Algebraic Constructions Applied to Theories
ALGEBRAIC CONSTRUCTIONS APPLIED TO THEORIES

By
QUANG MINH TRAN, DIPL.-INF.

A Thesis
Submitted to the School of Graduate Studies
in partial fulfilment of the requirements for the degree of

Master of Science
Department of Computing and Software
McMaster University

© Copyright by Quang Minh Tran, June 22, 2011
MASTER OF SCIENCE (2011) McMaster University
(Computer Science) Hamilton, Ontario

TITLE: Algebraic Constructions Applied to Theories
AUTHOR: Quang Minh Tran, Dipl.-Inf. (Furtwangen University, Germany)

SUPERVISOR: Dr. William M. Farmer

NUMBER OF PAGES: x, 125
MathScheme is a long-range research project being conducted at McMaster University with the aim to develop a mechanized mathematics system in which formal deduction and symbolic computation are integrated from the lowest level. The novel notion of a biform theory that is a combination of an axiomatic theory and an algorithmic theory is used to integrate formal deduction and symbolic computation into a uniform theory. A major focus of the project has currently been on building a library of formalized mathematics called the MathScheme Library. The MathScheme Library is based on the little theories method in which a portion of mathematical knowledge is represented as a network of biform theories interconnected via theory morphisms. In this thesis, we describe a systematic explanation of the underlying techniques which have been used for the construction of the MathScheme Library. Then we describe several algebraic constructions that can derive new useful machinery by leveraging the information extracted from a theory. For instance, we show a construction that can reify the term algebra of a (possibly multi-sorted) theory as an inductive data type.
Abstract

1 Introduction
 1.1 The Mathematics Process
 1.2 Theorem Proving Systems vs. Computer Algebra Systems
 1.3 The MathScheme Project
 1.4 Overview of Solution Pieces
 1.5 Contributions of the Thesis
 1.6 Organization of the Thesis
 1.7 Font Convention

2 Theories of Formalized Mathematics
 2.1 Axiomatic Method
 2.1.1 Axiomatic Theory
 2.1.2 Theory Development Process
 2.1.3 Theories as Modules
 2.2 Symbolic Computation
 2.3 Biform Theory = Axiomatic Theory + Algorithmic Theory
 2.4 Theory Morphisms
 2.4.1 Injections
 2.4.2 Operations on Theory Morphisms
Contents

2.5 Approaches to Organizing Mathematical Knowledge
 2.5.1 Big Theories Method
 2.5.2 Little Theories Method
 2.5.3 Tiny Theories Method
 2.5.4 High-Level Theories Method

3 The MathScheme Library
 3.1 Requirements
 3.2 Design Decisions
 3.3 Current Implementation
 3.3.1 Abstract Algebra
 3.3.2 Concrete Theories

4 Reification of Theories and Theory Interpretations
 4.1 Motivation
 4.2 Reification of a Theory as a Type
 4.2.1 Reification of a Theory as a Dependent Record Type
 4.2.2 Elements of a Reified Theory
 4.3 Reification of a Theory Interpretation as an Element
 4.4 Implementation

5 Generation of Theories of Homomorphisms
 5.1 Motivation
 5.2 Generic Definition of Homomorphism
 5.3 Constructing a Homomorphism via TypeFrom
 5.4 Constructing a Homomorphism via Pushout
 5.5 Comparison of the Two Constructions

6 Generation of Theories of Substructures and Submodels
 6.1 Motivation for the Generation of a Substructure and a Submodel
 6.2 Generic Definition of a Substructure and a Submodel
 6.3 Constructing a Theory of a Substructure and a Submodel via TypeFrom
 6.4 Constructing a Theory of a Substructure Via Pushout
 6.5 Comparison of the Two Constructions
7 Theory Syntax Representation and Other Syntactic Machinery 76
7.1 Motivation ... 77
7.2 Definition of the Term Algebra of a Theory 79
7.3 Syntax Framework 80
 7.3.1 Definition of a Syntax Framework 80
 7.3.2 Chiron as a Syntax Framework 85
 7.3.3 The MathScheme Language as a Syntax Framework 85
7.4 Reification of the Term Algebra of a Theory as an Inductive Data Type 87
 7.4.1 Linking the Reified Term Algebra with the Quotations Set 88
 7.4.2 The Term Algebra of a Multi-sorted Theory 89
 7.4.3 Implementation 91
7.5 Useful Syntactic Functions 91
7.6 Theory of Syntax 93

8 Conclusion and Future Work 94

Appendix : MathScheme Language 98
H.1 Conventions ... 98
 H.1.1 Terminals ... 98
 H.1.2 Nonterminals 98
 H.1.3 Options .. 98
 H.1.4 Alternatives .. 99
 H.1.5 Repetitions ... 99
 H.1.6 Comments ... 99
 H.1.7 Identifiers and Operators 99
H.2 Expression ... 99
 H.2.1 Term .. 101
 H.2.2 Atom .. 101
 H.2.3 Identifier .. 102
 H.2.4 Operator .. 102
 H.2.5 Tuple .. 102
 H.2.6 Record .. 102
 H.2.7 Constructor Selector 103
 H.2.8 Bracketed Expression 103
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.2.9 Marked Expression</td>
<td>103</td>
</tr>
<tr>
<td>H.2.10 Quotation</td>
<td>103</td>
</tr>
<tr>
<td>H.2.11 Term evaluation</td>
<td>104</td>
</tr>
<tr>
<td>H.2.12 Function Application</td>
<td>104</td>
</tr>
<tr>
<td>H.2.13 Operator Expressions</td>
<td>104</td>
</tr>
<tr>
<td>H.2.14 Function Abstraction</td>
<td>104</td>
</tr>
<tr>
<td>H.2.15 Case Expression</td>
<td>105</td>
</tr>
<tr>
<td>H.2.16 Definite And Indefinite Description</td>
<td>106</td>
</tr>
<tr>
<td>H.3 Type Expression</td>
<td>106</td>
</tr>
<tr>
<td>H.3.1 Function Type</td>
<td>107</td>
</tr>
<tr>
<td>H.3.2 Dependent Function Type</td>
<td>107</td>
</tr>
<tr>
<td>H.3.3 Type Applications</td>
<td>108</td>
</tr>
<tr>
<td>H.3.4 Sum Type</td>
<td>108</td>
</tr>
<tr>
<td>H.3.5 Record Type</td>
<td>109</td>
</tr>
<tr>
<td>H.3.6 Tuple Type</td>
<td>109</td>
</tr>
<tr>
<td>H.3.7 Inductive Data Type</td>
<td>109</td>
</tr>
<tr>
<td>H.3.8 Power Type</td>
<td>110</td>
</tr>
<tr>
<td>H.3.9 Type of Term Algebras of a Theory</td>
<td>110</td>
</tr>
<tr>
<td>H.4 Concepts</td>
<td>110</td>
</tr>
<tr>
<td>H.5 Facts</td>
<td>111</td>
</tr>
<tr>
<td>H.6 Declaration</td>
<td>112</td>
</tr>
<tr>
<td>H.6.1 Type Declaration</td>
<td>113</td>
</tr>
<tr>
<td>H.6.2 Type Definition</td>
<td>113</td>
</tr>
<tr>
<td>H.6.3 Function Definition Declaration</td>
<td>114</td>
</tr>
<tr>
<td>H.6.4 Axiom Declaration</td>
<td>115</td>
</tr>
<tr>
<td>H.6.5 Inductive Data Type Declaration</td>
<td>115</td>
</tr>
<tr>
<td>H.6.6 Concept Declaration</td>
<td>116</td>
</tr>
<tr>
<td>H.6.7 Variable Declaration</td>
<td>116</td>
</tr>
<tr>
<td>H.6.8 Fact Declaration</td>
<td>116</td>
</tr>
<tr>
<td>H.6.9 Definition Block Declaration</td>
<td>116</td>
</tr>
<tr>
<td>H.7 Theory Expression</td>
<td>117</td>
</tr>
<tr>
<td>H.7.1 Theory Name</td>
<td>117</td>
</tr>
<tr>
<td>H.7.2 Empty Theory</td>
<td>117</td>
</tr>
<tr>
<td>H.7.3 Theory Extension</td>
<td>118</td>
</tr>
<tr>
<td>H.7.4 Parameterized Theory</td>
<td>118</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>H.7.5</td>
<td>Theory Application</td>
</tr>
<tr>
<td>H.7.6</td>
<td>Theory Renaming</td>
</tr>
<tr>
<td>H.7.7</td>
<td>Theory Combination</td>
</tr>
<tr>
<td>H.8</td>
<td>Theory Declaration</td>
</tr>
<tr>
<td>H.8.1</td>
<td>Declaration of Theory Identifier</td>
</tr>
<tr>
<td>H.8.2</td>
<td>Property</td>
</tr>
<tr>
<td>H.8.3</td>
<td>Injection</td>
</tr>
<tr>
<td>H.8.4</td>
<td>Theory Instance of Parameterized Theory</td>
</tr>
</tbody>
</table>

Bibliography

122
LIST OF FIGURES

2.1 Example of a Theory Combination .. 14
2.2 Example of an Identity Injection .. 20
2.3 Example of a Renaming Injection .. 21
2.4 Composition of Theory Morphisms 21
2.5 Example of a Composition of Theory Morphisms 22
2.6 Pushout of Theory Morphisms ... 23
2.7 Example of a Pushout of Theory Morphisms 24
2.8 Example 2 of a Pushout of Theory Morphisms 25
2.9 Example of the Little Theories Method 28
2.10 Example of the Tiny Theories Method 28

3.1 The Construction of a Theory of a Monoid 33

4.1 Type of Groups ... 37
4.2 Reification of a Theory Interpretation 41

5.1 Constructing a Group Homomorphism via Pushout 52
5.2 Constructing a Group Epimorphism via Pushout 54
5.3 Constructing a Group Monomorphism via Pushout 54
5.4 Constructing a Group Isomorphism via Pushout 55
5.5 Constructing a VectorSpace Homomorphism via Pushout 56
5.6 Constructing a T-Homomorphism via Pushout 59
5.7 Constructing a T-Epimorphism via Pushout 59
5.8 Constructing a T-Monomorphism via Pushout 60
5.9 Constructing a T-Isomorphism via Pushout 60

6.1 Constructing a Group Substructure via Pushout 70
6.2 Constructing a Vector Space Substructure via Pushout 72
6.3 Constructing a Sub-T-Structure via Pushout 74

7.1 An Interpreted Language 81
7.2 A Syntax Representation 82
7.3 A Syntax Language ... 83
7.4 A Syntax Framework .. 84
7.5 Chiron As A Syntax Framework 86
7.6 MathScheme Language As A Syntax Framework 86
7.7 Theories in the MathScheme Language 87
CHAPTER 1
INTRODUCTION

Mathematics is undoubtedly one of the most crucial tools for science and engineering. The scientific and technological advancement we are enjoying today is largely, directly or indirectly, driven by mathematics. The importance and immense size of mathematics has led to the need for *mechanizing mathematics*, namely the development of software systems that assist the user in using mathematics.

The purpose of this chapter is to give a brief introduction to the mechanizing mathematics project entitled MathScheme as well as the focus and organization of this thesis. We start the chapter by explaining the *mathematics process*, that is, the process-oriented way of perceiving mathematics.

We compare theorem proving systems and computer algebra systems. Then we introduce the MathScheme project, whose main goal is to combine the functionalities of theorem proving systems and computer algebra systems in one system. The objective and goals of the project are stated and explained.

We give an overview of the solution pieces which have been developed to achieve the project’s goals. Finally, we discuss the scope of this thesis as well as how it is organized.

1.1 The Mathematics Process

So what is mathematics? The common definition of mathematics is an enormous body of knowledge containing definitions and facts. However, such a descriptive view
of mathematics does not capture the process by which mathematical knowledge is produced. Since we are concerned with developing a mechanized mathematics system, we are extremely interested in the mathematics process. In [13], Dr. Farmer defines mathematics as a “process of creation, exploration, and connection” which consists of three intertwined activities:

1. **Model creation.** Mathematical models representing mathematical aspects of the world are created.

2. **Model exploration.** The models are explored by stating and proving conjectures and by performing computations.

3. **Model connection.** The models are connected to each other so that results obtained in one model can be used in other related models.

The mathematics process has produced an immense body of mathematical knowledge that is constantly being enlarged. Mathematical knowledge in turn provides materials for the mathematics process to create new knowledge.

The importance and immense size of mathematics naturally lead to the need for the development of *mechanized mathematics systems* (MMSs), software systems that assist the user in doing mathematics. We believe that a mechanized mathematics system should ideally support all of these three activities of the mathematics process.

1.2 Theorem Proving Systems vs. Computer Algebra Systems

Contemporary mathematics software systems can be categorized into two major groups: theorem proving systems and computer algebra systems.

Theorem proving systems emphasize proving conjectures. A theorem proving system is usually built upon the *axiomatic method* which will be discussed in more detail in Chapter 2. Essentially, the axiomatic method is applied with an underlying formal logic in which mathematical knowledge is formalized as axiomatic theories. A conjecture is expressed as a formula in some axiomatic theory and then one tries to prove it from the axioms of the theory by applying the inference rules of the logic. This proving process is also referred to as *formal deduction*. The biggest advantage of a theorem proving system is that, since theorems and their proofs are well-grounded
1. Introduction

In a formal logic, they can be mechanically checked. Moreover, the proving process can also be assisted by the use of computers. Consequently, the confidence in the correctness of the proofs increases significantly.

On the other hand, computer algebra systems emphasize performing computation. A computer algebra system implements symbolic computation, i.e. implements a collection of algorithms for manipulating expressions. An algorithm takes an expression as input, symbolically manipulates it and returns the result. As opposed to theorem proving systems, computer algebra systems usually do not have a formal underlying logic. As a result, the behavior of algorithms cannot usually be easily formalized and reasoned about. Furthermore, stating and proving conjectures in a computer algebra system is usually not supported or even possible.

Formal deduction and symbolic computation are two intertwined aspects of mathematics. The unnatural separation of them into two different kinds of systems severely limits the ability of doing mathematics in either kind of system. In responding to the problem, instead of trying to add formal deduction to an existing computer algebra system or symbolic computation to a theorem proving system as an afterthought, we follow the more radical approach, namely, developing a new system in which formal deduction and symbolic computation are integrated from the ground up.

1.3 The MathScheme Project

The MathScheme Project [4] is a long-range research project lead by Dr. Carette and Dr. Farmer at McMaster University with the following stated objective [18]:

The Objective of MathScheme: *The objective of the project is to develop a new approach to mechanized mathematics in which computer algebra and computer theorem proving are integrated at the lowest level.*

Toward that end, the project has five goals [10]:

Goal 1 *Design a framework for integrating formal deduction and symbolic computation.*

As mentioned previously, formal deduction is the core functionality of a theorem proving system and symbolic computation is the core functionality of a computer
algebra system. In order to integrate formal deduction and symbolic computation, a framework needs to be developed that treats these in a uniform manner.

Goal 2 Design and implement a logic that, among other things, supports reasoning about the syntax of expressions.

Since symbolic computation is about manipulating the syntax of expressions, the integration of formal deduction and symbolic computation inevitably requires reasoning about syntactic expressions. Most contemporary logics such as first-order logic, ZF set theory, simple type theory etc. do not directly support reasoning about syntax and thus cannot be easily used as the underlying logic for our new system. The solution for this is to design and implement a new formal logic that supports reasoning about the syntax of expressions.

Goal 3 Build a library of formalized mathematics.

A framework for the integration of formal deduction and symbolic computation and a logic supporting reasoning about the syntax of expressions would provide an adequate infrastructure for building a library of formalized mathematics. For instance, the library would contain formalizations of algebraic structures, natural numbers, real numbers and lots of other mathematical structures. The unique characteristic of the library is that mathematical knowledge is expressed both axiomatically and algorithmically and is stored side-by-side.

Goal 4 Build a mechanized mathematics system based on this framework, logic and library.

The next step is to leverage the framework, logic and library to build a mechanized mathematics system. The system should be easy to use with a graphical user interface and visualization support, among other things. Most importantly, it should possess the power both of a theorem proving system and of a computer algebra system.

Goal 5 Build an interactive mathematics laboratory on top of the mechanized mathematics system.

This is a long-term vision proposed by Dr. Farmer in [7]. In the paper, he defined an interactive mathematics laboratory as “a computer system with a set of integrated tools designed to facilitate the mathematics process”. Such a laboratory, once realized, would provide an interactive environment for the user, especially students, to create and explore mathematics and possibly “revolutionize mathematics education” [7, page 5].
1.4 Overview of Solution Pieces

This section gives an overview of the solution pieces that have been developed within the scope of MathScheme that address the goals mentioned previously.

Solution Piece 1 The notion of a biform theory [8] is used to integrate formal deduction and symbolic computation. A biform theory is a generalization of an axiomatic theory and an algorithmic theory. We discuss axiomatic and algorithmic theories in Chapter 2.

This solution piece addresses Goal 1. We discuss biform theories in Chapter 2.

Solution Piece 2 A formal logic called Chiron [9] that supports reasoning about the syntax of expressions via quotation and evaluation has been developed.

This solution piece addresses Goal 2. Formalizing biform theories requires a logic with support for reasoning about syntax [8]. Since Chiron supports reasoning about the syntax of expressions, it is well suited for formalizing biform theories [9].

Solution Piece 3 A high-level specification language called the MathScheme Language (MSL) has been developed on top of Chiron. MSL is used for specifying and relating theories in a library of formalized mathematics.

This solution piece addresses Goal 3. The motivation for having MSL is that formalizing biform theories directly in Chiron can be very verbose because Chiron is a low-level logic. MSL, which can be seen as high-level syntactic sugar for Chiron, is more convenient for specifying and relating theories when building the library of formalized mathematics. The Appendix contains the language description of MSL.

Solution Piece 4 A library of formalized mathematics called the MathScheme Library has been developed. It contains, among other things, formalization of abstract algebra and basic data structures in MSL.

This solution piece also addresses Goal 3. We discuss the MathScheme Library in Chapter 3.

Solution Piece 5 There is an implementation of Chiron and MSL as well as a partial translation from MSL to Chiron in OCaml [1].

This solution piece addresses Goal 4. This implementation will eventually become the core of the MathScheme mechanized mathematics system.
1.5 Contributions of the Thesis

The contribution of this thesis is twofold. First, we explain the techniques that have been developed and used to construct the MathScheme Library. In particular, we explain biform theories and the little theories method that are the key techniques behind the MathScheme Library. We give the definition of a theory morphism as well as several operations involving them.

Then we explain several algebraic constructions that construct new useful machinery by leveraging the information extracted from theories. In particular, we explain constructions for (1) reifying a theory as a dependent record type and a theory interpretation as a member of a dependent record type, (2) generating a theory of homomorphisms (as well as epimorphisms, monomorphisms, isomorphisms) from an existing theory, (3) generating a theory of substructures from an existing theory and (4) reifying the term algebra of a theory as an inductive data type as well as generating other useful syntactic machinery.

1.6 Organization of the Thesis

The thesis is organized as follows. Chapter 2 introduces axiomatic theories as building blocks for constructing a library of formalized mathematics. Here, the novel structure of a biform theory is introduced which is an extended version of an axiomatic theory augmented with symbolic computation. Different approaches to organizing mathematics such as the big theories method, the little theories method etc. are discussed.

Chapter 3 explains the library of formalized mathematics called the MathScheme library that has been developed within the scope of the MathScheme project. The requirements and design goals of the library are discussed. The formalizations of abstract algebra and concrete theories in the library are briefly explained.

Chapter 4 explains the algebraic constructions for reifying a theory as a dependent record type and a theory interpretation as an element of a dependent record type, respectively.

Chapter 5 explains the algebraic construction for deriving the notion of a homomorphism from an existing theory. Two generation approaches are discussed: one using the reification of theories as types developed in Chapter 4 and one using the pushout of theory morphisms introduced in Chapter 2.

Chapter 6 explains the algebraic construction for deriving the notion of a substruc-
ture from an existing theory. Also two generation approaches are discussed: one using the reification of theories as types and one using the pushout of theory morphisms.

Chapter 7 explains the algebraic construction for reifying the term algebra of a theory as an inductive data type. Here, the notion of a syntax framework is introduced and used to analyze the presented reification purpose.

Chapter 8 concludes the thesis and discusses possible future work.

1.7 Font Convention

The following font conventions are used in the thesis:

- *Italics*: for a term that is being defined in a definition.
- *Sans serif*: for expressions of the MathScheme Language.
- *Bold sans serif*: for keywords of the MathScheme Language.
Constructing a library of formalized mathematics is one of the biggest challenges of mechanizing mathematics. A library of formalized mathematics is where mathematical knowledge is organized and stored and thus can be seen as the heart of a mechanized mathematics system. This chapter aims to give a brief overview of the existing techniques and our techniques that have been developed and used for this purpose. In particular, we review the axiomatic method, introduce biform theories as well as morphisms between them. Approaches to organizing mathematical knowledge, most notably the little theories method, are discussed.

2.1 Axiomatic Method

Mathematical knowledge is an enormous network of definitions and facts that are related to each other in some way. Some mathematical concept may be seen as an extension of another concept. For instance, the concept of a monoid can be regarded as the concept of a semigroup augmented with an identity element. Some mathematical concepts can also be seen as a combination of several other concepts. A vector space has both the concept of a field and the concept of a vector in it.

Representing mathematical knowledge in a computer system appears to be an impossible task at first since a lot of mathematical concepts are infinite. How could
we store all (uncountably many) reals or even naturals in a computer? The solution to this question is a method called the axiomatic method.

The axiomatic method was first used by Euclid in his work on presenting the mathematics of his time in his series of books called Elements. In particular, in presenting euclidean geometry, he carefully chose a small set of assumptions called axioms which are assumed to be intuitively true, e.g. the parallel axiom. All further theorems are derived from these axioms. In the 90s, A. N. Whitehead and B. Russell axiomatized a portion of mathematics in the Principia Mathematica [25].

Basically, in the axiomatic method, a mathematical concept is formalized as an axiomatic theory in some formal logic, a process referred to as axiomatization. Conjectures are stated as formulas and proved by applying the inference rules of the logic.

The majority of theorem proving systems, most notably Isabelle [22], IMPS [11] etc. are based on the axiomatic method. Specifically, most of them are built upon either first-order logic, set theory or higher-order type theory. Mathematical concepts are formalized as axiomatic theories in the chosen logic.

2.1.1 Axiomatic Theory

The following gives the formal definition of an axiomatic theory:

Definition 2.1.1 (Axiomatic Theory) Given a logic, an axiomatic theory is a pair (L, Γ) in which

- L is a language (set of concepts) of the logic.
- Γ is a set of formulas formalized in the logic called axioms.

Example 2.1.2 The natural number can be axiomatized as an axiomatic theory of Peano Arithmetic where the language $L = \{\text{nat, zero, suc}\}$ and $\Gamma = \{A_1, A_2, A_3\}$.

In MSL, it may look as below:

```ml
Nat := Theory { Concepts nat : type; zero : nat; suc : nat -> nat; }
```
Facts

axiom ax1 : \textit{forall} x : \textit{nat} . \textit{not} (\textit{zero} = \textit{suc}(x));

axiom ax2 : \textit{forall} x, y : \textit{nat} . (\textit{suc}(x) = \textit{suc}(y)) \implies (x = y);

axiom ax3 : \textit{forall} p : \textit{nat}?.

 (p(\textit{zero}) \text{ and } (\textit{forall} n : \textit{nat} . p(n) \Rightarrow p(\textit{suc}(n))))

 \Rightarrow \textit{forall} n : p(n) ;

\}

□

Example 2.1.3 The concept of monoid can be represented by the following axiomatic theory expressed in MSL where \(L = \{M, *, e\} \) is the language of monoid whereas the set of axioms \(\Gamma = \{\text{associativity}_{\ast}, \text{identity}_e\} \) specifies the monoid axioms:

Monoid := Theory \{

 M : \textit{type};
 \ast : (M,M) \rightarrow M;
 e : M;

 \textbf{axiom \ associativity_{\ast}} : \text{associative}((\ast));
 \textbf{axiom \ identity}_e : \text{identity}((\ast),e);

\}

□

An axiomatic theory can be seen as a specification of its models. It captures one model or a collection of models by specifying its or their concepts in the language part and their required properties in the axiom part.

We distinguish between two types of theories, categorical and non-categorical theories:

Definition 2.1.4 A theory having exactly one model up to isomorphism is called a categorical theory. A theory that is not categorical is called a non-categorical theory.

The structure of natural numbers \(\mathcal{N} = (\mathbb{N},0,\textit{suc}) \) as well as all structures isomorphic with it are models of \textit{Nat}. Furthermore, any other structure that is not isomorphic with \(\mathcal{N} \) is not a model of \textit{Nat}. As a result, \textit{Nat} is a categorical theory. Here, the intention of \textit{Nat} is to describe a single model, the natural numbers.
On the contrary, Monoid describes a collection of non-isomorphic models. For instance, both non-isomorphic structures \((\mathbb{N}, +, 0)\) and \((\mathbb{R}, *, 1)\) are models of Monoid. Therefore, Monoid is non-categorical.

2.1.2 Theory Development Process

According to Dr. Farmer’s CAS 760 lecture notes [15], the mathematics process, as mentioned in Chapter 1, can be regarded as the theory development process where theory creation corresponds to model creation, theory exploration corresponds to model exploration and theory connection corresponds to model connection. In the following sections, we briefly explain these three activities of the theory development process.

Theory Creation

Also according to [15], an axiomatic theory can be constructed by:

- Building it from scratch.
- Extending an existing theory (theory extension).
- Renaming an existing theory (theory renaming).
- Combining several existing theories (theory combination/union).
- Instantiating a parameterized theory (theory instantiation).

It is noteworthy that these theory constructions are actually syntactic operations on theories.

Build from Scratch Building a theory from scratch is the most straightforward way of creating a theory. We start from the empty theory and add concepts and axioms that describe the mathematical concepts we are interested in.

Theory Extension Theory extension is analogous to inheritance in object-oriented programming in the sense that a theory extension extends an existing theory with further conceptual units.
Definition 2.1.5 Formally, let $T_1 = (L_1, \Gamma_1)$ and $T_2 = (L_2, \Gamma_2)$ be two theories. T_2 is a theory extension of T_1 (and T_1 is a subtheory of T_2) if $L_1 \subseteq L_2$ and $\Gamma_1 \subseteq \Gamma_2$.

Intuitively, the theory extension T_2 is the obtained by adding new machinery, i.e. vocabulary and axioms, to T_1.

For instance, if we extend the concept of a semigroup with the property that its binary operation has an identity element we have the concept of a monoid. Consequently, the theory of monoid is the theory extension of the theory of semigroup with the added identity element.

In MSL, this may look as follows:

Semigroup := Theory {
 M: type;
 $*$: (M,M) \rightarrow M;
 axiom associative$_*$: associative ($*$);
}

Monoid := Semigroup extended by {
 e: M;
 axiom identity$_*$: leftIdentity ($*$), e and
 rightIdentity ($*$), e;
}

Theory Renaming Theory renaming creates a new theory from an existing theory by renaming some or all of its primitive symbols. Theory renaming helps make the language of a theory more intuitive and convenient for the user.

For instance, let **BinaryRelation** be the theory of a binary relation:

Empty := Theory {}
Carrier := Empty extended by {
 U: type
}

BinaryRelation := Carrier extended by {
 R: (U, U)?
}

Here, R: (U, U)? represents a predicate, R: (U, U) \rightarrow Bool, in the base logic.

Now, we want to define a theory of an ordered relation capturing the mathematical structure (U, \leq). It is obvious that the theory **BinaryRelation** has almost everything...
we need: a carrier set and a binary relation. However, we would like to call the binary relation \(\leq \) to emphasize the ordering instead of the general notation of relation \(R \). That is precisely what theory renaming is good for. Using theory renaming, \textsf{OrderRelation} is the theory resulted from renaming \(R \) to \(\leq \) in \textsf{BinaryRelation}.

In MSL, it may look as below:

\[
\text{OrderRelation} := \text{BinaryRelation} [R \mapsto \leq]
\]

In expanded form, it is equivalent to:

\[
\text{OrderRelation} := \text{Theory} \{ \\
\quad \text{U} : \text{type} ; \\
\quad \leq : (\text{U}, \text{U}) ? ; \\
\}
\]

\textbf{Theory Combination} \hspace{1em} Theory combination is the most sophisticated way of creating a new theory. Basically, a theory combination generates a new theory by combining a list of theories over a common subtheory. The common subtheory specifies the part commonly occurring in the combined theories that we would like to have only one copy in the resulting theory.

For instance, let \textsf{ReflexiveOrderRelation} be the theory of an order relation being reflexive and \textsf{TransitiveOrderRelation} be the theory of an order relation being transitive:

\[
\text{ReflexiveOrderRelation} := \text{OrderRelation \ extends by } \{ \\
\quad \text{axiom for all} \ x : \text{U} . \ x \leq x
\}
\]

\[
\text{TransitiveOrderRelation} := \text{OrderRelation \ extends by } \{ \\
\quad \text{axiom for all} \ x, \ y, \ z : \text{U} . \ (x \leq y \ \text{and} \ y \leq z) \implies x \leq z
\}
\]

The theory \textsf{Preorder} can be defined by combining \textsf{ReflexiveOrderRelation} and \textsf{TransitiveOrderRelation} over \textsf{OrderRelation} as illustrated in Figure 2.1.

In MSL, \textsf{Preorder} would look as follows:

\[
\text{Preorder} := \\
\quad \text{combine ReflexiveOrderRelation, TransitiveOrderRelation} \\
\quad \text{over OrderRelation}
\]
2. Theories of Formalized Mathematics

And in the expanded form, it is:

\[
\text{Preorder} := \text{Theory} \left\{ \\
\text{U} : \text{type} ; \\
\leq : (\text{U}, \text{U}) ? ; \\
\text{axiom } \forall x : \text{U} . x \leq x ; \\
\text{axiom } \forall x, y, z : \text{U} . (x \leq y \text{ and } y \leq z \text{ implies } x \leq z) ; \\
\right\}
\]

Notice that the common part \text{U} and \leq in \text{ReflexiveOrderRelation} and \text{TransitiveOrderRelation} are not duplicated (because they occur in the common sub-theory \text{OrderRelation}), but only one declaration for each of them is transported to the combined theory.

Theory Instantiation A theory can be constructed by instantiating a parameterized theory. This way of constructing a theory is actually not relevant to this thesis. Nevertheless, for the sake of completeness, it is briefly explained here.

For instance, the following parameterized theory/functor \text{Comm}, introduced by Jian Xu in [26], adds the commutative axiom to any theory with a binary operation over a set. Since parameterized theories are not yet implemented in MSL, we use pseudo code to declare \text{Comm}:

\[
\text{Comm} := \text{Theory} \left(T : \text{theory_type} \left\{ \text{ele} : \text{type} ; * : (\text{C}, \text{C}) \rightarrow \text{C} \right\} \right) \\
\text{extended by} \left\{ \\
\text{axiom} : \forall x, y : \text{ele} . x * y = y * x ; \\
\right\}
\]

![Figure 2.1: Example of a Theory Combination](image-url)
2. Theories of Formalized Mathematics

The theory of Monoid defined previously is compatible to the theory signature required by Comm since it has a binary operation over a set. Applying Comm to Monoid, we get the theory of a commutative monoid:

\[
\text{CommMonoid} := \text{Theory} \{ \\
\text{U : type;} \\
* : (U,U) \to U; \\
e : M; \\
axiom \text{assciativity}_{\cdot\cdot} : \text{associative} ((\cdot)); \\
axiom \text{identity}_{\cdot\cdot} : \text{leftIdentity} ((\cdot), e) \\
\text{and} \ \text{rightIdentity} ((\cdot), e); \\
axiom \text{forall} \ x, y : U . \ x * y = y * x; \\
\}
\]

The MSL syntax for applying a parameterized theory to a concrete theory is theory instantiation (See Appendix).

Theory Exploration

Exploring an axiomatic theory means stating conjectures in form of formulas and trying to prove them by applying inference rules.

Theory Connection

Connecting theories is about relating theories to each other so theorems proven in one theory can be reused in another related theory. The main tool for theory connection is theory interpretation.

Since theory interpretation is based on theory translation, we first introduce theory translation.

Definition 2.1.6 A theory translation is a function \(\Phi \) from a theory \(T_1 \) to another theory \(T_2 \) that maps the primitive symbols of \(T_1 \) to expressions of \(T_2 \) satisfying certain syntactic conditions.

Definition 2.1.7 A theory translation \(\Phi \) from \(T_1 \) to \(T_2 \) is called a theory interpretation if for all formulas \(A \) of \(T_1 \) such that \(\Phi(A) \) is defined, \(T_1 \models A \Rightarrow T_2 \models \Phi(A) \).

Informally, \(\Phi \) maps the logical consequences of \(T_1 \) to consequences of \(T_2 \) and thus it can be seen as a semantics-preserving theory translation.
In practice, this condition is usually very hard or even impossible to directly verify since there can be infinitely many theorems. Instead, normally the following lemma is used, provided things are set up properly:

Lemma 1 Let Φ be a theory translation from a theory T_1 to a theory T_2. Φ is a theory interpretation if and only if it maps all the obligations to logical consequences of T_2.

Certainly, the definitions of theory translation and theory interpretation above, particularly the phrases “satisfying certain syntactic conditions” and “maps all the obligations into logical consequences”, are very vague. Actually, we cannot give a precise definition of theory interpretation because such a definition varies from logic to logic. [6] is an excellent paper to understand theory interpretation. It is noteworthy that there can be more than one theory interpretation from one theory to another theory.

Example 2.1.8 Suppose we have a theory of natural numbers:

```plaintext
Nat := Theory {
    nat : type;
    zero : nat;
    suc : nat -> nat;
    + : (nat,nat) -> nat
    ...
}
```

We define $\Phi = [M \mapsto \text{nat}, e \mapsto \text{zero}, * \mapsto +]$ to be a theory translation from Monoid to Nat (the definition of Monoid is given previously in this chapter). Furthermore, the proof obligations (1) $+$ is associative and (2) zero is the identity of $+$ are theorems of Nat. Consequently, Φ is a theory interpretation from Monoid to Nat.

Φ establishes a connection between Monoid and Nat in the sense that it tells us how to interpret the model $(nat, zero, +)$ of Nat as a monoid. □

2.1.3 Theories as Modules

It turns out that theories closely resemble modules. Jian Xu, in his PhD thesis [26], developed a module system named *Mei* for organizing mathematical knowledge
by combining and further developing good ideas from module systems used in ML-languages and specification languages. In Mei, theories can be extended, combined and related to each other in much the same way as modules.

2.2 Symbolic Computation

Axiomatic theories are excellent for representing mathematical structures, algebras and data types etc. in a declarative way. Nevertheless, they are not suitable for representing symbolic computation. Basically, symbolic computation is the aspect of mathematics in which mathematical expressions are transformed in a symbolic way. Transformation algorithms are implemented by programs that take expressions as input and return the transformed expression. Computer algebra systems, for example Maple [16] and Axiom [17], implement symbolic computation.

A set of algorithms that manipulate expressions can be formalized as an algorithmic theory. But first, we formalize the notion of an algorithm. In MathScheme, an algorithm is formalized as a transformer.

Definition 2.2.1 Formally, a *transformer* is a pair $(\pi, \hat{\pi})$ in which

- π is a function that maps a list of expressions to an expression,

 i.e. $\pi : (E_1, \ldots, E_n) \rightarrow E_{n+1}$ where E_i are types of expressions and $n \geq 0$.

- $\hat{\pi}$ is the associated program that implements an algorithm for realizing π.

For instance, the derivative rule $\frac{d(u \cdot v)}{dx} = \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx}$ can be represented by a transformer $\text{prod-diff} : \text{DerivExpr} \rightarrow \text{DerivExpr}$ that maps an expression of the form $\frac{d(u \cdot v)}{dx}$ to the expression $\frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx}$. Corresponding to prod-diff is a program implementing the algorithm of the derivative rule.

Definition 2.2.2 An *algorithmic theory* is a pair (L, T) where L is a language and T is a set of transformers.

2.3 Biform Theory =

Axiomatic Theory + Algorithmic Theory

So far, we have seen that axiomatic theories and algorithmic theories capture two key aspects of mathematics: formal deduction and symbolic computation. These two
aspects are often intertwined. Symbolic computation may require formal deduction and vice versa.

Unfortunately, as we already mentioned before, despite their close relationship, formal deduction and symbolic computation are treated separately in contemporary systems. Theorem proving systems focus on formal deduction while computer algebra systems focus on symbolic computation.

In MathScheme, the integration of formal deduction and symbolic computation is done via a novel structure called a biform theory which essentially merges an axiomatic theory and an algorithmic theory. Several papers, most notably [8], are devoted to explaining biform theories. It is noteworthy that the precise definition of a biform theory varies in the papers. Perhaps, the simplest definition is the following:

Definition 2.3.1 A biform theory is a triple \((L, \mathcal{T}, \Gamma)\) in which:

- \(L\) is a set of concepts called a language.
- \(\mathcal{T}\) is a set of transformers.
- \(\Gamma\) is a set of facts that are statements about the concepts and transformers. Since facts can also be statements about transformers, they can specify programs.

A program can be either written in a programming language such as OCaml, Java, C++ etc. or expressed directly, for example as a lambda term, in the logic in which the biform theory is formalized.

If the program is implemented outside of the logic, we have to treat it as a black box. However, the specification about the program stated using the facts in \(\Gamma\) still allows us to reason about the properties of the program.

If the program itself is expressed in the logic, then we can reason about the implemented algorithm and may eventually be able to formally prove its correctness.

An axiomatic theory and an algorithmic theory can be seen as a special case of a biform theory. If a biform theory has no transformers, i.e. \(\mathcal{T}\) is empty, it reduces to an axiomatic theory which contains only an axiomatization but no symbolic computation. Conversely, if a biform theory has no facts, i.e. \(\Gamma\) is empty, it reduces to an algorithmic theory which contains only a set of transformers.

Formalizing transformers in a biform theory requires the ability to represent and reason about the syntax of expressions. Since traditional logics do not directly support the ability to reason about the syntax of expressions, they are not suitable for
formalizing biform theories. This motivated Dr. Farmer to develop a new formal logic called Chiron [9]. In Chiron, one can refer to syntactic expressions and reason about them via quotation and evaluation.

Formalizing biform theories directly in Chiron could be, however, very verbose since Chiron is very low-level. This is the motivation for the MathScheme Language, a high-level language defined on top of Chiron, which is more convenient for expressing biform theories.

From now on, we use the word theory and biform theory interchangeably.

2.4 Theory Morphisms

As we mentioned previously, the axiomatic method allows us to represent mathematical knowledge as theories. Theories can be constructed from scratch or from other theories as discussed in 2.1.2. One thing we notice is that a theory only contains the concepts and axioms of the mathematical concept being formalized but not the information about the construction path leading to it.

For instance, when looking at the theory of group, the only information we know is that it contains a carrier set, an associative binary operation, an identity element and an inverse operation. This theory may have been constructed by extending a monoid with an inverse operation which is in turn constructed from a semigroup. It could also be the result of extending semigroup directly by adding an identity element and inverse function.

The theory interpretations between theories turn out to contain lots of useful information, especially on how theories are constructed. This is one of the reasons that, in MathScheme, we are currently experimenting with the idea of placing more emphasis on these theory interpretations between theories instead of on the theories themselves.

Definition 2.4.1 We call a theory interpretation (see Definition 2.1.2) a *theory morphism*.

Informally, a theory morphism is a triple \((T, T', \Phi)\) consisting of a source theory \(T\), a target theory \(T'\) and a semantics-preserving mapping \(\Phi\) from \(T\) to \(T'\).
2.4.1 Injections

There is a special kind of theory morphism which we call an injection. Basically, an injection is a theory morphism \((T, T', \Phi)\) in which \(\Phi\) injectively maps the primitive symbols of \(T\) to primitive symbols (and not expressions) of \(T'\).

Intuitively, an injection defines an embedding of \(T\) into \(T'\). There are two kinds of injections:

- Identity injection.
- Renaming injection.

An identity injection is a theory morphism in which \(\Phi\) maps each symbol of \(T\) to exactly the same symbol in \(T'\). Such an injection can only exist if \(T'\) is either identical to, or a theory extension, of \(T\).

A renaming injection maps symbols between two isomorphic structures \(T\) and \(T'\) by renaming the symbols in \(T\) to match those in \(T'\).

From now on, we use the notation \([c_1 \mapsto c'_1, \ldots, c_n \mapsto c'_n]\) to express an injection mapping \(c_i\) of the source theory to \(c'_i\) of the target theory. Moreover, \([\]\) denotes the empty injection.

Example 2.4.2 We use the example of Semigroup and Monoid given previously, Monoid is a theory extension of Semigroup. The theory morphism \((\text{Semigroup}, \text{Monoid}, \Phi)\) in which \(\Phi = [U \mapsto U, \ast \mapsto \ast]\), is an identity injection. This is graphically depicted in Figure 2.2.

We see that the identity injection shows us how Semigroup is a subtheory Monoid. □

Example 2.4.3 We use the example of BinaryRelation and OrderRelation above. OrderRelation is a theory renaming of BinaryRelation. The theory morphism \((\text{BinaryRelation}, \text{OrderRelation}, \Phi)\) in which \(\Phi = [U \mapsto U, R \mapsto \leq]\) is a renaming injection. This is graphically depicted in Figure 2.3.

Here, BinaryRelation and OrderRelation are isomorphic and \(\Phi\) defines a renaming to turn the former one into the latter one. □
Generally speaking, a theory extension T' from T is represented by the identity injection (T, T', id) (id is the identity mapping on the language of T). Furthermore, a theory renaming T' from T is represented by the renaming injection (T, T', Φ) where Φ renames symbols in T to match those in T'.

2.4.2 Operations on Theory Morphisms

In this section, we introduce some useful operations on theory morphisms.

Projection

For convenience, we define three projection functions `source`, `target` and `mapping` that return the source theory, target theory and the mapping of a theory morphism, respectively. That means, given a theory morphism $M = (T, T', \Phi)$, $M.source = T$, $M.target = T'$, $M.mapping = \Phi$.

Composition

Another useful operation is *composition* of two theory morphisms. Intuitively, composition of two theory morphisms mimics the action of moving from one theory to another theory via an intermediate one by following the arrows between them.

Formally, suppose $M_1 = (T_1, T_2, \Phi_1)$ and $M_2 = (T_2, T_3, \Phi_2)$ are two theory morphisms where the target theory of M_1 and the source theory of M_2 are the same, i.e. $M_2.target = M_1.source = T_2$. Then $M_3 = M_2 \circ M_1$ is called the composition of M_1 and M_2 and $M_3 = (T_1, T_3, \Phi_2 \circ \Phi_1)$. Here, $\Phi_2 \circ \Phi_1$ is the composition of the two mappings Φ_1 and Φ_2. This is graphically shown in Figure 2.4.
Example 2.4.4 Again, we take the example of \textit{BinaryRelation} and \textit{OrderRelation} above. \textit{OrderRelation} is a theory extension of \textit{BinaryRelation}. We define the theory of \textit{ReflexiveOrderRelation} by extending \textit{OrderRelation} with the reflexivity axiom:

\[
\text{ReflexiveOrderRelation} := \text{OrderRelation} \text{ extended by } \{ \text{axiom reflexive}_{-} \leq := \text{reflexive}((\leq)) \}
\]

Suppose we have two theory morphisms \(M_1 = (\text{BinaryOperation}, \text{OrderRelation}, \Phi_1)\) and \(M_2 = (\text{OrderRelation}, \text{ReflexiveOrderRelation}, \Phi_2)\) in which \(\Phi_1\) is a renaming injection, \(\Phi_1 = [U \mapsto U, R \mapsto \leq]\), and \(\Phi_2 = [U \mapsto U, \leq \mapsto \leq]\) is the identity injection. Then \(M_1 \circ M_2\) is the theory morphism \((\text{BinaryOperation}, \text{ReflexiveOrderRelation}, \Phi_2 \circ \Phi_1)\) in which \(\Phi_2 \circ \Phi_1 = [U \mapsto U, R \mapsto \leq]\). Figure 2.5 graphically depicts this. \(\square\)

Pushout

Another essential operation is the \textit{pushout} of two theory morphisms. The combination of theory morphisms is closely related to a theory combination.

Definition 2.4.5 Formally, let \(M_1 = (T, T_1, \Phi_1)\) and \(M_2 = (T, T_2, \Phi_2)\) be two theory morphisms having a common source theory \(T\). \(M_1 \bigoplus M_2\) constructs the whole commutative diagram as graphically depicted in Figure 2.6 and is called the pushout of \(M_1\) and \(M_2\).

In the above commutative diagram, the pushout of \(M_1\) and \(M_2\) is the whole commutative diagram including the theory \(T_3\) and three theory morphisms \(\Phi_{13}, \Phi_{23}\) and \(\Phi_3\). These theory morphisms are injections.

For convenience, in the following, we define notations for accessing the components of the commutative diagram of a pushout of theory morphisms.
Let us take a look at some examples of how theory morphism combination works.

Example 2.4.6 Assume that we have two theory morphisms \((\text{Magma}, \text{CommutativeMagma}, \Phi_1)\) and \((\text{Magma}, \text{Semigroup}, \Phi_2)\) where \text{Magma}, \text{Semigroup} and \text{CommutativeMagma} are defined as below:

\begin{verbatim}
Magma := Theory {
 U : type;
 * : (U, U) -> U;
}
Semigroup := Magma extended by {
 axiom associativity_*_ : associative((*));
}
CommutativeMagma := Magma extended by {
 axiom commutativity_*_ : commutative((*));
}
\end{verbatim}

Moreover, \(\Phi_1\) and \(\Phi_2\) are identity injections with \(\Phi_1 = [U \mapsto U, * \mapsto *]\) and \(\Phi_2 = [U \mapsto U, * \mapsto *]\).

Since both theory morphisms have the same source theory \text{Magma}, we can calculate their pushout as shown in Figure 2.7.
In particular, the pushout contains:

- A theory `CommutativeSemigroup` which is the theory combination of `Semigroup` and `CommutativeMagma` over `Magma`.

- A theory injection `(CommutativeMagma, CommutativeSemigroup, Φ₁₃)` where Φ₁₃ is an identity injection and Φ₁₃ = [U ↦ U; ⋆ ↦ ⋆].

- A theory injection `(Semigroup, CommutativeSemigroup, Φ₂₃)` where Φ₂₃ is the identity injection, Φ₂₃ = [U ↦ U; ⋆ ↦ ⋆].

- A theory injection `(Magma, CommutativeSemigroup, Φ₃)` where Φ₃ is an identity injection and Φ₃ = [U ↦ U; ⋆ ↦ ⋆].

The resulting theory `CommutativeSemigroup` is the theory combination of `CommutativeMagma` and `Semigroup` over `Magma`:

`CommutativeSemigroup := combine CommutativeMagma, Semigroup over Magma`

And in the expanded form:

```plaintext
CommutativeSemigroup := Theory {
  U : type;
  ⋆ : (U, U) → U;
  axiom associativity_⋆_ : associative((⋆));
  axiom commutativity_⋆_ : commutative((⋆));
}
```

□
Example 2.4.7 Assume that we have a theory morphism \(M = (\text{Empty}, \text{Semigroup}, \Phi) \) such that \text{Empty} is the empty theory, \text{Semigroup} the theory of semigroup as defined previously and \(\Phi \) the empty injection from the \text{Empty} to \text{Semigroup}. The pushout of \(M \) with itself \(M \oplus M \) is the commutative diagram in Figure 2.8.

In particular, the pushout contains:

- A theory \(\text{DoubleSemigroup} \) which is the theory combination of \text{Semigroup} with itself over \text{Empty}.

- An identity injection \(\Phi_{13} = [U \mapsto U, \ast \mapsto \ast, \text{associativity}_{\ast} \mapsto \text{associativity}_{\ast}] \).

- An identity injection \(\Phi_{23} = [U \mapsto U', \ast \mapsto \ast', \text{associativity}_{\ast} \mapsto \text{associativity}_{\ast}'] \).

- An empty injection \(\Phi_3 = [] \).

\(\text{DoubleSemigroup} \) is the the result of the following theory combination:

\[\text{DoubleSemigroup} := \text{combine} \ \text{Semigroup}, \ \text{Semigroup} \ \text{over} \ \text{Empty} \]

In expanded form, it is:

\[
\text{DoubleSemigroup} := \text{Theory} \left\{ \\
\begin{array}{l}
U \ : \ \text{type} \\
U' \ : \ \text{type} \\
\ast \ : \ (U, U) \rightarrow U \\
\ast' \ : \ (U', U') \rightarrow U' \\
\text{axiom} \ \text{associativity}_{\ast} := \text{associative}((\ast));
\end{array} \right.
\]
2.5 Approaches to Organizing Mathematical Knowledge

We have seen that theories are building blocks for formalizing mathematical concepts in logic. Furthermore, thanks to biform theories, knowledge in the form of formal deduction and symbolic computation can both be formalized using the same kind of structure. In this section, we take a look at several approaches to organizing mathematical knowledge.

2.5.1 Big Theories Method

In the big theories method [14], a set of powerful axioms are chosen such that any model satisfying these axioms contains all of the objects we are interested in. A portion of mathematical knowledge is then formalized within the big theory. Furthermore, theorems are stated and proven from the chosen axioms within the big theory. The most widely used big theory is Zermelo-Fraenkel (ZF) set theory and its variants. For instance, the prominent Mizar system [23] is built upon the Tarski-Grothendieck set theory which is ZF set theory augmented with Tarski’s axioms.

2.5.2 Little Theories Method

In the little theories method [14], a number of theories is used in the process of formalizing a portion of mathematical knowledge. The result of the formalization is a network of theories in which complex theories are constructed from simpler theories using theory creation (see subsection 2.1.2).

Theorems proven in one theory are transferred to other contexts via an explicit construction of a theory interpretation. As a result, in contrast to the big theories method, in the little theories method, both mathematical knowledge and reasoning are distributed over the theory network instead of in a single big theory. According to Dr. Farmer’s CAS 760 course notes [15], the biggest advantage of the little theories
method is that a theory can be developed be “in the right language at the right level of abstraction”.

For instance, suppose we would like to formalize abstract algebra, e.g. semigroups, monoids, groups, rings, vector spaces. Following the little theories method, we would construct a network of theories, e.g. theory of a semigroup, theory of a monoid etc. Over the course of the formalization of a theory, we only focus on the essence of that theory ignoring information irrelevant to the task at hand.

If we are formalizing a theory of a monoid, the language would consist of a carrier set M, a binary operation \ast and an element e. The set of axioms would contain the monoid axioms, i.e. the associativity axiom of \ast and the identity axiom of e. In fact, we are free to choose the right language for the theory. In the example of monoid, we may call its binary operation \circ instead of \ast, its identity element a instead of e etc.

Facts about monoids are proven within the local context of the theory and can then be reused in, say a theory of groups, by establishing a theory interpretation from the theory of monoids to the theory of groups.

Due to its advantages, we firmly believe in the little theories method over the big theories method. The paper [14] explains the little theories method in more detail.

2.5.3 Tiny Theories Method

A special version of the little theories method is called the tiny theories method. Essentially, the tiny theories method is the extreme version of the little theories method in the sense that in the tiny theories approach, a theory and its intermediate descendant theory differs only by a conceptual unit (hence the word “tiny”). By a conceptual unit, we mean a concept or an axiom.

For instance, suppose that we have already defined the theory of a semigroup. Now, since a monoid differs from a semigroup by having an identity element e (both left and right identity), we want to define the theory of a monoid from the theory of semigroup. In the little theories method, we are allowed to add three conceptual units (1) an element e, (2) the axiom specifying that e is left identity and (3) an axiom specifying that e is right identity to the theory of semigroup at once to build the theory of monoid as graphically depicted in Figure 2.9.

However, in the tiny theories method, three conceptual units are not added at the same time. Instead, one conceptual unit is added at a time to construct a descendant theory. Figure 2.10 depicts one (hyper-theoretical) way of constructing the theory of
monoid from the theory of semigroup using the tiny theories method.

First, we add the concept e of type U to \textbf{Semigroup} to construct a new theory called \textbf{PointedMonoid}. Then, we add the axiom of e being the left identity to construct the theory \textbf{LeftMonoid}. Likewise, we add the axiom of e being the right identity to construct the theory \textbf{RightMonoid}. The theory of monoids is the theory combination of \textbf{LeftMonoid} and \textbf{RightMonoid} over \textbf{PointedMonoid}.

It is noteworthy that using the tiny theories approach, it can happen that some constructed theories may not correspond to any concepts used in mathematics. For instance, \textbf{PointedMonoid} is an artificial theory whose name has been invented. Furthermore, there are a lot of ways to construct a theory. Figuring out the most meaningful way of constructing theories and giving them good (possibly artificial) names are two major challenges when using the tiny theory approach.
2.5.4 High-Level Theories Method

As mentioned previously, the little theories method and its special version the tiny theories method allow for formalizing mathematical knowledge in the right language in the right level of abstraction while constructing a library of formalized mathematics. This is especially convenient for the developer of the library. However, end users tends to prefer to have a high-level view of the mathematical knowledge stored in the library. They are mostly not very interested in the implementation detail. This motivates the work on high-level theories method [2]. Nevertheless, since in this thesis, our central interest is the little (and tiny) theories method, we do not further discuss the high-level theories method.
In Chapter 2, we discussed the techniques that have been developed for representing and organizing mathematical knowledge. Within the scope of the MathScheme Project, a library of formalized mathematics called the *MathScheme Library* is currently being developed based on these techniques. This chapter aims to give an overview of the top-level requirements, the design decisions of the library and the content of the library. [3] gives a nice overview of the techniques behind the Math-Scheme Library.

3.1 Requirements

The following are the top-level requirements of the MathScheme Library as stated in [10]:

Requirement 1 (Usability) The MathScheme Library should serve users who want to explore and apply the knowledge it contains.

One of the disadvantages of contemporary libraries of formalized mathematics is that they only serve a handful of experts in the field and are totally inaccessible to a wide audience. We believe that a library of formalized mathematics is much more valuable if it can be used by a large group of mathematics practitioners ranging from students to engineers and mathematicians.
Requirement 2 (Developability) The MathScheme Library should serve developers who want to organize and expand the knowledge it contains.

The development of the library requires the availability of necessary techniques and tools. A developer of the library should be able to use these techniques and tools to organize the library and later on extend the knowledge it contains.

Requirement 3 (Universality) The MathScheme Library should hold mathematical knowledge of all formalizable forms and kinds.

Mathematical knowledge comes in different forms and kinds. The library should be capable of holding knowledge of all these forms and kinds so that users and developers do not have to maintain a significant body of knowledge outside of the library.

3.2 Design Decisions

Having discussed the top-level requirements, the following lists the design decisions of the MathScheme Library [10] that have been identified by MathScheme’s project leaders Dr. Carette and Dr. Farmer.

Design Decision 1 The MathScheme Library is a network of biform theories.

The library should be built as a network of biform theories. Each biform theory captures a mathematical concept that can be in the form of both axiomatization and symbolic computation. The biform theories are interconnected via theory morphisms. As a result of the little theories method, mathematical knowledge and reasoning are distributed over the network. Additionally, a theory and its direct descendant theory differs only by one conceptual unit.

Design Decision 2 In the library network, complex theories are built from simpler theories by theory extension, theory combination, theory renaming and theory instantiation.

As we see in Chapter 2, there are different ways of constructing theories. In the process of constructing the library, primitive theories are built from scratch. Moreover, complex theories are built from simpler ones by theory extension, theory combination, theory renaming and theory instantiation. This way, the theories network can be constructed in a stepwise manner where more complex theories are built upon previously constructed simpler theories.
Design Decision 3 For developers, the MathScheme Library includes a network of tiny theories.

For developers, who develop and extend the library, the theories network is a network of tiny theories that show all the details of how the library is constructed.

Design Decision 4 For users, the MathScheme Library will include a collection of high-level theories [2].

For users, who explore the library, the theories network is a network of high-level theories that provides a high-level view of the library. The high-level view is more convenient for users since it hides all implementation details that are irrelevant to them.

3.3 Current Implementation

At the time of this writing, the MathScheme Library contains formalizations of abstract algebra, which was mainly developed by Dr. Carette and Dr. O’Connor, and data types such as character, string, stack, queue etc. which were mainly developed by Filip Jeremic and Vincent Maccio.

The language for formalization is MSL. There is an OCaml implementation of MSL that can parse a theory file into an internal representation and process it as well as type check it. There is also an experimental implementation of the translation from MSL to Chiron. However, here we do not focus on the implementation but rather on how the mathematical knowledge is formalized in the library.

3.3.1 Abstract Algebra

The portion of abstract algebra in the library is significant in size and is built upon the tiny theories method. To demonstrate how the formalization works, in the following we show how the theory of monoid can be built up starting from the empty theory in a stepwise manner. This is graphically depicted in Figure 3.1. The complete formalization of abstract algebra can be found at [19].

In the figure, the root theory is the Empty theory which contains nothing:

\[
\text{Empty} := \text{Theory} \{\}
\]

Carrier is Empty extended with with a carrier set U:
Figure 3.1: The Construction of a Theory of a Monoid
\textbf{Carrier} := \text{Empty} \text{ extended by} \{ \ U : \text{type}; \} \}

\text{PointedCarrier} \text{ is Carrier extended with an element} \ e \text{ of the carrier set:}

\text{PointedCarrier} := \text{Carrier} \text{ extended by} \{ \ e : \ U; \}

\text{Monoid} \text{ is the combination of Unital and RightMonoid over RightUnital:}

\text{Monoid} := \text{combine Unital, RightMonoid over RightUnital}

\text{In expanded form, it is:}

\text{Monoid} := \text{Theory}\{
U : \text{type}; \\
\ast : (U,U) \rightarrow U; \\
e : U; \\
\text{axiom} \ \text{leftIdentity} _\ast _e : \text{leftIdentity}(\ast),e; \\
\text{axiom} \ \text{rightIdentity} _\ast _e : \text{rightIdentity}(\ast),e; \\
\text{axiom} \ \text{associative} _\ast : \text{associative}(\ast);
\}

\subsection{Concrete Theories}

As mentioned previously, besides abstract algebra, other concrete theories have also been formalized. For instance, theories of sequences, bit strings, characters and algorithmic complexity, among other things, have been formalized and can be found in [20]. Since the concrete theories are not relevant for the purpose of this thesis, we do not discuss them further.
CHAPTER 4

REIFICATION OF THEORIES AND THEORY INTERPRETATIONS

This chapter aims to explain the motivation and the algebraic construction for reifying theories as types as well as theory interpretations as elements.

4.1 Motivation

Theories are the building blocks for building the library of formalized mathematics. The true power of theories lies in the fact that since a theory is a specification of a collection of models, facts proven within a theory are applicable to any of its (possibly infinitely many) models.

For instance, suppose we have a theory of a group. Within that theory, we can prove that the identity element is unique. This result is true in any model of the theory, i.e. in any group. Concretely, since \((\mathbb{Z}, +, 0, -)\) is a model of the theory of a group where 0 is the identity element of +, we know that 0 is the unique identity element.

Unfortunately, theories have their weakness. A theory allows us to reason about a concept but not about individual elements belonging to that concept. The theory of a group allows us to reason about the concept of a group. It does not, however, allows us to reason about a collection of groups. Specifically, we cannot express such statements as: for all groups \(G\), property \(X\) holds in \(G\) or there exists a group \(G\) in...
which property \(Y \) holds.

In MSL, theories are represented by theory expressions (see Appendix) and thus cannot be directly used in an expression. In particular, we cannot declare a group element, e.g. \(G : \text{Group} \). Here, \(\text{Group} \) is a theory expression and hence, it cannot be used as a type.

Furthermore, often we want to reason about a particular group. Suppose \(\mathcal{M} \) is a structure having a group structure witnessed by a theory interpretation from \(\text{Group} \) to \(\mathcal{M} \).

Recall that a theory interpretation is our tool for transferring theorems from one theory to another theory. However, a theory interpretation is defined by establishing a connection between two theories and is therefore in the meta-language. Hence, theory interpretations are inaccessible to the reasoning process on the expression level. In particular, we cannot express the statement on the expression level like \(\Phi \) is a theory interpretation from \(\text{Group} \) to \(\mathcal{M} \). In other words, reasoning about theory interpretations directly in the object language is not feasible.

Finally, since theory interpretation is the only way to transfer results from one theory to another, the ability to transfer results of \(\text{Group} \) to another concrete group structure \(\mathcal{M} \) depends on whether such a theory interpretation can be established or not. As discussed in Chapter 2, theory interpretation is defined between two theories in a very particular way. In particular, \(\mathcal{M} \) should reside in a theory and its components should be defined as concepts which should be arranged in a way that a theory interpretation can be defined.

However, it could happen that even though \(\mathcal{M} \) does exhibit a group structure, its components may come from different sources, for instance declared as variables, and hence a theory interpretation from \(\text{Group} \) to \(\mathcal{M} \) cannot be defined. In this case, one obvious solution is to extend the notion of theory interpretation so that it embodies the above mentioned scenarios. In fact, this technique is implemented in IMPS [11] and is called a context interpretation. Nevertheless, we want to keep the definition of theory interpretation simple and solve the problem by reifying theories as types.

4.2 Reification of a Theory as a Type

The previously mentioned weaknesses of theories motivate us to reify theories as types. Given a theory \(T \), we want to reify it as a type whose elements are models of \(T \). Intuitively, a reification of a theory makes it accessible on the expression level.
4. Reification of Theories and Theory Interpretations

So for instance, reification of the theory of \texttt{Group} above would create a type of groups, called \texttt{group-type}. All mathematical structures exhibiting a group structure would be an element of \texttt{group-type}. In particular, \((\mathbb{Z}, +, 0, -)\), \((\mathbb{C}, \circ, 0, -)\) are both elements of \texttt{group-type}. This is graphically depicted in Figure 4.1.

Ultimately, reifying a theory as a type means finding a data type to represent a theory. We notice that not all information in a theory is relevant for reification. In fact, only the primitive concepts and axioms of a theory are required constituents of an instance of that concept. Other parts such as theorems etc. are not relevant.

In the example of \texttt{Group}, the concepts define which components a group needs to have, i.e. a carrier set \(G\), a binary operation \(*\), an element \(e\), a unary operation \(-1\). The axioms dictate what properties these need to have, i.e. \(*\) is associative, \(e\) is an identity element and \(-1\) is an inverse operation.

Since both concepts and axioms constitute the essence of a theory, the data type for representing theories needs to be able to package up both of them.

4.2.1 Reification of a Theory as a Dependent Record Type

A record is the widely used data structure for packaging up various, possibly diverse, data into a single data structure. For instance, various information on employees can be represented by a single record:

```plaintext
{  name : string,
    age : int,
    salary : float
    ...
}
```
At the first attempt, we reify `Group` as the following record:

\[
\begin{array}{ll}
G & : \text{type}, \\
* & : (G, G) \rightarrow G, \\
e & : G, \\
^{-1} & : G \rightarrow G \\
\ldots
\end{array}
\]

However, this is not a valid record since the definition of \(\ast\) depends on the previously defined \(G\). This is what dependent records are good for. A dependent record is similar to a normal record except in a dependent record fields can be dependent on other fields.

De Bruijn was the first one who used a `telescope`, which is linearly dependent record, to package up mathematical structures in his proof development system `Automath` [5].

In a telescope, the type declaration of a field may depend on previously declared fields. As a result, the order of fields matters. So, for instance, \((G : \text{type}, e : G)\) is a valid telescope. On the other hand, \((e : G, G : \text{type})\) is not a valid telescope. The reason is that, in the later example, the declaration of \(e\) requires \(G\) to have previously been declared. However, here \(G\) is declared after \(e\).

Since a dependent record type has proven to be a suitable data structure for packaging up mathematical structures, we use it as the data structure for representing a reified theory.

The following gives the definition of a dependent record type:

Definition 4.2.1 Formally, a dependent record type is a list of labeled fields \(\{l_1 : type_1, \ldots, l_n : type_n\}\) where \(n \geq 0\), \(type_i\) is type expression and may contain any \(l_j\) such that \(j < i\).

Using dependent records, the declaration of concepts of a theory can be easily packaged up. For instance, the concepts of `Group` is reified as:

\[
\begin{array}{ll}
G & : \text{type}, \\
* & : (G, G) \rightarrow G, \\
e & : G, \\
^{-1} & : G \rightarrow G \\
\ldots
\end{array}
\]
We still need to figure out how to deal with axioms. As discussed before, the concepts \(G, \ast, e, -1 \) alone only define the language of a group. The axioms specify the properties they need to have in order for the structure \((G, \ast, e, -1)\) to be called a group. Since axioms are inseparable from concepts, we package up the concepts and axioms of a reified theory in the same dependent record. The famous Curry-Howard correspondence [24] gives a hint on solving that problem.

In the Curry-Howard correspondence, a formula can be seen as a type whose elements are proofs of that formula. This leads us reify axioms as types of proofs.

For instance, the theory of Group is reified as:

```plaintext
group-type =
{ G : type,
  \ast : (G, G) \rightarrow G,
  e : G,
  -1 : G \rightarrow G,
  associativity_\ast_ : ProofOf (associative((\ast)));
  identity_e_ : ProofOf (identity((\ast), e));
  inverse_-1_ : ProofOf (inverse((\ast), -1, e));
}
```

Here, `ProofOf` turns a formula into the corresponding type of proofs of that formula.

In summary, given any theory \(T \), the type of \(T \) is represented by a dependent record in which concepts of \(T \) are reified to type declarations and axioms are reified to types of proofs.

4.2.2 Elements of a Reified Theory

Having a type representing a theory, we are naturally interested in what its elements are. Obviously, since the type of a theory is a dependent record type, their elements are records. For instance, an element of the type of group `group-type` is a record representing the integer structure \((\mathbb{Z}, +, 0, -)\):

```plaintext
{ G = \mathbb{Z},
  \ast = +
  e = 0,
  -1 = -,
}
```
Here, the record contains:

- A type \(Z \).
- A binary operation defined on \(Z \), \(+ : (Z,Z) \rightarrow Z \).
- An element 0 of \(Z \).
- A unary operation \(-^1 \) defined on \(Z \), \(- : Z \rightarrow Z \).

Furthermore, the record contains three proof objects being the proofs about the associativity of \(+ \), identity element of 0 and inverse operation of \(- \), respectively.

Generally, an element of the reified type of a theory is a mathematical structure along with the proof objects showing that the components of the structure satisfy the axioms defined in the theory.

4.3 Reification of a Theory Interpretation as an Element

A theory interpretation \(\Phi \) from a theory \(T_1 \) to another theory \(T_2 \) is a witness that \(T_2 \) has the structure of \(T_1 \). We also reify a theory interpretation as a record.

This means that, if a theory \(T_1 \) is reified as a type \(t_1 \), a theory interpretation from \(T_1 \) to another theory \(T_2 \) is reified as a member \(e \) of \(t_1 \). This is graphically depicted in Figure 4.2.

For instance, suppose we have a theory of reals as follows:

```
Real := Theory { 
  R : type ;
  + : (R,R) \rightarrow R ;
  0 : R ;
  - : R \rightarrow R ;
  ...
}
```
4. Reification of Theories and Theory Interpretations

Figure 4.2: Reification of a Theory Interpretation

\[\Phi = [G \mapsto \mathbb{R}, \ast \mapsto +, e \mapsto 0, -1 \mapsto -] \] is a theory interpretation from \texttt{Group} to \texttt{Real}. \(\Phi \) shows that the model \((\mathbb{R}, +, 0, -)\) of \texttt{Real} has a group structure or equivalently \((\mathbb{R}, +, 0, -)\) is an element of the reified type \texttt{group-type} above. \(\Phi \) is reified as a record of \texttt{group-type}:

\[
\begin{align*}
G &= \mathbb{R}, \\
\ast &= +, \\
e &= 0, \\
-1 &= -, \\
\text{associativity}_\ast &= \text{proof.object.associative}(\ast), \\
\text{identity}_e &= \text{proof.object.identity}(\ast, 0), \\
\text{inverse}_\ast &= \text{proof.object.inverse}(\ast, -, 0) \\
\end{align*}
\]

4.4 Implementation

We have introduced a type constructor \texttt{TypeFrom} to MSL that takes as input a theory and constructs the dependent record type representing that theory. For example, \texttt{TypeFrom(Group)} would construct the type \texttt{group-type}. We have generalized MSL’s record type mechanism to a dependent record type mechanism.
Reification of theory interpretations has not been implemented yet.
CHAPTER 5

GENERATION OF THEORIES OF HOMOMORPHISMS

Homomorphisms are a very important concept in abstract algebra and model theory. Basically, a homomorphism between two algebraic structures is a structure-preserving mapping between their carrier sets. A homomorphism allows results proved in one mathematical structure to be transferred to another structure, among other things. Consequently, it is very natural to use and reason about homomorphisms within an algebraic setting.

The purpose of this chapter is to introduce two algebraic constructions for automatically deriving the theory of a homomorphism as well as its variants epimorphism, monomorphism and isomorphism from an existing theory. One construction relies on the construction for reifying a theory as a dependent record types via TypeFrom (see Chapter 4). The other construction is via calculating the pushout of two theory morphisms (see Chapter 2).

5.1 Motivation

In the current MathScheme Library, a lot of algebraic structures have been formalized as theories. By an algebraic structure, we mean a mathematical structure consisting of one or more carrier sets and operations (functions) defined on them. For example, the library contains the theory of a monoid, the theory of a group and the theory of a
vector space etc. It is expected that more algebraic structures will be formalized and added to the library in the future, both by developers and users.

Eventually, we will need to formalize the notion of a homomorphism for those theories in order to reason about semigroup and group homomorphisms etc. Moreover, in the future whenever a new algebraic structure is formalized as a theory T and added to the library, the corresponding theory of a T-homomorphism needs to be formalized for T in order to reason about T-homomorphisms.

However, instead of repeatedly defining homomorphisms for every single theory, we desire to define an algebraic construction that can automatically derive the notion of a homomorphism based on the structure of the theory. The construction is developed once and for all and can be used to obtain the notion of a homomorphism from an arbitrary theory. This is possible because there is a generic definition of homomorphisms.

5.2 Generic Definition of Homomorphism

Even though textbook presentations of homomorphisms vary depending on the concrete structures involved, we can have a generic definition of homomorphisms between two 1-sorted algebraic structures having the same signature as follows:

Definition 5.2.1 Let \mathcal{M} and \mathcal{N} be two 1-sorted algebraic structures having the same signature \mathcal{S}. Let M and N be their carrier sets, respectively. $h : M \rightarrow N$ is a mapping (function) from the carrier set of \mathcal{M} to the carrier set of \mathcal{N}. Furthermore, the following conditions are satisfied;

- For each n-ary function μ ($n \geq 0$) in \mathcal{S}, $h(\mu_M(x_1, \ldots, x_n)) = \mu_N(h(x_1), \ldots, h(x_n))$ for all $x_1, \ldots, x_n \in M$.

Then h is called a *homomorphism* between \mathcal{M} and \mathcal{N}.

The following gives the definitions of the special cases of a homomorphisms

Definition 5.2.2 A surjective homomorphism is called an *epimorphism*.

Definition 5.2.3 An injective homomorphism is an *monomorphism*.

Definition 5.2.4 A bijective homomorphism is called an *isomorphism*.
Example 5.2.5 Let \((M, \ast, e, \text{inv})\) and \((M', \ast', e', \text{inv}')\) be two group structures. Let \(h : M \rightarrow M'\) be a mapping between \(M\) and \(M'\) satisfying the following conditions:

- \(h(x \ast y) = h(x) \ast' h(y)\) for all \(x, y\) in \(M\).
- \(h(\text{inv}(x)) = \text{inv}'(h(x))\) for all \(x\) in \(M\).
- \(h(e) = e'\).

\[\square\]

We can extend the definitions of a homomorphism and its variant to multi-sorted algebraic structures having the same signature as follows:

Definition 5.2.6 Let \(\mathcal{M}\) and \(\mathcal{N}\) be two \(n\)-sorted algebraic structures having the same signature \(S\) \((n \geq 1)\). Let \(C_1, \ldots, C_{n-1}, M\) and \(C_1, \ldots, C_{n-1}, N\) be their carrier sets, respectively. That means, \(\mathcal{M}\) and \(\mathcal{N}\) have the same carrier sets \(C_1, \ldots, C_{n-1}\) but may differ in one carrier set. \(h : M \rightarrow N\) is a function between \(M\) and \(N\) such that:

- For each \(m\)-ary function \(\mu : (S_1, \ldots, S_m) \rightarrow M\) \((m \geq 1)\) in \(S\) whose return type is \(M\), \(S_i \in \{C_1, \ldots, C_{n-1}, M\}\), \(h(\mu_M(x_1, \ldots, x_m)) = \mu_N(h_1(x_1), \ldots, h_n(x_m))\)
 for all \(x_1 \in S_1, \ldots, x_m \in S_m\). Here, if \(S_i = M\) then \(h_i = h\), otherwise if \(S_i \neq M\), \(h_i = id\) \((id\) is the identity function).

- For each constant \(c\) in \(S\), \(h(c_M) = c_N\).

For example, in the following we define the notion of a homomorphism between two vector spaces. A vector space is a 2-sorted algebraic structure that contains both fields and vectors.

Since the definition of a vector space is based on the definition of a field, we first review the definition of a field:

Definition 5.2.7 A field is a mathematical structure \(\mathcal{F} = (F, +, \ast, 0, 1)\) such that:

- \(0 \neq 1\).
- \((F, +, 0)\) is a commutative group.
- \((F - \{0\}, \ast, 1)\) is a commutative group.
• $a \ast (b + c) = a \ast b + a \ast c$ for all a, b, c in F.

The following is the definition of a vector space:

Definition 5.2.8 A *vector space* is a mathematical structure $\mathcal{V} = (V, +, \ast, 0)$ over a field \mathcal{F} such that:

• $\ast : (\mathcal{F}, V) \rightarrow V$.

• $(V, +, 0)$ is a commutative group.

• $a \ast (v + w) = a \ast v + a \ast w$ for all a in \mathcal{F} and v, w in V.

• $(a + b) \ast v = a \ast v + b \ast v$ for all a, b in \mathcal{F} and v in V.

• $a \ast (b \ast v) = (a \ast b) \ast v$.

Example 5.2.9 Let $\mathcal{U} = (V_U, +_U, \ast_U, 0_U)$ and $\mathcal{W} = (V_W, +_W, \ast_W, 0_W)$ be two vector spaces over the same field \mathcal{K}. Let $h : V_U \rightarrow V_W$ such that:

• $h(x +_U y) = h(x) +_W h(y)$ for all x, y in V_U.

• $h(a \ast_U x) = a \ast_W h(x)$ for all a in \mathcal{F} and x in V_U.

• $h(0_U) = 0_W$.

Then h is a homomorphism between \mathcal{U} and \mathcal{W}. □

It is noteworthy that in textbooks, a homomorphism between two vector spaces over the same field is usually called a *linear map*. Furthermore, textbook presentations of linear map usually only mention the former two axioms. The last axiom is usually omitted since it can be proved from the former two axioms.

Nonetheless, the definition of a homomorphism of vector spaces derived from the generic definition is equivalent to textbook definitions.

5.3 Constructing a Homomorphism via TypeFrom

The first construction for generating the notion of a homomorphism relies on the reification of a theory as a dependent record type via **TypeFrom** (Chapter 4).

First, we consider 1-sorted theories since this is the simplest case. Given a 1-sorted theory T, using **TypeFrom** we can reify T as a type which allows us to declare T
5. Generation of Theories of Homomorphisms

elements of that type. The notion of a T-homomorphism can be derived by declaring
(1) two elements A, B of $\text{TypeFrom}(T)$, (2) a function h between the carrier sets of
A and B and (3) axioms specifying that h preserve the functions and constants in T
(as given in Definition 5.2.6).

Example 5.3.1 Suppose we would like to derive the theory of a group homomorphism from the following theory of Group:

```
Group := Theory {
G : type;
* : (G,G) \rightarrow G;
e : G;
inv : G \rightarrow G;
axiom associativity_* : associative((*));
axiom identity_e : identity((*)e);
axiom inverse_inv : inverse((*)inv, e);
}
```

The theory of a group homomorphism can be obtained by declaring (1) two group elements A and B of $\text{TypeFrom}(\text{Group})$, (2) a function $h : A.G \rightarrow B.G$ between two carrier sets of A and B and (3) axioms specifying that h preserves the functions and constants \ast, inv, e of Group. Concretely, the theory of GroupHomomorphism, derived from Group, may look as follows:

```
GroupHomomorphism := Theory {
  type GroupType = TypeFrom(SemiGroup);
  A, B : GroupType;
  h : A.G \rightarrow B.G
  axiom : forall x, y : A.G . f(x A.\ast y) = f(x) B.\ast f(y);
  axiom : forall x : A.G . f(A.inv(x)) = B.inv(f(x));
  axiom : h(A.e) = B.e;
}
```

The theory of a group epimorphism and theory of a group monomorphism are theory extensions (see Chapter 2) of GroupHomomorphism by adding the surjectivity and injectivity axiom, respectively:
5. Generation of Theories of Homomorphisms

\[
\text{GroupEpimorphism} := \text{GroupHomomorphism \textbf{extended by}} \{ \\
\quad \textit{axiom} : \text{surjective}(h); \\
\}\]

\[
\text{GroupMonomorphism} := \text{GroupHomomorphism \textbf{extended by}} \{ \\
\quad \textit{axiom} : \text{injective}(h); \\
\}\]

Finally, the theory of a group isomorphism is the theory combination (see Chapter 2) of GroupEpimorphism and GroupMonomorphism over GroupHomomorphism:

\[
\text{GroupIsomorphism} := \text{combine GroupEpimorphism, GroupMonomorphism over GroupHomomorphism}
\]

Deriving the theory of a homomorphism from a multi-sorted theory is more complicated since it is not obvious on which carrier sets the mapping should be defined. One solution is that we restrict ourselves to defining the notion of a homomorphism for only one particular carrier set while the remaining carrier sets are fixed using Definition 5.2.6.

\textbf{Example 5.3.2} We would like to derive the theory of a vector space homomorphism from the following 2-sorted theory of VectorSpace. Furthermore, the homomorphism shall be defined for the vector domain V.

\[
\text{Field} := \text{Theory } \{ \\
\quad \text{Concepts} \\
\quad \quad F : \text{type}; \\
\quad \quad + : (F,F) \rightarrow F; \\
\quad \quad \ast : (F,F) \rightarrow F; \\
\quad \quad - : F \rightarrow F; \\
\quad \quad / : F \rightarrow F; \\
\quad \quad 0,1 : F;
\}
\]

\textit{Axioms}

\[
\quad \textit{axiom} : 0 \not= 1; \\
\quad \textit{axiom associativity}_{+} : \text{associative}(+); \\
\quad \textit{axiom identity}_{+} : \text{leftIdentity}(+, 0) \\
\quad \quad \text{and rightIdentity}(+, 0);
\]
5. Generation of Theories of Homomorphisms

```plaintext
axiom inverse_−_ : inverse((+,−),0);
axiom commutativity_+_ : commutative(+);
axiom associativity_∗_ : associative(*);
  axiom identity_1_ : leftIdentity((*) , 1)
                   and rightIdentity((*) , 1);
axiom inverse_/ : forall x : F. (x \neq 0)
                  implies (x * (/x) = 1);
axiom commutativity_∗_ : commutative(*);
axiom distributivity_∗_over_+ : distributive((*) , (+));
```

VectorSpace := Field extended by {
 V : type;
 +V : (V, V) \mapsto V;
 *V : (F, V) \mapsto V;
 0V : V;
 −V : V \mapsto V;

 axiom associativity_+_
 : forall u, v, w : V . u +V (v +V w) = (u +V v) +V w;
 axiom commutativity_+V_
 : forall v, w : V . v +V w = w +V v;
 axiom identity_0V_
 : forall v : V . v +V 0V = 0V +V v = v;
 axiom inverse_
 : forall v : v +V (−v) = 0V;
 axiom distributivity1 :
 forall a : F .
 forall v, w : V . a *V (v +V w) = a *V v +V a *V w;
 axiom distributivity2 :
 forall a, b : F .
 forall v : V .
 (a+V b)*V v = a*V v +V b*V v;
 axiom compatibility :
 forall a, b : F .
 forall v : V .
 a*V (b*V v) = (a*V b)*V v;
```
5. Generation of Theories of Homomorphisms

\[\text{axiom identity}_1 : \forall v : V . 1*V v = v;\]

The theory of a vector space homomorphism can be obtained by declaring (1) two vector space elements of \texttt{TypeFrom(VectorSpace)}, (2) a function \(h : A.V \rightarrow B.V\) and (3) axioms specifying that the field in \(A\) is identical to the field domain in \(B\), i.e. \(A.F = B.F\) and that \(f\) preserves the functions whose return type is \(V\) and constants of type \(V\). Concretely, the theory of \texttt{VectorSpaceHomomorphism}, generated from \texttt{VectorSpace}, may look as follows:

\begin{verbatim}
VectorSpaceHomomorphism := Theory {
  type VectorSpaceType = TypeFrom(VectorSpace);
  A, B : VectorSpaceType;
  h : A.V \rightarrow B.V;
  axiom : A.F = B.F;
  axiom : \forall x, y : A.V . h(x A.+ y) = h(x) B.+ h(y);
  axiom : \forall a : A.F . x : A.V . h(a A.* x) = a B.* h(x);
  axiom : \forall x : A.V . h(A.¬ x) = B.¬ h(x);\n  axiom : f(A.0_V) = B.0_V;
}
\end{verbatim}

Based on the two examples above, the construction can be generalized to generate the theory of \(T\)-homomorphism from an arbitrary \(n\)-sorted theory \((n \geq 1)\) with \(n\) carrier sets \(\{C_1, \ldots, C_{n-1}, V\}\). Assume that the homomorphism shall be defined for the carrier set \(V\) of \(T\), the algorithm for generating \texttt{THomomorphism} is as follows:

1. Initially, \texttt{THomomorphism} is an empty theory.
2. Add a type declaration \texttt{type TType = TypeFrom(T)} to \texttt{THomomorphism}.
3. Add two elements \(A, B\) of type \texttt{TType}, i.e. \(A, B : TType\).
4. Add a mapping \(h : A.V \rightarrow B.V\) to \texttt{THomomorphism}.
5. For each carrier set \(C_i\), add an axiom specifying that \(A.C_i\) is identical to \(B.C_i\), that is \(A.C_i = B.C_i\).
5. Generation of Theories of Homomorphisms

(6) For each \( m \)-ary function (or constant when \( n = 0 \)) \( f : S_1, \ldots, S_m \rightarrow V \), add an axiom specifying that \( h \) preserves \( f \), i.e. \( \forall x_1 : A . S_1, \ldots, x_m : A.S_m.h(A.f(x_1, \ldots, x_m)) = B.f(h(x_1), \ldots, h(x_m)) \).

(7) The resulting \( \text{THomomorphism} \) is the theory of \( T \)-homomorphism of \( T \).

Furthermore, a \( T \)-epimorphism (-monomorphism and -isomorphism) can be obtained from \( \text{THomomorphism} \) as below:

\[
\text{TEpimorphism} := \text{GroupHomomorphism \ extended by \ \{ \\
\text{axiom} : \text{surjective}(h); \\
\}}
\]
\[
\text{GroupMonomorphism} := \text{GroupHomomorphism \ extended by \ \{ \\
\text{axiom} : \text{injective}(h); \\
\}}
\]
\[
\text{GroupIsomorphism} := \\
\text{combine \ GroupEpimorphism, GroupMonomorphism \\
over \ GroupHomomorphism}
\]

5.4 Constructing a Homomorphism via Pushout

The other construction for generating the notion of a homomorphism is to calculate the pushout of theory morphisms (Chapter 2).

Again, for the sake of simplicity, we first consider 1-sorted theories. Given a 1-sorted theory \( T \), we would like to construct the theory of a \( T \)-homomorphism from it.

The key idea is that from \( T \) a new theory called \( \text{Double}T \) is generated that contains two copies of \( T \) (both concepts and axioms) in it. The homomorphism is defined as a function from the carrier set of the first \( T \) copy to the carrier set of the second \( T \) copy along with the structure-preserving axioms.

Example 5.4.1 We would like to derive the theory of a group homomorphism from \text{Group}. The theory of a group homomorphism can be generated from \text{Group} in two steps:
(1) Construct the theory combination \texttt{DoubleGroup} of \texttt{Group} with itself by calculating the pushout of two theory morphisms \((\texttt{Empty}, \texttt{Group}, \Phi)\) with itself where \(\Phi\) is an empty injection. Assume that \((G_1, \ast_1, \text{inv}_1, e_1)\) and \((G_2, \ast_2, \text{inv}_2, e_2)\) are the first and second copies of group’s concepts in \texttt{DoubleGroup}.

(2) Extend \texttt{DoubleGroup} to \texttt{THomomorphism} by adding (1) a function \(h : G_1 \rightarrow G_2\) and (2) axioms specifying that \(h\) preserve \(*, \text{inv}, e\) in \texttt{Group}.

This is graphically depicted in Figure 5.1.

\texttt{GroupHomomorphism} may look as follows:

\texttt{GroupHomomorphism} := \texttt{Theory} \{
    G1 : \texttt{type};
    G2 : \texttt{type};
    \ast_1 : (G1, G1) \rightarrow G1;
    \ast_2 : (G2, G2) \rightarrow G2;
    e1 : G1;
    e2 : G2;
    \text{inv}_1 : G1 \rightarrow G1;
    \text{inv}_2 : G2 \rightarrow G2;
    \texttt{axiom} \text{ associativity}_\ast_1 : \texttt{associative}((\ast_1));
    \texttt{axiom} \text{ associativity}_\ast_2 : \texttt{associative}((\ast_2));
    \texttt{axiom} \text{ identity}_e_1 : \texttt{identity}((\ast_1), e_1);
\}
5. Generation of Theories of Homomorphisms

\begin{align*}
\text{axiom} & \quad \text{identity}_{\cdot}e2_\cdot : \text{identity} ((\ast 2), e2); \\
\text{axiom} & \quad \text{inverse}_{\cdot}inv1_\cdot : \text{inverse} ((\ast 1), inv1, e1); \\
\text{axiom} & \quad \text{inverse}_{\cdot}inv2_\cdot : \text{inverse} ((\ast 2), inv2, e2); \\
\end{align*}

\begin{align*}
h : \text{G1} & \rightarrow \text{G2}; \\
\text{axiom} & \quad \forall x, y : \text{G1}. h(x \ast 1 y) = h(x) \ast 2 h(y); \\
\text{axiom} & \quad \forall x : \text{G1}. h(\text{inv1}(x)) = \text{inv2}(h(x)); \\
\text{axiom} & \quad h(e1) = e2;
\end{align*}

Before constructing the theory of a group epimorphism, a group monomorphism and a group isomorphism, we define two theory morphisms \((\text{MultiCarrierWithFunc}, \text{GroupHomomorphism}, \Phi_1)\) and \((\text{MultiCarrierWithFunc}, \text{MultiCarrierWithSurjectiveFunc}, \Phi_2)\) where \text{MultiCarrier}, \text{MultiCarrierWithFunc} and \text{MultiCarrierWithSurjectiveFunc} are theories of two carrier sets, two carrier sets with a function between them and two carrier sets with a surjective function between them, respectively:

\begin{align*}
\text{MultiCarrier} & := \text{Theory} \{ \\
& \quad \text{G1, G2 : type}; \\
\}
\end{align*}

\begin{align*}
\text{MultiCarrierWithFunc} & := \text{MultiCarrier extended by} \{ \\
& \quad h : \text{G1} \rightarrow \text{G2}; \\
\}
\end{align*}

\begin{align*}
\text{MultiCarrierWithSurjectiveFunc} & := \text{MultiCarrierWithFunc extended by} \{ \\
& \quad \text{axiom} : \text{surjective}(h); \\
\}
\end{align*}

The theory of group epimorphism can be obtained by calculating the pushout of the two theory morphisms mentioned above as graphically depicted in Figure 5.2.

Similarly, the theory of a group monomorphism can be obtained by calculating the pushout of two theory morphisms \((\text{MultiCarrierWithFunc}, \text{GroupHomomorphism}, \Phi_1)\) and \((\text{MultiCarrierWithFunc}, \text{MultiCarrierWithInjectFunc}, \Phi_2)\) where \text{MultiCarrierInjectiveFunc} is the theory of two carrier sets with an injective function between them:

\begin{align*}
\text{MultiCarrierWithInjectiveFunc} & := \text{MultiCarrierWithFunc}
\end{align*}
extended by \{ \\
  \text{axiom} : \text{injective}(h); \\
\} 

In expanded form, it is:

\begin{verbatim}
MultiCarrierWithInjectiveFunc := Theory \{ \\
  G1, G2 : type; \\
  h : G1 \rightarrow G2; \\
  \text{axiom} : \text{injective}(h); \\
\}
\end{verbatim}

Finally, the theory of a group isomorphism can be obtained by calculating the pushout of \((\text{GroupHomomorphism}, \text{GroupEpimorphism}, \Phi_1)\) and \((\text{GroupHomomorphism}, \text{GroupMonomorphism}, \Phi_2)\) where \(\Phi_1\) and \(\Phi_2\) are identity injections (Figure 5.4).

Deriving the theory of a homomorphism from a multi-sorted theory is more complicated but can be done. The key idea is that the notion of a homomorphism is defined for only one carrier set while the remaining carrier sets are fixed. The fixed carrier sets along with their axioms have one copy in the generated theory of homo-
morphism. On the other hand, carrier set, for which the homomorphism is defined, its operations and and its axioms have two copies so that we can define the homomorphism mapping between them.

**Example 5.4.2** The theory of a vector space homomorphism can be derived from `VectorSpace` in two steps:

1. Construct the theory combination `DoubleVectorSpace` of `VectorSpace` with itself by calculating the pushout of the theory morphisms `(Field, VectorSpace, Φ)` with itself where Φ is an identity injection and `Field` the theory of a field given previously. Assume that `(V, +, *, 0, 1)` and `(V', +', *, 0', 1')` are the first and second copies of vector space’s concepts in `DoubleVectorSpace`.

2. Extend `DoubleVectorSpace` to `VectorSpaceHomomorphism` by adding (1) a function `h : V → V'` and (2) axioms specifying that `h` preserve the vector operations whose return type is `V` and constants of type `V`.

This is graphically depicted in Figure 5.5.

The theory of homomorphism of vector spaces may look as below in MSL:

```ml
VectorSpaceHomomorphism := Theory {
Concepts
F : type;
+ : (F,F) → F;
* : (F,F) → F;
− : F → F;
/ : F → F;
0,1 : F;
}
```
5. Generation of Theories of Homomorphisms

![Diagram of homomorphisms between Field, VectorSpace, DoubleVectorSpace, and VectorSpaceHomomorphism.](image)

**Figure 5.5: Constructing a VectorSpace Homomorphism via Pushout**

**Facts**

- **axiom**: $0 \neq 1$;
- **axiom** associativity$_{-+}$ : associative$(+)$;
- **axiom** identity$_{-+}$ : leftIdentity$(+), 0)$
  and rightIdentity$(+), 0)$;
- **axiom** inverse$_{-+}$ : inverse$(+, (-), 0)$;
- **axiom** commutativity$_{-+}$ : commutative$(+)$;
- **axiom** associativity$_{*-}$ : associative$(*)$;
- **axiom** identity$_{1-}$ : leftIdentity$(*)", 1)$
  and rightIdentity$(*)", 1)$;
- **axiom** inverse$_{-/}$ : \textit{forall} $x : F$. $(x \neq 0)$
  implies $(x * (/x) = 1)$;
- **axiom** commutativity$_{*-}$ : commutative$(*)$;
- **axiom** distributivity$_{*-over-+}$ : distributive$(*, (+))$;

$V : \text{type}$;
$+_V : (V, V) \rightarrow V$;
$*_V : (F, V) \rightarrow V$;
$0_V : V$;
$-_V : V \rightarrow V$;
\( V' : \) type;
\(+_{V'} : (V, V) \rightarrow V;\)
\(*_{V'} : (F, V) \rightarrow V;\)
\(0_{V'} : V;\)
\(-_{V'} : V \rightarrow V;\)

axiom associativity_\(+_{V'}\):
\[
\forall x, y, z : V . \ x +_{V'} (y +_{V'} z) = (x +_{V'} y) +_{V'} z;
\]
axiom associativity_\(+_{V'}\):
\[
\forall x, y, z : V . \ x +_{V'} (y +_{V'} z) = (x +_{V'} y) +_{V'} z;
\]
axiom commutativity_\(+_{V'}\):
\[
\forall x, y : V . \ x +_{V'} y = y +_{V'} x;
\]
axiom commutativity_\(+_{V'}\):
\[
\forall x, y : V . \ x +_{V'} y = y +_{V'} x;
\]
axiom identity_\(0_{V'}\):
\[
\forall x : V . \ x +_{V'} 0_{V'} = 0_{V'} +_{V'} x = x;
\]
axiom identity_\(0_{V'}\):
\[
\forall x : V . \ x +_{V'} 0_{V'} = 0_{V'} +_{V'} x = x;
\]
axiom inverse_\(-_{V'}\):
\[
\forall x : V . \ x +_{V'} (-_{V'} x) = 0_{V'};
\]
axiom inverse_\(-_{V'}\):
\[
\forall x : V' . \ x +_{V'} (-_{V'} x) = 0_{V'};
\]
axiom distributivity1 : \(\forall a : F .\)
\[
\forall x, y : V . \ a *_{V'} (x +_{V'} y) = a *_{V'} x +_{V'} a *_{V'} y;
\]
axiom distributivity1' : \(\forall a : F .\)
\[
\forall x, y : V . \ a *_{V'} (x +_{V'} y) = a *_{V'} x +_{V'} a *_{V'} y;
\]
axiom distributivity2 : \(\forall a, b : F .\)
\[
\forall x : V . \ (a +_{V'} b) *_{V'} x = a *_{V'} x +_{V'} b *_{V'} x;
\]
axiom distributivity2' :
\[
\forall a, b : F . \forall x : V' . \ (a +_{V'} b) *_{V'} x = a *_{V'} x +_{V'} b *_{V'} x;
\]
axiom compatibility : \(\forall a, b : F .\)
\[
\forall x : V . \ a *_{V'} (b *_{V'} x) = (a *_{V'} b) *_{V'} x;
\]
5. Generation of Theories of Homomorphisms

axiom compatibility : \(\forall a, b : F.\)
\[\forall x : V'. a *_{V'} (b *_{V'} x) = (a *_{V'} b) *_{V'} x;\]

\(h : V \rightarrow V'\);

axiom : \(\forall x, y : V . h(x +_V y) = h(x) +_{V'} h(y);\)

axiom : \(\forall a : F. \forall x : V . h(a *_{V} x) = a *_{V'} h(x);\)

axiom : \(\forall x : V . h(-_V x) = -_{V'} h(x);\)

axiom : \(h(0) = 0';\)

\(\square\)

Similar to the group construction, the theory of a VectorSpaceEpimorphism and VectorSpaceMonomorphism can be obtained by calculating the pushout of the morphisms, \((\text{MultiCarrierWithFunc}, \text{VectorSpaceHomomorphism}, \Phi_1)\) with \((\text{MultiCarrierWithFunc}, \text{MultiCarrierWithSurjectiveFunc})\) and \((\text{MultiCarrierWithFunc}, \text{VectorSpaceHomomorphism}, \Phi_1)\) with \((\text{MultiCarrierWithFunc}, \text{MultiCarrierWithInjectiveFunc})\), respectively.

Finally, the theory of a vector space isomorphism can be obtained by calculating the pushout of \((\text{VectorSpaceHomomorphism}, \text{VectorSpaceEpimorphism}, \Phi_1)\) with \((\text{VectorSpaceHomomorphism}, \text{VectorSpaceMonomorphism}, \Phi_2)\).

The construction can be generalized to generate the theory of a \(T\)-homomorphism (epimorphism, monomorphism and isomorphism) from an arbitrary \(n\)-sorted theory \(T\) \((n \geq 1)\). Let \(\{C_1, \ldots, C_{n-1}, M\}\) be \(T\)'s carrier sets. Moreover, the homomorphism shall be defined for \(M\). The construction algorithm is the following:

(1) Construct the theory combination \(\text{DoubleT}\) of \(T\) with itself over the theory \(\text{FixedTheory}\) by calculating the pushout of two theory morphisms \((\text{FixedTheory}, T, \Phi_1)\) and \((\text{FixedTheory}, T, \Phi_2)\) where \(\Phi_1\) and \(\Phi_2\) are theory injections.

(2) Extend \(\text{DoubleT}\) to \(\text{THomomorphism}\) with (1) a function \(h : M \rightarrow M'\) and (2) axioms specifying that \(h\) preserve the operations whose return type is \(M\).

This is graphically depicted in Figure 5.6. Here, \(\text{FixedTheory}\) contains the part that is fixed. If \(T\) is a 1-sorted theory (as in the example of group), \(\text{FixedTheory}\) is the empty theory. Otherwise, if \(T\) is multi-sorted theory (at least 2-sorted), \(\text{FixedTheory}\) contains the carrier sets, their operations and the specifying axioms that are common.
part of the two theories between which the homomorphism is being defined. As seen previously, in the example of the vector space, FixedTheory is the theory of Field.

The theory of $T$-epimorphism can be obtained from $T$Homomorphism by calculating the pushout of $(\text{MultiCarrierWithFunc}, \text{THomomorphism}, \Phi_1)$ and $(\text{MultiCarrierWithFunc}, \text{MultiCarrierWithSurjectiveFunc}, \Phi_2)$ as graphically illustrated in Figure 5.7.

Similarly, the theory of $T$-monomorphism can be obtained by calculating the pushout of two theory morphisms $(\text{MultiCarrierWithFunc}, \text{THomomorphism}, \Phi_1)$ and $(\text{MultiCarrierWithFunc}, \text{MultiCarrierWithInjectFunc}, \Phi_2)$. Figure 5.8 graphically shows this.

Finally, the theory of isomorphism of $T$ can be obtained by calculating the pushout of $(\text{THomomorphism}, \text{TEpimorphism}, \Phi_1)$ and $(\text{TMonomorphism}, \text{TIsomorphism}, \Phi_2)$. 

Figure 5.6: Constructing a T-Homomorphism via Pushout

Figure 5.7: Constructing a T-Epimorphism via Pushout
5.5 Comparison of the Two Constructions

Both constructions discussed previously generate the theory of a $T$-homomorphism (as well as epimorphisms, monomorphisms and isomorphisms) from an arbitrary $n$-sorted theory. At first glance, the construction using \texttt{TypeFrom} produces more compact theories than the construction using pushout. Nevertheless, this is because most of the complexity is handled by \texttt{TypeFrom} which, when expanded, is a dependent record containing all the concepts and proof objects of the input theory.

The downside of the construction using pushout is that the generated theory could be enormous since there are two copies of the part for which the homomorphism is defined. However, the advantage is that if the theory morphisms are fully supported the calculation of the theory morphism ($\texttt{FixedTheory}$, $T$, $\Phi$) with itself produces not only the theory $\texttt{DoubleT}$ but other theory morphisms as well. These can be stored in the system and reused in other contexts.
Similar to homomorphism, substructure and submodel are also important concepts in abstract algebra and model theory. In an algebraic setting, it is often the case that attention is paid to a particularly interesting subset of elements of a carrier set in a certain structure. Moreover, things become more interesting and straightforward if the functions of the structure also work on the subset.

The purpose of this chapter is to discuss the algebraic constructions that have been developed for generating the theory of a substructure and the theory of a submodel from an existing theory. Similar to generating a homomorphism (see Chapter 5), two constructions, one using \texttt{TypeFrom} and one using pushout, can be used to generate the notions of a substructure and a submodel.

\section{Motivation for the Generation of a Substructure and a Submodel}

Similar to the motivation for generating a homomorphism, instead of manually defining the notion of a sub-$T$-structure and of a sub-$T$-model for a theory $T$, we desire to automatically derive it instead. Since our aim is a method for an automatic derivation, we are interested in the generic definition of substructures and submodels.
6.2 Generic Definition of a Substructure and a Submodel

The following gives the definition for the notion of a substructure in terms of two 1-sorted algebraic structures:

**Definition 6.2.1** Let $\mathcal{M}$ and $\mathcal{N}$ be two 1-sorted algebraic structures having the same signature. Furthermore, let $M$ and $N$ be their carrier sets, respectively. $\mathcal{M}$ is said to be a *substructure* of $\mathcal{N}$, if

- $M$ is nonempty and $M$ is a subset of $N$.
- For every $n$-ary function $f$ in the signature $(n \geq 1)$, $f_M = f_N | M^n$. That is, $f_M$ is the restriction of $f_N$ on $M$.

Or equivalently:

**Definition 6.2.2** Let $\mathcal{M}$ and $\mathcal{N}$ be two 1-sorted algebraic structures having the same signature. Furthermore, let $M$ and $N$ be their carrier sets, respectively. $\mathcal{M}$ is said to be a *substructure* of $\mathcal{N}$, if

- $M$ is a subset of $N$.
- For every $n$-ary function (or constant when $n = 0$) $f$ in the signature $(n \geq 0)$, $f_M = f_N | M^n$. That is, $f_M$ is the restriction of $f_N$ on $M$.

Based on that, the following is the definition of a submodel:

**Definition 6.2.3** Let $T$ be a 1-sorted theory capturing one or a collection of algebraic structures. $\mathcal{M}$ and $\mathcal{N}$ are two 1-sorted algebraic structures having the same signature. $\mathcal{M}$ is said to be a *submodel* of $\mathcal{N}$, if

- $\mathcal{M}$ is a substructure of $\mathcal{N}$.
- $\mathcal{M}$ and $\mathcal{N}$ are both models of $T$.

**Example 6.2.4** Let $T$ be the theory of a group (its definition in MSL is given in Section 5.3 in Chapter 5). Let $\mathcal{N} = (\mathbb{N}, +_N, 0_N)$ and $\mathcal{Z} = (\mathbb{Z}, +_Z, 0_Z)$ be a structure of natural numbers and a structure of integers, respectively. Clearly, $\mathcal{N}$ is a substructure of $\mathcal{Z}$ because:
6. Generation of Theories of Substructures and Submodels

- $\mathbb{N}$ is nonempty and $\mathbb{N} \subseteq \mathbb{Z}$.
- $+_N = +_Z \mid \mathbb{N}$.

However, $\mathcal{N}$ does not form a submodel of $\mathcal{Z}$ because, unlike $\mathcal{Z}$, $\mathcal{N}$ is not a group. □

We extend the definitions of substructures and submodels above to multi-sorted algebraic structures. In this case, the notion of a substructure is defined for a particular carrier set while the remaining carrier sets are fixed. That means, the remaining carrier sets of the two structures are identical.

**Definition 6.2.5** Let $\mathcal{M}$ and $\mathcal{N}$ be two $n$-sorted algebraic structures having the same signature ($n \geq 1$). Let $C_1, \ldots, C_{n-1}, M$ and $C_1, \ldots, C_{n-1}, N$ be their carrier sets, respectively. Moreover, the following conditions are satisfied:

- $M \subseteq N$.
- For each $m$-ary function (or constant when $n = 0$) $f : (S_1, \ldots, S_m) \to M$ in the signature whose return type is $M$ where $m \geq 1$ and $S_i \in \{C_1, \ldots, C_{n-1}, M\}$, $f_M = f_N \mid M^m$ for all $x_1 \in S_1, \ldots, x_m \in S_m$. In other words, $\forall x_1 \in S_1, \ldots, x_m \in S_m : f_M(x_1, \ldots, x_m) = f_N(x_1, \ldots, x_m)$.

Then $\mathcal{M}$ is a substructure of $\mathcal{N}$.

Based on that, the following is the definition of a submodel:

**Definition 6.2.6** Let $T$ be an $n$-sorted theory. $\mathcal{M}$ and $\mathcal{N}$ are two $n$-sorted algebraic structures having the same signature. Let $C_1, \ldots, C_{n-1}, M$ and $C_1, \ldots, C_{n-1}, N$ be their carrier sets, respectively. $\mathcal{M}$ is said to be a submodel of $\mathcal{N}$, if

- $\mathcal{M}$ is a substructure of $\mathcal{N}$.
- $\mathcal{M}$ and $\mathcal{M}$ are both models of $T$.

**Example 6.2.7** Let $\mathcal{W} = (V_W, +_W, \ast W, 0_W)$ be a vector space over field $K$ (the definition of a vector space is given in Chapter 5). Let $\mathcal{U} = (V_U, +_U, \ast_U, 0_U)$ be a structure of the same signature of $\mathcal{W}$ over the same field $K$. Furthermore, the following conditions are satisfied:

- $V_U$ is nonempty and $V_U \subseteq V_W$.
- $+_U = +_W \mid V_U^2$. 
• \(*_U = *_W | V_U^2.\)

Then \(U\) is a substructure of \(W\). If \(U\) is also a vector space itself, \(U\) is a submodel of \(W\). □

It is worth mentioning that textbooks normally define only the notion of a submodel of a vector space and refer to it as a *vector subspace* or *linear subspace*. Moreover, its definition is different than the definition based on the generic definition given here.

A textbook’s definition would say that \(U\) is a vector subspace of \(W\) if \(W\) is a vector space itself or, equivalently, if the following conditions are satisfied:

• \(0_U \in V_W.\)

• \(\forall a, b : K . \forall x, y : V_W . a * u + b * v \in V_W.\)

• \(\forall a : K . \forall x : V_W . a * x \in V_W.\)

Nevertheless, our definition for vector subspace derived from the generic definition of submodels is equivalent to these textbook’s definitions.

### 6.3 Constructing a Theory of a Substructure and a Submodel via TypeFrom

Similar to generating a homomorphism (see Chapter 5), the first construction for generating the notion of a substructure relies on the reification of types as dependent record types, via *TypeFrom*, as introduced in Chapter 4.

First, we consider 1-sorted theories since this is the simplest case. Given a 1-sorted theory \(T\), using *TypeFrom* \(T\) can be reified as a type which allows for declaring a \(T\) element of that type. Based on the structure of \(T\), the notion of a sub-\(T\)-structure can be derived by declaring a new carrier set and axioms specifying that (1) the new carrier set is a nonempty subset of the carrier set of \(T\) and (2) the functions of \(T\) are closed on this new carrier set.

Having the notion of a sub-\(T\)-structure, the notion of a sub-\(T\)-model can be obtained by extending it with an axiom specifying that the substructure is a model of \(T\).
Example 6.3.1 We would like to derive the theory of a group substructure (subgroup) from the theory of a Group.

The theory of a group substructure can be obtained by declaring a group element \( A \) being an element of \( \text{TypeFrom}(\text{Group}) \), a new carrier set \( V \) and axioms specifying that (1) \( V \) is a subset of the carrier set of \( A \), (2) the group’s operations are closed on \( V \) and (3) the group’s constant is in \( V \). Concretely, the theory of \( \text{GroupSubstructure} \), generated from \( \text{Group} \), may look as follows:

\[
\text{GroupSubstructure} := \text{Theory} \{ \\
\text{type GroupType} = \text{TypeFrom}(\text{Group}); \\
A : \text{GroupType}; \\
V : \text{type}; \\
\text{axiom} : V <: A.U; \\
\text{axiom} : \text{defined-in}(A.e, V); \\
\text{axiom} : \forall x, y : V. \text{defined-in}(x A.* y, V); \\
\text{axiom} : \forall x : V. \text{defined-in}(A.inv(x), V); \\
\}
\]

Here, we use \( \text{TypeFrom} \) to construct the type of groups so that we can declare a group element \( A : \text{GroupType} \). The axioms specify that the new type \( V \) is a nonempty subset of the carrier of \( A \), \( e \) is in \( A \) and the functions in \( A \) are closed on \( V \).

The notion of a group submodel can be obtained from \( \text{GroupSubstructure} \) by adding an axiom saying that \( V \) along with the group operations and constant in \( A \) form a group:

\[
\text{GroupSubmodel} := \text{GroupSubstructure extended by} \{ \\
\text{axiom} : \exists p1, p2, p3 : \text{Proof}. \\
\{G = V, \\
* = A.*, \\
e = A.e, \\
inv = A.inv, \\
associativity_*_ = p1, \\
identity_e_ = p2, \\
inverse_inv_ = p3\} \text{ in GroupType}; \\
\}
\]

Here, the axiom specifies that the record consisting of the new carrier set \( V \) and group operations and constant of \( A \) is an element of \( \text{TypeFrom}(\text{Group}) \) or, equivalently, form
Unfortunately, there is a problem here. Since, it is a well-known fact that any group substructure is also a group submodel, the last axiom in GroupSubmodel turns out to be redundant. This shows one of the weaknesses of the approach.

Deriving the theory of a substructure and the theory of a submodel from a multi-sorted theory is more complicated since it is not obvious on which carrier sets the notion of substructures and submodels should be defined. One solution is that we restrict ourselves to defining the notion of a substructure and submodel for only one particular carrier set while the remaining carrier sets are fixed using Definition 6.4 and Definition 6.4.

The key idea is that in this scenario, the notion of a substructure is defined for only one particular carrier set while the remaining carrier sets are fixed.

**Example 6.3.2** We would like to derive the theory of a vector space substructure from the 2-sorted theory of VectorSpace as introduced in Chapter 5. Furthermore, the substructure shall be defined for the vector domain $V$.

The generation works almost the same as with the group discussed previously. The theory of a vector space substructure can be obtained by declaring a vector space $A$ of TypeFrom(VectorSpace), a new carrier set $W$ and axioms specifying that (1) $W$ is a nonempty subset of the vector domain $V$ of $A$ and (2) the vector functions of $A$ are closed on $W$. Concretely, the theory of VectorspaceSubstructure, generated from VectorSpace, may look as follows:

```plaintext
VectorspaceSubstructure := Theory { type VectorSpaceType = TypeFrom(VectorSpace); A : VectorSpaceType; W : type; axiom : (W <: A.V); axiom : defined−in (A.0 , W); axiom : forall x, y : W . defined−in(x A.+ y, W); axiom : forall a : A.F, x : W . defined−in(a A.* x, W); axiom : forall x : W . defined−in(A.– x, W); }
```

In VectorspaceSubstructure, the most interesting part is the axiom specifying that $A.$ is closed $W$:
axiom : $\forall a : A.F, x : W \cdot \text{defined-in}(a A.* x, W)$;

Recall that in the original theory \textit{VectorSpace}, $*$ has following declaration:

$$* : (F, V) \rightarrow V;$$

which is defined on two carrier sets $F$ and $V$. Since the substructure is being defined for the vector domain $V$ and the field domain is fixed, the scalar $a$ is quantified over $A.F$.

Similar to the group example above, the notion of a vector space submodel can be obtained from \textit{VectorSpaceSubstructure} by adding an axiom saying that $V$ together with the vector’s operations and constants in $A$ form a vector space:

\[
\text{VectorSpaceSubmodel} := \text{VectorSpaceSubstructure extended by } \{ \\
\text{axiom : exists } p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8 : \text{Proof} . \\
\{V = W, \\
+ = A.+ , \\
* = A.* , \\
0 = A.0 , \\
\text{associativity}_{+} = p_1 , \\
\text{commutativity}_{+} = p_2 , \\
\text{identity}_{0} = p_3 , \\
\text{inverse} = p_4 , \\
\text{distributivity}_1 = p_5 , \\
\text{distributivity}_2 = p_6 , \\
\text{compatibility} = p_7 , \\
\text{identity}_{1} = p_8 \} \text{ in VectorSpaceType}; \\
\}
\]

Based on the two examples above, the construction can be generalized to generate the theory of a sub-$T$-structure $TSubStructure$ from any input $n$-sorted theory $T$ ($n \geq 1$). Assume that the substructure shall be defined over the carrier set $V$ of $T$, the algorithm for generating $TSubStructure$ is as follows:

(1) Initially, $TSubStructure$ is an empty theory.

(2) Add a type declaration $\text{type} \ TType = \text{TypeFrom}(T)$ to $TSubstructure$. 
(3) Add a type declaration $W : \text{type}$ to $\text{TSubstructure}$.

(4) Add the axiom specifying that $V$ is not empty and $V$ is a subset of $A.V$, i.e. $(W <: A.V)$.

(5) For each $n$-ary function (or constant when $n = 0$) $f : (C_1, \ldots, C_n) \to V \ (n \geq 0)$ of $T$ whose return type is $V$, generate an axiom specifying that $A.f$ is closed on $W$, i.e. $\forall x_1 : S_1, \ldots, x_n : S_n. \text{defined-in}(f(x_1, \ldots, x_n), W)$ where $S_i = W$ if $C_i = V$ and $S_i = A.C_i$ otherwise.

The theory of sub-$T$-model $\text{TSubmodel}$ can be obtained by adding to $\text{TSubstructure}$ an axiom: $\exists p_1, \ldots, p_n : \text{Proof}. \{V = W, f_1 = A.f_1, \ldots, f_m = A.f_m, ax_1 = p_1, \ldots, ax_n = p_n\}$ in $\text{TypeFrom}(T)$ where $f_i$ are functions or constants in $T$ and $ax_i$ are the names of the axioms in $T$.

### 6.4 Constructing a Theory of a Substructure Via Pushout

Also similar to generating a homomorphism in Chapter 5, the second construction for generating the notion of a substructure is via generating the pushout of theory morphisms (as discussed in Chapter 2).

Again, we first discuss the generation method for 1-sorted theories since this is the simplest scenario. Given a 1-sorted theory $T$, we would like to generate the theory of a sub-$T$-structure from it.

The key idea is that we define a new theory called $\text{DoubleT}$ that contains two copies of the concepts of $T$ and one copy of the axioms of $T$ in it. This can be done by calculating the pushout of two theory morphisms ($\text{Empty}, T, \Phi$) and ($\text{Empty}, \text{TSignature}, \Phi$) where $\text{TSignature}$ contains only the concepts of $T$, that is $T$ without its axioms.

Then we extend $\text{DoubleT}$ to $\text{TSubstructure}$ by adding axioms specifying that (1) the first carrier set of the first copy of $T$ is a nonempty subset of the second carrier set of the second copy of $T$ and (2) the functions of the first copy of $T$ are restrictions of the corresponding functions of the second copy of $T$ to the first carrier set of $T$.

**Example 6.4.1** We would like to derive the theory of a group substructure from the theory of a Group. The theory of a group substructure can be generated from Group in two steps:
6. Generation of Theories of Substructures and Submodels

(1) Construct the theory combination DoubleGroup by calculating the pushout of two theory morphisms (Empty, GroupSignature, \(\Phi_1\)) and (Empty, Group, \(\Phi_2\)) where \(\Phi_1\) and \(\Phi_2\) are empty injections and GroupSignature is Group without its axioms as shown below. This is graphically depicted in Figure 6.1. DoubleGroup contains two copies of Group’s concepts and one copy of Group’s axioms. Assume that \((G_1, *_1, \text{inv}_1, e_1)\) and \((G_2, *_2, \text{inv}_2, e_2)\) are the first and second copies of group’s concepts in DoubleGroup.

(2) Extend DoubleGroup to GroupSubstructure by adding axioms specifying that

1. \(G_1\) is a subset of \(G_2\) and the functions \(*_1, \text{inv}_1\) of the first group copy are restrictions of the functions \(*_2, \text{inv}_2\) of the second group copy, respectively.

The following is GroupSignature:

\[
\text{GroupSignature} := \text{Theory} \{ \\
\quad G : \text{type}; \\
\quad * : (G,G) \rightarrow G; \\
\quad e : G; \\
\quad \text{inv} : G \rightarrow G; \\
\}
\]

The theory of a group substructure may look as below:

\[
\text{GroupSubstructure} := \text{Theory} \{ \\
\quad G1 : \text{type}; \\
\quad G2 : \text{type}; \\
\quad *1 : (G1, G1) \rightarrow G1; \\
\quad *2 : (G2, G2) \rightarrow G2; \\
\quad e1 : G1; \\
\quad e2 : G2; \\
\quad \text{inv}1 : G1 \rightarrow G1; \\
\quad \text{inv}2 : G2 \rightarrow G2; \\
\]

\[
\text{axiom} : \text{associativity}_{*_2} : \text{associative}((*_2)); \\
\text{axiom} : \text{id}entity_{e2} : \text{id}entity((*_2), e2); \\
\text{axiom} : \text{inverse}_{\text{inv}2} : \text{inverse}((*_2), \text{inv}2, e2); \\
\text{axiom} : (G1 \ll G2);
\]
6. Generation of Theories of Substructures and Submodels

Figure 6.1: Constructing a Group Substructure via Pushout

\[\text{axiom} : \ e_1 = e_2;\]
\[\text{axiom} : \ \forall x, y : G_1 . x \cdot_1 y = x \cdot_2 y;\]
\[\text{axiom} : \ \forall x : G_1 . \text{inv}_1(x) = \text{inv}_2(x);\]

Notice that GroupSubstructure contains only the concepts but not the axioms of the first copy of Group.

The theory of a group submodel can be obtained from GroupSubstructure by adding an axiom specifying that the first copy of Group’s concepts forms a group:

GroupSubmodel := GroupSubstructure extended by \{ 
\text{axiom} : \ \exists p_1, p_2, p_3 : \text{Proof}. \{ G = G_1,  
* = \cdot_1,  
e = e_1,  
\text{inv} = \text{inv}_1,  
\text{associativity}_\cdot = p_1,  
\text{identity}_e = p_2,  
\text{inverse}_\text{inv} = p_3 \} \text{ in GroupType};
\}

Similar to the first construction using TypeFrom, deriving the theory of a substructure from a multi-sorted theory is more complicated but can also be done using
6. Generation of Theories of Substructures and Submodels

Definition and Definition. The key idea is that the notion of a substructure is defined for only one carrier set while the remaining carrier sets are fixed. The fixed carrier sets along with their axioms have one copy in the generated theory of substructure. On the other hand, the carrier set, for which the substructure is defined, and its functions have two copies. Moreover, there is one copy of the axioms defining the carrier set. This way, it is possible to define the substructure relationship.

Example 6.4.2 We would like to generate the theory of vector space substructure from the theory of the 2-sorted theory of a VectorSpace. Furthermore, the substructure shall be defined for the vector domain $V$.

Similar to the theory of group, the construction of the theory of a vector space substructure can be done in two steps:

(1) Construct the theory combination DoubleVectorSpace by calculating the pushout of the two theory morphisms $(\text{Field, VectorSpaceSignature, } \Phi_1)$ with $(\text{Field, VectorSpace, } \Phi_1)$ where $\Phi_1$ and $\Phi_2$ are identity injections and VectorSpaceSignature is VectorSpace without its vector axioms. Assume that $(V, +, *, 0, 1, -)$ and $(V', +', *, 0', 1', -')$ are the first and second copies of vector space’s concepts in DoubleVectorSpace.

(2) Extend DoubleVectorSpace to VectorSpaceSubstructure by adding axioms specifying that (1) $V$ is a nonempty subset of $V'$ and (2) the functions of the first vector space copy $+, *, -$ are restrictions of the functions of the second vector space copy $+', '*', '-'$, respectively.

This is graphically depicted in Figure 6.2.

VectorSpaceSubstructure may look as below:

VectorSpaceSubstructure := Theory {

  F : type;
  + : (F,F) -> F;
  * : (F,F) -> F;
  - : F -> F;
  / : F -> F;
  0,1 : F;

  axiom associativity_+ : associative(+);
}
axiom identity_+ : leftIdentity((+), 0)  
    and rightIdentity((+), 0);
axiom inverse_− : inverse((+), (−), 0);
axiom commutativity_+ : commutative(+);
axiom associativity_∗ : associative(*);
axiom identity_1 : leftIdentity((*)1)  
    and rightIdentity((*)1);
axiom inverse_/ : inverse((*)/, 1);
axiom commutativity_* : commutative(*);
axiom distributivity_* over_+ : distributive((*)(+) );

V : type;
+V : (V, V) → V;
*V : (F, V) → V;
0V : V;
−V : V → V;

V′ : type;
+V′ : (V, V) → V;
*V′ : (F, V) → V;
0V′ : V;
\( \neg V' : V \rightarrow V; \)

axiom associativity \(+_{V'} -_{V'}\):
\[ \text{forall } x, y, z : V . \quad x +_{V'} (y +_{V'} z) = (x +_{V'} y) +_{V'} z; \]

axiom commutativity \(+_{V'} -_{V'}\):
\[ \text{forall } x, y : V . \quad x +_{V'} y = y +_{V'} x; \]

axiom identity \(0_{V'}\):
\[ \text{forall } x : V . \quad x +_{V'} 0_{V'} = 0_{V'} +_{V'} x = x; \]

axiom inverse \(-_{V'}\):
\[ \text{forall } x : V' . \quad x +_{V'} (-_{V'} x) = 0_{V'}; \]

axiom distributivity1:
\[ \text{forall } a : F . \quad \text{forall } x, y : V . \quad a *_{V'} (x +_{V'} y) = a *_{V'} x +_{V'} a *_{V'} y; \]

axiom distributivity2:
\[ \text{forall } a, b : F . \quad \text{forall } x : V . \quad (a +_{V'} b) *_{V'} x = a *_{V'} x +_{V'} b *_{V'} x; \]

axiom compatibility:
\[ \text{forall } a, b : F . \quad \text{forall } x : V . \quad a *_{V'} (b *_{V'} x) = (a *_{V'} b) *_{V'} x; \]

axiom \( (V <: V') \);

axiom \( 0 = 0'; \)

axiom \( \text{forall } x, y : V . \quad x +_{V} y = x +_{V'} y; \)

axiom \( \text{forall } a : F . \quad \text{forall } x : V . \quad a *_{V} x = a *_{V'} x; \)

axiom \( \text{forall } x : V . \quad -_{V} x = -_{V'} x; \)

\[ \square \]

Based on the two examples above, we can generalize the construction to generate the theory of sub-\( T \)-structure from any input \( n \)-sorted theory \( T \) \((n \geq 1)\). Let \( C_1, \ldots, C_{n-1}, M \) be its carrier sets. Assume that the substructure shall be defined for \( M \). The algorithm for generating the theory of sub-\( T \)-structure is as follows:

1. Construct the theory combination \( \text{DoubleT} \) by calculating the pushout of the two theory morphisms \((F, T\text{Signature}, \Phi_1)\) with \((F, T, \Phi_1))\) (Figure 6.3). Here, \( \Phi_1 \) and \( \Phi_2 \) are identity injections and \( F \) contains all the carrier sets \( C_1, \ldots, C_{n-1}, \)
their operations and defining axioms. Additionally, $\text{TSignature}$ is $T$ without its axioms. Assume that $M_1$ and $M_2$ are the first and second copies of $M$ in $\text{DoubleT}$.

(2) Extend $\text{DoubleT}$ to $\text{TSubstructure}$ by adding axioms specifying that (1) $M_1$ is a nonempty subset of $M_2$, (2) the functions of the first $T$ copy are restrictions of the functions of the second $T$ copy, respectively and (3) the constants of the first $T$ copy are equal to the constants of the second $T$ copy.

(3) The resulting $\text{TSubstructure}$ is the theory of sub-$T$-structure of $T$.

Moreover, the theory of a $T$-submodel can be obtained by extending $\text{TSubstructure}$ with an axiom specifying that there exists proof objects showing that $\text{TSubstructure}$ is a model of $T$, i.e. an element of $\text{TypeFrom}(T)$.

6.5 Comparison of the Two Constructions

The comparison is essentially the same as with constructions of homomorphisms (Section 5.5 of Chapter 5).

Both constructions discussed previously generate the theory of sub-$T$-structure from an arbitrary $n$-sorted theory. At first glance, the approach using $\text{TypeFrom}$ (Section 6.3) produces more compact theories than the approach using pushout (Section
6. Generation of Theories of Substructures and Submodels

6.4). Nevertheless, this is because most of the complexity is handled by \texttt{TypeFrom}
which, when expanded, is a dependent record containing all the concepts and proof
objects of the input theory.

The downside of the construction using pushout is that the generated theory
could be enormous since there are two copies of the part for which the substructure is
defined. However, the advantage is that if the theory morphisms are fully supported
the calculation of the theory morphism \((F, T, \Phi)\) with itself produce not only the
theory \texttt{DoubleT} but also theory morphisms \(\Phi_{13}, \Phi_{23}\) and \(\Phi_{3}\) which can be stored and
reused in other contexts.
As we have discussed previously, the notion of a biform theory is used to merge axiomatic and algorithmic theories. The facts of a biform theory may specify transformers that are functions manipulating the syntax of expressions. As a result, as opposed to axiomatic theories, reasoning in a biform theory also embodies reasoning about syntactic expressions. Reasoning about syntax requires that the syntactic machinery must be available.

The purpose of this chapter is to introduce several algebraic constructions we have developed to generate syntactic machinery from existing theories. In particular, we introduce a construction for reifying the term algebra of a theory as an inductive data type. We also discuss other potentially useful syntactic functions such as the length function of syntactic expressions.

The starting point of the work presented in this chapter is Dr. O’Connor’s idea of automatically deriving a term algebra from the structure of a 1-sorted theory. The idea has been implemented in the current MathScheme implementation.
7. Theory Syntax Representation and Other Syntactic Machinery

7.1 Motivation

When defining a biform theory, we usually start with the axiomatic part because the axiomatic part captures the essence of the mathematical concept we are trying to formalize. Then, we may want to reason about the syntax within the theory and thus define the syntactic machinery for it. Lots of syntactic machinery turns out to be automatically generable from the axiomatic part.

To illustrate this, let us take a look at an example inspired by the example of the theory of Bit initially introduced by Dr. Carette. Suppose we are defining the theory of booleans. First, we define an inductive data type $B$ with two elements true and false. Then we define boolean functions such as conjunction, disjunction and negation etc.:

\[
\text{Bool} := \text{Theory}\{ \\
\quad \text{Inductive } B \\
\quad \quad | \text{true} : B \\
\quad \quad | \text{false} : B \\
\quad ; \\
\quad \text{and} : (B, B) \rightarrow B; \\
\quad \text{or} : (B, B) \rightarrow B; \\
\quad \text{not} : B \rightarrow B; \\
\quad \ldots
\}
\]

Here we do not list the defining axioms for and, or and not etc. since they are not relevant to our discussion.

The theory $\text{Bool}$ above is purely axiomatic because it does not contain any transformers. Now, we could add transformers that manipulate the syntax of boolean expressions. Examples of syntactic boolean expressions are $\langle \langle \text{true} \rangle \rangle$, $\langle \langle \text{false} \rangle \rangle$, $\langle \langle \text{not}(\text{and}(\text{true}, \text{false})) \rangle \rangle$ etc. ($\langle \rangle$ is an MSL’s ASCII notation for quotation).

In particular, we could add a transformer called simplify that simplifies boolean expressions while preserving their semantics:

\[
\text{Bool} := \text{Theory}\{ \\
\quad \ldots \\
\quad \text{simplify} : \text{BoolExpr} \rightarrow \text{BoolExpr}; \\
\}
\]
Associated with \texttt{simplify} is a program that implements the simplification algorithm. For instance, \texttt{simplify} reduces \texttt{not(and(true,false)))} to \texttt{true}.

Here, \texttt{BoolExpr} is the type of all syntactic boolean expressions that can be constructed. That means, \texttt{\^true\^}, \texttt{\^false\^}, \texttt{\^not(and(true,false)))\^} etc. are elements of \texttt{BoolExpr}.

So we need \texttt{BoolExpr}, the type of syntactic boolean expressions, in order to be able to declare the \texttt{simplify} function. We would like to generate \texttt{BoolExpr} based on the definition of \texttt{Bool}.

Furthermore, within the theory, we may also want to define statements about \texttt{simplify} and reason about it. In particular, we want to express that \texttt{simplify} preserves the semantics of input argument and the simplified expression is shorter than the input expression.

This could be illustrated by the following extended version of \texttt{Bool}:

\begin{verbatim}
Bool := Theory { Inductive B | true : B | false : B ; and : (B, B) → B; or : (B, B) → B; not : B → B; simplify : BoolExpr → BoolExpr; length : BoolExpr → Nat; axiom : forall e : BoolExpr . [| e |]_B = [| simplify(e) |]_B; theorem : forall e : BoolExpr . length(simplify(e)) <= length(e); }
\end{verbatim}

Here, we assume that there is a theory of naturals \texttt{Nat} with a total order \texttt{\leq} defined on it.

The specification of \texttt{simplify} requires the existence of a \texttt{length} function that calculates the length of a given syntactic expression. Ideally, the user does not have to define \texttt{length} but it is already predefined. \texttt{length} is another example of a useful
syntactic function that can be potentially predefined as well as generated.

In short, for specifying and reasoning about transformers, we have to manually define the type of syntactic expressions and other syntactic machinery. We aim to reduce this burden by predefining and generating as much syntactic machinery as we can from the information extracted from a theory.

### 7.2 Definition of the Term Algebra of a Theory

In the later sections, we will use the concept of the term algebra of a theory and therefore define it in this section. First, we review the well-known notion of the term algebra of a language. Then, we define the notion of the term algebra of a theory from it.

**Definition 7.2.1 (Term Algebra of a Language)** Given a language \( L \) with a set of constants and function symbols and a set of variables \( V \), the term algebra (also called Herbrand universe) of \( L \) over \( V \) is the set \( \text{Term} \) of all terms that can be constructed from \( L \). \( \text{Term} \) can be defined by inductive definition as below:

1. For each constant symbol \( c \in L, c \in \text{Term} \).
2. For each function symbol \( f \in L \) of arity \( n \), \( f(t_1,\ldots,t_n) \in \text{Term} \) where \( t_i \) are terms.
3. \( \text{Term} \) contains only elements defined in (1) and (2).

Based on that, the following is the definition of the term algebra of a theory:

**Definition 7.2.2 (Term Algebra of a Theory)** Given a theory \( T = (L,\Gamma) \) in which \( L \) contains only constant symbols and function symbols, the term algebra of \( T \) is the term algebra of \( L \).

**Example 7.2.3** Suppose we have a theory \( T \) whose languages consist of a constant symbol \( c \) and function symbol \( f \):

\[
T := \text{Theory} \{ \\
U : \text{type} ; \\
c : U ; \\
f : U \rightarrow U ; \\
\}
\]
The term algebra of $T$ consists of $c, f(c), f(f(c)), f(f(f(c))),$ etc. □

We notice that the term algebra of a theory only depends on its language but not on its axioms.

### 7.3 Syntax Framework

Discussing a system that directly supports syntactic reasoning tends to be very confusing. The reason is that it is often very hard to recognize what belongs to semantics and syntax. This motivated Dr. Farmer and Pouya Larjani to formulate the idea of a syntax framework [12]. In this framework, semantic and syntactic constituents are clearly distinguished. The goal of the framework is to provide a formal setting to discuss systems with syntax reasoning support. In this section, we give a brief explanation of the notion of a syntax framework. Then, we show how Chiron and MSL can be regarded as a syntax framework. All formal definitions are taken directly from [12].

#### 7.3.1 Definition of a Syntax Framework

Let a formal language be a set of expressions each having a unique mathematically precise syntactic structure.

**Definition 7.3.1 (Interpreted Language)** An interpreted language is a triple $I = \langle L, D_{sem}, V_{sem}\rangle$ where:

- $L$ is a formal language.
- $D_{sem}$ is a nonempty domain (set) of semantic values.
- $V_{sem} : L \rightarrow D_{sem}$ is a total function, called a semantic valuation function, that assigns each expression $e \in L$ a semantic value $V_{sem(e)} \in D_{sem}$.

Intuitively, an interpreted language is a formal language with a function that maps each expression to a semantic value.

**Example 7.3.2** Let us consider the example of propositional logic. The triple $(Prop, \mathcal{B}, V)$ is an interpreted language where:
• Prop is the set of all propositions,
• \( \mathbb{B} \) is the set of truth values, \( \mathbb{B} = \{ T, F \} \),
• \( V \) assigns each proposition a truth value defined by inductive definition on the structure of Prop at a given assignment \( \sigma \) of propositional variables to truth values,

Figure 7.1 graphically depicts an interpreted language. \( \Box \)

**Definition 7.3.3 (Syntax Representation)** Let \( L \) be a formal language. A *syntax representation* of \( L \) is a pair \( R = (D_{\text{syn}}, V_{\text{syn}}) \) where:

- \( D_{\text{syn}} \) is a nonempty domain (set) of syntactic values. Each member of \( D_{\text{syn}} \) represents a syntactic structure.
- \( V_{\text{syn}} : L \rightarrow D_{\text{syn}} \) is an injective total function, called a *syntactic valuation function*, that assigns each expression \( e \in L \) a syntactic value \( V_{\text{syn}}(e) \in D_{\text{syn}} \) such that \( V_{\text{syn}}(e) \) represents the syntactic structure of \( e \).

Figure 7.2 graphically depicts a syntax representation.
Intuitively, a syntax representation of a formal language assigns to each expression of the language a syntactic meaning. Unlike the semantic meaning of an expression
which represents the value the expression denotes, the syntactic meaning of an expression represents the structure of the expression.

Hence, an expression may have two meanings:

- The semantic meaning which is the value the expression denotes.
- The syntactic meaning which is the structure of the expression.

In the example of propositional logic, the most straightforward way to represent the syntactic structure of propositions is to use strings. In particular, the pair $R = (\text{String}, \text{toString})$ is a syntax representation of $\text{Prop}$ where:

- $\text{String}$ is the set of all strings.
- $\text{toString} : \text{Prop} \rightarrow \text{String}$ maps a proposition to the string representing it, e.g. it maps the proposition $T \land T$ to “$T \land T$”.

We can also have other syntax representations for $\text{Prop}$. A more structured way is to represent the structure of propositions is to use parse trees. The pair $R = (\text{PropParseTree}, \text{parse})$ is also a syntax representation of $\text{Prop}$ where:

- $\text{PropParseTree}$ is the set of parse trees that can be constructed from the grammar of propositions.
- $\text{parse} : \text{Prop} \rightarrow \text{PropParseTree}$ maps a proposition to the parse tree representing its structure.
It is worth mentioning that as opposed to the semantic function \( V_{\text{sem}} \) defined in interpreted language, the syntactic valuation function \( V_{\text{syn}} \) needs to be injective. The reason is that two syntactically different expressions may denote the same semantic value but have different syntactic values. For instance, both propositions \( T \lor F \) and \( F \lor T \) denote \( T \), i.e., have the same semantic value \( V_{\text{sem}}(T \lor F) = V_{\text{sem}}(F \lor T) = T \). However, syntactically, they are not the same, i.e., they have different syntactic values. If we were using strings to denote syntactic values of propositions, then \( V_{\text{sem}}(T \lor F) = "T \lor F" \neq V_{\text{sem}}(F \lor T) = "F \lor T" \). Similarly, if we were using parse trees, then the parse tree of \( T \lor F \) is different from the parse tree of \( F \lor T \).

**Definition 7.3.4 (Syntax Language)** Let \( R = (D_{\text{syn}}, V_{\text{syn}}) \) be a syntax representation of a formal language \( L_{\text{obj}} \). A syntax language for \( R \) is a pair \((L_{\text{syn}}, I)\) where:

- \( I = (L, D_{\text{sem}}, V_{\text{sem}}) \) is an interpreted language.
- \( L_{\text{obj}} \subseteq L, L_{\text{syn}} \subseteq L \) and \( D_{\text{syn}} \subseteq D_{\text{sem}} \).
- \( V_{\text{sem}} \) restricted to \( L_{\text{syn}} \) is a total function \( V'_{\text{sem}} : L_{\text{syn}} \to D_{\text{syn}} \).

Figure 7.3 graphically depicts a syntax language.

Finally, the following is the definition of a syntax framework:

**Definition 7.3.5 (Syntax Framework)** Let \( I = (L, D_{\text{sem}}, V_{\text{sem}}) \) be an interpreted language and \( L_{\text{obj}} \) be a sublanguage of \( L \). A syntax framework for \((L_{\text{obj}}, I)\) is a tuple \( F = (D_{\text{syn}}, V_{\text{syn}}, L_{\text{syn}}, Q, E) \) where:
(1) $R = (D_{syn}, V_{syn})$ is a syntax representation of $L_{obj}$.

(2) $(L_{syn}, I)$ is syntax language for $R$.

(3) $Q : L_{obj} \rightarrow L_{syn}$ is an injective, total function, called a *quotation function*, such that:

**Quotation Axiom.** For all $e \in L_{obj}$,

$$V_{sem}(Q(e)) = V_{syn}(e).$$

(4) $E : L_{syn} \rightarrow L_{obj}$ is a (possibly partial) function, called an *evaluation function*, such that:

**Evaluation Axiom.** For all $e \in L_{syn}$,

$$V_{sem}(E(e)) = V_{sem}(V_{syn}^{-1}(V_{sem}(e)))$$

whenever $E(e)$ is defined. □

In Figure 7.3, $L_{syn}$ is the language representing the syntactic structure of the expressions in $L_{obj}$. The quotation function $Q$ maps an expression in $L_{obj}$ to its syntactic structure in $L_{syn}$. Conversely, the evaluation function $E$ maps a syntactic structure in $L_{syn}$ to an expression in $L_{obj}$ representing the value that the structure denotes.
7.3.2 Chiron as a Syntax Framework

The paper [12] shows how Chiron can be regarded as a syntax framework as follows:

Let \( L \) be a language of Chiron, \( \mathcal{E}_L \) be the set of expressions in \( L \), \( M \) be a standard model for \( L \), \( D_M \) be the set of values in \( M \), \( V \) be the valuation function in \( M \), and \( \varphi \) be an assignment into \( M \). Then \( I = (\mathcal{E}_L, D_M, V, \varphi) \) is an interpreted language.

\( D_M \) includes certain sets called \textit{constructions} that are isomorphic to the syntactic structures of the expressions in \( \mathcal{E}_L \). \( H \) is a function in \( M \) that maps each expression in \( \mathcal{E}_L \) to a construction representing it. Let \( D_{\text{syn}} \) be the range of \( H \) and \( T_{\text{syn}} \) be the set of terms \( a \) such that \( V, \varphi(a) \in D_{\text{syn}} \). For \( e \in \mathcal{E}_L \), define \( Q(e) = (\text{quote}, e) \). For \( a \in T_{\text{syn}} \), define \( E(a) \) as follows:

1. If \( V, \varphi(a) \) is a construction that represents a type and \( H^{-1}(V, \varphi(a)) \) is eval-free, then \( E(a) = (\text{eval}, a, \text{type}) \).

2. If \( V, \varphi(a) \) is a construction that represents a term, \( H^{-1}(V, \varphi(a)) \) is eval-free, and \( V, \varphi(H^{-1}(V, \varphi(a))) \neq \bot \), then \( E(a) = (\text{eval}, a, C) \).

3. If \( V, \varphi(a) \) is a construction that represents a formula and \( H^{-1}(V, \varphi(a)) \) is eval-free, then \( E(a) = (\text{eval}, a, \text{formula}) \).

4. Otherwise, \( E(a) \) is undefined.

Then \( F = (D_{\text{syn}}, H, T_{\text{syn}}, Q, E) \) is a syntax framework for \( (\mathcal{E}_L, I) \). This is graphically depicted in Figure 7.5.

As depicted in Figure 7.5, in Chiron, the object language \( L_{\text{obj}} \) is identified with the language \( L \).

7.3.3 The MathScheme Language as a Syntax Framework

Let \( L_{\text{MSL}} \) be the set of expressions of MSL. Furthermore, let \( T : L_{\text{MSL}} \rightarrow \epsilon_L \) be the translation function that translates each MSL expression into a Chiron expression. This is graphically shown in Figure 7.6. If we translate all MSL expressions into Chiron, working in MSL is the same as working in Chiron.
Figure 7.5: Chiron As A Syntax Framework

Figure 7.6: MathScheme Language As A Syntax Framework
7.4 Reification of the Term Algebra of a Theory as an Inductive Data Type

Let $T$ be a theory formalized in MSL. The concepts of $T$ induce a set of expressions $L_T$ that can be constructed from them which is precisely the term algebra of $T$. We call the set of all quotations of expressions in $L_T$ $L_Q$, the quotations set of $T$. Furthermore, the set $D_{syn}$ contains all constructions representing expressions of the term algebra $L_T$. Figure 7.7 graphically illustrates this.

For example, if $T$ is the theory of $\text{Bool}$ above, then:

- The term algebra $L_T$ contains $\text{true}$, $\text{false}$, $\text{and( true,false )}$, $\text{and(not(true),or( false,true ))}$ etc.

- The quotations set $L_Q$ contains $|^\text{true}|$, $|^\text{false}|$, $|^\text{and( true,false )}|$, $|^\text{and(not(true),or( false,true ))}|$ etc.

It is obvious that if a new theory $T'$ is defined as a theory extension of $T$ by adding more concepts, then $L_T$ and $L_Q$ are subsets of $L_T'$ and $L_Q'$, respectively where $L_T'$ and $L_Q'$ are the term algebra and the quotations set of $T'$. Both the term algebra $L_T$ and the quotations set $L_Q$ are expressed in the meta-language of MSL. Moreover, they are isomorphic. Technically, we can reason about the syntactic expressions of $T$ using the quotations in $L_Q$. However, both $L_T$ and...
$L_Q$ themselves are concepts of the meta-language and cannot be used while reasoning inside MSL.

We can obtain the type of expressions of $T$ by reifying its term algebra $L_T$. The reification of $L_T$ is identical to representing $D_{syn}$ on the syntactic level. Dr. O’Connor initially introduced the idea of reifying the term algebra of a 1-sorted theory as an inductive data type. Using the analysis illustrated in Figure 7.7, his idea corresponds to reifying $L_T$ as an inductive data type.

The biggest advantage of reifying $L_T$ as an inductive data type is that an inductive data type is well-structured, as opposed to (say) strings.

The reification algorithm for a 1-sorted theory is simple and can be described as follows:

- Each constant $c$ of the theory becomes an 0-ary data constructor of the inductive data type.
- Each function of arity $n$ ($n > 0$) becomes an n-ary data constructor of the inductive data type.

**Example 7.4.1** The term algebra of $\textbf{Bool}$ above, when reified, becomes the following inductive data type:

\[
\text{BoolTerm} = \textbf{data} \ X \ . \\
| \text{true} : X \\
| \text{false} : X \\
| \text{and} : (X,X) \to X \\
| \text{or} : (X,X) \to X \\
| \text{not} : X \to X
\]

\[\square\]

### 7.4.1 Linking the Reified Term Algebra with the Quotations Set

We see that the term algebra $L_T$ and the quotations set $L_Q$ of a theory are isomorphic but separate sets. Even though the reified inductive data type of the term algebra does capture the term algebra of the theory, it does not represent the quotation sets. Reasoning about the elements of the reified term algebra is not reasoning about
quotations. Consequently, we need to connect the elements of the inductive data type representing the term algebra $L_T$ and the elements of the quotations set $L_Q$.

One pragmatic way of doing this is to have a transformer that converts an element of the reified inductive data type into the corresponding quotation. The implementation of this transformer is straightforward because we only need to traverse the structure of an input element of the inductive data type and recursively convert it into a quotation. In the example of $\text{Bool}$, the transformer would return $|\hat{\text{true}}|$ for true of $\text{BoolTerm}$ and $|\hat{\text{and( true,false )}}|$ for $\text{and( true,false )}$ of $\text{BoolTerm}$.

7.4.2 The Term Algebra of a Multi-sorted Theory

The construction for reifying the term algebra of a theory as an inductive data type discussed previously only works for 1-sorted theories. However, the construction can be easily extended to multi-sorted theories.

Before introducing the reification algorithm, we take a look at the example of how we can reify the term algebras of the two-sorted theory of a vector space (see Chapter 5 for the definition of a vector space in MSL). The term algebra for the field part can be reified as the following inductive data type:

```haskell
type FieldTerm =
 data X . |
 + : (X, X) -> X
 * : (X,X) -> X
 - : X -> X
 / : X -> X
 0 : X
 1 : X
```

However, besides the field, syntactic expressions of the vector space can be built up from vectors as well. Moreover, vectors can built up not only from other vectors but also from field and vector elements as witnessed by $\ast_V$. Here, $\ast_V$ takes a field element and a vector element and returns a vector element. That means, the inductive data type of the term algebra of vectors depends on the definition of the term algebra of fields.

We can reify the term algebra of vectors as the following inductive data type:

```haskell
type VectorTerm =
 data Y . |
 +_V : (Y, Y) -> Y
```
90 7. Theory Syntax Representation and Other Syntactic Machinery

| ∗_V : (FieldTerm, Y) → Y |
| 0_V : Y |
| −V : Y → Y |

Here, the definition of VectorTerm depends on the definition of FieldTerm.

In general, suppose we want to generate the term algebras from an n-sorted theory T with n ≥ 1 carrier sets C_1, ..., C_n. The algorithm for reifying the term algebras of T is the following:

- For each carrier set C_i, create an inductive data type C_iTerm with bound variable X_i.
- For each constant of type C_i of T, add a 0-ary to C_iTerm.
- For each n-ary function of T whose return type is C_i, add an n-ary data constructor to C_iTerm. Moreover, for each parameter of the function, if its type is C_j, the corresponding parameter type of the data constructor is X_j. Otherwise if it is C_k where k ≠ j, the parameter type is C_kTerm.

Occasionally, it may happen that we are only interested in term algebras of a certain subset of carrier sets, especially when the theory has a lot of carrier sets. We modify the algorithm above so that it is possible to specify the carrier sets for which the term algebras should be reified.

Suppose we want to generate the term algebras from an n-sorted theory T with n ≥ 1 carrier sets C = C_1, ..., C_n. The algorithm for reifying the term algebras of T for the carrier sets S = {S_1, ..., S_l} ⊆ C is the following:

- For each carrier set C_i in S, create an inductive data type C_iTerm with bound variable X_i.
- For each constant of type C_i of T, add a 0-ary to C_iTerm.
- For each n-ary function of T whose return type is C_i and whose the types of all parameters are in S, add an n-ary data constructor to C_iTerm. Moreover, for each parameter of the function, if its type is C_j, the corresponding parameter type of the data constructor is X_j. Otherwise if it is C_k where k ≠ j, the parameter type is C_kTerm.

**Example 7.4.2** Suppose we reify the term algebra of VectorSpace for only the carrier set V, the inductive data type is as follows:
7. Theory Syntax Representation and Other Syntactic Machinery

\[
\text{type VectorTerm =
  data Y . |
  \begin{align*}
  +_\gamma &: (Y, Y) \to Y \\
  0\gamma &: Y \\
  -\gamma &: Y \to Y
  \end{align*}
}\]

Here, the data constructor \(*_\gamma : (\text{FieldTerm}, Y) \to Y\) is not included because the signature of the original function \(*_\gamma : (F, V) \to V\) contains \(F\) which is not in the set of carrier sets we are interested in. □

7.4.3 Implementation

In Dr. O'Connor's implementation, a term algebra builder called \& takes a 1-sorted theory as input and returns an inductive data type representing the term algebra of the theory.

For instance, \textbf{Bool} is expanded to:

\[
\text{type BoolTerm = data X .
  \begin{align*}
  \text{true} &: X \\
  \text{false} &: X \\
  \text{and} &: (X,X) \to X \\
  \text{or} &: (X,X) \to X \\
  \text{not} &: X \to X
  \end{align*}
}\]

Due to time limit, the reification algorithm for multi-sorted theories has not been implemented. The following gives several suggestion for future implementation:

- The term algebra builder \& should be changed to \texttt{TermAlgebraFrom} to be more suggestive. \texttt{TermAlgebraFrom} should take as input a theory \(T\) as well as the carrier sets of \(T\) whose term algebras we would like to reify.

- The result of \texttt{TermAlgebraFrom} is a set of inductive data types, each of which represents the term algebra of the theory over each input carrier set specified as parameter of \texttt{TermAlgebraFrom}.

7.5 Useful Syntactic Functions

As we said before, the good thing about capturing the term algebra in an inductive data type is that an inductive data type is very well-structured. That allows us to easily define functions that are useful for reasoning about the syntax of expressions.
Length of syntactic expressions is a representative example of a useful tool for reasoning about syntax. We would like to have a \texttt{length} function that takes any term algebra in the form of an inductive data type and returns a natural number representing length of the input.

We know that it is possible to define the length function on any inductive data type recursively based on the data constructors. Concretely, the \texttt{length} function defined on an inductive data type can be systematically defined by pattern matching on each data constructor of the inductive data type:

- length of a constant is 1.
- length of an n-ary data constructor \( f(e_1, \ldots, e_n) = 1 + \text{length}(e_1) + \ldots + \text{length}(e_n) \).

It is interesting to remark that in the world of functional programming, \texttt{length} is a catamorphism [21] for the inductive data type.

\textbf{Example 7.5.1} The \texttt{length} function for \texttt{BoolTerm} can be defined as below:

```plaintext
BoolExt := Bool \textbf{extended by} \{
 \textbf{type} BoolTerm = TermAlgebraFrom(Bool);
 simplify : BoolTerm \to BoolTerm;
 length : BoolTerm \to \textbf{Nat};
 length x = \textbf{case} x \textbf{of} \{
 | true \to 1
 | false \to 1
 | and (y z) \to 1 + \text{length} y + \text{length} z
 | or (y z) \to 1 + \text{length} y + \text{length} z
 | not y \to 1 + \text{length} y
 \}
 \textbf{axiom} : \textbf{forall} e : \texttt{BoolTerm} .
 \[[| e |]_B = [| \text{ simplify}(e) |]_B ; \]
 \textbf{theorem} : \textbf{forall} e : \texttt{BoolTerm} .
 \text{length}(\text{ simplify}(e)) \leq \text{length}(e);
\}
\□
```

In the future, other useful syntactic functions should be identified and generated. The example of \texttt{length} may serve as guidance for this purpose.
7.6 Theory of Syntax

We have seen so far that, lots of useful syntactic machinery can be generated which significantly reduces the burden on the user. That would be very nice if we could define all this machinery in a global theory of syntax. This way, whenever we want to reason about syntax, we simply use this theory of syntax. Since term algebra is reified as inductive data type, it would be reasonable to define a *theory of an inductive data type* that contains knowledge and reasoning about inductive data types. These can be reused within the context of the theory of syntax. However, this is outside of the scope of this thesis.
The thesis explains the major techniques for constructing the MathScheme Library. Moreover, the thesis discusses several algebraic constructions we have developed for leveraging the information from existing theories to generate new useful machinery. In particular, we have shown how to reify a theory as a dependent record type and a theory interpretation as a dependent record. We have also explained a method for generating a theory of a homomorphism (as well as epimorphism, monomorphism, isomorphism) and a theory of a substructure from an input theory. Finally, we have shown the technique for reifying the term algebra of a theory as an inductive data type as well as other useful syntactic machinery such as the length function of expressions.

Defining algebraic constructions that can automatically generate new information for the library of formalized mathematics from existing theories is a very powerful idea. That way, we can maximally reuse information to alleviate the burden on the user of having to manually defining various machinery. The developed constructions described in this thesis show the feasibility of the idea and are ready to be implemented in the MathScheme Library.

Based on the work of this thesis, the following work could be done in the future:

- Since the MathScheme Project shifted from a focus in theories to a focus in theory morphisms, the current MathScheme implementation needs to be overhauled to support theory morphisms. Especially, the MathScheme implementation should support the theory morphism’s operations introduced in Chapter 2.
8. Conclusion and Future Work

- With the exception of reification of theories as dependent record types, other generation methods described in this thesis have not been implemented yet. They need to be implemented as soon as the MathScheme implementation fully supports theory morphisms.

- We should figure out more useful machinery that can potentially be automatically generated and develop techniques for generating it. The methods described here could serve as model for that purpose.
ACKNOWLEDGMENTS

It is an honor for me to express my gratitude to the people who have directly or indirectly helped and supported me through my research as well as made my time being a graduate student one of the best experiences of my life.

First and foremost, I owe my deepest gratitude to my supervisor, Dr. William M. Farmer, for guiding me through my research and academic life with great competency and patience. I could not wish for a better or friendlier supervisor. Thanks a lot for everything, Bill!

I have been greatly aided by Dr. Jacques Carette and post-doctoral researcher Dr. Russell O’Connor, team members of the MathScheme Project, while working on my research topic. Without Dr. Carette and Dr. O’Connor’s explanations of the MathScheme Library and MathScheme implementation as well as lots of creative ideas in many MathScheme meetings and email exchanges, this thesis would not have been completed. Thus, I would like to offer my sincerest thank for their support.

I am deeply grateful to Dr. William M. Farmer, Dr. Wolfram Kahl, Dr. Ridha Khedri and Dr. Jeffery Zucker for their superb graduate courses that helped me improve my understanding of computer science and complete this thesis. My supervisor’s CAS760 course on “Logics for Practical Use” provided the background knowledge for understanding various applications of formal logics and the MathScheme project. In particular, Chapter 2 would have not been completed without the knowledge from the course. Dr. Kahl’s CAS743 course on “Functional Programming” and CAS706 “Programming Languages” were particularly helpful for me to understand functional programming and the semantics of programming languages. Dr. Khedri’s CAS707
course had a part about model theory whose knowledge was helpful for me to com-
plete Chapter 5 and Chapter 6. Dr. Zucker’s CAS701 course on “Logic and Discrete
Mathematics in Software Engineering” and reading course on the “Theory of Com-
putability’ provided me with the background to understand more advanced topics’.

Many friends have made my graduate life an unforgettable experience. Notably,
friends from The Philosophy of Computer Science study group: Gordon J. Uszkay,
Marc Bender, Pouya Larjani and Valentin Cassano. Our formal discussions on com-
puter science in the meetings and informal discussions in the Phoenix afterward have
always been a lot of fun. Marc has really inspired me with his passion for computer
science. Thanks to Gordon for sharing his experience of computer science, life and
Canadian culture. He has been a very inspirational person. I also greatly enjoyed
going to the gym with Akbar Abdiraxmanov, Husam Ibrahim, and Pouya Larjani.

I would like to show my gratitude to Dr. Peter Fleischer, Dr. Bernhard Hollun-
der, Dr. Friedbert Kaspar, Dr. Berthold Laschinger, Mrs. Brigitte Minderlein from
Furtwangen University in Germany for kindly recommending me to the McMaster
graduate school.

My final thanks goes to my loving family including my parents and sister back in
Vietnam. Thanks to my sister for being such a great sister. Thanks to mom for her
love and for teaching me how important education is. Thanks to dad for inspiring me
to study abroad and teaching me “a+b=b+a” while I was still in kindergarten. Now,
I could express your teaching in a slightly more formal way: “+ is commutative”.

MathScheme Language (MSL) is an exceedingly rich high-level specification language built on top of Chiron for specifying and relating biform theories. As the time of this writing, MSL is continuously being extended, modified and improved. Nevertheless, its core features are pretty stable. This appendix explains the language features of MSL.

H.1 Conventions

In explaining MSL, the following conventions will be used:

H.1.1 Terminals

Terminals are enclosed in quotation mark, e.g. "0", "A".

H.1.2 Nonterminals

A nonterminal is written in lower case, e.g. <expr>.

H.1.3 Options

An option is represented through square brackets, e.g. [ ].
H.1.4 Alternatives

Alternatives are expressed by a vertical |, e.g. (\textless\text{letter}\textgreater\ |
\textless\text{digit}\textgreater).

H.1.5 Repetitions

There are two kinds of repetitions. A repetition that must occur at least once is represented by *, e.g. \textless\text{digit}\textgreater *. A repetition that may not occur is represented by +, e.g. \textless\text{digit}\textgreater +.

H.1.6 Comments

Comments are put between (@* This is a comment *@)

H.1.7 Identifiers and Operators

Identifiers are used to name various kinds of concepts in MSL such as theory names, variable names etc. Operators are usual mathematical operators such as +, − etc.

<oper> ::= <symbol>+\{<digit>\}
<ident> ::= (\textless letter\textgreater | \textless digit\textgreater | #)
\hspace{1em} (\textless letter\textgreater | \textless digit\textgreater | <symbol>)*
<letter> ::= a..z | A..Z
<digit> ::= 0..9
<symbol> ::= + | * | < | > | ^ | / | \ | # | |
\hspace{1em} - | @ | - | ~ | \ | =

H.2 Expression

<expr> ::= <expr> and <expr>
\hspace{1em} | <expr> or <expr>
\hspace{1em} | <expr> implies <expr>
\hspace{1em} | not <expr>
\hspace{1em} | <relation_expr>
\hspace{1em} | <expr> in <full_type>
\hspace{1em} | <quantifier>
Expressions are either terms or formulas. However, MSL's grammar does not differentiate between them. In particular, an expression is one of the following constructs:

- A conjunction of two formulas.
- A disjunction of two formulas.
- A negation of a formula.
- An equality of two expressions.
- A membership relationship of an expression in a type.
- A quantifier.
- An atom.
- A function application.
- An operator expression.
- A lambda abstraction.
- A case expression.
- An if-conditional expression.
A formula can be formed using the usual logical operators: conjunction $\wedge$, disjunction $\lor$, negation $\neg$. Equality checking of two expressions, e.g. $e_1 = e_2$, and the membership checking, e.g. $0 \text{ in } \text{nat}$, are also formulas.

Moreover, MSL provides support for universal quantifier $\forall$ and existential quantifier $\exists$. The production rule for quantifiers is as below:

\[
<\text{quantifier}> ::\ = \ <\text{forall}\_\text{expr}> \\
\ | \ <\text{exists}\_\text{expr}>
\]

\[
<\text{forall}\_\text{expr}> ::\ = \ \text{forall} \ <\text{var}\_\text{spec}> \ . \ <\text{expr}>
\]

\[
<\text{exists}\_\text{expr}> ::\ = \ \text{exists} \ <\text{var}\_\text{spec}> \ . \ <\text{expr}>
\ | \ \text{exists}! \ <\text{var}\_\text{spec}> \ . \ <\text{expr}>
\]

Beside the standard existential quantifier, there is also a unique existential quantifier $\text{exists}!$. This can be used to write such statements as “there exists a unique $x$ such that...”.

**H.2.1 Term**

With the exception of atoms that can be either formulas or terms, function applications, operator expressions, constructor selectors, lambda abstraction, case expressions and if-conditional expressions are terms.

The following sections describe them.

**H.2.2 Atom**

\[
<\text{atom}> ::= \ <\text{ident}> \\
| \ ( \ <\text{oper}> ) \\
| \ <\text{p}\_\text{strict}\_\text{expr}\_\text{list}> \\
| \ b\_\text{record}\_\text{list} \\
| \ [# \ <\text{full}\_\text{type}> #] \ . \ <\text{ident}> \\
| \ ( \ <\text{expr}> ) \\
| \ | \ <\text{expr}> \ | \\
| \ | ^ \ <\text{expr}> \ ^| \\
| \ | [[ \ <\text{expr}> ]] \ _ \ <\text{full}\_\text{type}> \\
\]

An atom is a formula or a term. It can be either one of the following constructs:

- An identifier.
• An operator.
• A tuple.
• A record.
• A constructor selector of an inductive data type.
• A bracketed expression.
• A marked expression.
• Quotation.
• Term evaluation (to a certain type).

H.2.3 Identifier

An atom can be denoted by an identifier.

H.2.4 Operator

A bracketed operator name is an atom. For instance, (>).

H.2.5 Tuple

<atom> ::= 
  | . . . 
  | <p_strict_expr_list>
  | . . .
<p_strict_expr_list> ::= ( <expr> , <expr_list> )
<expr_list> ::= <expr>
  | <expr> , <expr_list>

A tuple is an atom. It has two or more expressions. For instance, (e₁, e₂, e₃) is a 3-tuple.

H.2.6 Record
A record is an atom. Each record is an instance of the record type and denoted by a (possibly empty) list of labeled expressions. For instance, \{r = 5.0, imag = 2.0\}.

**H.2.7 Constructor Selector**

A constructor selector is an atom. It selects one of the data constructors defined in an inductive data type. For instance, Suppose we have an inductive data type of Peano Arithmetic

```
data X . | zero : X | suc : X -> X
```

Then

```
[data X . | zero : X | suc : X -> X].suc
```

will return the `suc` data constructor.

**H.2.8 Bracketed Expression**

An expression enclosed by brackets is an atom. For instance, ( e ).

**H.2.9 Marked Expression**

A marked expression an atom. It is used in conjunction with quasiquotation to represent an expression within a quotation that should be evaluated. For instance, \[f ([2 + 3])]\ evaluates to \[f 5]\.

**H.2.10 Quotation**

A quotation is an atom. For instance, given \(0 : nat, \lceil 0 \rceil\) denotes the syntactic expression that, when evaluated, denotes the natural number 0.
H.2.11 Term evaluation

A term evaluation is an atom. Term evaluation evaluates a syntactic expression to a term of a certain type. For instance, $[ [ \ ^{\sim} 0 \ ] ] \text{nat}$ evaluates to the natural number 0.

H.2.12 Function Application

\[
<expr> ::= \\
| \ldots \\
| <application_expr> \\
| \ldots \\
\]

\[
<application_expr> ::= \text{atom atom} \\
| \text{application_expr atom} \\
\]

A function application is a term. It is the application of a function to some arguments. For instance, $f \ x$, $f \ (x - y) \ z$ are function applications.

H.2.13 Operator Expressions

\[
<expr> ::= \\
| \ldots \\
| <oper_expr> \\
| \ldots \\
\]

\[
<oper_expr> ::= <expr> \text{inline_oper} <atom> \\
<inline_oper> ::= <oper> \\
| <ioper> \\
<ioper> ::= ' (symbol | goodchars) + \\
\]

An operator expression is a term and is defined by the production rule $\text{oper_expr}$. It represents an expression constructed by applying operators written in infix format. For instance, $e * x$ is an operator expression.

H.2.14 Function Abstraction

\[
<expr> ::= \\
| \ldots \\
| \text{lambda} \ <var_spec> . \ <expr> \\
\]
A function abstraction is a term. It is defined using lambda abstraction as usual in lambda calculus. For instance, \texttt{lambda x : Nat. 2*x}.

### H.2.15 Case Expression

\[
<\text{expr}> ::= \\
| \ldots \\
| \text{case} <\text{expr}> \text{ of } <\text{cases}> \\
| \ldots \\
<\text{cases}> ::= \{ \{ \text{case_list} \} \} \\
<\text{case_list}> ::= <\text{case}> \\
| \text{case} <\text{case_list}> \\
<\text{case}> ::= \text{\_|_} | <\text{pattern}> \rightarrow <\text{expr}> \\
<\text{pattern}> ::= <\text{base_pat}> \\
| ( <\text{pattern}> ) \\
| <\text{pattern}> <\text{pattern}> \\
| ( <\text{pattern}>, <\text{pattern_list}> ) \\
| {} \\
| \{ <\text{pat_record_list}> \} \\
<\text{base_pat}> ::= <\text{ident}> \\
| <\text{oper}> \\
| \ldots \\
<\text{pat_record_list}> ::= <\text{ident}> = <\text{pattern}> \\
| <\text{oper}>) = <\text{pattern}> \\
| <\text{ident}>) = <\text{pattern}>, <\text{pat_record_list}> \\
| <\text{oper}) = <\text{pattern}>, <\text{pat_record_list}> \\

A case expression is a term. Case expressions in MSL are syntactically and semantically almost identical to those in OCaml. A case expression matches an expression with a list of cases.

Each case is of the form \texttt{pattern} \rightarrow \texttt{expression}. If the pattern is matched, the result of the entire case expression is the expression following the arrow.

A pattern can be:

- A base pattern that is either an identifier or an operator name.
- A bracketed pattern.
A function application pattern, e.g. `suc 0`.

- A tuple pattern, e.g. `(e1, e2)`.
- An empty record pattern `{}`.
- A non-empty record pattern. For instance, `{r = r1, img = r2}`.

### H.2.16 Definite And Indefinite Description

\[
\text{atom} ::= \ldots | \text{quantifier} | \ldots
\]

\[
\text{quantifier} ::= \ldots | \text{iota_expr} | \text{epsilon_expr}
\]

\[
\text{iota_expr} ::= \text{iota} \text{ident} : \text{full_type} \cdot \text{expr}
\]

\[
\text{epsilon_expr} ::= \text{epsilon} \text{ident} : \text{full_type} \cdot \text{expr}
\]

A definite description is a term and is defined by the production rule `iota_expr`. It denotes the unique element that satisfies a condition. For instance, `iota x : \mathbb{R} . x^3 = -27` denotes the unique real number \( x \) such that \( x^3 = -27 \) which is \(-3\).

An indefinite description is a term and is defined by the production rule `epsilon`. It denotes some element that satisfies a condition. For instance, `iota x : \mathbb{R} . x^2 = 4` denotes some real number \( x \) such that \( x^2 = 4 \) which can be either 2 or \(-2\).

### H.3 Type Expression

\[
\text{full_type} ::= \text{type} \ldots | \text{full_type} \to \text{full_type} | \text{ident} \cdot \text{full_type} | \text{typeapp} \\
| \text{type_plus} ( \text{tplus} ) | \{ \text{record_field_list} \} | \text{type_seq1} 
\]
Currently, a type expression is one of the following constructs:

- The word **type**.
- A function type.
- A dependent function type.
- A type application.
- A sum type.
- A record type.
- A tuple type.
- An inductive data type.
- A power type.
- A type of term algebra of a theory.

It is worth noting that if we want to introduce a new type expression construct, such as **TypeFrom** (Chapter 4), it will be first introduced here.

### H.3.1 Function Type

\[
<\text{full	extunderscore type}> ::= \ldots \\
| <\text{full	extunderscore type}> \rightarrow <\text{full	extunderscore type}> \\
| \ldots
\]

A function type is a type expression and is denoted by the arrow \(\rightarrow\) as usual. For instance, \(\text{nat} \rightarrow \text{nat}\) is a function type from naturals to naturals.

### H.3.2 Dependent Function Type
A dependent function type $\wedge x : \alpha.\beta$ is a type expression. It is a generalization of function types described above. In the normal function type $\alpha \rightarrow \beta$, $\beta$ is independent of $\alpha$. On the other hand, in a dependent function type $\wedge x : \alpha.\beta$, $\beta$ may depend on $x$, i.e. $x$ may occur freely in $\beta$.

For instance, in the the following code, $(n : \text{Array (n))}$ is a dependent function type. It takes a natural number $n$ and returns the type of arrays of length $n$.

Nat : type;
Array : Nat \rightarrow type;
a1 : ( n : \text{Array (n)) );

### H.3.3 Type Applications

A type application is a type expression. \texttt{lift <atom>} lifts what the parser otherwise considers to be an expression to instead be interpreted as a type, e.g. operator names. Moreover, complete expressions can be entered as types as well.

### H.3.4 Sum Type

A sum type is a type expression. \texttt{type \_plus} takes one or more types and creates a sum type from them. It corresponds to disjoint unions in mathematics and the

```markdown
<full_type> ::= ...
 | <typeapp>
 | ...
<typeapp> ::= <ident>
 | <oper>
 | lift <atom>
 | <ident> <full_type>

<full_type> ::= ...
 | type _plus (<tplus>)
 | ...
<tplus> ::= <full_type>
 | <full_type> , <tplus>
```

A sum type is a type expression. \texttt{type \_plus} takes one or more types and creates a sum type from them. It corresponds to disjoint unions in mathematics and the
OCaml. For instance, in the example below, \texttt{type_plus (Nat, Real)} is a sum type of Nat and Real.

\texttt{n : type_plus (Nat, Real)}

\section*{H.3.5 Record Type}

\begin{verbatim}
<full_type> ::= ...  
    | { <record_field_list> }  
    | ...  
<record_field_list> ::= <field_sig>  
    | <field_sig>, <record_field_list>  
<field_sig> ::= <ident> : <full_type>
\end{verbatim}

A record type is a type expression and is defined by a list of record fields enclosed in curly brackets. For instance, \{\texttt{r : R, img : R}\} is a record type.

\section*{H.3.6 Tuple Type}

\begin{verbatim}
<full_type> ::=| ...  
    | (<type_seq1>)  
    | ...  
<type_seq1> ::= <full_type>, <type_seq0>  
<type_seq0> ::= <full_type>  
    | <full_type>, <type_seq0>
\end{verbatim}

A tuple type is a type expression and defined by a list of types enclosed in brackets. There are at least two types in that list. For instance, \texttt{(nat, nat, nat)} is a 3-tuple of naturals.

\section*{H.3.7 Inductive Data Type}

\begin{verbatim}
<full_type> ::= | ...  
    | ( data <ident> . <typespec> )  
    | ...  
<typespec> ::= | <field_sig>  
    | <field_sig> | <typespec>  
<field_sig> ::= <ident> : <full_type>
\end{verbatim}
An inductive data type is a type expression. It consists of a bound variable and a list of data constructors. For instance, \texttt{data X : 0 : X | suc : X -> X} is an inductive data type of Peano Arithmetic. in detail.

**H.3.8 Power Type**

\texttt{<full_type> ::= ... |
power <ident> |
power (<full_type>) |
...}

A power type is a type expression. A power type of a type \( t \) is the type whose elements are subtypes of \( t \). For instance, \texttt{power R} is the power type of \( \mathbb{R} \) whose elements are subtypes of \( \mathbb{R} \).

**H.3.9 Type of Term Algebras of a Theory**

\texttt{<full_type> ::= ... |
& <ident> |
...}

A type of term algebra of a biform theory is a type expression. In the current implementation, \( & \) is a term algebra builder. It takes a biform theory as input and creates an inductive data type containing all syntactic expressions that can be constructed using the constants and functions from the input biform theory. For instance, \( &\text{Nat} \).

**H.4 Concepts**

\texttt{<concept_declaration> ::= |
(Concept | concept | Concepts | concepts) <ident_list> ;
<ident_list> ::= ident |
ident <ident_list> |
<ident> ::= <ident_list> : full_type |
( <ident> ) : full_type |
<ident_list> ::= <ident> |
<ident> <ident_list>}

Concepts are used to represent mathematical concepts in a biform theory. A concept can be a list of types, functions of declared types or constants of declared
types etc. For instance, in the theory of a group, the carrier set \( G \), the binary operator \(*\), the neutral element \( e \) and the inverse function \( \text{inv} \) should be defined as concepts:

\[
\text{Group} ::= \text{Theory} \{ \\
\quad \text{Concepts} \\
\quad \quad \text{G} : \text{type} ; \\
\quad \quad \ast : (G, G) \rightarrow G ; \\
\quad \quad e : G ; \\
\quad \quad \text{inv} : G \rightarrow G ; \\
\quad \ldots \\
\}
\]

**H.5 Facts**

\[
<\text{single_fact_list}> ::= <\text{single_fact}> ; \\
\quad | <\text{single_fact}> ; <\text{single_fact_list}>
\]

\[
<\text{single_fact}> ::= \text{axiom} <\text{ident}> ::= <\text{expr}> \\
\quad | \text{axiom} <\text{expr}> \\
\quad | \text{axiom} : <\text{expr}> \\
\quad | \text{axiom} <\text{ident}> : <\text{expr}> \\
\quad | \text{theorem} <\text{ident}> ::= <\text{expr}> \\
\quad | \text{theorem} <\text{expr}> \\
\quad | \text{theorem} : <\text{expr}> \\
\quad | \text{theorem} <\text{ident}> : <\text{expr}>
\]

A fact is either an axiom or a theorem being a logical statement over the concepts declared within the same biform theory. For instance, the three group axioms: \( \ast \) is associative, \( e \) is the neutral element and \( \text{inv} \) is the inverse can be defined as facts of \( \text{Group} \) as follows:

\[
\text{Group} ::= \text{Theory} \{ \\
\quad \text{Concepts} \\
\quad \quad \text{G} : \text{type} ; \\
\quad \quad \ast : (G, G) \rightarrow G ; \\
\quad \quad e : G ; \\
\quad \quad \text{inv} : G \rightarrow G ; \\
\}
\]

**Facts**
axiom: \textit{forall} x, y, z : G . (x * y) * z = x * (y * z);
axiom: \textit{forall} x : G . (x * e = x) \textbf{and} (e * x = x);
axiom: \textit{forall} x : G . x * (\textit{inv}(x)) = e; \}

H.6 Declaration

\textless declaration\textgreater ::= \textless single_declaration\textgreater ; \textless declaration\textgreater  
\textbar \textless single_declaration\textgreater ; 
\textbar \textless single_declaration\textgreater 

\textless single_declaration\textgreater ::= \textless typ_declaration\textgreater  
\textbar \textless type_defn\textgreater  
\textbar \textless func_defn_declaration\textgreater  
\textbar \textless axiom_declaration\textgreater  
\textbar \textless induct_declaration\textgreater  
\textbar \textless concept_declaration\textgreater  
\textbar \textless var_declaration\textgreater  
\textbar \textless fact_declaration\textgreater  
\textbar \textless defnblock_declaration\textgreater 

A declaration is one of the following constructs:
- A type declaration.
- A type definition.
- A function definition declaration.
- An axiom declaration.
- An inductive data type declaration.
- A concept declaration.
- A variable declaration.
- A fact declaration.
- A definition block declaration.
H.6.1 Type Declaration

\[
\begin{align*}
<s\ sing\ decl> & ::= \nonumber \\
& | <typ\ decl> \\
& | \ldots \\
<typ\ decl> & ::= <tident>
\end{align*}
\]

A type declaration assigns to a list of identifiers a type. According to the production rule, a type declaration (\texttt{typ\_declaration}) is a type identifier (\texttt{tident}) which is an entry in a concept as described in section H.4. This means, we can declare types within or outside of a concept. In the later case, type declaration is parsed to the \texttt{TypeDecl} data constructor using the \texttt{typ\_declaration} rule.

For instance, in \texttt{Group} above, we can move the declarations of \texttt{G} and \texttt{*} out of Concepts:

\[
\texttt{Group} := \texttt{Theory} \{ \\
\texttt{Concepts} \\
\quad \texttt{e} : \texttt{G}; \\
\quad \texttt{inv} : \texttt{G} \rightarrow \texttt{G}; \\
\quad ; \\
\quad \texttt{G} : \texttt{type}; \\
\quad \texttt{*} : (\texttt{G}, \texttt{G}) \rightarrow \texttt{G}; \\
\texttt{Facts} \\
\quad \texttt{axiom: forall} \ x, \ y, \ z : \texttt{G} . \ (x \ast y) \ast z = x \ast (y \ast z); \\
\quad \texttt{axiom: forall} \ x : \texttt{G} . \ (x \ast \texttt{e} = x) \ \texttt{and} \ (\texttt{e} \ast x = x); \\
\quad \texttt{axiom: forall} \ x : \texttt{G} . \ x \ast (\texttt{inv}(x)) = \texttt{e}; \\
\}
\]

Then \texttt{G} and \texttt{*} are parsed to \texttt{TypeDecl} internal representations.

H.6.2 Type Definition

\[
\begin{align*}
<s\ sing\ decl> & ::= \nonumber \\
& | <type\ defn> \\
& | \ldots \\
<type\ defn> & ::= \texttt{type} <ident> = <top\ full\ type> \\
& | <ident> : <full\ type> \\
<top\ full\ type> & ::= <full\ type>
\end{align*}
\]
A top level type (\texttt{top\_full\_type}) is either a full type or an inline inductive data type. A type definition is either a type synonym, i.e. \texttt{type \ident = \top\_full\_type}, or a declaration that an identifier is of a certain type, i.e. \texttt{data \ident . <typespec>}

For instance,

\begin{verbatim}
  type Nat = data X . zero : X | suc : X \rightarrow X;
\end{verbatim}

Here, \texttt{Nat} is a type synonym for an inline inductive data type containing two data constructor \texttt{zero} and \texttt{suc}.

### H.6.3 Function Definition Declaration

\[
\texttt{<func\_defn\_declaration> ::= \textless func\_defn \textgreater} \\
\texttt{\textless func\_defn \textgreater ::= \textless param\_decl \textgreater = \textless expr \textgreater} \\
\texttt{\textless param\_decl \textgreater ::= \textless ident \textgreater} \\
\texttt{\hspace{0.5cm} | \textless ident \textgreater <p\_ident\_list>} \\
\texttt{\hspace{0.5cm} | \textless ident \textgreater <inline\_oper> \textless ident \textgreater} \\
\texttt{\textless p\_ident\_list \textgreater ::= ( \textless ident\_list \textgreater )}
\]

A function definition declaration is a function definition. The defined function may have no argument e.g. \texttt{f} or a list of arguments e.g. \texttt{add m n} written in prefix. It may also be defined as an infix operator e.g. \texttt{+m n}.

For instance, in the following \texttt{PeanoArithmetic} theory, \texttt{add} is defined as a binary function in prefix notation.

\begin{verbatim}
PeanoArithmetic ::= Theory { 
  Inductive Nat 
  | zero : Nat 
  | suc : Nat \rightarrow Nat 
  ;
  add : (Nat, Nat) \rightarrow Nat;
  add (m, n) = case n of { 
    | zero \rightarrow m 
    | suc p \rightarrow suc (add (m, p)) 
  };
}
\end{verbatim}
We can also use the infix notation of addition + instead:

\[
\text{PeanoArithmetic := Theory \{ Inductive Nat |
  zero : Nat |
  suc : Nat \rightarrow Nat |
  + : (Nat, Nat) \rightarrow Nat; |
  m + n = case n of |
  \{ | zero \rightarrow m |
  \{ | suc p \rightarrow suc (add (m, p)) |
  \}; |
  \}}
\]

H.6.4 Axiom Declaration

\[
<\text{axiom declaration}> ::= <\text{single fact}>
\]

An axiom declaration is simply a single fact as described in section H.5.

H.6.5 Inductive Data Type Declaration

\[
<\text{induct declaration}> ::= \text{Inductive <ident> <typespec> |
\text{Inductive <ident> \| <typespec>}
\]

An inductive data type declaration \text{Inductive} is a shorthand for declaring an inductive data type.

For instance, in the \text{PeanoArithmetic} theory above, \text{Inductive Nat} is used as a shorthand to define an inductive data type plus the declarations of the functions corresponding to the data constructors.

For instance, the definition

\[
\text{Inductive Nat |
  zero : Nat |
  suc : Nat \rightarrow Nat
\]

is a shorthand for the following definition in expanded form:

\[
\text{type Nat = data X. zero : X | suc : X \rightarrow X; |
  zero : Nat; |
  zero = [# Nat #].zero;}
\]
suc : Nat → Nat;
    suc = [# Nat #].suc;

H.6.6 Concept Declaration

A concept declaration is a concept as described in section H.4.

H.6.7 Variable Declaration

<var_declaration> ::= (variable | variables) <tident_list2>
<tident_list2> ::= <tident>
    | <tident>, <tident_list2>
<tident> ::= <ident> : <full_type>
    | <pident> : <full_type>
<pident> ::= ( <ident> )

A variable declaration declares a list of variables to be of a certain type.

For instance, we can declare three variables one, two, three of type Nat as below:

PeanoArithmetic := Theory {
    Inductive Nat
    | zero : Nat
    | suc : Nat → Nat
    ;
    ...
    variables one, two, three : Nat;
}

H.6.8 Fact Declaration

<fact_declaration> ::= Fact <single_fact_list>

A fact declaration is a list of facts which is described in section H.5.

H.6.9 Definition Block Declaration

<defnblock_declaration> ::= definition <func_defn_list>
<func_defn_list> ::= <func_defn>
    | <func_defn> ; <func_defn_list>

A definition block declaration is a list of function definitions described above.
H.7 Theory Expression

\(<\text{thy_expr}> ::= \langle\text{ident}\rangle
         | \text{Theory} \{\}
         | \text{Theory} \{ \text{declaration} \}
         | (\langle\text{thy_expr}\rangle)
         | \langle\text{thy_extension}\rangle
         | \text{Theory} (\langle\text{top_type}\rangle) \{ \langle\text{declaration}\rangle \}
         | \langle\text{ident}\rangle (\langle\text{ident}\rangle)
         | \langle\text{thy_expr}\rangle [\langle\text{id_eq_list}\rangle]
         | (\text{combine} | \text{combines}) \langle\text{thy_expr_list}\rangle \text{along} \langle\text{thy_expr}\rangle

A theory expression is one of the following constructs:
- An identifier referring to a theory name.
- An empty theory.
- A basic theory containing declarations in it.
- A bracketed theory expression.
- A biform extension.
- A parameterized theory.
- A theory application.
- A theory renaming.
- A theory combination.

H.7.1 Theory Name

A theory name is a theory expression. It shall refer to an already declared theory.

H.7.2 Empty Theory

An empty theory is a theory expression. It contains no declarations in it.

For instance, the \text{Empty} theory is defined as below

\text{Empty} ::= \text{Theory} \{\}
H.7.3 Theory Extension

\[
<\text{thy_expr}> ::= \\
\quad \ldots \\
\quad |\, <\text{thy_extension}> \\
\quad \ldots \\
\]

\[
<\text{thy_extension}> ::= <\text{thy_expr}> \text{ extended } \{ <\text{declaration}> \} \\
\quad |\, <\text{thy_expr}> \text{ extended by } \{ <\text{declaration}> \} \\
\quad |\, <\text{thy_expr}> \text{ extended conservatively by } \\
\quad \quad \{ <\text{declaration}> \}
\]

A theory extension is a theory expression. It is the theory resulting from enhancing a theory with further declarations. Declarations are explained in section H.6.

For instance, the following \textit{Carrier} theory is a theory extension of the \textit{Empty} theory mentioned previously by adding a type declaration \textit{U}:

\[
\text{Carrier} \,:=\, \text{Empty} \text{ extended by} \\
\quad \{ \\
\quad \quad \text{U} : \text{type}
\quad \}
\]

H.7.4 Parameterized Theory

\[
<\text{thy_expr}> ::= \\
\quad \ldots \\
\quad |\, \text{Theory} ( <\text{top_type}> ) \{ <\text{declaration}> \} \\
\quad \ldots \\
\]

\[
<\text{top_type}> ::= <\text{thyident}> \\
\quad |\, <\text{thyident}>, <\text{top_type}>
\]

\[
<\text{thy_expr}> \text{ extended } \{ <\text{declaration}> \}
\]

A parameterized theory (also called functor) is a theory expression. However, it is currently not implemented yet.

H.7.5 Theory Application

\[
<\text{thy_expr}> ::= \\
\quad \ldots \\
\quad |\, <\text{ident}>( <\text{ident}> )
\]
A theory application is a theory expression. It is of the form `Theory(NamedArrow)`

H.7.6 Theory Renaming

\[ <\text{thy_expr}> ::= \]
\[ | \ldots \]
\[ | <\text{thy_expr}> [ <\text{id_eq_list}> ] \]
\[ | \ldots \]
\[ <\text{id_eq_list}> ::= <\text{id_eq}> \]
\[ | <\text{id_eq}>, <\text{id_eq_list}> \]
\[ <\text{id_eq}> ::= <\text{io}> = <\text{io}> \]
\[ | <\text{io}> \rightarrow <\text{io}> \]
\[ <\text{io}> ::= <\text{ident}> \]
\[ | <\text{oper}> \]

A theory renaming is a theory expression. It is the theory resulting from renaming identifiers and operators in the source theory.

For instance, let `BinaryRelation` be the theory of binary relation:

\[ \text{BinaryRelation} := \text{Carrier \ extended \ by} \]
\[ \{ \]
\[ R : (U, U)? \]
\[ \} \]

\[ R : (U, U)? \] is a a just short form for \( R : (U, U) \rightarrow \text{Bool}. \)

Then, an `OrderRelation` is a binary relation where the more specialized symbol \( \leq \) is used instead of \( R \). In other words, `OrderRelation` is the theory resulting from renaming \( R \) to \( \leq \) in `BinaryRelation` as follows:

\[ \text{OrderRelation} := \text{BinaryRelation}[ R |\rightarrow \leq ] \]

H.7.7 Theory Combination

\[ <\text{thy_expr}> ::= \]
\[ | \ldots \]
\[ | (\text{combine} | \text{combines}) <\text{thy_expr_list}> \]
\[ (\text{along} | \text{over}) <\text{thy_expr}> \]
\[ | \ldots \]
A theory combination is a theory expression. It is the theory resulting from combining a list of theories, represented by \( \text{thy_expr_list} \), over a theory, represented by \( \text{thy_expr} \).

For instance, let \text{ReflexiveOrderRelation} be the theory of order relation being reflexive:

\[
\text{ReflexiveOrderRelation} := \text{OrderRelation extended by} \\
\{ \\
\text{axiom for all} \ x : U . \ x \leq x \\
\}
\]

and \text{ReflexiveOrderRelation} be the theory of order relation being transitive:

\[
\text{TransitiveOrderRelation} := \text{OrderRelation extended by} \\
\{ \\
\text{axiom for all} \ x, y, z : U . \ (x \leq y \text{ and } y \leq z \text{ implies } x \leq z) \\
\}
\]

The theory of \text{Preorder} can be defined by combining \text{ReflexiveOrderRelation} and \text{TransitiveOrderRelation} over \text{OrderRelation} as below:

\[
\text{Preorder} := \text{combine ReflexiveOrderRelation, TransitiveOrderRelation over OrderRelation}
\]

In the expanded form, \text{Preorder} would look as follows:

\[
\text{Preorder} := \text{Theory} \\
\{ \\
\text{U} : \text{type}; \\
\text{<=} : (U, U)\text{?}; \\
\text{axiom for all} \ x : U . \ x \leq x; \\
\text{axiom for all} \ x, y, z : U . \ (x \leq y \text{ and } y \leq z \text{ implies } x \leq z); \\
\}
\]

### H.8 Theory Declaration

A theory declaration is one of the following constructs:

- A declaration of a theory identifier.
H. Appendix : MathScheme Language

- A property declaration.
- An injection.
- A theory instance of a parameterized theory.

The syntax of a theory declaration is defined as follows:

```
<theory_declaration> ::= <ident> := <thy_expr>
 | property <param_decl> := expr ;
 | <ident> := <inject>
 | <ident> := instance <ident> of <ident>
 via [<id_eq_list>]
```

### H.8.1 Declaration of Theory Identifier
An identifier can be declared to refer to a theory expression. For instance, in the example of `Group` biform theory above:

```
Group := Theory { }
 ...
}
```

`Group` is an identifier that refers to the theory declared via the keyword `Theory`.

### H.8.2 Property
Properties are similar to macros in programming languages. They provide us with a convenient construct to write down such properties as associativity and communitivity while defining biform theories.

For instance,

```
property leftAction(**,++) :=
 forall x : leftDomain(**). forall y : rightDomain(**) .
 forall z : rightDomain((++)).
 (x ** y) ++ z = x ++ (y ++ z);

property associative(**) := leftAction(**,**);
```

Here, `leftAction` and `associative` are properties. Whenever we want to say that a certain binary operator `*` is associative, we can use `associative (*)` instead of the more verbose form `forall x, y, z ...`. The expander will expand properties to their verbose form.
H.8.3 Injection

An injection is a special kind theory morphisms (Chapter 2). We can name injections since they are useful for creating instances. MSL support for theory injections will be extended in the future.

H.8.4 Theory Instance of Parameterized Theory

Parameterized theory is currently not supported yet.


