ik| < ¢, have to be

considered as follows:

(1) Fors, > ¢, from Equation (4.100):

As, = (ak—l _ao),- +(bo b, )i +(dk _dO)i =k

and from Expression (4.101):

—(a,+b,+d,), —k, <AS, <(a,+b,+d,). —k, <0

From the left half of the above expression:

28, +A5, >2¢,—(a, +b, +d,), —k, > 24, -2¢ =0,
these imply that:
(AS, +25,)AS, <O when§, > ¢ (4.102)

The stability condition is satisfied.

(2) Fors,, <—¢., from (4.100):

A‘eik - (ak—l _ao)l +(b0 —bk) +(dk _d())i +k;

and from (4.101):

0<k —(a +b,+d,) <A5, <k +(a,+b,+d,)

i
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From the right half of the above expression and Expression (4.95):

25, +AS, <=2¢,+(a,+b,+d,). +k, <0.

These imply:

(AS, +25,)AS, <O when §, <—¢ (4.103)

The stability condition is satisfied.

(3) For|3,| < ¢, from (4.100):

" k. |.

S+ = 1_5 Sy T (ak—l _a())i + (bo -b, ),- +(d, —d, )1

From Equations (4.88), (4.89) and (4.94), the above equation can be rewritten,

withs, =Gx,, as:

k. .
Siks1 = (1 _;)S,‘k + (ak—l —4, ),- + (dk _do),- =

i

A (4.104)
5| <@ —k;l% +'(ak_l —ao),.l+|(dk ~d0)[| <|g —k|+ (@, +d,),
If ¢ >k, , with (4.92) the expression (4.104) becomes:
Spa| S0, -k +(a,+d,), <(¢-b,), < g (4.105)
If ¢. <k, , with (4.95) the expression (4.104) becomes:
ls,0| <k —0,+(a,+d,), <(20-b-9), = (6-b,), <9 (4.106)

If . = k,, with (4.92) the expression (4.104) becomes:

lsikfl| = (al +d[),- < (¢—b1)i <o (4.107)
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From Expressions (4.105), (4.106) and (4.107), it can be concluded that the

condition\sikﬂk ¢ is satisfied. This proves that a quasi-sliding mode is obtained in the

system using multirate output feedback.

4.3.3 DSMC of Non-Linear Systems

Most plants in industry have nonlinearities. Sliding mode control of nonlinear
systems has therefore drawn great attention within control community.
DSMC of Single Input Nonlinear System

Misawa (1997) presented a DSMC method with a boundary layer generated by a
saturation function without requiring either matched uncertainties or smooth functions.
The boundary layer is attractive. The thickness of the layer is bounded with mild
conditions so that global stability is guaranteed.

Consider a single-input nonlinear system:

x(t) = £(x)+ g(x)u(r)+ Af (4.108)

where f(x)e R"is a known function, g(x)e R", Afe R", u(t)is the scalar input,
x(t)e R"is the state vector. The uncertainty Af is assumed to be bounded by constants or
time-varying bounds of functions of the states, the known inputs, or by explicitly known
functions of time. The input gain vector is defined as g(x) = §(x)Ag with g(x)e R"being a
known function. The scalar uncertainty Ag is assumed to be bounded such that:

1/B<Ag<p for =1 (4.109)
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The objective of the tracking control is to find a control law such that the system
trajectory x(¢) would follow the desired trajectory x, (¢). The tracking error is defined as:
X(t)=x,(¢)—x(¢) (4.110)

The sliding manifold is defined as:

s(X(2))=0 (4.111)

It should be chosen such that s(X(¢)) is a function of all of the elements of the error

_I.Q.S—

vector X(¢), and the equivalent dynamics, Y(l‘) = {I - g(x)[gi g(x)} =
X

}f(x)gis stable.
ox

The smoothing boundary layer is defined as:
v =&s&) < ¢} 4.112)
The difference in reference trajectory between consecutive samplings is defined as:
DX = K Ko (4.113)
It is assumed that the reference trajectory x, is always finite and the Euclidean norm of
the rate of change of the reference trajectory between consecutive sampling |Ax u' is

bounded, and the following norm is bounded also:

AX(U«'
At

X — X
At

P . 4y 4.114)

’ The equivalent dynamics is obtained by:

(8= 0= Hz6] =0= —aa—;x =f=s %[f(m g(u(r)]= 0= u_ (1)= _[ s (X)T % p(y)

» 5;g ox
= x(r) = {I - g(x){g—i g(?()]l -gi}f (x)
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p, is the partial derivative of the sliding manifold and defined as:

3y fosas as
Yo% 0%, o, |

pk"‘g

(4.115)

Xy

The discrete-time sliding surface is obtained by approximating the continuous time
counterpart of Equation (4.111) in its tangent plane using Taylor series expansion:
S(im)zs(ik)"'pk("zm ~% )+, (4.116)

where o, is the approximation error and is assumed to be bounded as:

lo|<7, 4.117)
The discrete-time state vector model is obtained by using the Euler forward difference as:

x,.k:%+5ﬂ\, fori=12,-n (4.118)

where Az is the sampling period and J, represent the numerical approximation errors
which are assumed to be of the order of Ar, that is:
|6, < EAt for 0< &< oo (4.119)

The discrete-time model can be obtained by discretizing the continuous-time
counterpart of Equation (4.108) by using the Euler forward difference of Equation (4.118):
X, =X, +Arx =x, + Af(x, )+ Arg(x, ), + At (4.120)
where ¢, is the lumped uncertainty with o/ = (e, @, -, ]. and is a function of time,
exogenous inputs, states and is defined as:

o, =N, -0, fori=12,---,n 4.121)

It is assumed that ¢, is bounded as:
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AR (4.122)
It is further assumed that the system is controllable and the measurement of all state

variables is available or otherwise obtained using state observers.

The discrete-time control law is derived based on the discrete-time Lyapunov

stability theory. The Lyapunov function is chosen to be v, = s, . The reaching condition
of sliding mode is v, <v, , that is, s;, <s; , and can be further written with
As, =s,,,—s, as (Misawa, 1997):

—-2s, <As, <0 fors, >0

(4.123)
0<As, <-2s, fors, <0

(As, +2s, )As, <0=> As] <-25,As, = {

Now As, is calculated by combining Equations (4.110), (4.116) and (4.120):

As, =p,Ax,, —Amp, (f+gu, +a, )+ 0, =p,Ax, —Ap,f —Atp,gu, +v, (4.124)

where v, = 0, —Atp,, , and argumentx, has been dropped for clarity. Substituting from
Expression (4.123) and Equation (4.124) with g(x)=g(x)Ag and assuming p,g(x)>0,

then rearranging Equation (4.123), fors, >0:

P AX _ p.f + Uy £ 2 P AX, _ p,.f +
A ~ A~ k A ~
Arp,gAg p.g8Ag Arp,gAg Arp,gAg  p,8Ag (4.125)
v, 2s,
~ + A
Atp,gAg  Arp,gAg
Fors, <0:
pkAlek _ pff n Uli 4 Zsf <u, < pkA‘:(‘/k _
Arp,gAg  P8AS  ApBAS  AIp8Ag Arp,8Ag (4.126)
p.f PR

pkgAg Ar pkgA«g
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The control law is defined as the combination of a continuous part and a switching
part:

U, =i, +i, (4.127)

where i, is model based and is further defined as:

P L (4.128)
Ap,g P8

Substituting Equations (4.127) and (4.128) into Expressions (4.125) and (4.126),

respectively, and with v, = o, —Arp h, gives, fors, >0:

—1——lﬁ+ 1 (ﬂ—phj<ﬁ<
Ag ) pgaglar )

(4.129)
2
(—l——ljﬁk+ Al (ﬂ—pkhk]-}-—_sf
Ag p.gAg \ At Atp,gAg
fors, <0:
2
(Zl—“l]ﬁﬂ‘ ‘IA (%—thkj+ﬁ<ﬁk <
o . o A 4 ;
8 P8R8 P.8A8 (4.130)

[L_ljﬁk"' Al (ﬁ_pkhkj
Ag p.gAg \ Ar

The switching control law i, has to be chosen such that asymptotic stability is guaranteed

in the presence of uncertainties, that is, Expressions (4.129) and (4.130) both have to be
satisfied to ensure the stability of the uncertain system of Equation (4.120). Using the left
half of Expression (4.129) and the right half of Expression (4.130), the switching control

law if, can be determined as (Misawa, 1997):
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o Bx 8, 7, o,
U, =g+—sat| =< |, k2n1="2+9, 2I—-p.h, 4.131
=4 p.& p n A Vi As ph, ( )
The new parameter ¢ is defined as:
. 1 .
q >(A——1]Ltk, St >0
l° (4.132)

The expression (4.132) can be rewritten as:

, (B-Di,, 4, >0
q* :supﬁ———l]ﬁk}: (1 (4.133)
Ag e

I 1, u, <0

e}

). .
a :inf[(f—ljﬁk}: (“ﬁ““‘ ey 4, >0 (4.134)
B-1i,, i

where supand inf are the supremum and the infimum, respectively. Equations (4.133)

and (4.134) can be satisfied by selecting g as:

q= (ﬂz— 1][@ +|a,]sen(s, )]+[1;ﬁﬁ][,;k “|i|sen(s)]  @.135)

Combining (4.127), (4.128), (4.131) gives the control law as:

w, = bl i, + p -l Iﬁklsgn(sk)+’5—/fsat < | (4.136)
2p 2p pg ¢

where i, _ Py _bf

~

Amp,g  p8
Note that the control law of Equation (4.136) is determined by using Expressions

(4.129) and (4.130) with the width ¢ of the boundary layer in (4.112) undefined.
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Expressions (4.129) and (4.130) can also be used to determine the width ¢ of the

boundary layer as follows. Fors, > ¢:

R v, 25, 4 - . 25, 2¢
u, <—i, + —+ — = u, ——i, ————<inf . = -
s Amp,gAg  Arp,gAg Ag Arp,8Ag Atp,gAg ) Atp,gAg

Solving the above expression by substituting from Equation (4.136) gives:

At A(Ag B+1 ). Ag Bl
Gicvanlive

U,

}+77+Agﬂk’} (4.137)

52 2

For s, <-¢:
| . , 2s, . 2s, 2
Ag Arp,gAg  Atp,gAg Ag Arp,gAg Arp,gAg Atp,gAg

Solving the above expression by substituting from Equation (4.136) gives:

p>2ipgl[1-28 2 1 A8 P
2 g2 g2

Expressions (4.137) and (4.138) can be combined into:

i,

:|+7]+AgﬂK'} (4.138)

(oz_A_t_ p.8 ﬁﬂ-qﬂ—l ﬁksgn(sk)+A—g'B-_llﬁk +n+AgfKk =
2 g2 B 2
(4.139)
At . . iy
¢27{pl\g|: nl‘qx+ﬁ-’)——-|l'[k|j|+77+Ag’BK‘}
where
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Bosz = Supl:[%én—zﬂ - l}?k Sgn(sk )}

B’ -
2

1—,33 (_ ):ﬂz—l

2,52 2,53

B -1i|+a, sgn(sk)+ B> —1i,|-i, sgn(s,)
S22 2 2/’ 2

I . x
|uk| when i, sgn(s, )> 0

A

i,

ﬁkl when i, sgn(s, )< 0

With the positive constant x defined in Equation (4.131), without loss of generality,
selection of k =n+2¢, € >0, the boundary layer width ¢in Expression (4.139) can be

determined as:

9> %{&_@% (68> +1)i |+ (8> - 1), sen(s, )|+ (1+ 57 + 2ﬁ35} (4.140)

With control law (4.136) and the smoothing boundary layer thickness of Expression
(4.140), the stability condition, s, < s; , is satisfied outside of the boundary layer and the
smoothing boundary layer with thickness @ is attractive. All trajectories in the state space
will converge to the smoothing boundary layer despite uncertainties in the system.
However this convergence does not imply the system is stable. For instance, the system
trajectory is bounded inside the boundary layer, but the thickness of the boundary grows
unbounded.

As discussed above, the control law of Equation (4.136) and the boundary layer
thickness of Expression (4.140) only guarantee the system trajectory converging to the
boundary layer. In order to make the system asymptotically stable, boundedness of the

thickness of the boundary layer has to be realized.
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For the system of Equation (4.108) with all assumptions mentioned above, further

assuming that the system is bounded, such that:

PL<7, 0<7,<p&<7, (4.141)

Taking the absolute value of (4.128) and substituting from Equation (4.114) and
Expression (4.138):

_[PB%,, pf < L(pk A,

Atp, g p‘g P8 At

+|Pkf|j = /—(/u/ +7,)  (4142)

124
The infimum of the thickness of the smoothing boundary layer from Expression (4.140)

can be obtained as:

0. = %{E%’_l)[(zﬁ + l]ﬁk|+(152 —l)ﬁk sen(s, )]+ (l +ﬁl),7+ 2,638}, £>0

Taking the absolute value of the above equation and substituting from Expressions (4.141)

and (2.142) give:

At {E@M[@ﬁ . lll‘ki"' (,Bz _ l)ﬁk sgn(sk X]+ (l +,53)f7+2,33g} =

inf

2| 4F
| mfl—m{(ﬂ' ):” (a + 7, )+ (1+/33)'7+2ﬂ28}

= 124

(4.143)

It is proved that the thickness of the smoothing boundary layer is bounded provided that
the assumptions of (4.109), (4.114), (4.131) and (4.141) are held. The thickness of the
smoothing boundary layer (4.143) indicates that the sampling period, the bounds of
modeling errors and the command signal are factors affecting the tracking quality of the

discrete—time sliding mode controller. Conversely, smaller sampling period and bettering
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modeling can reduce the thickness of the boundary layer and improve the tracking
accuracy.

If the input gain vector g(x) in Equation (4.108) is exactly known, so that Ag =land
[ in Expression (4.109) is set to one. The control law of Equation (4.136) and the

thickness of the smoothing boundary layer (4.143) can be simplified as:

) 5
w, =, + ¥ 1‘8 sat(é—kj
P.g ®
Wa' S0
g, =P P (4.144)
Amp,g P8
o=Atn+e)

Inside the boundary layer, from (4.124):
Sea — S, =P AX,  —Amp £ —Arp,gu, +0,
Substituting from Equation (4.141) into the above equation gives:

o
A_t_pkhk

sk+At(%—pkhkj:>|sk+l|s’7%€|sk|+m =

Sget =7
nte (4.145)

Spy < %g|sk|+ Atn
The above expression clearly verifies the boundary layer is bounded.
DSMC Based on Sliding Mode Prediction

Xiao, Su & Chu (2007) proposed a sliding mode prediction based DSMC algorithm
by introducing a predictive control switching function into the design of DSMC for
nonlinear systems. In their work, a sliding mode prediction model (SMPM) was created
first, and the error between the output of the SMPM model and the practical sliding mode

value was used to make feedback corrections for the SMPM. Then a performance index
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was constructed based on the SMPM and the control law. Finally the DSMC law was
derived which ensured that the performance index was minimized.
Consider the following nonlinear coupled system, for example, n— joint rigid

robotic manipulator:

{x i s, (4.146)
Xopn = J; (xk )+ gi(xk )”ik + Wy

where xe R is the state vector and is assumed measurable, f,

1

(¢) and g,(*)are nonlinear
scalar functions, u; is scalar input. w, is uncertainty which may include parametric

uncertainties and external disturbances.

The design objective is to construct a no-switching DSMC lawu, which guarantees

that the state trajectory of Equation (4.146) asymptotically converges to the sliding mode.
The design task is fulfilled in two steps. Firstly a sliding surface is designed such that the
system in the sliding mode demonstrates the desired performance. Secondly, a control law
is designed to drive the states to the sliding surface and maintain on or in the
neighbourhood of the sliding surface thereafter.
The sliding surface is designed as:
S S Xy + O, =05 I =1osm (4.147)
where —1< 0, <0 is chosen to guarantee the stability and dynamic performance of ideal

sliding mode motion of the system of Equation (4.146).
A recursive switching function is designed based the sliding surface of Equation

(4.147) as:
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Spitet = Sa T VS 1=100n (4.148)

where 0 < 7, <1. Substituting from Equation (4.146), Equation (4.148) can be rewritten as:
s, =[x, )+ g (x ), +0,x,, + 75, (4.149)

The recursive switching function of Equation (4.149) can be viewed as a prediction of the

state s,

1.1 » such that it is called a sliding mode prediction model.

Due to time variance, nonlinearity, and external disturbance, the output s, of the
SMPM will not be the same as the real switching functions,,, . The error can be reduced
by using feedback correction. The error between the practical switching function s;, and
the SMPM s, , is feedback to correct the SMPM. The corrected SMPM output becomes
Bt = St + Gl =8 ) (4.150)
where &€ R is the weighting factor, and 0<é <1 . With  the
representations, =s, —s, . , Equation (4.150) is rewritten as:

Sikst = St + G5 (4.151)
Since state x,, is measurable, s,, can be calculated from Equation (4.147), and s,,, can

be determined from Equation (4.148), then §, ,,,, can be computed as:

mi.k+

St =y + 8,(x (4.152)

where i, = f,(x )+ 0x,, + 78, + &5 -
A performance index is constructed as a summation of the squared error of the

SMPM and the weighted squared control input (Xiao, Su & Chu, 2007), such that:

J, =800 —5, N +Auz, i=1-n (4.153)

!
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where s is sliding mode reference value. The objective of the DSMC is to keep the states
on the sliding surface, thatis, s, =0. In this case, the performance index is reduced to:

Jo=5 L FAu, i=l-n (4.154)

i ik
where A, is a weighting factor adjusting the relation between the closed loop output of
SMPM and the input signal.

The control objective is to find a control w;, which minimizes the performance index.

The control law can be solved by setting %J—' = 0and solving for an optimal «,, as:

Uu;

he8:(x,)

- i=1,---,n (4.155)
gi_(xk)“"&'

ui.k ==

From Equation (4.154), decreasing of A weakens the contribution of u,, in the

performance index, such that, for the same value of performance index, more control

energy is needed. By setting 4, =0, the non-optimal control is derived as:

i=1,---,n (4.156)

The closed-loop dynamics of the DSMC system can be determined as follows.
Substituting from the control law of Equation (4.156) and the system model of Equation
(4.146), the switching function of Equation (4.147) is rewritten as:

Sus = —V:Sy — €S, + Wy (4.157)
Combining Equations (4.149), (4.146) and (4.147), then:
8 =8y =S ==F85g + Wa (4.158)

Substituting from Equation (4.158), Equation (4.157) can be rewritten as:
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S = Vi85 + &5y )+ (Wi = Ewi ) (4.159)
Because the polynomial (—1+§,:") has a root z=¢,0<¢& <1, and 0<y, <1, both

terms on the right hand side of Equation (4.159) are stable, that is:

|Slﬂk+l = 7,'1_ Six t é:isi.k—ll + |W/Ak - iWi.k—ll Le 44, (4.160)
where ¢, and ¢ are the bounds of s-dynamics and the uncertainty dynamics, respectively.
The practical switching function will converge to a ¢, + ¢, vicinity of the sliding surface

and stay thereafter.
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Chapter 5 Control of the Belt Drive System

In this section, a discrete-time Proportional-Integral-Derivative (PID) controller and
a Discrete-time Sliding Mode Controller (DSMC) are designed and implemented to track
the desired output of the belt drive system. DSMC is a model based control algorithm
with velocity feed forward compensation and trajectory tracking. The trajectory is
specified in terms of desired state trajectories. Tracking the desired output is realized by

tracking the states.

5.1 Design of Discrete-time PID Controller Using the SISOTool

Root locus is a graphical representation of the position and movement of the
closed-loop poles as a system parameter or a gain is varied. Root locus provides a
qualitative and a quantitative indication of the control system’s performance such as
percent overshoot, settling time, peak time as well as stability. It is used to solve problems
for high order single-input-single-output systems (Nise, 2004). The root locus method
was originally developed for continuous systems. It can be extended to discrete systems
by using the z-transform in the z-domain.

The Proportional-Integral-Derivative (PID) controller is widely used in industrial
applications. Block diagrams of the continuous-time and discrete-time PID controllers are

given in Figures 51 and 52, respectively.
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P Kp
u(s)
R(s) E(s) J K, s a b Plant C(S):
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Figure 51 Block Diagram of the Continuous-time PID Controller
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Figure 52 Block Diagram of the Discrete-time PID Controller

The transfer function of the discrete-time PID controller is as follows:

G(;):KP+K,(T‘E—J+KD[:T1] (5.1)

< <
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where K, , K, and K, are the proportional, integral and derivative gains, respectively.
The proportional term provides an overall control action proportional to the error through
an all-pass gain factor. The integral term can remove steady-state error through low
frequency compensation by using an integrator. The derivative term improves transient

response by using a differentiator. Equation (5.1) can be re-written as:

(K, +K,+K,):"—(K,+2K,):+K,

2(z-1)

The PID controller adds two poles, one at the origin and the other atz =1, and two zeros

Gpp (:): (3.2)

to be positioned according to the required performance specifications. Matlab’s SISO
design tool combines the root locus and frequency response techniques to be used
concurrently for the design of compensators. By using the SISO design tool, a DPID
compensator can be easily designed by adding two poles, two zeros and simply adjusting
of the compensator gain. With the fixed compensator poles, the compensator
gains, K, , K, and K, , solely depend on the positions of the added zeros and the
amplitude of the compensator gain. There are many zero-gain combinations which result
in various choices of the gains K, , K, and K,. The final choice of zeros and gain should
satisfy the required control performance.

Further to Chapter 3, the transfer function of the belt drive system of Equation (3.33)

is rewritten as follows:

19.2
Gle)=— 5.3
(2) 12262405311 (2-3)
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The root locus, the open-loop and the closed-loop Bode plots of the uncompensated belt

drive system are shown in Figure 53.

Root Locus Editor for Open Loop 1 (OL1) Open-Loop Bode Editor for Open Loop 1 (OL1)

s a0
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Frequency (rad/sec) Frequency (rad/sec)

Figure 53 The Root Locus and Bode Plots of the Uncompensated Belt Drive System

Using the SISO design tool the transfer function of the DPID controller is obtained as:

0.0044(z* —0.4286z +0.1349
GPID(Z)= ( Z(Z—l) ) (5.4)

The DPID controller of Equation (5.4) can be written in a parallel form as:

G, (z)=0.0007 +0.003 1—2—1 +0.0006 2=
= Z

(5.5)

The transfer function of the closed-loop DPID controlled belt drive system can be written

as:

G (2)G(2) 0.0845z% -0.03622z+0.0114
(2)= == . . (5.6)
1+G,,(2)G(z) z'-2.2267° +1.8427°-0.5673z+0.0114

The final pole and zero locations for the closed-loop control system are obtained within

the unit circle and as follows:
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7=0.7247+0.4182i
7=0.7247-0.4182i
e Poles:
z=0.7550
z=0.0216
z7=0.2143+0.2983;
e /eros:
7=0.2143-0.2983i

The root locus and the Bode plots of the DPID controlled belt drive system are shown in

Figure 54.
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Figure 54 The Root Locus and the Bode Plots of the DPID Controlled Belt Drive System

The simulated step response of the PID controlled system is shown in Figure 55. The

controlled system produces 2.53% percent overshoot, 5 ms rise time, 15ms settling time.
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Step Response of the DPID Compensated System
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Figure 55 The Simulated Step Response of the PID Controlled Belt Drive System

5.2 State-Space Representation of the Belt Drive System

Normally the DSMC algorithm is implemented in the state space model of the
system to be controlled. The transfer function of the belt drive system obtained through

system identification has to be converted to a state space model. Given a discrete transfer

Y bZ"+b n—l+__.+b )
(z) = '?_l ., the controllable canonical form state-space model
U(z) z"+az"'+-+a,

function

can be obtained as (Ogata, 1994):

[ Xik+1 1[0 1 0 0 i 1 10]
Xkt 0 0 L ce 0 X “

N E : : : N E N TH (5.7
Xp-lk+t 0 0 0 = 1 1% 0
| Xksr |—a, —@; —a.; —a | x| [1]
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Ve = [bn —-ab, b, —a_ by, b_—a,b - b- albo] Do thy (5.8)

'\-n—l.k

n—-1

L xn.k n
Equations (5.7) and (5.8) are the system and the output equations, respectively. For the
identified model of Equation (5.3), the state-space model becomes:

X, = Ax, +Bu, (5.9
v, =Cx, + Dy, '

0 I 0 1927
where A = , B= ,C= ,D=0.
—~0.5311 1.226 I 0

5.2.1 Controllability

According to Ogata (1994), a system is completely controllable if the system at any
arbitrary state can be moved to any other desired arbitrary state by some unconstrained
input signal in a finite time period. In other words, if the state variable is independent of
the control signal, then it is impossible to control the system state and the system is
uncontrollable. Most practical systems are controllable. Knowing the condition under
which the system is controllable is very important in control systems engineering.

Consider the state space model of the second-order belt drive system given by
Equation (5.9) as:

X, = Ax, +Bu,
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where 1, is a scalar input, x, € R” is the state vector, A€ R is the system matrix,
B e R™is the input matrix. The above system is completely controllable if the rank of its
controllability matrix equals to the order of the system. The matrix
[BEBAE---EA”"BJ is called the controllability matrix, and the condition for complete
controllability can be stated as:
rank|[B:BA:--iA"'B|=n (5.10)

For the belt drive system given in Equation (5.9), the controllability matrix is

obtained as:
0 1
M=|B:AB|= 5.11
[ ] [1 1.226} ( )

Since the controllability matrix M has full rank, the belt drive system is completely

controllable.

5.2.2 Observability

According to Ogata (1994), a system is completely observable if every initial state

X, can be determined from the observation of y, over a finite number of sampling

periods. In other words, if every transition of the state eventually affects every element of
the output vector, the system is completely observable. For a discrete-time linear time

invariant system, the observability matrix is defined as:

C
CA
N= ; (5.12)
CAn»l

138



Master’s Thesis — Shenjin Zhu McMaster university — Mechanical Engineering

To be able to uniquely extract the state vector from the measurements, the rank of the

observability matrix must be equal to the order of the system as follows:

rank . = (5.13)
CAn—l
For our belt drive system given in Equation (5.9), the observability matrix can be

obtained as:

c] 192 o
N= = (5.14)
{CA} [o 19.2}

The observability matrix has the rank of 2 for the 2" -order belt drive system. It is

completely observable.

5.3 Definition of Desired State Trajectories

The objective of trajectory tracking control is to minimize the tracking error of a
state following a desired trajectory. Normally the trajectories to be followed are low
frequency signals such as ramp or and sinusoidal signals. In this research, the trajectory to
be followed is a velocity profile defined as a low frequency sine wave. The other desired
state trajectories are then derived from the desired velocity profile.

The state space model of the belt drive system is given in Equation (5.9) as:

Xkt 0 I Xik 0

= + u,
Yoo | [=0.5311 1.226] x,, | |1] "
Y. =19.2x,
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The desired output trajectory is given as:
v, =B+ Asin(akT), k =0,1,---,N +1 (5.15)
where A is the amplitude of the sine wave, Bis the bias to keep the output in the linear
region , wis the angular frequency in radians/second, 7 is the sampling time. The desired
state trajectories can be calculated from Equation (5.15) and the state space model as:
X, = 0.0521[B+ Asin(aXT)}, k =0,1,---,N (5.16)
X, =0.0521{B + Asin[w(k + )T [}, k =0,1,---,N (5.17)

Noticed from Equations (5.15), (5.16) and (5.17), the relationships between the state
and output trajectories can be shown in Figure 56, where X[(,(:) ; de(:) and Y, (z)are z-
transforms of the desired trajectory x,,, x,,and y,, respectively.

X,,(z) X,(z) Y,(z)
" o » 00521 F—>

A

Figure 56 Relationship between the State and the Output Trajectories

WithA=15,B=16and @ = 7, the desired output and state trajectories are shown in

Figure 57.
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Figure 57 Desired Output and State Trajectories

5.4 State Observers

The design of SMC is based on the assumption that the state vector of the system to
be controlled is available for measurement. In practice, only a few output quantities are
available for measurement. Fortunately, the state vector of a linear system can be
reconstructed from observations of the system output through a state observer. The state
observer is a subsystem in the control system that performs an estimation of state
variables based on the measurements of output. The state observer can be designed if and
only if the observability condition is satisfied, that is, the observability matrix has full
rank (Ogata, 1994). This condition is satisfied in the experimental belt drive system.

The block diagram of a DSMC system with a state observer is shown in Figure 58,

where y, is the desired trajectory, y is the measured output, x, is the desired state

trajectory, X is the estimated state trajectory, X is the state tracking error, u is the output

of the DSMC.
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V. X, X, u ) Y,
- System 4 +® t DSMC * | Belt Drive ko
Model -X System
ik
" State
Observer

Figure 58§ DSMC System with a State Observer

The generation of the desired state trajectory x, from the desired output y, using the

system model is contained in the previous subsection. The design of the state observer is
addressed as follows.

There are three types of state observers available depending on the order of the state
observers: (1) full-order state observer, (2) reduced-order state observer, and (3)
minimum-order state observer (Ogata, 1994). Full-order state observer estimates all
" state variables regardless of whether some state variables are available for direct
measurement. Reduced-order state observer estimates all unmeasurable state variables
plus some (but not all) of the measurable state variables. Minimum-order state observer

estimates only the state variables that are not measured directly.

5.4.1 Full-Order State Observer

Consider the state space model of the belt drive system given in Equation (5.9) as:

X,., = Ax, + By,
(5.18)
y, =Cx, +Du,
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The full-order stite observer has the same order as that of the system. The full-order state
observer can be designed based on the model of the original system with minor
modifications as shown in Figure 59. The input of the state observer consists of the

control input u«,and the measured output y, . The output of the state observer is the

estimated state X, .

u,

Figure 59 Block Diagram of the Full-Order State Observer
The full-order state observer can be categorized into the prediction observer or the
current observer. In the former, the observed state X,,,is obtained from the measured
output and the input up to time stepk . In the latter, the stateX,,, is obtained from the

measured output and the input up to the stepk +1.
Prediction Observer
The prediction observer is built on the previous step input and output information.

The estimated output y, can be obtained as:

¥, =CX, +Du, (5.19)
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The state of the system is estimated as:

X, =A%, +Bu,+K, (v, -9,) (5.20)

where K, is the state observer gain serving as a weighting matrix. Substituting Equation
(5.19) into Equation (5.20) gives:

%,.,=(A-K,Ck,+B-KDDJu +K,y, (521)

The state estimate X, is one sampling period ahead of the measurement y, , so the state

observer given by Equation (5.21) is called the prediction observer and the eigenvalues of

the matrix (A —K,C) are commonly called the observer poles (Ogata, 1994). If%, =x,,

Equation (5.21) becomes:
X, =A%, +Buy,
which is identical to the state space model of the system and the response of the state
observer is identical to the response of the original system.
Subtracting the actual state in Equation (5.18) from estimations in Equation (5.21)

gives the estimation error dynamics as:

e, =(A-K,C, (5.22)

wheree, =X, —X, is the estimation error. The dynamic behaviour of the estimation error
is governed by the eigenvalues of matrix (A -K _ C). If matrix (A -K ,C) is stable, the
error vector will converge to zero for any initial error e, ; that is, X, will converge to x, for
any initial values of x,andX,. Since the original system is completely observable, an

arbitrary placement of the eigenvalues of the matrix (A —K C) is possible.
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The dynamic behaviour of the estimation error can be made adequately fast by
locating the eigenvalues of the matrix in (A-K,C) in proper positions so that the

estimation error tends to zero with an adequately fast speed. One way to obtain a fast
response is to use deadbeat response by choosing all eigenvalues of the matrix

(A-K,OC) to be zero.

Feedback Gain Matrix K,

There are a few of approaches available for determining the feedback gain matrix
K, for the state observer. For the full-order prediction observer given in Equation (5.21),
a general approach to determine the feedback gain matrix K, is discussed as follows
(Ogata, 1994).

First a transformation is defined as:
Q=(WN')' (5.23)
where N is the observability matrix defined as:

N=|cTiATCT (A7) O (5.24)

and:
[ a,, a,, a 1 i
a,, a,, 1 0
W=| ! : E 2 (5.25)
a, 0 0
1 0 0 0]
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where «,, a,, ..., a,_ are coefficients in the characteristic equation of the original system

of Equation (5.18), that is,I:I—G| =7"+a,7"'++a,,z+a, =0. Then the state vector
is defined as:

x, =0, (5.26)

where &, € R™ . The original system of Equation (5.18) can be rewritten with Equation

(5.26) as:

§k+l == Qilfoé:k +Q_1Buk (5'27)

¥, =CQg, + Dy,

with [Ogata1994]:
Q 0 == 0 =aq

. 1 0 0 =a

Q AQ=|. . (5.28)
0 0 -+ 1 =—gq

cQ=[o o - 0 1] (5.29)

The estimated state vector is defined as:

&, =Q¢&, (5.30)

where fk € R" . Substituting Equation (5.30) into the full-order state observer of
Equation (5.21) gives:

. =Q'(A-K,CQE+Q'B-K D, +Q 'Ky, (531

Subtracting Equation (5.27) from Equation (5.31) gives the estimation dynamics as:

e, =Q '(A-K,C)Qe, (5.32)
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wheree, =&, —¢, is the estimation error.

defined as:

an—l
a”,_v_
Q"'Kg = VVNTKL, =
a
1
whereK, = [k, &k, - k|

a

a

n=2

n-3

McMaster university — Mechanical Engineering

a1

I 0
0 0
0 0]

C
CA

CA n-2

_CAH—I |

Equation (5.32) gives the tracking error dynamics as:

FO O 0 - (l” - 511

1 O O - an—l - 511—1

ek+l = O 1 0 - a/l—- - é‘n—l
0 0 )

€

(5.34)

From Equation (5.23), a new vector € R"is

(5.33)

k, ]T. Substituting Equations (5.28), (5.29) and (5.33) into

The characteristic equation

A-Q'(A- KL,C)Q| becomes:

z 0 0 a,+9,
~1 < O an—\ + é:x—l

O - 1 0 an—l + 5”—3 = 0
0 0 -1 z+a,+9,

Using minors and cofactors for the determinant, the above equation can be rewritten as:

"+, +8) " +(a,+8,) 7+ +(a, +6,)=0 (5.35)
It is assumed that the desired characteristic equation for the error dynamics is given as:

(c=wNa=ptr) - (z-p,)= "+ a2+, 2"+ 4@, =0 (5.36)
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The desired eigenvalues y, or the locations of the poles determine how fast the observed

state converges to the actual state of the plant. By comparing the coefficients of the equal

powers of z in Equations (5.35) and (5.36), the following relation holds true:

0, a,—a,
O, &, —a,,
s 1= : £5.37)
o, o, —a,
L 6 1 L a—q

Substituting Equation (5.37) into Equation (5.33) gives:

a,—a,
0(”_1 —a,,
K, =(WN')'| (5.37)
a, —a,
| ey

The block diagram of the full-order state observer with general form of feedback gain

matrix K, is shown in Figure 60.

u,

A

\ 4

A 4

(=)

Figure 60 Full-Order State Observer with a General Form of Feedback Gain Matrix
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The desired eigenvalues of the estimation error dynamics can be assigned in such a
way that the observer responds at least four to five times faster than the closed-loop

system (Ogata, 1994). In some applications, deadbeat response may be desired. Hence the

characteristic equation becomes z" =0, which results in a feedback gain K, as:

K,=(WN)"| : (5.38)

For a low order system, the observer feedback gain matrix K, can be determined by
equating the coefficients of the same powers of z in the characteristic equation of
Equation (5.22), |:I—(A—KL,CH=O , and those of the desired characteristic equation
given by:

(e=u)z=p)c-p,)= "+ ++a, 2+, =0

where g, i=1,--,nare desired eigenvalues of the matrix (A —K,C). For our belt drive

1

k
system of Equation (5.9),K, = {k

:], the characteristic equation, |z1—(A —KeCX =0, can

be obtained as:
2> +(19.2k, —1.226)z — 23.54k, +19.2k, +0.5311=0 (5.39)
The desired characteristic equation can be assigned as:

2

2 =y +p)z+ g, =0 (5.40)
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By equating the coefficients of the like powers of zin Equations (5.39) and (5.40), the

full-order prediction observer gain matrix can be obtained as:

b= 1.226 — (1, + 11,)
: 19.2

b =t =1 2261, + 1,)+0.972
: 19.2

(5.41)

By setting 1, =0.5+0.5{ , 4, =0.5-0.5{ , the observer gain matrix is obtained as

K, =[0.0118 0.0128] and the performance of the full-order prediction observer is
shown in Figure 61.

Full-Order Prediction Observer

Obsened Output ||
e Measured Output

. . ;
45 |- 1

0
~N
ke
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Q
ke
3
2
I
: i
< ;
5
1
i
H
i
i
oli 1 I I 1 ! 1 AL I I
(o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

Figure 61 Performance of the Full-Order Prediction Observer

Current Observer

A current observer utilizes the current measured outputy, to estimate the statex, .

The observation process consists of two steps: (1) determination of z,,,, an approximation
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of statex,,, ., based on the observed state X, and inputu, , (2) improving z,, using the

k+1 2
measurement y,,, (Ogata, 1994).
For the completely observable system given in Equation (5.9) as:

X,,, = Ax, +Bu,
v, =Cx, +Duy,

The current observer equations are given (Ogata, 1994) as:

R, =2, + K, (9 = (C2,, + Dur ) (5.42)

k+l
z,., =AX, +Bu, (5.43)

Equation (5.43) predicts the z,  based on the current observed state X, and inputu, at time
step k . Equation (5.42) improves the predictionz,,, based on the measurement y,,, to

obtain the improved state X, ,, .

The estimation error dynamics can be obtained by subtracting the observer
Equations (5.42) and (5.43) from the original system of Equation (5.9) as:
e, =(A-K,CAe, (5.44)

The observability matrix of Equation (5.44) becomes:

[ (CA)A ] [ CA
(CA)A® CA’

: =l : |A (5.45)
(CA)A™*| | CA™
(CA)A™ | | CA™ |

To make it possible to arbitrarily place the eigenvalues of the matrix (A—KL,CA), the

observability matrix in Equation (5.45) has to have a rank ofn. It is the product of the
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observability matrix of the original system and the process matrix A . It is assumed that
the original system is completely observable; its observability matrix is full rank. The
rank of matrix in Equation (5.45) solely depends on the rank of the process matrix A . If

the matrix A is full rank, the matrix (5.45) has a rank of n. The feedback matrix K, can be

determined using approaches presented in the previous section. For a non-singular

matrix A , the complete solution for determining the feedback gain matrix K, can be

found in (Ogata, 1994). The block diagram of the full-order current observer is shown in

Figure 62.

A 4
c

u,

Figure 62 Block Diagram of the Full-Order Current Observer

For a low order system, the observer feedback gain matrix K, can be determined by
equating the coefficients of the same powers of z in the characteristic equation of
Equation (5.44),|:I—(A—K(,CAX =0, and those of the desired characteristic equation
given by:

(z—pXz—po)--(z-p,)= 2"+ 2"+t @, 2+, =0
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where #,,i=1,---,nare desired eigenvalues of the matrix (A —K_ CA). For our belt drive

kl

k,

system of Equation (5.9), with Kez{ } , the characteristic equation,

I:I -(A ~KL,CA)| =0, can be obtained as:
22 +(19.2k, —1.226): —10.2k, +0.5311=0  (5.46)
The desired characteristic equation can be assigned as:

22— (e, + 1, )z + a1, =0 (5.47)
By equating the coefficients of the like powers of 7 in Equations (5.46) and (5.47), the

observer gain matrix can be obtained as:

k= 0.5311— 411,
W (e
10.2
) 5.48
- 1226 —(u, + p1,) (5:48)
: 19.2

By setting 1, =0.5+0.5i, 1, =0.5-0.5i, the full-order current observer gain matrix can

be obtained as K, =[0.003 0.0118], and the performance of the state observer is

shown in Figure 63.
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Figure 63 Performance of the Full-Order Current Observer

5.4.2 Minimum-Order State Observer

Full-order state observers are designed to reconstruct all state variables. In practice,
some state variables may be accurately measured; there is no need for estimation of the
measurable variables. An observer that estimates the number of state variables fewer than
the dimension of the state is called reduced-order observer. A minimum-order observer is
a reduced-order observer that has a minimum-order (Ogata, 1994). It is assumed that the

state vector has the dimension of » and there are m accurately measured state variables.
The minimum-order state observer is a (n—m)" -order observer. The block diagram of a

DSMC system with a minimum-order state observer is shown in Figure 64. In the case of
the experimental belt drive system, the measurement quality is poor, making the choices

of the reduced-order and the minimum-order observers inappropriate.
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Figure 64 Minimum-Order State Observer

Effects of Observer on a Closed-Loop System

In practice, the true state may not be available for measurement. The estimated state
X, is used in the control systems. The effects of using the estimated states in place of the
real states in a control system are investigated with a state feedback control system as an
example.

A completely controllable and observable system is given as:

X, = Ax, +Bu,
¥, =Cx, +Du,

The state feedback control based on the estimated state X, is given as:
u, = -Kx,

where K is the feedback control gain matrix. The dynamics of the closed-loop system is

obtained from the above two equations as:

X, = Ax, —-BKX, (5.49)
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With the estimation error e, = x, —X, and its dynamics given in Equation (5.22), Equation

(5.49) can be rewritten as:

X A-BK BK | x,
= (5.50)
By 0 A-K Cle,

The characteristic equation for the closed-loop system of Equation (5.50) is given as:

A-BK  BK

=0 or
(o A-K,.C
|A-BK|A-K,C|=0 (5.51)

The closed-loop poles of the observed state feedback control system consist of the
poles of the feedback control design and the poles of the observer design. The control
design and the observer design are independent of each other and can be considered
separately, then combined to form an observed state feedback control system.

The closed-loop poles of the feedback control system are chosen in such a way that
the control system demonstrates the desired performance. The poles of the observer are
chosen so that the response of the observer is much faster than that of the system. A rule
of thumb is the response of the observer is at four to ten times faster than the original
system. The observer is programmed in the computer. Its response speed can be increased
up to deadbeat response so that the observed state quickly converges to the real state. The
only limiting factor on the response speed of the observer is sensitivity to noise and

disturbances in the system.
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5.5 The Discrete Time Kalman Filter

The state observers presented in the previous section work well in the absence of
disturbance and noise. In practice, in the case of the belt drive system, the measurement
signals are often contaminated by process and measurement noise. Although the feedback

gain matrix K, of the state observer can be properly chosen to trade-off speed of response

for robustness to disturbance and noise, noise greatly degrades the observer performance.
A digital filter can be used in conjunction with the observer to suppress the noise at the
expense of introducing a phase shift that is highly undesirable in real-time control
applications. The Kalman filter provides an alternative observation strategy (Haykin,
1996; Welch & Bishop, 2006).

The Kalman filter was invented by R. E. Kalman in 1960s (Welch & Bishop, 2006).
A Kalman filter has two distinctive features: (1) the mathematical formulation of a
Kalman filter is a predictor-corrector method described in terms of state space
representation, (2) the solution of a Kalman filter is computed recursively. Each state
estimate is calculated from the previous estimate and the current input data. This feature
results in two advantages: (1) only the previous estimate is required, minimizing the
storage requirements; (2) the Kalman filtering is computationally very efficient. The
Kalman filter recursively estimates the state of a process contaminated with Gaussian
noise by minimizing the mean of the squared error.

Consider the second-order discrete belt drive system given in Equation (5.9). The

equations are augmented to account for noise as follows:
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X, =Ax, +Bu, +w, (5.52)
v, =Cx, +Du, +v,

where u, is the scalar input, y, is the scalar output, w, € R”is the process noise vector,

0

v, is the scalar measurement noise, A=
—-0.5311 1.226

} is the system matrix,

0 1927
B= |i1} is the input matrix, C :{ 3 } is the output matrix and D =01is the direct feed

through matrix.

The noise is assumed to be uncorrelated, zero mean with normal probability

0 : Q, k=
distributions,  ie. E(w,)= . Elww!)=7F , E(v,)=0 and
||+ )= % T )
, R k=] ) . . .
E(vkvj ): N It is further assumed that the process noise covariance matrix Q
#J

and the measurement noise covariance matrix R are constant for each iteration step. X, is
an unknown 2 x| state vector to be estimated through output observation y, and input u, .
The Kalman filtering problem is stated as using the entire observed data consisting
of v, v,,--, ¥, to find for each j=1the minimum mean squared error estimate of the
states X, . The problem is called a filtering problem if j =k, a prediction problem if
J >k and a smoothing problem if 1< j <n (Haykin, 1996).
The Kalman filter estimates a process by using a form of feedback control, that is, it

estimates the process state at some time and then obtains feedback in the form of

measurements. The Kalman filter equations fall into two groups: the time-update
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equations and the measurement-update equations (Welch & Bishop, 2006). Each of these
groups works separately in two individual steps in a single operation cycle: the prediction
step and the correction step.

In the prediction step, the Kalman filter uses the time-update equations to predict the
state of the process based on the previous state estimation and the process model. The

state and the error covariance matrix obtained in this step are the a priori estimation for

stepk . In the correction step, the Kalman gain is first calculated. Then the measurement

update equations are used to incorporate a new measurement into the a priori estimation
to obtain an improved a posteriori estimation.

LetX,, ,to be the a priori state estimate at stepk given the knowledge of the process

k-1 P pKk g g p

prior to stepk, X, to be the a posteriori state estimate at step k given measurementy,,
€ to be the a priori estimation error defined as:
Crpe-1 = X ™ Xy (5.53)
Lete,, to be the a posteriori estimation error defined as:
€y =X, — Xy (5.54)

The a priori and the a posteriori estimation error covariance matrices are obtained as:
P, = Ele, ¢, ] (5.55)

Kl ke kfe-1 e
T

By = E[ek|kek|k] (5.56)
The a priori state estimation is obtained from the process equation with the previous

a posteriori state estimation and input as:
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R = AR,y By (5.57)

The a posteriori state estimation X, is computed as a linear combination of the a priori
state estimation X, and a weighted difference between the actual measurement y, and the
measurement prediction ¥, as:

’A(L-|k =X + Kk(yk - .\A’k|k~1) (3.58)

Viwr = CXy, + Duy (5.59)

The difference y, — ¥, in Equation (5.58) is called the filtering innovation or residual,
which reflects the discrepancy between the actual measurement y, and its prediction
value 3, ,. The 2x1matrix K, is the Kalman gain aiming to minimize the a posteriori

estimation error covariance matrix of Equation (5.56). Substituting Equations (5.59),

(5.58), (5.53) and (5.52) into Equation (5.55), then the a posteriori error covariance

matrix P, becomes:

P, = Efx, ~R,, K, (v, —~CRy, - Dt JJx, — R, ~K, (v, —CRyy, ~ D )| |
[xk - ﬁklk_l - K, (ka +Du, +v, - Cf(klk«, -Du, )]
x[x, =% K, (Cx, +Du, +v, —CRy, —Dut, )|
[(xk ~ Xy )_ K, (C(xk X )"’ \L" )]
x[(xk - ik]k_, )— K, (C(xk - ik[k—l )+ v, )]T
= E{[eklk—l -K, (Ceum +v, )][eklk_, -K, (Ce”k_l +V, )]7}
= E{[e“k_l -K,Ce, +K,v, ][ef_[k_l —ey C'K," + vaKkT]}
i — Py O K, =K, CP,,_ +K,(CP;,_C" +R)K,"

=F

Il
y

(5.60)
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The optimal Kalman gainK, , which minimizes the a posteriori error covariance matrix,
can be obtained by taking the derivative of Equation (5.60) with respect to the Kalman
gain K, and setting the term to zero. This is equivalent to minimizing the trace of the a
posteriori error covariance matrix, i.e. setting the trace derivative (Petersen & Pedersen,

2008) of Equation (5.60) to zero, noting that P, and R are symmetric matrices, that is:

J J , .
aTkTr(Pklk ) = é?kTr[Pk[};—l - Pk]k—lcTKAT- —KkCPklk—l +K, (CPklk—ICT ¥ R)I‘Z]
“Pklk—lcr - (CPka—l )T + [Kk (CPklk—lCT + R)T +K, (CPMHCT + R)} (5.61)
= 2P, C" +2K,(CP,,_C" +R)
=0

From Equation (5.61), the optimal Kalman gain is obtained as:

Pk]k—lCT

e 5.62
© CPy_C"+R (5.62)

Substituting Equation (5.62) into Equation (5.60) gives the a posteriori error covariance

as:
Pklk = (I - KkC)Pka-l (5.63)
The a priori error covariance matrix is calculated from Equation (5.55) as:

Pk|k—l = E[ek!bleakl]: E[(Xk - }A(klk—l )(xk - f(klkAl )TJ
= E[(xk —AX o —Buy )(Xk —AX,_y —Buy )T]

= E[(Aek—llk—l Wiy XAek—l|A 4T W )T] (5.64)
= E(Aek-uk—lewfmTAT +Ae,_ Wi +we AT+ Vvk—lw:—l)
= APk—lIk—lAT +Q
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The overall Kalman filtering operation can be viewed as an iterative prediction-
correction process as shown in Figure 65. After each time-update and measurement-
update cycle, the filtering process is repeated by using the process model with the current
a posteriori estimate and input to predict the new a priori estimate. This recursive

feature makes the Kalman filter computationally efficient.

A
Measurent Update (Correction
Time Update (Pr ediction ) ) ) p ( ) )
% =A%, +Bu,_ X = X + K (yk - yklk—l)
P, = APH,HAT +Q Pklk = (I - KkC)Pklk—l
AT
T - - e Pk]k—l("
© CP,C"+R
Initial Estimates k—k+1

A
Xt -1 P, Ak

Figure 65 The Ongoing Kalman Filter Cycle

The Kalman Filter Parameters Tuning
To implement the Kalman filter algorithm, the initial conditions such as the initial

estimate, including the state Xy, and the error covariance matrix Py, the process noise

covariance matrix Q and the measurement noise covariance R are needed. However, the
initial conditions of the process may not be known precisely.

In the absence of any observed data, the initial state may be chosen from its mean
value which produces an unbiased estimate (Haykin, 1996). The initial estimation error

covariance matrix Py can be chosen as CIwhere Cis a large constant (C should not be

too large as it can cause premature convergence with the Kalman gain going and

remaining at zero) and I is an 2x2 identity matrix.
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The measurement noise covariance R is usually measured prior to the operation of
the filter. Some off-line measurements, for example, a constant input can be taken to
determine the variance of the measurement noise.

The determination of the process noise covariance matrix Q is more difficult since it
can not be observed directly. If the process measurement is reliable, selection of matrix
Q with enough uncertainty can produce acceptable results even with a poor model
(Welch & Bishop, 20006).

Superior filter performance can be achieved by tuning the filter parameter Q and R .
The tuning is usually carried out off-line. The filter innovation used to correct the
a priori estimate also provides the starting point for checking the filter operation. A
necessary and sufficient condition for a Kalman filter to be optimal is that the residual is
zero mean and white. The Kalman gain of Equation (5.62) with the a priori error
covariance matrix of Equation (5.64) provide guidance to the tuning of the Kalman filter
parameters Q and R .

In conditions where Q and R are constant, the estimation covariance and the Kalman
gain will stabilize quickly and then remain constant (Welch & Bishop, 2006). If the noise
covariance matrix Q is too large, the Kalman gain K, will be too large, and as a result
the estimate has a tendency to follow the measurements “too much”, and the estimate will
bounce a lot. R has an opposite effect to that of Q, that is, with a larger R the estimate
will be more dependent on the model. The parameters Q and R can be adjusted to make

the filter tighter or more relaxed. A tighter filter is resulted from a large R and smallQ,
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and the estimated state is weighted more to the model. On the other hand, a relaxed filter
with a small R and large Q will more closely follow the measurement (Cadet, 2010).
For our belt drive system, the performance of the Kalman filter with the covariance

0.0001 0

matrices tuned, Q =
0 0.0001

}andR = 2, is shown in Figure 66.

Kalman Filter

Filtered Output B
- Measured Output

1
45 s |

40
35
30
25 @
20

15

Amplitude(Rad/S)

10

O 1 1 1 1 1 1 1 1 1
(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

Figure 66 The Performance of the Kalman Filter

5.6 Design of a DSMC Tracking Controller

Consider the discrete-time state space model of the belt drive system given in
Equation (5.52)(162) and written as follows:

X, = Ax, +Bu, +w,
(5.65)
v, =Cx, +Du, +v,
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where w, is 2XI process noise vector, v, is a scalar measurement noise,

0 I 0 1927 _ .
A= , B= , = , D=0. As stated earlier, the system is
-0.5311 1.226 1 0

completely controllable and completely observable. A DSMC is designed by using
Misawa’s DSMC strategy [Misawal997a] as follows. The design is carried out in two
steps: (1) a switching function is designed in such a way that the dynamics of the system
demonstrates a desired performance; (2) a DSMC law is designed that forces the state
trajectory of the system to reach the switching hyperplane defined by the switching

function and slide on it thereafter.

5.6.1 Design of Switching Function

The system equation in (5.65) is the controllable canonical form. An advantage of
the controllable canonical form is that it is convenient for the design of a switching
function. In the controllable canonical form, a state space model can be partitioned so that
the control input is disconnected from some of the state variables. These state variables

(independent of the control inputu, ) form an unforced subsystem. A switching function

is then easily designed for the unforced system by using the pole-assignment technique.
For stabilization of the nominal system of Equation (5.65) a switching function is

defined as:

5, =Gx, =|g g,[\‘“} =0 (5.66)
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where G =g, g,]is the switching vector. By setting g, =1, Equation (5.66) can be

rewritten as:

Xy =Sl =2k (5.67)

The nominal system of Equation (5.65) can be partitioned as:

H‘m‘,‘ ﬂ[[— 0@3 1] [ [zie]}{[[\f ﬂ * H?H“k (5.68)

Using of the internal square brackets in Equation (5.68), although unnecessary for the
single-input second-order system, is to reflect that the individual elements may become
proper dimensional vectors or matrices for multiple-input higher order systems. Equation

(5.68) is decomposed as:

Xt = X

(5.69)
Xy =—0.5311x, +1.226x,, +u,

Substituting Equation (5.67) into Equation (5.69) gives:

Xl = e (5.70)

5

Since the pair (A, B) is completely controllable, the closed-loop system of Equation (5.70)
is completely controllable also and its pole can be placed at a desired location by means

of state feedback through an appropriate constant g, . If g, satisfies the

. 1
condition0 < —
g

<1, that is g, < -1, the system of Equation (5.70) is stable. There are

many hyperplanes available based on different choices of the constant g, . The

hyperplanes guaranteeing the stability of the belt system are straight lines crossing the
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origin with slopes between O and 1 as shown in Figure 67. By setting g, =-2, the

switching vector becomes G = [1 - 2] and the switching hyperplane becomes x, = 0.5x,.

a

Figure 67 Hyperplanes Guaranteeing the Stability of the Belt Drive System

5.6.2 The Equivalent Dynamics of the Belt Drive System

The equivalent dynamics can be obtained by combining the switching function with
the model of the nominal system. Note that the matrix (GB) is non-singular. The
equivalent control law (Utkin, 1977) of the belt drive system is obtained as:

S =GXy =0

=u,, =—(GB)"'GAx, (5.71)

_ eqk
X,,, = Ax, + By,

Substituting Equation (5.71) into the nominal system gives the equivalent dynamics of the

belt drive system as:

’ 0 1
xk+l=(A—B(GB)'GA)xk=[O 05}‘" (5.72)

The closed-loop poles of Equation (5.72) are obtained by solving the characteristic

0 1
i B
[0 O.SJ

equation =0as z;=0andz, =0.5.
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5.6.3 Design of the Tracking Control Law

For the tracking control of the system in Equation (5.65), the switching function of
Equation (5.66) for the stabilization is modified as:

5, =G%, =0 (5.73)

- Mrare — Xk X | : o i
whereX, =x,, —X, :{ ‘ =| . |is the state tracking error. The switching vector

oax — X Ao

G designed for the stabilization problem is still applicable to the tracking problem at hand.

The switching hyperplane becomes a function of the state tracking error
variables X, and x,, .

A DSMC law is designed to ensure the switching function is satisfied, so that the
system state X, reaches the desired statex, in a finite time and slide on it thereafter. The
tracking error X, is driven to zero and kept as small as possible.

Following the procedures in (Misawa, 1997; Misawa, 1997a), a switching surface is

redefined as:
= {& s, = G%, =0} (5.74)
A boundary layer in the state tracking error space neighbouring the switching surface of

Equation (5.74) is defined as:
T {ngSk| - |G§kl = ¢} (3.75)

where @ is the boundary layer thickness.
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The DSMC law can be derived by using discrete-time Lyapunov stability theory
with a Lyapunov function candidate defined asV, =s; . To ensure the stability, the
Lyapunov function must satisfyV,,, <V, i.e. (Misawa, 1997):

e L a5 (5.76)

Expression (5.76) can be rewritten as:

As; < =2s,As, (5.77)

where As, =s,,, —s, . Expression (5.77) implies:

=28, < As; <0, s >0
(5.78)

0<As; <25, §,<0
Further to Equations (5.65) and (5.73), As, is calculated as:

As, = 5, =, = Gy =5, = GX oy =X, )5

(5.79)
=Gx,, —GAx, —-GBuy, —Gw, —s,

Substituting Equation (5.79) into Expression (5.78) gives:

{*Sk <Gx,,, —GAx, —GBu, -Gw, <s,, s, >0 (5.80)

s, <Gx,,, —GAx, -GBuy, -Gw, <-5,, 5, <0
O -1
Since (GB)" = [[l - 2{1}] =-0.5<0, Expression (5.80) can be rewritten as:

GB)'(Gx,., —~GAx, -Gw, +s5,)<u,
dk+l1 k k k k

<(GB)'(Gx,., —~GAx, -Gw, —s,). 5,>0
GB)'(Gx,., —GAx, -Gw, —s,)<u,
dk+1 k k k k

<(GB)"(Gx,., —~GAX, —Gw, +s,), 5, <0

(5.81)
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The control law u, can be defined as the combination of a continuous part and a
switching part as:

u, =1, +1ii, (5.82)

where the continuous part i, is model based and defined as:

i, = (GB)"'(Gx,,., —-GAx,) (5.83)

The reaching condition of Expression (5.81) can be modified as:

(GB)'(-Gw, +s,)<il, <(GB)'(-Gw, —s,), 5, >0  (5.84)

(GB)'(-Gw, —s,)<il, <(GB)'(-Gw, +s,). 5,<0  (5.85)

The switching control law iz, has to be chosen such that asymptotic stability is guaranteed

in the presence of uncertainties, that is, Expressions (5.84) and (5.85) both have to be
satisfied to ensure the stability of the uncertain system of Equation (5.75). Using right
half of Expression (5.84) and left half of Expression (5.85), the switching control law can

be chosen as (Misawa, 1997a):

ii, =(GB)" [— 5, + Ksar[iﬂ (5.86)

%
+l,i>l

saf )4 &, [
» ¢ ¢

-, 2y
¢

<1 (5.87)

where K = y+2T¢is the controller gain, ¢is the boundary layer thickness referred to

Expression (5.75) and is further defined by ¢ 2 y+T¢€, €is a positive constant, 7"is the
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sampling time and yis positive constant satisfying |ka| < 7. In the case of the belt drive

system, the sampling time 7 =0.001 second, the constant £ is selected as € =10y,
@ =7y+Te€and yis tuned on-line.

With the switching control law of Equation (5.86), the boundary layer of Equation
(5.75) is attractive. The attractiveness of the boundary layer can be verified in the

following three cases:
Casel. s, > @, the value of the switching function is positive and is located outside
of the boundary layer. Expression (5.84) should be satisfied.
Verification: Since s, > ¢, Equation (5.86) can be rewritten as:
it, =—(GB)'s, +(GB)(y+2T¢) (5.88)
With Equation (5.88), |Gw,| < 7and(GB)™ <0, so:

Gw,|<y=-7<-Gw, <y
= (GB)"'y<—(GB)"'Gw, <—(GB)'y
= —(GB)"'s, +(GB)" y < —(GB)"s, - (GB)'Gw, (5.89)
= —(GB)"'s, +(GB) " (y+27€) < —(GB)"'s, - (GB) "' Gw,
=i, <(GB)"(-5,—Gw,)

From Expression (5.81), the right half of Expression (5.84) is satisfied.

Sinces, > @ 2= y+Té¢, the left hand side of Expression (5.84) can be derived as:

(GB)'(-Gw, +5,)<—(GB)'7+(GB)'s, <—(GB) ' y+(GB) '(y+Te) .
= (GB)"(-Gw, +s,)< (GB)"(T¢)

From Equation (5.88) ands, > @2 y+T¢:

171



Master’s Thesis — Shenjin Zhu McMaster university — Mechanical Engineering

ii, =—(GB)"'s, +(GB)'(y+2T¢)> —(GB) ' (y+T€)+(GB) ' (y+2T¢)
= (GB)"(Te) (5.91)
=i, >(GB) (T l( €)

Combining Expressions (5.90) and (5.91) gives:
ii, >(GB)'(-Gw, +s,) (5.92)
From Expression (5.92), the left half of Expression (5.84) is satisfied. With Expressions
(5.89) and (5.92), the switching control law satisfy the condition (5.84).

Case2. 5, <—@, the value of the switching function is negative and is located
outside of the boundary layer. Expression (5.85) should be satisfied.

Verification: Since s, <—¢, Equation (5.86) can be rewritten as:

it, =—(GB)"'s, —(GB)™'(y+2T¢)
<~(GB)"(- ) (5.93)
<—(GB)'[-(y+ Tg)]— (GB)"(y+2Te)=—(GB) 'Te =

i, <—(GB)'Te

The right hand side of Expression (5.85) can be rewritten as:

(GB)'(-Gw, +5,)>(GB) "' 7+(GB) s,
>(GB)"'y+(GB) '(—¢)
>(GB) " 7+(GB)"[-(y+T¢)]
=—(GB)'Te

(5.94)

Combining Expressions (5.93) and (5.94) gives:

ii, <(GB)'(-Gw, +s,) (5.95)

The right half of Expression (5.85) is satisfied. The left half of Expression (5.85) can be
rewritten as:
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(GB)"(~Gw, ~5,)<~(GB)"7-(GB) s,

. . _ (5.96)
<—(GB) (y+271¢)-(GB)'s, =1ii,
The left half of Expression (5.85) is satisfied. With Expressions (5.95) and (5.96), the

condition (5.85) is satisfied.

Case3. —@p<s, <@, the value of the switching function is located inside the
boundary layer.

For the convenience of discussion, it is assumed, without loss of generality,

thatp=y+T¢e . Since—@<s, < ¢, the saturation function in Equation (5.86) can be

replaced by a linear function and the switching function is obtained as:

y+2T¢)

m:_mm%ﬁﬂmﬁ(wjfﬁ (5.97)

Substituting Equation (5.97), (5.83) and (5.82) into Equations (5.65) and (5.66) gives the
s-function inside the boundary:

_ JTe
y+T¢e

5, —Gw, (5.98)

Sesl

The parameters € and ¥ may be chosen such that there a low pass filtering through the s-
function (Misawa, 1997a). So long as € >0 and y > |ka|, the parameters € and ycan be

regarded as the design parameters. In the absence of modeling errors, the s-function
asymptotically approaches zero inside the boundary layer. The convergence rate may be
arbitrarily chosen by the selection of the ratio£/ yand can be made arbitrarily fast at the

expense of the boundary layer thickness.
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The control law can be obtained by substituting Equations (5.86) and (5.83) into

(5.82) as:
u, =(GB)"(Gx,,,, —GAx,)-(GB )'s, +(GB)" Ksat[ij (5.99)
@

This control law guarantees that the state of the system converges to the desired state with

a predefined convergence rate.

5.7 Experiment Results

Based on the model of the plant to be controlled, a discrete-time PID controller and
a DSMC controller have been designed in the previous subsections. The states of the
plant are estimated through either a state observer or a Kalman filter. The system model is
obtained through system identification with only one driven pulley. Modeling
uncertainties are later introduced by adding extra load, including two pulleys and one
eccentric flywheel, on the driven shaft. The PID and the DSMC are both applied. For
comparison, the PID control is implemented on the system with and without modeling
uncertainties. The output is filtered with a first-order Butterworth filter before feeding it
back into the PID controller. The order of the filter is kept low to reduce the undesirable
phase shift. The DSMC is implemented with the system states estimated using the state
observer presented in Section 5.4 and the Kalman filter presented in Section 5.5,
respectively. Both the filter and the state observer were designed and tested off-line using
data generated from the plant. The Kalman filter was tuned off-line by adjusting the

process noise covariance matrix Q and measurement noise covariance R . The
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experimental results are evaluated by using the Root-Mean-Square of the tracking Error
(RMSE), the Root-Mean-Square of the Estimation Error (RMSEE), the Root-Mean-
Square of the control Error (RMSCE), Root-Mean-Square of the control signal (RMSU),
the Maximum-Absolute value of the tracking Error (MAE), and the Maximum-Absolute
value of the control signal (MAU) to demonstrate the effectiveness and robustness of the
DSMC algorithm.

The specifications of the tracking performance of the controllers are defined as

follows. With N denoting the number of data points taken in the experiment, 7, denoting
the /" point of the reference output, y,denoting the i” measured output, ¥, is denoting
the i" estimated or filtered output, e, denoting the i” point of the tracking error and

u, denoting the i” point of the control signal, the Mean-Square-Root of the tracking Error

(RMSE) is defined as:

RMSE:% S(r-y) (5.100)

(5.102)

The Mean-Square-Root of the control signal (RMSU) is defined as:
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N

RMSU:—I%/— Doul (5.103)

i
i=1

The Maximum-Absolute-value of the tracking Error (MAE) is defined as:
MAE = max(abs(e)) (5.104)
The Maximum-Absolute-value of the control signal (MAU) is defined as:
MAU = max(abs(u)) (5.105)

The outputs of the DSMC with state observer of the belt drive system without model
uncertainty are shown in Figure 68. Tracking error of the DSMC with state observer

without model uncertainty is shown in Figure 69.
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Figure 68 DSMC with State Observer of the Belt Drive System without Model

Uncertainty
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Tracking error of SMC with state observer without uncertainty
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Figure 69 Tracking Error of the DSMC with the State Observer without Model

Uncertainty

The outputs of the DSMC with state observer of the belt drive system with model
uncertainty are shown in Figure 70. Tracking error of the DSMC with state observer with
model uncertainty is shown in Figure 71.
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Figure 70 DSMC with the State Observer of the Belt drive System with Model

Uncertainty
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Tracking error of SMC with state observer with uncertainty
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Figure 71 Tracking Error of the DSMC with State Observer of the Belt Drive System

with Uncertainty

The outputs of the DSMC with the Kalman filter of the belt drive system without model
uncertainty are shown in Figure 72. Tracking error of the DSMC with the Kalman filter of
the belt drive system without model uncertainty is shown in Figure 73.
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Figure 72 DSMC with the Kalman Filter of the Belt Drive System without Model

Uncertainty
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Tracking error of SMC with Kalman filter without uncertainty
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Figure 73 Tracking Error of the DSMC with the Kalman Filter of the Belt Drive System

without Model Uncertainty

The outputs of the DSMC with the Kalman filter of the belt drive system with model
uncertainty are shown in Figure 74. Tracking error of the DSMC with the Kalman filter of
the belt drive system with model uncertainty is shown in Figure 75.
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Figure 74 DSMC with the Kalman Filter of the Belt Drive System with Model
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Tracking error of SMC with Kalman filter with uncertainty
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Figure 75 Tracking Error of the DSMC with the Kalman Filter of the Belt Drive System

with Model Uncertainty

The variation of the Kalman gain is shown in Figure 76.
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Figure 76 Variation of the Kalman Gain
The outputs of the PID control of the belt drive system without model uncertainty
are shown in Figure 77. Tracking error of the PID control of the belt drive system without

model uncertainty is shown in Figure 78.
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Figure 77 PID Control of the Belt Drive System without Model Uncertainty
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The outputs of the PID control of the belt drive system model uncertainty are shown
in Figure 79. Tracking error of the PID control of the belt drive system model uncertainty

is shown in Figure 80.
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Figure 79 PID Control of the Belt Drive System with Model Uncertainty
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The RMSE, the RMSEE, the RMSCE, the RMSU, the MAE and the MAU are listed

in Tables 7, 8,9, 10, 11 and 12, respectively.

Table 7 RMSE of the Controlled Belt Drive System

Controller Uncertainty RMSE(Rad/Sec)
DSMC with Kalman Filter No 0.0303
Yes 0.0336
DSMC with State Observer No 0.0335
Yes 0.0353
PID Control No 0.0239
Yes 0.0253

Table 8 RMSEE of the Controlled Belt Drive System

Controller Uncertainty RMSEE(Rad/Sec)
DSMC with the Kalman Filter No 0.0308
Yes 0.0342
DSMC with the State Observer No 0.0329
Yes 0.0349
PID Control with the Butterworth No 0.0216
Filter Yes 0.0231
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Table 9 RMSCE of the Controlled Belt Drive System

Controller Uncertainty RMSCE(Rad/Sec)
DSMC with the Kalman Filter No 0.0019
Yes 0.0020
DSMC with the State Observer No 0.0040
Yes 0.0040
PID Control with the Butterworth No 0.0146
Filter Yes 0.0148
Table 10 RMSU of the Controlled Belt Drive System
Controller Uncertainty RMSU(Volt)
DSMC with Kalman Filter No 0.0046
Yes 0.0046
DSMC with State Observer No 0.0046
Yes 0.0046
PID Control No 0.0045
Yes 0.0046
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Table 11 MAE of the Controlled Belt Drive System

Controller Uncertainty MAE(Rad/Sec)
DSMC with Kalman Filter No 13.5465
Yes 13.9629
DSMC with State Observer No 17.1950
Yes 17.9337
PID Control No 11.6058
Yes 12.2469

Table 12 MAU of the Controlled Belt Drive System

Controller Uncertainty MAU(Volt)
DSMC with the Kalman No 0.4884
Filter Yes 0.4891
DSMC with the State No 0.4907
Observer Yes 0.4908
PID Control with the No 0.4747
Digital Butterworth Filter Yes 0.4808

The robustness of DSMC of the belt drive system is verified by experiments. The
experiments involved running the system without added uncertainty compared to cases

when unmodeled two extra pulleys and one eccentric flywheel were added to the system.
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Compared to the other control algorithm, the DSMC with Kalman filter produced a better
performance mainly as follows: (1) a better transient response was achieved in the DSMC
with the Kalman filter; (2) a smoother filtered signal was obtained by using the Kalman
filter; (3) phase shift was avoided by using the Kalman filter as shown in Figure 81. In the
sense of tracking error, the PID control with digital Butterworth filter gives the best
performance. This unusual result is mainly because that the mathematical model used in
the DSMC is not accurate.
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Chapter 6 Conclusions

A mathematical model has been proposed and applied to a laboratory-scale
experimental prototype belt drive system. This model is used as a priori information to
support experimental verification in system identification.

A transfer function of the belt drive system has been obtained using physical
modeling even though the parameters involved are left unknown. The transfer function
has provided pieces of useful information needed for system identification such as the
order of the system. The system order information is re-obtained empirically using the
impulse response data during the initial tests of the system identification. The system
order information obtained through different methods has been consistent with each other.

Experiments on the prototype have shown that correct determination of the linear
region of the belt drive system is the most important factor ensuring the success of the
system identification process. The system identification is expected to produce a linear
time-invariant dynamic model which is dependent on the operating point. The model
obtained using system identification should not include any discontinuities or non-
linearities. It has been determined experimentally that the saturation of the sensors is the
bottleneck, restricting the width of the linear region of the system.

Different linear regions have been identified through different sensors. The linear
region determined through the encoder (Encoder A) originally mounted inside the electric
motor covers the entire input region of the AC drive, namely between O to 7 volts with

the consideration of only unidirectional operation. Two main drawbacks of the encoder
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(Encoder B) on the driven pulley have been identified: (1) a low saturation point narrows
the linear region of the system; (2) it is hard to concentrically align the encoder with the
driven pulley as a result the low frequency noises can not be avoided. The linear region
identified through Encoder B is in the range of 0 tolvolt due to its saturation.

The second drawback of Encoder B, namely eccentric installation, has shown a
profound influence on the quality of the system identification and the control process.
Low frequency content has been identified in the measurement noise, its frequency has
been found positively correlated to the amplitude of the input, and is located in the
frequency range of interest for the system identification and the control process. Hence
the low frequency content can not be filtered out and impacts the identification and
control process. Due to sensor B, an acceptable transfer function could only be obtained
for input amplitudes in the range of Oto 1volt. In this narrow region, the combination of
low input amplitude and noise adversely affects signal to noise ratio, restricting the
system operation, system identification and control in the low velocity region. The output
of the system is the velocity signal calculated from the encoder measurement. When
calculating the velocity from an encoder signal at low velocity, the results become even
noisier due to numerical differentiation. The eccentricity of Encoder B has greatly
degraded the overall quality of system identification and control.

The second objective of this research project has been to explore the application and
the robustness of the sliding mode control algorithm. A DSMC tracking controller has
been designed and implemented on the belt drive system with the state variables

estimated using a state observer and the Kalman filter, respectively. In comparison, a
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discrete PID controller has also been designed and implemented. A comparison of the
controllers is presented under the following three categories: (1) the performance of the
observer and the filters including the Kalman filter and the digital Butterworth filter is
compared using the error between the estimated or filtered and the measured outputs with
respect to the Mean-Square-Root of the Estimation Error (RMSEE); (2) the controllers,
namely the DSMC with the state observer, the DSMC with the Kalman filter, and the PID
with the digital Butterworth filter, are compared with respect to the Mean-Square-Root of
the Control Error (RMSCE) and the tracking Error (RMSE); and the Mean-Square-Root
of the control signal, the Maximum-Absolute value of the tracking Error (MAE) and the
Maximum-Absolute value of the control signal (MAU) are also compared.

The digital Butterworth filter applied with the PID controller is easy to design and
implement and can effectively remove high frequency contents from a signal of interest.
The drawback is that it introduces a phase-shift that is highly undesirable in real-time
control applications. In this research project, the output of the system is a velocity signal
which is calculated from an encoder resulting in noise in the frequency range of interest
for control, and phase-shift due to digital filtering.

Model based filters and observers are capable of estimating the state of the system
without introducing a phase-shift. The most well-known model based filter is the Kalman
filter. It has been successfully used for estimating the states of the experimental system.
The Kalman filter has been designed based on the assumptions that both the process noise
and the measurement noise are white. These assumptions are not satisfied in this research

project and the performance of the Kalman filter has been adversely affected as expected.
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However compared to a state observer, a properly tuned Kalman filter provides a
smoother state estimate.

Overall, the smallest Mean-Square-Root of the filtering error (RMSEE) was
obtained by using the digital Butterworth filter. The Kalman filter and the state observer
did not introduce any phase-shift into the system. But their RMSEEs are higher than the
digital Butterworth filter. The state observer produced the highest RMSEE.

Amongst all the controllers implemented, the discrete sliding mode control (DSMC)
with the Kalman filters provided the smallest Mean-Square-Root of the Control Error
(RMSCE). The best tracking performance was achieved using the DSMC with the
Kalman filter. Its steady state response was much better than that of the PID control but
slightly poorer than that of the DSMC with the Kalman filter. The PID controller
produced the worst steady-state response among all of the controllers.

The verification of the robustness of the DSMC algorithm was carried out by adding
two extra pulleys and one eccentric flywheel to the system without adjusting the
controller parameters. All of the controllers performed equally well. This is probably
because the overall load including the unmodeled uncertainty of the system is too small
compared to the power that the electric motor can supply to cause any one of the

controller to fail.
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