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‘and t are based on censored and comp]ete samp]

: and_Moore s,sta;15t1cs Lr.and E,e The st t1st1c t s, on the who1e.

‘as poverful as €. . T ‘\

w !

ABSTRACT

Sovera1 test statist1cs wh1ch are known can be’ uscd for

.t

.

tes ting for outliers.‘ Two new stat1st1cs T and are. proposed T
\i and are 51m11ar to

Tiku's T and t statistics for testing for norma11ty The d15tr1but1on

‘of T 15 closely approximated by ‘the Beta dfstribution and the _ ' ; ‘"'
 iid1str1but1on of t 15 closely approximated by Student s't d1str1but1é
‘T and te are’ also both orfgin and sca1e 1nvar1a¢z Besides T and t.

are easy to ca1cu1ate, The stat1st1c T 1§ ‘more powerfu1 than T1etjen )
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o  INTRODUCTION
1t often happehs that 1n 6xper1menta1'data'a few ohservations
occur-in a'sampie whfch are so far removed from the remé1n1ng bulk of
observat1ons that the analyst 1s not w1111ng to be11eve that these -
values have come from the same popu1at10n. Such va1ues are ca11ed
_ out11ers. Thé prbblem of outlier detection ‘has generally been
treated as a prob1em in hypothes1s test1ng The.nu11 hypdthes1s is
that all the observat1ons in a. random sample of size n come from the
same- popu1at10n N(u,o), ¥ and o are unknown, against the alternative
hypothes1s that some spec1f1c observations (1argest or smallest for |
example) are out11ers, that 15, are too large or sma11 as compared
to the bulk of observat1ons,,see references (9, 10].. The 1argest
_ obéerva;ions for exanple could come from a ﬁopuLat1on with location
\\\Bzfgmeter w + 80, 6 > 0, and -scale parameter'g. Note that this-
problem s different‘than testﬁng that some arbitrary observations
are outliers; see Grubbs [9, br 8]. There 1s a large number of
statistics for testing the largest (sma11est) observation in a
sampTe as outliers, but thé most pr§m1nént s?at1st1c'15 due to
Grubbs [9). This stat1st1c/1s the ratio of.the sum of squares of .
deviations from the samplé mean for a nedudgd sample (obtained by '/ . -
' omitting the largest (smallest) observation) to the gum of squares of
deviations for the whole sample. Its generalization for test1ﬁg r ‘
largest (ﬁmaTlest) observét1oﬁs‘for outliers is due to-Grubbs [9, 10] .

for r = 2 and'Tietjen and Moore [16] for general r, The Tietjen and Moore
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. statfstic Lr' ke Grubb§ statistic, 1s the‘ratfo of the sum of

' s@uaqes o?*dev{at1ons.fdr a reduced samp]ei(obfainéd by'om1tt1ng the

- can be used for test1hg'ri ]

.
Fo

_ J - .. B
r largest observations) to the sum of squares of deviations. for the
g . P

whp]e samb]e.‘ Tietjen and ﬂoore also propose a.stat1st1c-Er whicﬁ .

* smallest and T largest observations,
ry rye T, However, the distributions of Lr and/Er are not knowm; . .

but, Tietjen and Moore provide their Monte Carlo percentage points,

for values of n ¢ 50, Sequential tests_have been.proposed for

" testing two or more observations and have been based on the statistics

" due to Grubbs (9], Dixon [4], David et.al (3] and Shapiro and Wilk -

stdt1st1c W/118) Nalso sample skéwnesé /Ei an&\samp]e kurtosis-bzg'

| Ferguson (7, 8]. However these sequentidl‘tests—are known to be

-1néffect1ve in the-bresence.of masking-effect (the phenomenon of -

some observatfons being closer to each other than they are close to
- the bulk of observations); see references [13, 9, 16]n7 We propose
statisttes 7 and t for test1ng'r1 smallest and ) largest observa- =
tions 1n a sample from a normal population N{u,s). T is the ratio
of the maximum 1ikelihood est1matots of o calculated from censored
and complete samples. The d1str1b:t1dn of T under HO tends to
normality with increasing sample size n {effectively n > 30). Ve
p;oﬁosé another statistfc,,tc, based on the difference of means of
censored and comp{ete samp]es'for testing 1 smaliest and 7, largest
observations. The distribution of t. 1s approximately Student's t

having n - 1 degrees of freedom. The power of T and tc s shown °

to be higher than that of Tietjen and Moore's statistics L, and Er"
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| . CHAPTER 1
VARIOUS STATISTICS ‘FOR TESTING SUSPECTED OUTLIERS

. B To test whether outliers are present 1n a sampTe, 1rre5pect1ve
" of how many, 1t has been proposed ‘that one of the tests for. norma11ty
be employed; Feguson {Z, 8]. The following tests of norma11ty secm
_yery relevent. o

1,1 Varfous Stat1st1cs For Test1ng Norma11ty

Shap1ro And W11k Stat1st1c.
7 Shaprio and Wilk [15] proposed 2 statistic W which 1s the

_ ratio of the square of an appropr1ate 11near combination of the
samp1e ordered - observations to the sum of squares of deviations for
the entire sample, Let m' = (my, my, ..., m ) denote the vector of

. expected values of standardized normal ordered observaticns and
V= (Vij) be the corresponding n x n varfance covartance matrix.

Let X' ='(X1, Xz, vy Xn) deriote the vector of ordered
observations, If {X;} {s anfordered sample from a normal distri-
~bution with mean u and varfance 02, the best 1inear unbiased esti-

mator of o {s

¢' = m'V'IX/m'V'lm
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The statfstic W fs defined
S n n N
W= (k)2 s (§a1x1)2/§(x1-x>3 ,
¢ . where.a''s (afi”az;-..., an) n m'V'l{(m'V'lm)&.‘ Thé,coeffjg1ents
{ag) are givén {n Shapiro and W11('[15]. The exact distribution of W

*{s not -known, The Monte Carlo percentage points of W for n ¢ 50 are -

given {n (15].
- Tiku's T Statistic.— BT |
Tiku [21] proposed a Statistic T which 1s the ratio of-the

est1mators'of o ca]uc1ated.ﬁrom censored and complete samples.

Lef T ' ;
. . I

n

’ | L Ko Xgs cns X R

4
denote the sample of ordered observations., Since the end observations

“are more sensitive to non-normality, espec1a11y¢to Tong tailedness, g
' we censor.r'1 smallest and 'y largest observations to obtain the

censored sample

Xar Kappr -

ey xb (a’zrl'{'lgb:n-rz) : (1!2)
- Let

o, =B + V62+4AC}/2A ;

be Tiku's modified maximum 11kelihood estimator of the popu]at1bn

standard deviation ¢ calculated from the censored sample (1.2).
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o A =1 - ql p (qlnrl/n,qzurz/n) Y ' | v i
Qs . . o _ !
: X - X - Ky . g
, B ~ qz“z ks - {9 ‘*1“1) o, |
and L ) . - « ;
| Yo, 2 2 v 2
O (L XS aephy - ageyty - (ap-aghaglp gyt )
1 . where ﬂ - - N . L
| K= (5 ,z, +9,8, %701 81K, )/ (101 -05+9p857; 21) o
, 51‘.‘" ﬂf(tl)’{:té*-f(ktl)/ql‘}/ql’ o % (f(tl)/ql) - Bltl ' i
- “ ' A .o _ ' . .'
T By = =Ft,) (tp-T(ty) /a3 aps up = (F(t))/ap) - Bpty v - .
‘ ot '
. _ . h! ; -
#(t) = (1/VEmyexp(-5 t9), F(ty) = J (t)dt = qq0 F(ty) = 1 - a5 3
The values of o's and g's can easily be caTcu1a£ed from tables of :
normal probab1f1ty function (Bfometrika Tables).
. Let 6 = 5 =/ { (X1-X) /n be the maximum 1ike}ihood esti- -
mator of o caiculated from the complete, sample (1.1). The stat1st1c '
T 15 defined N
T (1-1)0 /1276, 0 < T < w, (A<1-q;-q,) =
n’% nk /% o 9-92
.
Small values of T lead to the rejection of normality. The null distri-
R\\\ bution of T tends to normality with increasing sample -size n (effecti-
™ . vely n > 30). _ e * !
Y 1
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Tiku's t. Statistic

Tiku [20] proposed another statist1c based on the difference

‘of means of censored and compliete samples, for testing normality.

The max {mum: 11ke11hood estimator of u (mean of the norma1

" population) calculated from the comp]ete sample (1.1) is X E X: /n.

n estlmator of u ca1cu1ated from the censored sample (1 2) w1th
‘ .

rz =r (qymmetr1c censoring) ‘is

AR et
e et
anq | | : ‘
'%‘- t; = (ué-i)/sfil-dj/nd,
_~y

where

1

q=r/n, d=1-2q+2qp and g = -F(t){t-f(t)/q}/a;

F(t) = = exp(-5t%), F(1)

t ..
j flt)dt =1 -q .

The details about t_ are given in Chapter 2.

Other tests for normality are based on

!

107 3,3 |
by == 1 (X-K)7/s7  (sample skewness)

and

0 4,4 ' .
y (xi-X) /s Gample. kurtosis)

Approximations to the disteibution of JEI and b, are available in
[2]. The exact distributions of %EI and---'b2 are net known.

Another problem is to test for specific number of outliers

(PRI TS PRPLE S CpRON
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- in an ordered sample, say ry-on the left and rzion'the-rfgﬁt. The

| following statistics have_ﬁEen-pfbpoeéd.

e

1.2  Tests For Detécting One Outlier .

Pearson And Chandra Sefar's Statistics.

-

Pearson and Chandra Sekar [13} criterion is the rat1o of the

extreme dev1ate from the sample mean to- the est1mate of the popu]at1on

standard deviation s ' - 3 - .

Pearson and Chandra Sekar [13] considered
o D‘.= (x_-X)/s, where 52 = —l-,E (X-X)
T n . n ? . ﬂ-l _i= 1

as criteria for rejecting the ]érgest observation, i.e., 1y = 0,
r, =1, as outlier. |

Similarly,
= (X'Xl)/s

is used.as a criteria for rejecting the smaliest observation, i.e.,

ry = 1, rs =-0, as outlier.

" Grubbs' Statistic,

-

Grubbs [9] introduced a criteria which is based on the ratio
of the sum of squares of dev1at1ons for a reduced samp1e (obtained by
omitting the largest (smallest) obsefvation) to the sum of squares of
deviations for the whole'sample. For testing the largest observation,

‘ i.e., ry 0, r, = 1 as outlier, Grubbs [9] preposed the statistic
W

b gy B - -~ . -t . . . .p oz oy - v - .
TR s & b e ae Sl FARAFCRETITIC SPUE WL FIp LY N AN JLN R S PO HITE y IR TR
-
- - . . ,
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n-1 - 2
, (X.-%.) _ '
3 2/52'=——-——--——‘§1 L S B
n' '. - ? n n-1 j=1- i
{. (X5-X) . ——
i
_ T ' ) . . o 0\ _ o .
It turns out that - ‘ - N D T
| | X -Xo Mo
2,2 o1 M2 a2
" /S:I' A = ‘s-); 1 pn_
where 52 =' [ (x X) , and D is the student1zed max1mum residua] - iﬁffmwﬁ i‘

 suggested by E Pearson and C. Chandra Sekar {13] for tegting the
s1gn1f1cance of the 1argest observation If S /S is sma11er than

| a prescr1bed percentage points chosen from the tables of Grubbs
paper to achieve a fixed probability 1eve1, the‘1argest qbservat1on

B )

:is to be rejected from the data.

5 .
Similarly, for testing the smallest observation, i.e., ry = 1,

ry = b, as outlier, Grubbs [9] proposed the stafistﬁc ' . :
!
‘ .UXR T
5,2/5° -——————',wherex =L v
1oon-1 45, i
{ (X X '

It turns out that
2,.2 _ 1 1.2 _ 1
51 /s7 =1 - n-l[ s =1~ n-1 Dy

where 52 =

SRR PIRC T E ELPPUILLF DRSS S RS VUSRIt

.-2)2 and D1 is the studentized minimum residual.

(%;

i=1 3

If 512/52 is too small, the smallest value is to be rejected. The

JlI=

N3

statistic D (or Dl) js easier to compute than!SnZ/SZ (or/SIZ/SZ).

Grubbs [10) recommended that if one is interested only in outliers

PSRRI LT, U IP0Y L PRI

that occur on the right hand side or high side, one should use the

e —_—
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Dn = (Xn-g)/s .
P

On the other hand, 1f one is interested only 1n outliers occuring on

-

Pl

the left hand s1de or low side, one shou]d a1ways use-the stat1st1c

———— .-

The percentage points of D and D, are given ‘nTab]é 1 of Grubbs [101.-w

D1xon's-5tat1§t1cs.

Dikon {4] criteria are ratios of the diséance between &
T~ suspected observation and 1t§”nearest or next nearest (aséumed )
unaffected) neighbor to the range of the sample (with zero, one, or
two observations omitted). Dixon's test is based on a valueubeing
too large (small} compared with its nearest neighbor.
For tgsting the largest observations, 1.e:, ry = 0, ro = 1,

as outlier, Dixon [4, 61 proposed the following statistics

. xn’xgn-iz P

r.. =
7 A

"
—
-
™
-
2,
n
o
-
—
-
fab]

If (1.5) is larger than a specified percentage ppin% found in the

tables of Dixon's paper [6); the largest observation is to be

{1.5)
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rejected from the data. Dixon [5] also proposed_the statistics
X, .-X . A :
y x$ Ll i=1,25 7=0,1,2 (1.6)
s n-3 "1 : _

'for testing the smallest observation 1.e., ™ =‘1,-r2 = 0 as outlier.

‘*_If Ir | (r. 'given by (1.6)) s too large, "the smallest observation

1s to be reJected from the data.

The two sided extension of Dixon's ru]e, suggested by Ferguson

‘I8] for the reaection of one out11er wou1d be to reJect the 1argest

)

RIS X2"’"1) \\\\ - o

max( y T
Xokp 7 KRy

or sma11est observation according to whether X #x is larger or .

sma]1er than xz-xl, whenever

is too large. Tables for the exact percentage_pointe for this rule
are not available; however as King {12] points out, approximate
percentage points can be obtained from tables of the one sided tests

for doubling the significance level.

1.3 Tests For Detecting Two Qutliers

Grubbs' Statistic. e

For testipg the two largest (or smallest) observations as

e ol it anar o oiml

kY A2 e S A e e S g R s et
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,'outliers,ferubbs [9].a150 proppsed‘the‘sfa£1st1c§:

ns2 T
PR O S &
g2 ysf oA iilal vhere X . = 7 X
n-1,n n o2 » WRETE A0 1,n D2 i%1 )
/z (xi'x)

PR 11 _ ‘ o ' I‘.

for testing two largest observations, i.e., ry = 0, ry = 2, as

out]ierg; and

o N 2 |
2 2 '123(')(1"}(1'2) - 1 o
51,2/ = » X1,2% 5 LK
27 §=3
L A

for testing two smallest observatioqs j.en, vy ='2,‘r2 = 0, as outlfers.

i "

Dav1d Pearson And Hartley 5 Statistic

; David -Pearson and Hart]ey (31 cr1ter1on is the ratio of the

samp1e'range to the samp1e standamd-deviat1on. They have pr0posed the

statistic

X =% n
_"'n "1 2 _ 1 2
Wjs = =, where s© = —= 1Zl(xi--X)

for testing the smallest and the largest observations simultaneously
(e, ry=1,1,= 1)} as probable outliers in a sample. If X is
about as far above the mean, X, as Xy s belovi -%, and if w/s exceeds
some chosen critical value, then one wou]d'conclude that both the
suspected values are outliers. If, however, X, and X are displaced
from the mean by different amounts, some further tést would have to
be made to decide whether to reject as outJ}ing only the lowest or

only the highest value or both the lowest and highest values.
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| 1.4 Tes s For Detect1hg'5evera1 Outljers -
. , _ —_

Tic_jen And Moore s Statistics. T

Tietjen and Moore [16] have proposed the statistic' :o

n-r:

- for test1n69the largest r observations 1.e., ry =0, r2'=‘f, as outliers,

B ]

and -

//’

: L;' | E (x K7) / Z %02, wh % L1
- = -X)°, where X, = ===
. 1 r+1 i n-r 4

Hne~133

X, . =
r+l 1 :

for test1ng the sma]]est r observat1ons, i.e., rl =T, 1, F 0, as

outliers. ' . i o L //.

Note that [, is equal to Grubbs' S /S and L, is equa] to Grubbs-

S, f /s2. similarly, it shoiiofii/poted that L] 1s Grubbs' S 252
and L2 15 Grubbs’ 2/S C '

The L and L statist1cs are useful for examin1ng r suspected
values which are larger or smaller than the bulk of the sample. Some
samples, however, oispiay‘suspect values on both sides of the bulk.

To deal withﬂihe situation in which some of the r suspected values are
larger and some are smaller than the remaining values, another
statistic is suggested by Tietjen and Moore. Again let the sample

- n

values be denoted by Xqs ..., X_. Compute the mean of the sample,
X. Then compute the n absolute residuals:

Ry = |xy-%ls Ry = Ixp-%ls ooy Ry = Xk

12
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: Now re1ab1e the observat1ons as Y s 1n such a manner that Y1 15 the X

whose R1 is the 1th largest. This means that Yy s the observat1on

: c1osest to the mean % and that Y is the observation farthest from

the mean. The proposed statistic for testing rl 5ma11est and r2 -

largest observat10n5 (r1 +ry = r) 1s

Z(vi?)/z(m)

_where o | L - L

n-r .
?l' =. 1§1Y1/(n-r)

is the mean of the (n-r) least extreme obtervationa aha Y is the mean

of the full samp1g.‘ The Monte Carlo percentage points of L (L ) and’~

£, are given in (161, B T
The statistics Lr(L:) and E. are used as follows: 1if in a

sample of size n, we decide to test whether the r largest (smallest)

wvalues are outliers, we calculate Lr(L:), if this quantity is smaller

than the desired critical value in Table I of Tietjen and Moore [16],
we conclude that the r largest (smallest} values are indeed outliers.
If on the other hand we wish to check whether the r "most extreme"

(as measured from the sample mean) values are outliers, we calculate

,Eri if this quantity s smaller than the selected eritical value in

Table 1I of Tietjen and Moore [16], we conclude that the-r.suspected

observations are outliers.
/EI and b, given by Ferguson [7, 8] (defined as earlier) do

not depend on r and r, and may therefore be also used for testing

o
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specified ﬁumbeffe% outliers.. Particu]arly; /EIiis suggested-forruse
in the one sided c1tuat1on (change in 1eve1 of several observations
in the same d1rect10n) for example where it 1s known that 4171 the
'poss1b1e spurious observations are too. 1arge‘? The coefficient -of -
.kurtos1s b2 is suggested for use 1n the "two sided” tests (change in

level to h1gher and Tover va]ues) and also for changes in scale

™~

(var ange) . o \
f’—75_ is too large the Targest observation 1s to be reJected '

‘as spurious, and t;e‘same procedure repeateq until no further samp1e

o values are judged as outliers. If b2 15 tod" Iarge the observation

farthest from the mean is to be rejected as spurious ‘Sfm11ér1y .
this kurtosis test can be used’ sequent1a11y. However, any such
sequent1a1 procedure is 1ne;%ect1ve in the prese?ce of "masking
effect”. |

In pract1ce g and ro in the above stat1st1cs might not be
known. In such situations, one-at-a-time sequential tests proposed -
by Ferguson {7, 8], Dixon {4, 5, 6], David et.al [3] and Shapiro and
Wilk [15] can be used. But the difficulty in applying these tests
is that, if ve have a few suspected observations far away from the
bulk but closer to each otherﬂ the above tests will not reject efther
one no matter how suspected they may be fn appearance. This is
what Pearson and Chandra Serar[13] refer to as the masking effect, namely,
that the presence of several suspected observations reduces the '

ability of the rejection rulg to detect even one.
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CHAPTER 2 |
DISTRIBUTIONS AND POWERS OF THE STATISTICS T AND t_ |

~.
-

T - D .
In this chapter ‘the statistics T and t  are used for detecting

- several outlfers in a sample of size n.from a normal population

N(u,o}; o qnd o are unknown.. The powérs of'these stat1st1és are
calculated for various sample'sizes.and it s shown that the power
of these statistics is higher than that of Tietjen and Hoore's

statistics Lr and E. in ‘detecting shifts in location.

2.1 Statistic T for Testing Suspected Outliers
Let

Xl, XZ, e ey xn . (2-1.1)

be a random sémple from a normal population N{u,s}, » and o are

unknown. We order the observations according to increasing magnitude

and denote the ith largest observation by xi; thus

/

X1 § Xy § oen 8 X (2.1.2)

n
is the ordered set of observations.
I : .-
The most commonly encountered situation is to test whether
some particular observations (r2 Targest and y smallest observations

for examp]es are too large or small as compared to the remaining bulk

of observatilons. To develdp a statistic for testing 1 smallest and

T 415
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r largest observations in (2.1.2), we consider the %émﬁdred sample
‘ _ ' b
o xa7 X_a+1, ceees xb ‘ (a=r‘1+1, b=n- 2) T (..2-1.3)

1
'

Let a6~be the maximum‘{1kelihood estimator, or an éstimator whjcﬁ‘is
J 1dént1ca1, at least gsymptotica1iy, to the maximum 1ikelihood ésti-
mator (for'exahp1e Tiku's [17] modified maximum Tikelihood estimator)
of the population standard deviation o calculated from the censored |
sampde (2;1,3) and let ¢ be the maximum ijkelihood estimator of o
ca]Zanted from thé comp]éte samp]e_(g.l.l)'or (2.1.2). Consider
the statistic ‘

(1-9og .
, 0<T<w (A=1-q1-q2) (2.1.4)

T =
(15

the expressions for o_ and o are given in Chapter 1. Note that T is

c
brig1n and scale invariant. The statistic T is proposed as a

test-statistic for testing the null hypothesis

Hp: that the sample contains no outlier, i.e.,
‘that all the observations in (2.1.1) come

from the same population N(u,o);
against the_a]ternative hypothesis

;: that r; smallest and r, largest observations
are outliers, i.e., are too small and too @
large, respectively, as compared to the

bulk of observations.
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Sma11 va]ues of T lead to the reJection of H0

For fixed Gy * rlln and a, = r2/n, the asymptotic nu11

. distribution of T is normal. This is because of the-fact that for

fixed q1 ‘and P G converges to o faster than o @nd since o “is the
maximum 1ikelihood estimator (or 1dent1ca1 to it asymptotica11y)
the asymptotic distribuﬂ@on of ¢ /a =0 /o and hence of T is norma]

A

with E(T) 1 and’

. 2 . ) A.
V(M=t(1-2)/(1-20y (1/69) (Vo )49(5)-2 covlog,a)y  (2.1.8)

This is because (Kendal and Stuart {11])

V(x/y)= {-H—} ol (y) Syt LINS

and 9. and o are asymptotically unbiased.” It can be shown that

(Tiku [22])

(n/6P)V(o )=1/12(1-0)-05)-(a50,tp-asay ty )}
(n/ce)V(G) =% ‘and
(n/cz)Cov(cc,8)=% , for small a3 and Gos where

t1; 1.2

_ ; -x Z
Pleg) = ap = | F2)6 7 P(t)) = 1oa 7(2) = J5 e

Tiku [21] used the statistic T with ry = 0 and r, = [%+0;6n]
as a test for normality against positively skewed distributions and
with ry=ry = [%+0.3n] as a test for normality against symmetric

. )
distributions. For these values of r and o the distribution 2f T
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_15 effectively normal for n 30; see Tiku (21, 22} . {f] deho?es

the integer value of f. For small va1ues'of:r1 and 1y, Tiku (23]
suggests that the IOOa percentage points of T may be obtained from
the following Beta-approximation

' {(n-i)/(njrl-rz-l)}ua + (1/5")f1+1/(“*2+2+1)} ’

where u is the 100s percentage point of_Beté distribution

B(n-rl-r2~1,r1¥r2). ﬁn extensive comparison of these approximate
4

values with the Monte Carlo values is given in Table 1.

2.2 Percentage Points of T
Samples of size n = 8, 10, 12, 16, 20, 24, 30 from N(0,1)

were generated and the lower 100« percentage points of T simulated;

: R *
a = .01, .05, .10. These values are given in Table 1. Also given are

the corresponding values ca1cu1ated from the above Beta Approximation.
It is clear that the agreement between the two is very good. '
Note that the distribution of T withry = fandr, =3
is the same as of T with r1.= Jj and r, = i,
becaﬁse normal distribution is symmetric. We

therefore only considered rysr,.

2.3 Statistic_tC'For Testing Suspected Outliers

We propose t. as a test statistic for testing the null

hypothesis H0 against the alternative hypothesis Hl; where H0 and

7
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T | |
\ ”‘H1 ?rehas‘g1§en in section 2.1, Let
| | , . -
r=max{ry ). o I
Define the statist1c"
t, = {n-x)/s/(1-d}/nd , d = 1-2q+2q8 (2.3.1)°
where T o | /
. om0 . n n-
2 1 -2 - _ 1 i =
 s8° = (x:=%)°, x =2 Yx;==2 JX =X
AT L e TSR R
and
1 n'r‘ : " o
ne = G L Ky ras(h ek Jd (2.3.2)

1=r+l

1s modified maximum 11kelihood estfmator of u calculated from the

symmetrically censored sémp1é (see Tiku (19, 201)

Kparr Kpaze e Yoo

Here

g = -f(t){t-f(t)/q}/q ,

. t
1 1.2 , J -
f(t) = —=— exp(-5 t7) and F(t) = f(t)dt = 1-
(t) = = exp(-5 t7) (t) = | ft) q
Note that t. is both origin and scale invariant.

Since for normal samp]eé Me is the solution of the maximum likelihood

equation (see Tiku (37, 10))
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i d Togl/du = nd(pé-u)/a?

for wh1ch d 1ogL/du , 3 3, are zero, .it follows from Bartlett [1]

that for 1arge Ny We is norma]Ty d1str1buted u1th mean y and var1ance .

Y.

V(uc) - 1/-E(dP100L/dwd) = o¥/nd .

In fact the distribution of He tendé to'norma1ity_very rapidty; teé

.T1ku (20] . | ' |
Since in 1ndependent random samp11ng e -x assumes 1ndependent

values, and X is a]so norma11y d1str1buted the d1str1but1on ot

uc—x is normal with mean zero and variance :
V(u %) = ¢2(1-d}/nd ", (2.3.3)
Equation (2.3.3) is true because cov(uc,i) = oz/n, since

cov(Xi,i) = czln.
Since in case of Symﬁetric censoring, the numerator in
(2.3.1) is of the form Z l(X

.l""
Therefore, the distribution of tC is approximately t having n-1

X - 1+;), it is uncorrelated with's\
degrees of freedom. In fact, studeq}ls.t distribution provides very
accurate values of the percentage points of t., even for small
samples. For example for n = 10, the empirical va1ues (based on
20,000 samples) of the 5% and 104 significance 1eve1s of t

2.27 and 1.84 respectively. The corresponding values of student s t
distribution having 9 degrees of freedom are 2.26 and 1.84. large

positive and negative values of te lead to the rejection of HO‘

20
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' 2.4 Power of T and t. Under Grubbs Model

.21 :

-

-2

There méy be haﬁy models for_out]iérs,-but~&n fmpqrtan;;“"
practical case involves the situation where.all thé QbserVét{bnslin'.
the éample"have the same sfandard'érror; whefeas thé 1afgestfor' |
smaT]est observatifns may fesult from shifts in level. For example,
.if the 1arge5t observations aﬁbear unusuél]y‘high coﬁpared to other

~observations in the sample, we may want to consider the quél‘

~

Mode1 A

.HO: that a11 the observations in (2.1.1) come from

M{u,0); v and ¢ are unknown, against

1 that rz largest observations -in (2.1.2) come

&

from N(p+éa,a), 6 > 0.

Another case involves the situation where the largest and/or
smallest observations are subject to different standard errors. For -
example if the largest observations appear unusually high we'may ~

consider the model (see Grubbs [g9, p. 411)

Model B

-

HO: that all the observations come from N(u,c), against

Hy: that r, largest observations come from N(u,éc),

§ > 1.

Samples of size n were taken from N(0,1), and to a fixed member of

each sample was added, successively, the rnon-negative numbers

§ .= 0.5, 1.0, 1.5, 2.0, 3.0. The values of n chosen for this study
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" weren = 10, 20, 30." The empirical vaiues_(bésed on ZOOOrrdndom samples)

..

. of thé power of T under Model A are given ‘in Table II and“ére:¢ompqred _
: S N ‘ - g S e
\ _MWith the values of the power of Tietjen and Moore's. statistic L.. It
'\[i/is-clgar from tab]é-Ii thatiT is more powerful than.Lf.

We also calculated the'pdwer'of,T against two-sided models

il

p: X; come from N(u-ﬁla,o).fdr i=1, 2, ;.;t.rl and

n

X, come ffom'ﬂ(u+52d,c) for i n—rzfl; P

8§ >0, 86, >0 " | o
and ¢ompared with the values of the power of‘Er(r=r1+r2); The values
ofdthe power of T, Er and tc are given in Table 1II. It is clear from

taljtes II and III that the statistic T is more‘poWérfU] than L. and E_.

I It is Clear from these table (table II1) that the statistic t. has

! no such power-superiority over the statistic Ep
EXAMPLE 1.

re

/ We take this example from Tietjen and Moore [16, p. 590]. A
solution was analyzed for a single isotope of uranium by mass

spectrometry methods. Eight observations on the sample, arranged
in ascending order, are as follows: ﬁ
.00229, .00236, .00323, .00357, .00363, .00381, -.00401, .00408 .
The two‘sma11est observations are highly suspect. It has been
shown in Tietjen and Moore [16] that if one uses sequential onelaf—a—
time procedures, then Grubbs' statistic S%/Sz, Feguson's statjstfc

' /51, and Dixon's statistic r do not reject the first observation

. .00229 at 10% significance level, and ‘this is because

L. PR [T
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‘of‘the masking effect of tﬁe;éecdnd'observafion."However, they have
shown that the Grubbs statistic 5%;2/52 6r L, do reject themtwo
 lowest observatioﬁs .00229,1.00236  simu1taneous]y éven at 5%

‘significance‘1eve1. In'whdt follows, we will show that the §tatist1c

T ajéo réjects_the observafions .00229, .00236 simuTtahedusly at

5% sign&?icancé level. Here

n=8'r =2 1,=0,q =.25,4q-=0,
a; = 0, a, = .7066, 8, = -1.0, g,'= .8171
000373, ¢ = .000054

%

p T = (1-1/8)(.000373)/(1-1/6)(.000654) = .606

which is smaller than the 5% critical value of .618. Thus the
statistic T rejects the two lowest observations .00229 and .00236

simultaneously at 5% significance-1eve1.

EXAMPLE 2

The following example was taken by Grubbs [9, p. 8] .

-1.40  -.44 =30 .24 .22
-13  -.05 .06 .10 .18
.20 39 .48 .63 1.0l

Using the sequential one-at-a-time procedures, he showed that the
statistic S?/S2 rejects the observation -1.40 as an outlier, but not
1.01. However, the statistic T rejects {and so does Tietjen and
Moore's statistic E2) the two lowest and highest observations -1.40

&
and 1.01, simultaneously, at 5% significance level.
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.For-T we have, .

n=15,r =ry =1, ;= g, €0.0667, a; = ap = 0.6407, -

8, = -8, = 0.8711, & = 0.53226, and |
a, = {.045726 + /( C0209T+.4027A7))/1.7332 = 0.39349;

T = (1-1/15)(0.39349)/(1-1/12.999)(0.53226) = .747

which is smaller than the 5% critical value of .813 (Interpolated

from Table I); Thus the statistic T .rejects the two extreme

" abservations -1.40 and 1.01 simu]téneous1y at 5% siQnificante‘]eveT.

We also work out-this problem by using the Statistic t_.

Here

w, = .056002, X = .018, s = .55095 and d = .982805;
t, = (.056002-.018)/.55095% /(. 017195)/14. 742075 = 2.01977

which is larger ‘than the 10% critiﬁa] value of 1.76 (for v=14 d.f.)
so0 that the extréme observations -1.40 and 1.01 would be rejected

simulataneously as outliers.

EXAMPLE 3

This example is also taken from Tietjen and Moore [16, p. 593].

A set of eight mass spectrometer measurements on a particular
isotope of uranium (different from that of Examp]e 1) is arranged

in increasing order of magnitude as
199.31, 199.53, 200.19, 200.82, 201.92, 201.95, 202.18, 245.57 .

If we apply the Statistic T for testing the largest observation,

i.e., ry = 0 and ro = 1, we get

et e oo
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o =-{(.1qss)+¢(.01119+5;088?5)}/1.7s‘='1;35094
o | s SR 2 o
(Hgtelthap ap = 0oy = f7066 and g; = -1.0, 25 = .8171).
Also ¢ = 14.82872 and hence T = (1-1/8)(1.35094)/(1-1/7)(14.82872)

= .09300 which is smaller’ than the 1% critical value of .576; so

- that the statistic rejects 245.57135 an outlier. If, however; we

-app]y'the same test for tesfing the two Jarggst 6bservationsf-ife,, f';

r, = 0andr, = 2, ve have o '=(.20145+/ 04058+3.27679}/1.5 = 1.34891.

Note that in this case a) = 0, @y.=..7595; 8y =--1.0
and g, = .7592. Also & = 14.82872.

Thus

T = (1-1/8)(1.34891)/(1-1/6)(14.82872) = .0955

which is smaller than the 1% critical value of 448, So that the
statistic T also rejects both 202.18 and 245.57 as outliers. It is
clear, however, that 202.18 is not an ouplier! This example shows

how important it is to use the appropriate value of rliand Fo for

T as well as for all the above statistics proposed for testing outliers:

2.5 Choice of rl and r2

From the above éxamples, it is clear that the choice of r
and r2 is subjectivé and requires judgement on the part of the user
after the data are taken. Since no outliers are anticipated, how
many outliers should be tested for? Example 1 illustrates how the

test for one outlier may be inappropriate because of the masking
A\
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~effect. .E23$p1e Billugﬁrates how an error can'ﬁe made in tesfiﬁg
for two lérge observations when on1y one outlier is aétual]& ppesént;_
._Evfdenf]y, the proﬁer choice of rq and rs is-importént; In practiqé,
.the choice of rl and r2‘w111 haﬁe to be made subjectively af??rthé#yl

experiment is done and data taken. I ' o -
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" TABLE I

 CRITICAL VALUES FOR'T

rpELir el

- oer

a 7 a =005 _a=0.10 .

Emp: - Approx: Emp: = Approx: Emp: Approx:
_ m=8 . e '
576 570 731 .737 818 .823
-.448 .442 .618 .615 718 .716
.340 .336 514 507, .622 616
.226 .248 .396 407 .512 .519
.432 .440 .602 .614 .704 .715
.350 .333 .504 .504 610 . .613
..216 ,232 .372 .390 .486 - .502
.220 ,228 .380 .387 .686 .499

n=1b'

.653 .655 .795 .7%6 .865 .866

.551 .550 .703 .704 .787 .787 .
.475 .463 .637 .624 724 717
.392 .383 .552 .548 .648 .648
.305 .312 .470 474 .580 .58D
.555 .549 .702 .703 784 .786
.464 .464 .624 .624 711 716
.382 .380 .54 .544 .642 .645
.285 .299 .456 .461 .568 .567
.380 .379 .540 544 .644 644
.287 296 - 457, 458 .559 .564

n= 12

.723 .778 .839 .833 .891 .892
.638 .625 .766 .759 .832 .829
.573 .553 .709 . .697 .781 .775
.517 .487 .655 .638 .733 726
.438 422 .590 .580 .682 671
.372 .363 .532 .522 .628 .621
.626 .624 .758 .759 .824 .828
.554 .552 .702 .696 .780 775
.494 .486 .640 .637 .728 723
.432 .420 .584 .577 .669 .669
.350 .352 N .518 .511 .620 .610

(continued)

fary e ol

SRR

-

Lol B

TR NS R IICR I TR BT L I & N ER LY

ot e



£ BW VNI BWMN SN HEWNR OO I W)

B e e . .

. iEZ”_‘ -

2
3
-4.
3 .

TABLE 1

= 0.01

= 0.05 .

“Emp : Approx: Emp: Approx:

n=12 |
491 .485 - .64l .636
.421 419 ..585  .578
.345 1350 .502 .508
346 .349 517 507
n=16

.793 .784 .880 .878
.734 1719 .832 .825
.687 -666 .795 .783
. .621 618 745 742
.582 .574 712 704
.539 .528 ..685 .665
.496 485 .648 .628
.454 445 -604 .593
721 .718 .830 .824
.675 666 .788 .782
.632 618 755 742
.580 573 715 704
546 . .527 .683 .664
.506 484 640 .626
447 437 .593 585
.630 618 750 .762
.593 573 717 .704
.542 527 .668 664
.498 483 1635 .625
433 1435 .591 .583
549 .527 .668 .664
.491 483 632 625
.438 434 583 .582
433 .434 .585 .582

 .CRITLQAL_JAkaes—FoR’T""”_—M

287'
- = 0.10

Emp: - Approx:
o727 .722
L677 .668
.603 .607
.605 .606
.919 .922
.880 .878
.849 . .843
.B813 ..808
.784 776
762 .743
.728 .713
.690 .681
.878 .877
.844 .842
.814 .809
.785 776
.754 L7482
.718 711
.676 .673
.811 .809
.783 .776
.752 742
715 .710
672 671
744 7472
713 .710
.668 .670
.672 .670

{continued)
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TABLE I _
CRITICAL VALUES FOR T =
Vo |
a = 0.01 . e =0.05 a = 0.10
ro Emp: Approx: Emp: Approx: . Emp: Approx:
: n=20 . '
1 - .834 .824 7 .906 .l: . 904" .942 .939
2 790 o JA75 867+ .863 .906 - .906
3 .740 .731 - .83  .827 .860 .876
4 . .712 . .698 .814 .801 © 864 .855
5 .692 .662 - .782 172 .841 .831
3 .639 .629 .761 L7485 .820 .608
7 .616 .597 .733 - 719 .796 .785
8 .589 .565 .718 .691 779 .763
9 553 2532 .683 .665 755 741
10 516 L4987 N 1Y .634 .729 .715
. ] : -
1 .783 774 .867 .862 .907 .805
2 742 .731 .833 .827 - ..876 .B76
3 .710 .698 .808 .800 - .852 .B55
4 .676 662 .783 -~ 772 L840 .831
5 .636 .629 .754 .750 .813 .808
6 .619 .597 .735. .719 .795 .785
7 .573 .564 .698 .690 . .762 .762
8 .542 .531 .678 .664 .749 .740
9 .504 .490 .634 .627 .710 .708
2 713 .698 .810 .801 .860 .855
-3 .688 .662 .788 772 .8472 .831
4 .648 .629 .751 .745 .814 .E08
5 .611 .597 .731 .719 .791 .785
6 .581 .564 .692 .690 .766 .762
7 .h47 .530 .680 .B63 L7583 .739.
8 .502 .489 .638 .626 713 .707
3 .b45 .629 .746 .745 .809 .808.
4 .625 .597 722 .719 -.787 .785
5 . 565 .564 701 .690 .764 .762
6 .536 .530 .669 .66% .740 .739
7 504 .488 .640 .62 716 .706
4 .573 .564 .692 .690 .761 .762
5 .521 .530 .663 . .663 .737 .739
6 .495 .488 .641 .626 .719 .706
5 .505 .488 .635 .626 .710 .706
i (continued)
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TABLE I
CRITICAL VALUES FOR T
.= 0,01 e = 0.05 ‘e = 0.10
Emp: Approx: Emp: Approx: Emp: Approx:
n = 24 .
.861 .852 .923 .918 .949 .947
824 .809 890 - .884 924 .920
796 779 .866 - .861 . 906 .901
“.767 .746 .B43 .833 .886 .879
741 717 .830° . .810 .B76 .859
724 .630 .810 .788 .861 . 841
.694 .667 .792 171 .e42 .827
.662 .645 .767 .754 .824 .813
.636 .621 .753 734 .810 .798
.618 .590 725 -.708 .789 774
.602 .565 .714 .688 .778 .759
.559 .539 .677 .667 749 - 740
.810 .809 .884 .884 .922 - .920
{;88 779 .867 .861 .905 .901
751 .746 .849 .833 .890 .879
.740 717 .827 .810 .86% .858
732 .689 .812 -.788 .855 .841
.686 .667 .780 771 .836 .827
.668 .645 .766 .754 .828 .813
.634 .620 .744 .734 . 802 .798
.618 .590 .729 .708 .786 774
.588 .564 .700 .687 J72 .759
.564 .534 .677 .661 .746 . 735
.764 746 .843 .833 .884 .879
746 717 .828 .810 .876 .858
710 .689 .806 .788 .856 .841
.676 .667 774 771 .832 .827
.664 .645 .760 .754 .816 .813
.639 .620 .746 .734 .803 .798
.607 .590 719 .708 .787 774
.580 .563 .699 .686 .764 .759
.556 .533 .676 .661 .744 .735
712 .689 .803 .810 .852 841
.680 667 776 771 .827 .827
.656 .645 771 .754 .823 .813
.640 .620 .745 .734 .800 .798
.596 .589 .718 .708 .783 774

(continued)
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/ . TABLE 1
/ CRITICAL: VALUES FOR T
{ o .
@ = 0.0 o« =0.05 = 0.10

LETRRE Emp: Approx:  Emp: Approx: Emp : Approx:

n =24 | o

3 8 578 563 691 686 .762 759

9 551 .532 .674 .661 747 .735

4 4 .660 .645 .768 754" 824 .812
5 .624 .620 731 .733 .795 .797 .

6 .680 .589 722 .708 .784 .773

7 .576 .563 .691 .686 .767 .757

8 .552 532 .672 .659 .748 .733

5 5 608 .589 717 .708 .776 773

6 .580 .563 .706 686 762 756

7 548 .532 .681 .659 .752 .732

6 6 .544 .532 .665 .659 .741 .732

n = 30

0 1 .881 .882 .937. .935 .959 .959

2 855 .845 911 .906 .939 .935

3 .823 .816 .897 .884 .928 .917

4 - .gi0 .792 .881 .264 .916 .901

5 .784 .769 .866 .847 .900 .887

6 777 .750 .849 .832 .892 .873

7 2767 733 .838 .819 .879 864

8 .739 .718 .825 .808 865 852

9 .725 .703 .815 .797 .860 .846

10 .734 679 .796 776 843 830

11 .693 .660 .786 .759 .838 .816

12 .667 .639 .768 .745 .820 .801

13 .654 622 760 .733 .810 .793

14 .626 .606 .736 719 1,798 .782

15 623 .587 .724 .699 .781 .769

1 1 .858 .850 .913 .906 .942 .935

2 .837 .816 .896 .884 .924 .917

3 .803 .792 877 864 .911 .901

4 .789 .769 .861 .847 .897 .887

5 767 .750 845 .832 .884 .873

6 .755 .733 .836 .819 880 . 864

7 747 .718 .820 .808 .862 .852

8 721 .703 .810 797 .858 .846

{continued)
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TABLE I
CRITICAL VALUES FOR T

El

a = 0.0 a_= 0.05 o = 0.10

rs Emp: Approx: Emp: Approx: "Emp:  Approx:
n =30
.9 .694 . .679 791 776 - .844 .830
10 .688 .660 / .784 .758 . .835 .816
11 .664 . .bB38 .763 .744 - .B18 - .800
12 .659 .622 .754 .733 .806 793
13 .613 .605 .738 .718 ~796 .781
14 .608 .583 714 .695, - J76 0 .765
2 .808 .792 .878 .864 .910 .901
3 .793 . .769 .868 .847 .902 .887
4 .761 ..750 .847 - .832 .887 .873
5 747 .733 .832 .819 875 .864
6 742 718 - .B15 .808" .862 .852
L7 00,721 .703 .812 797 . .854 .846
8 .696 .679 .789 776 .836 .830
9 .678 .660 .783 . 759 .829 .816
10 .669 . .638 .764 w744 .819 . 800
11 .641 .621 747 .732 805 .792
12 .629 .605 .732 .718 .789 . .780
13 .608 .582 717 .694 779 .764
3 .770 .750 .846 .832 .885 .873
4 .755 .733 .830 .819 .872 .864
5 .739 .718 .819. .808 .865 .852
6 722 .703 .815 .797 .857 .846
7 .698 ~-679 .789 776 .837 .830
8 .672 .660 1 .759 .827 .816
9 .668 .638 *ffﬁ? .744 .817 .800
10 .642 .621 747 .732 .804 .792
11 .629 .605 .724 .718 .785 .780
12 .593 .582 .709 .694 J71 .764
4 .725 .718 .813 .808 .863 . 852
5 .710 .703 .803 .797 .851 .846
6 .706 .679 .787 776 .843 .830
7 .690 .660 777 .75¢% .827 .816
8 .668 .638 .761 .744 .812 .800
9 .636 B Y 753 .732 .808 .792
- 10 .604 .605 714 .718 . .786 .780
11 .600 .581 .710 . .693 .76% .763
(continued)
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TABLE I

CRITICAL VALUES FOR T

a = 0.01

a = 0.05

Emp:

.696 -

676

.660°

.635

.632

.589

.652
.639
.616
.599

.616
.597

Approx:

.679
.660
.638
621
.604
581
1638
.621
.604
.581

.604
.581

n

tmp:
30

.794
J778
.757
744
.738
.697

757
.743
.730
.708

127
714

Abbrok:

776
.759
.744
732
717
.693

.738
732
717
.693
717
.693

B R
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Emp:

.847
.829
.811
.799
.795
764

.814
.802
.794

s
N

770

.787

173

a = 0.10
" Approx:

.830
.816
.800
.792
.780
.763

.800
.792
.780
.763

.780
763
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| TABLE 1I

* VALUES OF THE POWER OF T FOR 5% SIGNI'FICAI‘-ICE-LEVEL

: (rl ¥.'0, rs =r)

d4 14 16 . .16 a3 13
35 3 37 .37 28 .27
66 .63 .64 .63 .45 .43
88 . .84 .86 .82 ¢ .64 .60

.19 .19 .25 .25 .26 .25
.51 .48 .68 . .61 .72 .64
.91 .82 .97 ] C.97 .90

1.00 .97 1.00 .99 1.00 - 99"

19 .19 .26 .23 38 - .32
.58 .52 .78 .69 .91 .78
98 .86 .99 .96 99 .98
1.00 .99 1.00 © .99 1.00 1.00
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" TABLE III

.:35

" VALUES OF THE POWER OF T, t_ AND E. FOR 5 AND 10 PERCENT SIGNIFICANCE
S LEVELS | B '
A - =r,=1 o =r,,=2
rysr,s | ryEr,= .
59 108 . 5% 103
o Tt E Tt F . 5 Tt f
) T _ - n=10 ‘

0.5 .18 .16 .13 .33 .28 .23 -.19 .19 .12 .34 .31 .21
1.0 .43 .33 .31 .68 .55 .50 .42 .39 .27 .62 .61 .46
1.5 .74 .61 .59 .93 .80 .80 .68 .67 .48 .88 .84 .69
2.0 -.94. .79 .85 .99 .90 .96 .89 .83 .70 .98 .94 .87
3.0 .99 .95 .99 1.00 .981.00 .99 .98 .92.1.00 1.00 .99

’ 'n = 20 - .
0.5 .29 .19 .18 .48: .32 .34 .36 .26 -22 .56 .41 .40

1.0 .78 .52 .56 .95 .70 .74 .87 .66 .66 .96 .80 .84
1.5 °:99 +.79 .83 1.00 .89 .96 .99 .89 .96 1.00 .96 .99
2.0 1.00 .91 .98 1.00 .96 1.00 1.00 .98 .99 1.00 .99 1.00

n = 30
0.5 .32 .21 .21 .55 .33 .33 .45 .30 .30 .66 .45 45
1.0 .91 .57 .70 .99 .73 .87 .98 .73 .86 1.00 .86 .94
1.51.00 .88 .98 1.00 .92 1.00 1.00 .95 .99 1.00 .98 .99
r1=r2=3 r1=r2=4
5% 10% 5% 10%
Tt E Tt g t tg Tt
n= 20
0.5 .33 .30 .24 .54 .46 .40 .31 .29 .22 .50 .47 .36
1.0 .81 .71 .67 .94 .85 .82 .73 .70 .59 .90 .86 .77
1.5 .98 .94 .94 .99 .98 .97 .97 .95 .88 .99 .09 .96
2.01.00 .99 .991.00 1.00 .99 1.00 .99 .98 1.00 1.00 1.00
n =30
0.5 .48 .33 .27 .69 .52 .34 .47 .38 .36 .69 .55 .51
1.0 .98 .80 .76 .99 .88 .82 .97 .85 .78 .99 .93 .91
1.51.00 .97 .98 1.00 .99 .99 1.00 .99 .98 1.00 1.00 .99
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