
\ 

AN ASSESSMENT OF THE CALIBRATION OF 

SPATIAL INTERACTION MODELS 

.. . a 
; 

i 

! 
\ 
1 
\ . 

I 

, 

I 
1 



... ..... ,. 

. 
-I 
I 

", . '-
• --1."; 
,~ : 

" -"",,, ,,;t, , 
.1 .. ,~ 

~: ,.. 

l 
... 

AN ASSESSMENT OF THE CALIBRATION OF 

SPATIAL INTEP.ACTION MODELS 

• 
by 

PETER DOUGLAS HALL 

A Thesis 

Submitted to the Faculty of Gra~uate Studies 
.. 

in Par,tial Fulfilment of the Requirements 

for the Degree 

Master of Arts 

o 

Mcl1aster University 

December 1975 

* 1 

© A<; HAl 



.. \ I 
. ,. J 

• 'j 

, .. 
' ....... ~ 
,~" '. 
~~ ,~# .. , . . . 

I 
t 

I 

j 
I. 
i 
I 

MASTER OF ARTS (1975) 
(Geography) 

McMASTER UNIVERSITY 
Hamilton, Ontario 

TITLE: An Assessment of the Calibration of Spatial Interaction Models 

AUTHOR: Peter Douglas Hall, B.A. (McMaster) 

SUPERVISOR: Dr. F. L. Hall 

NUMBER OF PAGES: viii, 124 \ 

SCOPE AND CONTENTS: 

This paper is concerned with assessing the procedures used in cali-

brating spatial interaction models •. It critically reviews calibration 

'. 
methodo~ogie~ which have been propos~d.in ;ne literature and determines 

that the statisticai estimation techniq~es of maximum likelihood and 

least-squares are particularly suited to this estimation problem. 

The calibration statistics from the maximum li,kelihood and least-

squares estimators are developed from first principles ana special note 

is made of the behavioral assumptions implicit in each. 

Two issues are then reviewed: the reliability of the random 
. 0 

sample in representing the mean distribution of trips, and the defini-

tion of variables in calibration statistics. A hypothetical framework 

is proposed, within which an examination of t~ese issues is made. 

The study results indicate that the sample reasonably represents . 
the mean distribution and also that the incorporation of implicit beha-

vioral assumptions does not necess~rily result in bette~ mode~predic-

tions. 
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CHAPTER 1 

AN ASSESSMENT Of CALI8RATION METIIOD0L0GICS 

INTRODUCTl ON 

The calibration of mathematical models involves finding the best 

(in some well defined sense) values of their parameters. Calibration 

transforms the general model structure into a set of exact empirically 

tested relationships by giving precise empirical definitions to the 

variables and numerical values to~the parameters. A model is calibra-

ted to improve its prediGtive or descriptive capability. The theore-

tical principles used to develop the model are seldom sufficient to 

indicate more than the appropriate sign and probable order of magnitude 

of the model parameters. Since the parameters are measures of the rela-

tionships between numerical variables, the precise empirical definition 

of these variables affects the parameter values (Lowry, 1965, p. 163). 

Mackie (1972, p. 39) identifies three components of the cali-

bration process: 

(1) Specification of the type of model to be calibrated; 

(2) Selection of a suitable statistic to optimize, which 
I ' 

yields the "best" parameter estimates, and 

1 
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(3) 
,', 

" 

Selection of an accurate and Cffici~techniquc 

to solve thc cquations derived by the dtatistic. 

, 2 

This paper is concerned with the calibration of a parlicular 

type of geogriiI,hic model: the spatial intemcticm mode t. t9hc model hM; 

been used as a trip distribution sub-m:>de1 ,in travel forcafJting studj CB f 

and, operating within the Lowry framework, as Pqrt of thc largc-scale 

modelling efforts in Britain (Batty, 1970c,p. 9?1 Batty, 1972, p, 152). 

The paper will investigate the calibration of the doubly-

constrained spatial interaction model, which will be outlined later, 

Therefore, Mackie's first component of the calibration process is . 
defined. Batty (1970c,p. 114) emphasizes the need for bctter ca1ibra-

tion statistics to measure the model's goodness-of-fit, so that a 

unique set of parameter values can be derived (Mackie's second compo-

nent). Also important is the development of more efficient and fastcr 

numerical methods of solution without a loss of accuracy, which is 

Mackie's third component. Although several solution techniques will be 

reviewed in this paper, its primary task will be to investigate Mackie's 

second component of the calibration process: the selection Of 8uitable 

statistio8, the optimization of which will yield the "best" parameter 
# 

estimates. 

In this chapter, a brief description of the spatial interaction 

model will be followed by a review agd assessment of the various 

approaches to calibration which have been undertaken, particularly in 

the British context. From the assessment, two significant calibration 

I approaches will be identified. 
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Chapters two and three wl.ll explore these two calibratl.on approa-

ches and examl.ne the assumptIons implIcit in each. 

Chapter four w111 crItically assess the general problem of calI­

bration as ,t '5 apPl'~o urban systems mode",ng, and stress the 

areas of weaknpss, ~~ tillS reVIew, a research desIgn wIll be proposed 

and tested In chapter flve. 

FInally, chapter SIX WIll summarlZ~ the research f1nd1ngs of 

this paper and evaluate the1r slgnlflcance. 

SPATIAL INTERACTION MODELS 

Spatial interactl.on models are a fam1ly of models WhlCh descrlbe 

the 1nteractlon between sets of actl.Vlt1es in terms of flows of people 

or commod'ities. The equation WhlCh describes this, the gravity law, was 

or1g1nally applIed to the geographlc field by analogy to Newtonl.an 

mechanics. it states that the intensl.ty of interact.ion between two 

zones i and J, 1S a function of the population masses at 1 and j, 

and of the impedance to 1nteraction, measured by an inverse functl.on 

of distance. Wilson (1970) develops a general theoretical derl.va-

tlon of the gravlty model from the fields of statistl.cal mechanl.cs and 

informatl.on theory. The gravity model is derived by 'analogy to princi-

pIes in statistical mechanics by finding the most probable distrl.butl.on 

of trips, subJect to a set of constra1nts placed upon the system, which 

restrict the number of assignments gl.ving rise to a distribution. The 

same model can be derived from l.nformation theory by defining the entropy 

of a system to be a measure of its uncertainty (Shannon and Weaver, 

1949). The probabdlity distribution which results from maximl.zing the 

---
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entropy, subJect to whatever information 1S known about the system 

(the constraints), 1S min1mally biased yet maximally non-comrn1ttal w1th 

regard to missing informat~on (Webber, 1975, p. 14). Wilson (1970, p. 8) 

shows that the d1stribut1on dcr1ved from the lnformation theoret1c 

approach is equivalent to the most probable d1str1bution derived from 

principles of statist1cal mechan1cs. 

From the general formulatlon of the spat1al interact10n model 

where 

t" = a,b, f(S, c, ,) 
1) 1) 1) 

! 

t .. 
1) 

a. 
1 

the predicted number of trips from 1 to ), 

a factor related to the ab1lity of zone i 

to generate trips, 

b, a factor related to the ab11ity of zone j 
) 

to attract trips, 

f(j3, c .. ) 
1) 

the irnpedence to interaction, 

\ 

(1.1) 

four variat,ions may be derived, depending on the constraints imposed upon 

the distribution: (1) unconstrained flows; (2) production constrained 

flows; (3) attraction constrained flows; and (4) production-attruction 

constrained flows. 

The unconstrained model is simply equation (l.l). There are no 

constraints on the distribution, and the model estimates the number of 
t 

in~rchanges between each zone pair, the t .. , the number of origins C 1) 

I t .. ~~d destinations, It., within the framework. 
j 1) 7 i 1) ~ 

Both the produc-

tion ~strained and attraction constrained models are examples of singly 



constrained spatial interaction models. In this case, the t. are 
~) 

subject to the constraint 

L t .. 
1) 

j 
o 

1 
where 0 = a./A. 

1 1 1 

for the production constra~ned model, or 

L t .. 
1) 

i 
D. 

) 
where D 

) 
b./B. 

) ) 

5 

for the attraction constrained model. The models estimate the t. and the 
1J 

L~ .. (destinations), or 
i 1) 

the It . (origins), depending on whether the distr~­
• 1) J . 

bution is production or attraction constrained. The productIon-attraction 

constrained model is a doubly constrained interaction model, as the t 
1) 

are subject to both of the above constraints.t Since both the I~ .. and I~ 
A 'I j 1) i ~) 

are estimated externally, only the t .. are estimated by the model. 
1) 

The doubly constrained model is of interest for two reasons. 

First, this variation of the spatial interaction model is generally used 

for predicting the distribution of trips in transportation studies (Mackie, 

1972, p. 27). For this, the calibration procedure is of some practical 

significance. Secondly, the inclusion of constraints makes it more diffi-

cult to calibrate the model (Mackie, 1972, p. 24). 

The unconstrained gravity model can be calibrated by transforming 

the equation into logarithmic form and estimating the parameters by 

regression techniques 

stresses the problems 

(Olsson, 1965, p. , 
cj'f this approach. 
I 

37), although S~edmann (1969) 

The singly and doubly constrained 

models on the other~and, because of their intrinsically non-linear 
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character, cannot be linearized by a simple transformation (Draper and 

Smith, 1966, p. 264), and thus requlre more sophistlcated calibratIon 

techniques. Any attempt at linearizatlon, Le., truncating a Taylor's 

serles expanslon at the first order, may lead to biased parameter estl-

mates (Batty and Hackle, 1972, p. 209). Presumably, a calibratlon pro-

cedure developed for a doubly constralned model should be appllcable to 

both singly constrained and unconstrained models. 

APPROACHES TO MODEL CALIBRATION 

The most important task in application is to calibrate the model so 

that the most realistic dIstribution is generated, or so the model 

"best fits" the survey data collected. Batty (1972, p. 156) notes some 

related calibration problems tha~have arisen In model appllcatio~ in 

Britain and emphasizes the importance of this aspect of deSIgn. 

Because of the singly and doubly constralned models' inherent non-

linear character, the model parameters have be~ estimated by several -

different methods. Specifically, four different approaches to the 

~ 

calibration problem can be identified. Early attempts include graphical 

curve fitting and tabu~tion methods, while more recent work has employed 

systematic search algorithms and statistical estimatops. An outl1ne 

of each of these approaches follows. 
D 

GRAPHICAL CURVE FITIING 

Initial attempts at callbration can be seen in the work of Lowry 

(1963). Alt~ough the allocation sub-models used are not the Wilson-
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type spatial interaction models, the potential models used by Lowry 

can be related to the gravity model (Isard, 1960), and thus the calibra-

tion problem is much the same. Lowry estimates the model parameters 

outside the framework of the model by approxlmatin9 frequency functlons 

to empincal data manually (Lowry, 1963; Re1f, 1973, p. 181). He takes 

data on the relative frequency of work-trips by distance, dlsaggregated 

to different socio-economic classes, and f1nds the distributions to 

closely approximate a negat1ve power function, l.e., 

fer) 

where 

-x 
== ar 

r = distance from the origin zone 

fer) the relative trip frequency 

a,x parameters to be estimated. 

(1. 2) 

The parameter values derived by Lowry are given by Reif (1973, p. 181). 

Lowry's calibration technique, then, is simply a graphical curve-

fitting procedure, in which the parameter values are derived so the 

hypo~esized function best fits the given data. The trip distributIon 

index is obtaIned from the point density function: 

Thus, 

G 

t .. 
l.) 

fer) 1 --= 
211r t .. 

1) 

211'r 211' (x+l) --= -r 
-x a ar 

(1. 3) 

(1. 4) 

l 

I 

.\ 
I 

f 
t 
I 
i 
} 

j 
i 
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The trip distribut~on elements, {t }, are then substituted into the 
~J 

potential sub-model of locational choice. The entire process is repeated 

to derive service locatlons uSlng another frequency function (Relf, 

1973, pp. 180-185). 

The maJor weakness of Lowry's approach to calibratlon ~s that 

because the parameters are estimated outside the model framework, the 

interdependencies between the parameter values and the model are 19nored 

(Batty,' 197,2, p. 164). Lowry (1965, p. 163) acknowledges the dependence 

of the parameters on the model variables (see page 1) but does not 

lncorporate this ~nto his calibrat~on technique. 

TABULATION 
.J 

Subsequent Brltish work (Batty, 1970a, 1970b; Cripps and Foot, 

1969a, 1969b; Turner and Williams, 1970; Masser,e 1970 ) utilizes the 

tabulation method to calibrate the parameter "values. This approach 

1 • 

involves the testing of different combinations of parameter values, 

which are fixed within some predetermined range. If one assumes that 

a unique optimum exists, then the search is for that combinatlon of 

parameter values which yields a best fit to the data. The correspon-

dence between the predicted and observed sets of trips can be measured 

by various statistics. Usually a statistic of correlation, such as the 

coefficient of determination is used (Batty and Mackie, 1973; Batty, 

Foot, et al., 1973, p. 356), and the technique t~sts to find the maximum 

correlation between the predicted and observed values. 

dicted and t .. observed, the algorithm measures: 
lJ 

For t .. pre­
lJ 
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- 2 I I (t .. - t .. ) 
i j l.J l.J 

R2 = 1 - (1. 5) 

L L (t·. 1 L L 2 
t .. ) 

i j l.J N 
i j l.J 

where N equals the total number of variables. Wilson (1974, p. 317) 

( 

states that the statl.stic varies between one, for an exact correspondence 

between the model predictions and the 'observations, and zero, for no 

correspondence. However, the range of the statistic is actually between 

one and - 00. The denominator of (1.5) is simply the sum of squared 

deviations of the observation from its mean. If the predicted values, 

t .. , signl.ficantly differ from the observed values, t .. , and the devia.a 
l.J l.J 

'\ 

tion of the observed values from the mean is small, the right hand term 

in (1.5) will be greater than one and negative values 1'or R2 will 

result. 

An alternative statistic of correspondence which is commonly used 

is the chi-squared statistic, defined' as: 

2 
X L L 

i j 

- 2 
(t .. - t .. ) 

l.J l.J 
t .. 
1J 

(1.6) 

The method searches for the value or combination of parameter values 

for which the statistic is at a minimum. Evans (1971, p. 25) notes 

that this statistic is a reasonable measure of the model's goodness-of-

fit with the data. He postulates that the test statistic approximates 

a chi-squared distribution if the data does arise in the'way postulated 
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, 
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l 

" , 

by 'the model and all the t .. 's are reasonably large. 
1) 

10 

Other correlation statistics that have been tested in model calibra-

tion include the root mean square error stat1st1c, defined by Hill, ct 

at. (1965), and the standard deviation (Batty, 1970c, p. 104). 

The tabulation method sets up a grid of comb1nat10ns of parameter 

values; for example, 1f a two parameter interaction model is to be 

calibrated, a two dimensional grid of pairs of parameter values is 

constructed (Figure 1). 

B 

(a , B ) 
---+----r----+----+---~--~~--n n 

a 

FIGURE 1: Grid Search in a TWo Parameter Space. 
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Each node of the grid represents a particular parameter comblnatlon. The 

model is then run at each node within a predetermined range of parameter 

values. Alternatively, the nodes upon which the model is tested 1n the 

parameter space can be selected at random. Hore commonly, however, the 

nodes are chosen by trial and error, i.e., successive choice is made of 

the nodes In the parameter space which appear to be approaching the 

optimum (Mackie, 1972, p. 38). The distribution generated by that com­

~ 
bination of parameter values which optimizes the test statIstic yields 

the best fit to the survey data. 

The principal draw-backs of this approach are that the method is 

slow, inefficient, and inaccurate (Mackie, 1972, p. 38). Slnce the 

correlation statistics require model output as varIables, the model must 

be run for each combination of parameter values. To improve accuracy 

requires a vast number of tabulations to be performed. ReferrIng to 

this, Batty (1971, p. 425) notes that computer time increases directly 

with the number of functional evaluations, 'which, for a model of x 

parameters,~can be approximated by n~, where n is the number of evalua­
~ 

tions to be made in the specified parameter range. 

SYSTEMATIC'SEARCH 

If, however, the test statistics are plotted oVer a range of para-

meter ~alues, a response 8UPface can be generated, measuring the model 

prediction's correlation to the data. Batty (l970c,p. Ill) shows the 

~ regO~arity of these surfaces, and several authors (Batty and Mackie, 

1972; Batty and Mackie, 1973; Batty, Foot, et al. 11973; Batty et al., 

I 
T 

J 
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1974; Wilson, 1974) suggest how numerlcal methods could be applied, uSlng 

the properties of the surfa~e to quickly flnd that set of parameter 

values which gives the model predlctlons a best flt to the data. ThlS 

technique, defined as systematlc search (Batty and Hackle, 1972; natty 

and Hackle, 1973) 1S simply a search algorithm, uSlng standard mathema-

tical optimlzation principles designed to calibrate the interactlon 

models. The model is calibrated by optimizing a given test statlstlc, 

such as the coefficient of determlnation or chi-squared. Two dlfferent 

optlmizing approaches have been employed. One lS direct evaluation of 
~ 

the statistics' response surface and the other optlmizes by indirect 

evaluation. 

DIRECT EVALUATION 

Direct evaluation methods use a set of directlon vectors throughout 

the search, and explorations are made along these directions on the 

response surface. Subsequent action in directing the search is deter-

mined by the results obtained on the previous iteration. Direct evalua-

tion can be based upon Linear methods, such as the Newton-Raphson tech-

nique, Fibonacci sequences, ~d search by Golden Section, in all of 

which the direction vectors are univariate, or it can be based upon 

quadratic methods, which specify the optimum point by approximating the 

objective function by a quadratic. A numerical method of thlS type 

which has been used in model calibration is quadratic search by conjugate 

directions. 

j 
{ 
I 
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The mechanics of all these search procedures are illustrated by the 

method of Fibonacci sequences (Wilson, 1974, pp. 321-322). Cons1d~r a 

spatial interaction model of the form: 

t, 
1) 

a,b, f(B, c ,) 
1 ) 1) 

(1. 7) 

The model predictions, t .. , are functions of the parameter 8. The res-
1J 

ponse surface, which ~s simply a funct10n of the t" observed and the 
1J 

t,. pred1.cted, 15 also a funct1.on of S. The test stat1.stic, suth as 
1.J 

the coefficient of determination, will generally vary with B in the 

following manner (Figure 2). 

B 

2 
FIGURE 2: The Response Surface of the Coefficient of Determination (R ) 

Against the Parameter B 

(Source: Wilson, 1974, p. 321) 

1 
I 
j 

L 

1 
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Therefore, the callbratlon task 15 the unconstralned ol,tlmlzdtlon of the 

2 th 
functlon, R (8), If we assume that at the k step, the method hdS 

estab11shed that e lles withln the values B1k and 82
k

, the method then 

flnds values for e k and e k such that, 
3 4 

by the equatlons, 

S k 
F 

is k _ t3 k) N-l-k. K 
(1. 9) = + 8 

3 F 2 1 1 
N+l-k 

8 k 
F 

(S l< t3 k) S k N-k 0,10) + 
4 F 2 1 1 

N+l-k 

where N is the total number of evaluations, and Fare Fibonaccl numbers 
y 

defined by: 

n :> 2 (l.ll) 

F = F + F 
n n-l n-2 

The procedure then determines which interval to evaluate in the {k +'l)st 

step by evaluating the surface at the four points, 8
1

, 8
2

, 83 , and 8
4 

(Wilson, 1974, p. 322). The total number of functional evaluations, N, 

is determined from the desired interval of search after the N iteratlons 
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(Wilson, 1974, p. 322). 

Other numerical methods 1n th1s class, although dltfcrLnt in ,truc-

ture, baslcally operate accordlng to the sam€> prIncIple, Hi willch the 

response surface is 1ncrementally searched for an optlmum pOlnt. Fur-

ther wformat10n on the technIques W1 thIn the mode111ng cvntvxt 15 

ava1lable 1n the Ilterdture: F1bonacc1 sequences (Satty and MackIe, 

1973; WIlson, 1974), Newton-Raphson (Batty and MaCk1e, 1972, 1973; Batty, 

Foot, et al., 1973; Batty, et al., 1974; W1lson, 1974), and quadratIc 
J 

search by conJugate directions ~Batty and MacK1e, 1972). Also, MacKle .. 
(1972) glves an excellent account of several cal1bration algorIthms, 

includIng those d1scussed in thIS chapter. 

The basic problem with thlS class of methods IS that the seacch 

vectors may dIverge from the global optimum to local optIma on the 

response surface if poor initial parameter values are chosen. ThIS may 

be corrected by damping the procedure, i.e., by transforming the slope 

of the response surface to a more regular shape (Batty and Mackie, 1973), -
J 

or by choosing the initial parameter values close to the optimum pOInt I 

so the solution does not degerierate (Batty, Foot, et al., 1973, pp. 35~-

362; Batty, et al., 1974, p. 471). Hyman (1969, p. 110) suggests that 

-since, in many cases, th~a1ue SC, where C is the mean trip. cost, lies 

between one and two, a reasonable starting value is 'given by the equa-

tion: 

3 t a (1.12) I 
l 

2C t 
\ 
I 

" 
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INDIRECT EVALUATION 

The method of indIrect evaluation does not requlre explIcIt appral-

sal of the slope of th,e response surface (hatty and Hac-kIP, 1973), l'3ut 

performs functIonal evaluations at the vert1ces of some <J(~Ometrlc conf]-

guratlon generated 1n the parameter space (l1acloE!, 1972, p. 39). The 

only method of 1ndirect evaluat10n to be appli~d to the callbrat10n 

problem In spatIal interactIon modelling appears to be the SImplex 

method of sequentIal search (Hackle, 1972, pp. 53-56; Batty and Hackle, 

1972, pp. 222-224; Batty and Mackle, 1973). 

For the calIbratIon of an n-parameter model, the SImplex IS genera-

ted by evaluatIng the obJective functIon at n + 1 vert1Les in an n-

'·1 parameter space. The vertex having the worst performance WIth respect 

to the optirruzation of the test statist1c, i.e., maXImize or mln1mlze, 

is identified, and the simplex is reflected away from this vertex. If 

this operation Improves Its performance, the simplex IS expanded; if not, 

it is contracted. An illustration of these basic operations is gIven ~n 

MackIe (1972, p. 54). The method iterates by reflectIng across the res-

ponse surface and adjustIng its shape untIl the optimum is reached. 

Calibration by the simplex method is more reliable than direct 

search techniques because it overcomes the problem of convergence to 

local optima on the response surface. The method, however, takes some-

what longer to compute. 

Despite the advances made in solving the statistics, there are 

problems concerning the statistics themselves which cannot be overcome. 
~ 
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Correlatlon statIstIcs, such as the coefflclent of determInation, are 

not as sensItIve to chanqes In pardmeter vdlues as slmpler rcr/C'l'r'Y;:};,>" 

measures, such as m~;an trlp length (Batty lL)70c, pr. lOB-lor); Batty, 

1971, p.l4l6). Furthenn~,--,l.n jhe 
/ ~" " -" 

Interac*lon mode1~; ;:SlnqlC goodncss-of-~~t statlfitlc can 

callbratlon of mu1tl-l'ar~mnter 

the parameter valut's slmultclr,eously (Wllson, 1974, p. 323). A unIque 

set of optlmum parameter values can only be derlved 1f each parameter 

t 
15 related to a part1cular cal1bratlon statIstIc (Batty, Foot, et al. I 

1973, p. 358). In other words, there must be as many calIbratIon 

statistIcs as there dre parameters (Batty and MacKIe, 1973). Also, 

correlatIon statistIcs, In partIcular cases (Wllson, 1974, p. 343), 

may lead to bogus caZicration, which occurs when the response surface 

15 peaked towards the maxImum at the axIS of one of the parameters. 

Wilson (1974, p. 342) states that the bogus calIbratIon problem can 

render certain correlation statIstIcs virtually useless In parameter 

estimatlon. 

Finally, one cannot, WIth any confidence, draw statistIcal inferen-

ces from these correlation statistics because their distributIons are 

unknown. One IS restricted to getting a fee! for the goodness-of-fit 

of the model to the observed data, when interpretIng the results. 

Although, this restrIction can be somewhat overcome by choosing more 

robust correlatIon statistics, such as chi-squared, WhICh place less 

stringent assumptlons on the data, it is more meanlngful to derive new 

calibration statistics based upon statistical assumptions which cons~der 

all t~e informatIon avaIlable concerning the problem (Batty and MackIe, 

~ 
1 
i 
i , 
I 

I 
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1973). The statist1c measur1ng the goodness-of-flt must take the 

sample data lnto account 1n order to der1ve the "best" parameter values. 

STATISTICAL ESTIMATORS 

Batty and Mackle (1973) suggest rmxumon likelihood techniques as a 

mean1ngful approach to derlvlng cdllbratlon stat1st1CS. Based on the 

work of Hyman (1969) and Evans (1971), for a trlp distrlbut10n model of 

the form 

p .. 
1J 

a.b. f(/3, c .. ) 
1 J n 

where p .. 
1) 

the probabi11ty of a trip maker living 
, 

in i and haviryg his dastinat10n in zone ], " .' 

(1.12) 

the maximum like11hood estimator derives a set of 2n + 1 conditions for 

the 2n + 1 unknowns. Given the sample data from a trip survey (Figure 

3), the balancing factors, a. and b., are chosen such that the proportion 
1 ) 

of trips generated from and distributed to each zone by the model equals 

the proportion of trips leaving and the proportion arriving at each zone 

as observed in the sample, i.e., in the row and column totals of 

the sample matrix. The parameter B in the impedence function is cali-

bra ted against the mean trip cost, and is at its optimum value when 

the mean trip cost predicted by the model equals the mean trip cost 

calculated from the sample. 
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Cesar10 (1975) proposes the alternatIve prIncIple of Zeast-:;qu(7.J·CS 

to der1ve calIbration stat1stics for spatial interactIon models of the 

same form. The condItions der1ved state that the parameters of the 

model must be such that the SlUll of squared resIduals, def1ned as the 

sum of the squares of the dIfference between the number of tr1ps from 

zone 1 to J observed In the sam~le and the number of trIps between 1 

and J predIcted by the model, equals zero. Consistency 1n the balanc1ng 

factors 1S ach1eved on the sum of squares of row and column elements, 

not slmply on the sums of these elements as in maxImum llkelihood 

(Cesario, 1975, p. 15). 

The statistics generated by the maximum likelihood and least-squares 

estimators possess characteristics which gIve them several advantages 

over correlation stat1st1CS. The calibration statistics are simpler and 

more senslt1ve to changes 1n parameter values. The maximum lIkelihood 

estimator, under certain assumptIons on the nature of travel cost 

(Hyman, 1969, pp. 108-109), derIves mean trip cost as the statistic 

against which to calibrate ai Batty (1970c,pp. 108-109) shows the 

sensitivity of this statistic. The statistics themselves are functions 

of interaction variables, the t. ,. Batty (1971, p. 416) finds that 
1.J 

statistics using these variables are far more sensitive to variations 

in parameter values than statistics which measure distributions of 

activity, such as population or employment. 

Secondly, the statistical estimators derive as many calibration 

stat1.stics as there are parameters, so that a unique set of "best" para-

meter values can be determined. The statistics are generated by optimi-

• 

.. 

1 
1 
j 
I 
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21n9 the estimator wIth respect to each unknown parameter. Batty and 

MackIe (1972, p. 214) develop calIbratIon statIstIcs for a two para-

meter shoppIng model and suggest sevE:'ral numerIcal methods fOl- the1 r 

solutIon. Subsequent Br 1t1sh work on -mul ti-paramcter models ba,yes 1 ts 

callbratlon strateg1es on these statIstIcs (Batty, Foot, et ul., 1')73, 

p. 3 59; Ea tty, eta l., 1974, p. 466). 

thIrdly, the statIstIcs derIved from the max1mum likelihood and 

least-squares methods do not lead to bogus callbratlon problems, as do 

correlatIon statistIcs (WIlson, 1974, p. 343). 
'1 

But perhaps the most signIfIcant advantage of the maXImum llkel1-

hood and least-squares approaches IS that one can look into the conSLruc-

tion of the estimator to see exactly what assumptIons are beIng made 

about the sample data. " . If the data reasonably satIsfy the assumptIons, 

then one should be able to make inferences about the model's goodness-

of-fit to the sample observations. 

SUMMARY 

This chapter has considered four approaches to the calIbratIon pro-

blem which have been proposed in the literature: graphical curve fitting, 

tabulation, syst6lT'k:1tic seaI'ch, and statistical estimators. 

In the evaluation of these approaches, the method of graphical cur~e 
, 

fitting is rejected. It fails t? consider the interdependencies between 

the model and parameters, by estimating the parameter values outSIde the 

model framework. Tabulation methods are rejected too. Although they 



t 
; 
~ , 
f 

~ 

l 

I 
\ 

I. 

22 

use a statIstical measure of the modql's goodness-of-flt to the survey 

data, they are too slow and Inaccurate to be useful In the calIbratIon 

of interactIon models. 

SystematIC search technlClue~, WhICh use num(,rIcdl methods to optl-

mlze the model's goodness-of-flt to the sample data, based on a gIven 

correlatIon statl~tlc, are shown to be a better callbratlon method than 

tabulatIon approaches. However, correlatIon statIstics have several 

propertIes whIch make them undesIrable measures of the model's goodness-

of-fIt. The statIstIcs are relatIvely InsensItiVe to changes in para-

meter values. Some statIstIcs tend to optirruze to a bogus solutIon. 

The statistIcs also fall to yield unIque pdrameter values for multI-

parameter spatIa~ interactIon models. But most Important, because the 

assumptions placed upon the sample data by correlatIon statIstICS are 

unknown, it is impoSSIble to make statIstical inferences on the para-

meter values and the model's goodness-of-fit. 

Statistics derived from statistical estImators, such as maXImum 

likelihood and least-squares estimators are preferred, since they do 

not possess the undesirable properties of correlation statistics out-

lined above. Furthermore, because these statistics are derived from 

theoretical principles of statistical estimation, one should be able to 

deduce the assumptions mad~ by the statistics about the data, and thus 

be able to make inferences about the model's goodness-of-fit. Therefore, 

this approach to calibration is selected as the most appropriate for 

estimating "best" parameter values. 

i 
i 

I 
I 
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It now remaIns to compare the statIstIcs derIved from the maxImum 

likelIhood and least-squares estJmators through an examInatlon of th.' 

estimators themselves. ThIS IS of Interest because each estImator 

derlves statIstics agaInst whIch to calIbrate the model p.uameters from 

dIfferent baSIC assumptIons ,<bout the data. Because the statlstlcs 

dl f fer, so do the subsequent parameter estimates. Mackle (1972, p. 36) 

asserts that a partIcular set of slatIstical condItIons IS based upon 

, 
specIflc deCISIon functIons "embedded" in the statIstICS. The deCISIon 

function can be related to trip purpose through the Interzonal probabl-

lity denSIty function assumed by the statIstIcal estImator (Kirby, 

1974, p. 101). Therefore, the dIfferent parameter estImates from alter-

native statIstIcal hypotheses relate to the behaVIoral characterIstIcs 

of the trip-maker, of .... inch trIp purpose is a maJor factor. SInce we 

are attemptIng to find the "best" parameter estimates in the call bra-

tion process, a particular statistical estimator may be more approprIate 

in deriving calibration statistics, depending on the type of InteractIon 

being modelled. 

The next two chapters will examine in detail the maXImum llkellhood 

and least-squares estimators. The appropriate calibration statistics 

will then be derived and the assumptions that the statistics make upon 

the data'will be defined. 
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CHAPTER 2 

, 

THE MAXIMUH LIKELIHOOD Mr:THOD or PARAl-u::n:R ESTII1A'].'ION 

INTRODUCTION 

TIns chapter wlll examine the mathematIcal approaches whIch have .. 

been used to derIve the maxImum lIkelihood condItIons for optImum para-

meter estimates. In doing thIS, the Intention is to defIne the beha-

viora1 assumptions WhICh each approach implIes. 

In the literature, two distInct methodologies are applied. Hyman 

(1969) defines th~ calIbration problem to be one of hypothesis evalua-

tion. Evans (1971) and Kirby (1974) define the problem to be one of 

point estimation. Hypothesis evaluation IS based on the assumptIon 

that competing hypotheses can be evaluated In terms of the survey data 

and that inferences can be made about which hypothesIs best repre-

sents the observed distribution. Point estimation, on the other hand, 

involves the estimation of unknowns of a given hypothesis from a single 

function of the sample data (Freeman, 1963, p~229). 

Hyman's framework is included in this chapter on maximum likelihood 

estimators for two reasons. First, it will be shown, through an outlIne 

of his approach, that hypothesis evaluation is not a suitable framework 

upon which to calibrate model parameters. Second, the simplifying 

assumptions which Hyman uses in his framework e~entually reduce the 

24 
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problem to that of maxImIzing the lIkelIhood functIon 1n Bayes' ~qua-

t1ons, WhICh 1S equIvalent to Evans' (1971) and KIrby's (1974) frame-

works when they approach the problel'Q as that of pOInt estllnatlon. 

Follow1ng the assessment of Hyman's (1969) work, the p<.1IJcr WIll 

brIefly outllne the general prlnc1ples of the maX1mum llkel1hood esti-

mator. TIus will be followed by the appllcat10n of the I1UX1mum 11k£'l1-

hood estImator to parameter cal1bratlon problems 1n spat1al 1nteraction 

models, through the work of Evans (1971) and K~rby (1974). The paper 

wIll emphaslze the pOlnt that Evans (1971) and KIrby (1974) derIve the 

same key callbration statistics from different mathematIcal approaches, 

and an attempt will be made to reconclle the two approaches on the 

basis of their impllcit behavioral assumptIons. Finally, the chapter 

will establlsh the relationsh1p between the der1ved stat1st1cs and the 

behavioral condltlons in the survey and will summarize the fIndings of 

the preVIOUS sect1ons. 

.. ' 
HYPOTHESIS EVALUATION AS A METHOD OF PARAMETER 

\ 
CALIBRATION: AN APPRAISALt ~F HYMAN'S APPROACH 

Hyman (1969) attempts to calibrate a trip distribution model using 

the concept of evidence in Bayes' equation. By taking the log-odds 

form of Bayes' equation (Tr1bus, 1969, p. 83), he develops the eVIdence ,.. ,- . ~ 

for hypothesis HI over H2 , with respective distributions {Pij} and 

* {p .. }, where p .. represents the proport1on of trips between zones 1 
1) 1) 

and j predicted by HI. 
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(2.1) 

Hyman states that the choice of III WhlCh maX1mlzes (2.1) YIelds a 

distrlbutlon (meanlng hypotheS1S] gIving the best posslble f1t to the 

. survey data. He then defines 

(2.2) 

and states that the cholce of parameters which maXlmlzes this expresslon, 

sUbJect to the constralnt 

yields a distribution giving a best possible fit to the data. 

Several points of criticism are in order. First, Hyman is confusing 

the issues of pa~ameter estimation and hypothesls evaluation. These 

are two distinct topics (Mackie, 1972, p. 35~. secondly, because oPthe 

framework that he has set up, the approach becomes neither strictly a 

Bayesian nor a hypothesis testing approach. Hyman's assumption is 

that there is no prior evidence for one hypothesis over the other 

f 
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I 
I 
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(Hyman, 1969, p. 106). This reduces the problem fr~m a BayesIan one 

to sImply maximizIng the likelIhood of a hypothesIS on the data. 

Second, Ilyman states that maX1mlzing equatIon (2.1) YIelds the 

hypothesIS WhICh best fIts the observed dIstrIbutIon and th(~, after 

droppIng a term In the equation, states that maXImlZlng equatIon (2.2) 

YIelds parameter values wh1ch glve HI a best fIt. Slnce there 1S no 

prIor eVIdence to support one hypothesIs over the other, how wlthout 

calibratIng both hypotheses, can ttere be evidence for HI over H2~ 

Further, since the likelIhood for H2 IS assumed to be zero, Hyman must 

be assuming that thIS hypothesIs cannot be calibrated, I.e., a unIform 

dIstrIbutIon. Since the concept of eVIdence applIes to any competIng 

dIstrIbutIon, and SInce such competItors that can be calIbrated exist, 

i.e., the intervenIng opportunItIes model (HutchInson, 1974, pp. 107-

113), or the Chernes, Raike and Bettenger (1972) model, Hyman's 

simplifYIng assumption IS unreasonable. 

As a maximum lIkelihood method of parameter calibration, Hyman's 

(1969) approach is correct. As a Bayesian approach, as it is credited 

in the literature (Evans,1971, p. 23; Batty and Mack1e, 1972, p. 210; 

Wilson, 1974, p. 318), it is not. A Bayesian approach requires the 

hypothesis to be calibrated a priori and then to be altered by the 

data. Since the prior hypothesis in Hyman's framework is discounted, 

the approach only considers the likelihood of the hypothesis based on 

the data, and thus is not strictly Bayesian. The reader should refer 

to Sheppard (1974, pp. 62-63) for a description of a Baye~ian frame­
l 

work for parameter calibration. 
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Hyman's work emphasizes the fact that pOInt ('stlm,itlon IS the only 

valld approach to parampter callbrutlon, SInce, 1n effect, he ('nd~; up 

taklng tlllS appro..1ch In equatlon (2,2). Other uuthors haw' apt ruc1cJIl'd 

the parametf'r callbrution problem uS1ng statIstIcal th(>ory on I'olnt 

estlmdtlon. l:..vans (1971) and Klrvy (l~74) use the method ot mdXlmlUl\ 

llKelihood as a pdrameter estH{\citlon technlque. FollowIng d t,rlt'f (.lut-

lIne of the mechanIcs of the method, the1r work w111 be revlcw(>d. 

THE MAXIMUM LIKELIHOOD ESTIMATOR 

The method of max1mum hkellhood in pOlnt est1mat1on can be des-

cr1bed uS follows. Cons1der a random varIable ~ and a sample of T 

1ndependent Observations, t from the same dIstrlbutIvn, where t 
1) IJ 

represents the number of trIp 1nterchanges between zones land J. The 

probabll1ty of observ1ng t. IS ¢(t. \8), where the form of ¢ IS known 
1.) l) 

but the value of 8 1S not. The Joint probab1l1ty of the observations, 

whlch is a functlon of the unknown parameter 8, is called the likel1hood 

function. 

L(t .. \8) 
1.) 

IT n ¢ (t
i
. )' \8) 

i j 
(2.3) 

According to the maximum likelihood pr1.nclple, we choose as our est1mate 

of 8 that value which maximizes the joint probability of the actual obser-

vations. The conditions for a maximum are thus: 



I ,-

I 

-/ 

I 

I 
I 

,-'-

v 
,r' ' 

( 

and 

¢ (t 1 R l] lJ 
o 

29 

(2.4) 

(2.', ) 

Swce 1vg L(t 1(,) and L(t ILq reach their maximum .:It the ~L.lm(' Vdluf'S 
1) 1 J 

of B (Freeman,' 1'JG3, p. 254), th(>n equatlons (2.4) and (2.:,) Celn D<-' 

wrltten 

I 

-~ 
~B log L(tl.)i B) o (2.6) 

and 

< 0 (2.7) 

to derl.ve the optimum value of B. 

The maximum ll.kell.hood estimator has several desirable propertles 
'\., 

WhlCh make it preferable to other point estimatl.on approaches (Larson, 

1969, p. 223), and the reader is referred to the literature (Freeman, 

1963, pp. 257-262; Larson, 1969, pp. 233-250) for a descrlption of these 

properties. 
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Hav1ng descrIbed the maXlmum llke Ilhood apIHoach, let us eX .. l1Illne 

(J 
l ts appheatlon to pdr<lmeter c<lllbratlon In spat 1al lnteract lon mod~·lllng. 

THE DEVELOI'11ENT OF CALIBRJ\TI(IN STl\TI~TICS FF<l1 THE 

... 
ME'I1!OD OF MAX I~UM LI KELIIIOOD 

ThlS section wlli reVlew the work of Evans (1971) and Kirby (lq74). 

BaSIcally, it wlil develop the calIbration statlstlcs by the llkellhood 

estlmator from the authors' dIfferent mathematIcal approaches r dnd will 

defIne the condltlons requIred for der1ving best parameter estlmates. 

EVANS APPROACH TO CALIBRATION 

Evans (1971) derIves optlmum parameter values for spatlal Inter-

aetlon models of the form: 

a.b exp (-6 c. ) 
). ) 1.) 

(2.8) 

where Pl.} is defined as the probability of a trip orlgl.nating In zone 1 

and having zone j as its destination. He assumes we are gIven a sample 

of trip interchanges, it .. J, from which the propo~~ of tr\ps between 
.... ? 1) 

each i and j can be calculated: 

p .. 
I} 

t .. 
= ....!.2 

T 
(2.9) 

where T is the number of observations in the sample. If we interpret 

• 



; 
ff. . 
• <' 

• 
t 
"' -

31 

the tnp proportlons to represent probabllltles (L1ndlcy, 19G5, p. 3; 

Freund, 1952, p. 112), anJ th@~r JOlnt d1strlbutlon to be mult1numlal 

(Evans, 1')71, p. 23), the llkellhood for e on the samE'le wlll be 

(Ed\.;ards, 1'172, p. 19) 

P(p 
• 1.) 

p , V ) 
1 J 1, ) 

t 
T! 1.J ---=..:.-- :1 r ( ) 

~ r t P1] 
1 j 1J 1 J 

(2.10) 

and 

(2.11) 

or, on convert1.ng (2.10) to log-form: 

log pep .. p ., V ) log T! - 4 ~ log t. ! 

(2.12)/ 

1J ~) 1., J 
l. J 

1.J 

+ L L t .. log p .. I 
i j l.J l.J ~ 

Evans maximizes the likelihood of the sample on the joint distribution 

of P . 's . 
. l.J 

II 

max log P (p .. 
l.J 

S.T. L L 
i j 

Pij 

p .. , V. .) 
lJ 1, J 

::: L L a,h, 
i j 

). ) 

log T! - L"I 
i j 

+ L L t .. log 
i j 

1) 

log t .. ! 
1J 

p, , 
1.) 

exp (-6 c. ,) = 1 
1) 

(2.13) 

\ 
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Forming the Lagrang~an, 

A log T! - L L log t ! + L l t (log a + log 
i j ~J i j ~J 1 

+ A(l - I L a b. exp (-8 
1 J i J 

and differentIatIng with respect to the unknowns a. , b. and 
1. ) 

the first order conditions for log pep. = p. , v. . ) to be 
l.J 1.) 1,) 

aA t .. 
-= L ..2:2 _ A I b. exp (-~ c .. ) 0 for all 
da. 

j 
a. 

j 
) 1) 

1 1 

t .. ~ 

'011 l ..2:2 - ,\ l (-~ c .. ) 0 for all -= a. exp = 
abo . b. i 1 1) 

) 1 ) 

:~ = - L I t
1
·)· C .. + ,\ L l c .. a. b. exp (-8 c .. ) 

av 1.) 1) 1 J 1.) i j i j 

Equation (2.15) is rewritten as 

L t .. 
1) 

j 
= ,\ L 

j 
a. b. exp (-6 c .. ) 

1 ) 1) 

and by summing (2.18) over i: 

L L t .. ., ,\ L L a
i 

b. exp (-8 c .. ) 
i j 1) i j) 1) 

.", 
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b - P c ) 
J ~J 

c 
1) 

) ) (2.14 ) 

B YIelds 

a ma."~mum. 

i (2.15) 

j (2.16) 

(2.17) 

(2.18) 

(2.19) 



j 

I 

. ! 

"'~ . . . 
'. , 

'. 

" 

.-' . ( 
\' ... 

. . ~:, 
.. , 

... 

Comb1n1ng (2.13) and (2.19) g1ves 

t 
1) 

33 

(2.20) 

Ther:efore, substi tut1ng for ,\ Into (2.15), (2.16) and (2.17), and rc-

arrang1ng terms results 1n the fIrst order condItions on (2.12). 

L a. 
1 

b. exp (-S c .. ) 
) 1) j 

'i a. b. exp (-8 c .. ) 1 ) 1) i 

1. \" L t. 
T. 1) 

) 

= 1. L t .. 
T . 1) 

1 

for all 1 

2 p .. for all j 
i 1) 

(2.21) 

(2.22) 

L L c .. a. b. exp (-B c .. ) ::: 1. L [ c .. t. L L C P1j ,2.23) 1) 1 ) 1) T. j 1) 1) 1) i j 1 i ) 

Sufficient second order conditions for the maximum are: 

a2A a2A a2A "' -< 0, Vjl abo < 0, Vi;~ < 0 (2.24 ) aa. 
1 ) 

From (2.15), (2.16) and (2.17) , 
" 

a2A . 
1 L t .. 0 ai E R (2.25) aa. = - -2 < 

1) 
1. a . j 

1. 

a2A 1 L 0 b
j E R (2.26) -= -- t .. < ob. b 2 1.) 

) 
j 

i 
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for a , b > 0 
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(2.27) 

Since by deflnltlon a > 0, b > 0, the second order condltions hold. 
1 ) 

Therefore, the best parameter values are attalned when: 

\ 

(1) the proportion of trips generated in zone i by the model 

agrees with the proportion observed in the sample (2.21), 

(2) the proportion of trips attracted to ~ch zone j by the 
<" 

model agrees with the proportion observed in the sample 

(2.22), and 

(3) the average generalized cost of travel is the same in 

both the model and the survey (2.23). 

Because the maximum likelihood estimator generates as many equa-

tions as unknowns, then theoretically, the system should be solv~le for 

a unique set of values a" b, and S. However, because of the large 
1. J 

number of terms usually involved in the system of equations, Evans (1971, 

p. 30) has proposed an iterative procedure which converges to the opti-

mum solution. Mackie (1972) has shown how the optimization methods 

discussed in Chapter 1 'can be applied to statistics derived by the 

maximum likelihood estimator, to solve for the parameter values. 
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KIRBY I S APPROACH TO CALIBRATION 

K1rby, on the other hand, assumes that the sample matr1x of t IS 
1) 

from a trafflc survey is only one est1mate of the nwnbcr of J0ulney~ 

from each 1 to J. He hypotheslzes thrtt If the results of severill l"de-

pendent surveys were avaIlable, a mean number of journc)'s on each Inter-

change could be establlshed. However, In most clrcumstances, tins adul-

tional lnformatlon is not avaIlable. 

The model to be calibrated estImates the mean nwrher of Journeys 

from I to j, 

t .. ::; a. b. f(6, c .. ) 
1) 1) 1) 

(2.28) 

and the observation, t .. , is regarded as belonging to a probab1l1ty 
1) 

density function with mean t. 
1) 

The probabi 11 ty 4> (t .. ) of obta~n1ng 
1) 

an observatlon t .. is assumed to depend only upon the values t ., the 
1) 1) 

mean t .. , and certain properties independent of both i and j (Kirby, 
1) 

1974, p. 99), s~h as the sampling process. 

Therefore, 

A 

Ht .. ) = ~(t .. It; .. ) 
1) 1) 1.) 

(2.29) 

Kirby then finds the compound probability of obtaining the sample 

matrix of trips, {t .. }, which is, as defined above, the likelihood fUnc-
1.) 

tion. 

L = n n ~(t'jl~i') 
i j 1 ) 

(2.30 ) 

I 
L 
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Slnce the mean value is unknown from the observation, but 15 generated 

1n the model 

• f 
t 
t 
li. 

L = n n ~(t la b. f{6, c » 
1) 1) 1) 

(2 . 31) 
. 1 ) 

~ 
j or 

I .. 
log L = L L log ~(t .. Ia. b. f(8, c .. )) 

1) 1.) 1) 
(2.32) 

i j 

Maximizing the log-likelihood maximizes the compound probability 

of obtaining the base year matrix of journeys (Kirby, 1974, p. 99). 
'" ,," 

Solving the first order conditions with respect to the unknowns yields 

parameter values which maximize (2.32). These are 

a log L a log p at .. . -.!1. 
aa. 3t

ij 
3a. 

1. 1. 

L a 102 ~ b. f{S, c. ,) = A 

j 3t
ij 

) 1.) 

" 

LI a 102 $ t
ij 

0 '" . = a .. at
ij 1. ) 

for all i, (2.33) 

r--
, :,,'; _J , 3 log L = L I () log t '-0./> : . \j z: 0 
".' abo b A 

,:;~ 

) j i at .. , 
:.!, 1.) 

(2.34) 



. 

. ' '<, 
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a log L 
as 

~ 

<It a log p • -2:.1. 

at .. 
~) 

as 

:= L I a loq t a. 
1 

i ) 

L L 
i ) 

at 
1) 

a log ¢> 

at .. 
1) 

a log t ~ 
t. I I 

i j at. 1) 

1) 

a :o~ = L L t .. ~ 

,i j ~) at .. 
~) 

af 
'as 

a log f 
df 

( , 105i 
as 
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.~ 
as 

} 0 (2.35) 

If the a. and b. are defined to be strictly positive, i.e., each 
1 J 

~one attracts and generates interzonal trips, the conditions for optimum 

parameter estimation become: 

r a 102 ~ . t .. = 0 all i (2.36 ) 
j at .. 1) 

1) 

2 () 102 P • t .. = 0 "- all j (2.37) " 
i at, , 1) 

1) 

( , f) · a :02 ~ 102 0 (2.38) 2 l t, . 
i j 

1) at
ij 

as 
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Assume the probabil1ty dens1ty functIon of the var1uble t to b~ 
1J 

Poisson. Then, 

A t 
1) 

/' A (t .. ) 

I - -1.L 4> (ti · t .. ) - t I 
J 1) . 

1) 

exp (-t ) 
1) 

(2.39) 

By substitutwg (2.39) 1nto (2.36), (2.37) and (2.38), flrst order cond1-

tions for the maximum likelihood est1mator are der1ved. 

Similarly, 

and 

L~ [ (-t .. ) + t .. log t .. 
j at, . ~) 1) 1) 

J.) 

( t. ) L -1 + ~ t .. 
j t .. 

1) 

1) 

L (-t .. + t .. ) = 0 
1) 1) 

j 

I (-t" + t1' j) = 0 
i 1) 

I I (-tij + t .. ) 
i j 1) 

0 

a log f 
as 

log t .. ! 1 t .. = 0 
1) 1) 

for all i 

for all j 

::: 0 

(2.40 ) 

(2.41) 

-(2.42) 
" 

'. 
i 

, 
t" 
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Providing an appropr1ate trans format1on 1S m.:lde on the cost funct '.on, 

log f(B, c ), the statistIcs derived from Knby's approach are Ident1-
1) 

cal to the stat1stIcs derived by Evans (1971), although the two are 

developed on d1fferent mathematlcal frameworks. 

ASSUNPTIONS OF THE rno D[;RIVATIONS 

In order to understand why the t\,IO approaches YIeld the same con-

dItIons on the parameters, it 1S necessary to look lnto the assumpt1ons, 

both impllcit and exphc1t, made by both Evans (1971) and Klrby (1974) 

about the sample data. 

Evans (1971) examines the macro-state of the distr1bution. He lS 

interested in fInding the joint probability of observ1ng a gIven matr1x 

of trips, and he defines this to be a multino~al densIty funct1on, 

assuming that the sample proportions, p .. , di ffer from the mean p .. by 
1) 1) 

reason of chance arising in the sampling of trips (Evans, 1971, p. 23). , 
". 

Thus, for the multinomial, the distribution variable is defIned as a 

probability. Maximization of the density function with respect to the 

parameters, after applying the required constraint on the variable 

(L L p .. = 1), yields conditions for deriving optimum parameter estimates. 
i j 1.) 

Evans, therefore, is explicitly assuming the variation of trips between 

each i-j interchange to be a ~roduct of chance in the sampling process. 

Kirby (1974), on the other h~nd, examines the micro-states of the 

distribution. The maximum likelihood estimator requires certain assump-

tions, whether explicit or implicit, made upon the nature of the distri-

bution of trips between each i-j pair. Kirby (1974, p. 99) calls this 

I 
l , 
~ 
I 
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the sampling distribution. However, 1.t 1.S more appropnate to def1.ne 

the nature of the d1.stnbution to be a probabilit:..f clrnsity functhn of, 

the var1.able t , to avo1.d confuslllg the term1.nology wlth the tr1.p dlS-
1.) 

tribut1.on, derlved by the model,or wlth sampllng theory. 

Therefore, the probabll1.ty denslty fU!1ct1.on must be known In order 

to use the likel1.hood functlon to estlmate the parameters. This denslty 

function descnbes the probablllty that the value of t w1.11 be observed 
1.) 

between a given 1.-) pair. T!1e l1.kelihood is found by taking the com-

pound probability of the denslty functions descr1.b1.ng the ~cro-states. 

The parameters, thus derived, generate a macro-state distr1.bution. 

If the Poisson density funct1.on describes lhe variation of t .. 1.n 
1.) 

the micro-states, the max 1. mum likelihood estimator derives 1.dentical 

conditions for optimum parameter values to Evans' (1971) method of max1.-

mizing the likelihood of tile multinomial density function. Th1.s may be 

explained by reexamining the assumptions which Evans (1971) makes about 
~ 

the variation of trips between each i-j interchange. 

By assuming the joint probability of the observation to be mult1.-

nomial; Evans (1971), contrary to his assumption of random error in 

sampling, is implicitly assuming the probability density function for a 

simple interchange to be binomial. Thus, the trip proportions are from 

a probability density function with mean 

IJ .. T p .. 
1.J 

(2.43) 

(2.44 ) 
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.. 

and variance 

2 
(1 T p .. (1 - P ) 

1) 1) 

t .. (l - p. ) 
1) 1) 

41 

(2.45) 

(2.46) 

K1rby (1974) 1n assuming the variat10n of tr1ps between each 1-) 

1nterchange to be Poisson, is implY1ng a probab11lty dens1ty functlon 

w1th mean 

~ = t .. 
1) 

and variance 

~ 
(1 '" t .. 

1.) 

(2.47) 

(2.48) 

Identical conditions for optimum parameter values have been deduced 
'> 

from both approaches, even though there is a fundamental contradiction 

in the variance of travel on each i-j pair. However, the difference 
. . 

between the two probability den~ity functions describing the micro-

states may not be significant, because the variance of the binomial 

den'sity function, implied in the multinomial, approaches the mean t .. as 
1) 

p" approaches zero. 
1.) A 

This means that if the number of interchanges in 

the system is large and the p~oportion of trips (which equals ___ t_i~~ __ 
r r t, . 
i j 1) 
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on each 1nterchange 1S small, the densi ty funct10ns are approXImately 

the same. Freeman (1963, p. 105) suggests that practIcal worklnq 

values for Nand p, ar~ N ') 50 and p < 0.10. A system of n zones 
1 J 1 J 

generates N 
2 

n 1nterchange's. Therefore, for a large number of zones, 

the p may bl> small enough for the asswnpt10ns madt· by the two 
1J 

approaches to be equ1valent. 

The assumpt10n of a POIsson or binomlal denSIty functlon descrIblng 

the variat10n of t on each 1nterchange glves a,statement about the 
IJ 

varIation of travel between the two zones. KIrby (1974, p. 99) relates 

the denSIty functlon to trip purpose, and asserts that one expects to 

observe a greater yar1ance for certaln trip purposes, such as shopp1ng 

or recreational travel, than more regular travel patterns, such as 

the journey-to-work. 

StatistIcal condItions derived by the maXimum likellhoad est1mator, 

with the impiicit assumption of a Poisson dIstribution describing the 

variation af travel, are 

trips (Batty and Mackie, 

usual~ employed in model calibratIon of work 

1973; Batty, Foot, et at., 1973, p. 359). 

Although the Poisson is known to describe the v.ariation of traffic on 

a road reasonably well (Kirby, 1974, p. 103), and interzonal travel 

might vary in a similar manner, it is possible that the Poisson has too 

great a variance to accurately portray the variation of journey-to-work 

trips. 

Kirby (1974, p. 101) suggests that other statistics, based on 

different density functions, which can also be derived by the maximum 

likelihood estimator, may be more appropriate for modelling journey-to-
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work travel. 0ne needs to examlne the higher moments of t , dlsaggre-
1) 

gated by trlp purpose 1n order to derlve the apprOprli.ltf' statlstlcs 

against WhlCh to callbrate the model. 

GENERAL CONDITIONS REQUIRED BY THE HAXIMUM LIKLLIIlOOD r.;STHlATO!{ 

The conditimls denved by the maxlmum likel1hood estlmator deflO(c 

statistics which are cal1brated agalnst the model to derlve "best" 

1 
parameter estlmates. Because the statlst1cs are der1ved from stat1s-

t1cal est1mat10n theory, they Y1eld the most pertinent 1Pformat1on from 

f 
the sample data to glve the model a best fit to the survey. For the 

slngle parameter spatial 1nteract10n model, the max1mum likellhood 

estimator yields 2n + 1 cond1tions for the 2n + 1 unknowns. The f1rst 

2n cond1tions (equat1ons (2.36) and (2.37» requ1re the balancing 

factors, a. and b , to be such that some functlOn o{ the tnp-or1gins and 
1 ) 

trip-ends generated by the model agree with the same funct10n of or1g1ns 

and destinations in the sample. The actual form of the function 1S 

dependent upon the probability density function which describes the 

variation of the variable, t ..• The statist1c derived to calibrate the 
1) 

parameter, 5, (equation (2.38» is dependent on the density function of 

t .. , and some function of travel cost between zones i and j. 
1J 

The cost function describes the generalized cost of travel between 

each i-j pair and is some combination of distance, time and direct 

money charges to the trip-maker (Evans, 1973, p. 40). It is assumed 

to have the following properties: 

.. 
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(2.4') 

(::.50) 

As the cost of travel bet .... ·een two zones ~ncreases, the cost functIon 

decreases the number of Journeys between the zones, ceter-is parivlI~', 

and the funct10n decreases such'that the amount of travel between two 

zones decreases at a decreaslng rate. , 
For a given probabll~ty d(jns1ty functlon, sever,ll statJ.stJ.CS 

related to generalized cost can be derived. If the generallzed cost 

function is defIned as: 

f(S, c .. ) = exp (-8 h(c, ,» 
1) ~J 

(2.51) 

where h is some transformation on the generalized cost of ~ravel, then, 

using Kirby's general conditions and assuming the density function of t 
1J 

to be Poisson, the calibration statistic is derived as follows. From 

equation (2.42) 

() log f(S. c .. ) () 10g,f(S, c. ,) 

I I t .. 1J 
:0/: I I t. , 1J (2.52) 

i j 
1) ()8 

i j 
1) ()13 

1: I t .. h(c
ij

) = I I t .. h (c .. ) (2.53) 

i j 1J i j 1J 1) 
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lIym,-w (1'lb9, p. 109) dt'rlves cdl1brat10n St.lt1St1CS for :::.evel"<ll 

1. t'. , 

f (p, C 
1) 

h(c } 
1) 

t'XP (-~ c ) 
1) 

c .. 
1) 

.. 

(2.55) 

as an appropnate measure of cost 1n the journey-to-,·.'Ork. This tr.:ms-
. I 

format1on 1S oftE'n used for this purpose in modellWg\applications 
\ 

(Wilson, et al., (1969), p. 339), and it is this c.'ost funct10n ,.,.hich m,\Kl'S 

Kirby's cal1bration statistics equivalent to Evans r (1971). The cali-

bration statistic derived under the assumption of a Poisson density 

function describing the val.-iation of t .. over each interchange yields, 
1) \ 

from (2.53) and (2.55) 

since 

I I t ij c .... L L t ij c .. 
i j 1) i j l.) 

I r ~'j • r I ti)' = T 
i j l. .t j 

(2.56) 

(2.57) 

I 
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(2.58) 

(2.59) 

'rhe parameter 8 is calibrated against the mean tlip oost, and lS 

at its optimum value when the mean trip cost predicted by the model 

equals the mean trip cost observed in the sample. 

In general, if the probability density function is assumed to be 

Poisson, the likelihood estimator calibrates the parameter 6 against the 

mean value of the transformation on cost. Optimum conditions state 

that the mean value of the cost transformation generated in the model 

must equal the mean value of the transformatiOn observed in the sample: 

It'will be shown in the next chapter, that a different density function, 

the normal, yields other statistics. 

To summarize, the ba~oing faotors. of the spatial interaction 

models are determined by statistics describing the variation of the 

t ij " The model parameter, at is calibiated to a statistic which is a 

function of the probability dens~ty function of the t ij , and the 

deterence function, which is a measure of the cost of travel between two 

zones, The work of Hyman (1969) andtKirby (1974) relates the doterence 

function and density function to trip purpose, Since different combina-

tiona of these functions yield different calibration statistics, one 

r 
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particular combination may be the ~)rc appropriate against which to 

calibrate the parameter, depcndl.ng upon the trip purpose bClng modelled. 

SUMMARY 
\ 

'-

This chapter has discussed the maximum likelihood approach to para-

meter estillldtion. It has argued th,lt pdrclmeter calibration is a problem 

of point estimation, not tlypothesis l'valu<1lion, and has reviewed the 

different mathematical approaches of Bvans (1971) and Kirby (1974). 

It has been found that the same key conditions are derived by the two 

mathematical approaches. 

The chapter has looked at the implicit and explicit assumptions 

that each approach makes on the sdmple data, and it has boen found that 

in the context of spatial interaction modelling, the assumptions are 

approximately the same. The chapter concludes by examining the various 

calibration statistics which can be generated by altering the assump-

tions made on the variable t
ij 

and the trip cost, and notes that a 

particular statistic may be better suited for the calibration of a 

specific trip purpose • 
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CllAP'l'ER 3 

TBI-: LEAST SQUARES HETIIOD OF PARANETER ES'l'HtA'l'lON 

I N TROD UC'fr ON 

'l'his chapter will examine another approach to point C'stimation 

which has been applied in the context of spatial interaction models. 

This is the method of least-squares. As in the previous chapter on 

maximum likelihood, it will briefly outline the general principles of 

the le~t-Squares estimator. This will be followed by an application 
,/ 

of;f:ast-squarcs to the parameter calibration problem through an out-

l{ne of the work of Cesario (l975). The advantage of this estimator. 

will then be shown by developing the same calibration statistics as 

least-squares by the maximum likelihood estimator. It will be sho\m 

that maximum likelihood makes very stringent assumptions about the 

data to derive the same calibration statistics as least-squares, and 

~at any loss strict assumptions about the data result in different 

calibration statistics. The chapter will conclude by interpreting 

the least-squares statistics in the context of spatial !nteraction 

modelling and will suggest situations when the least-squares estimator 

is appropriate in model calibration. 

48 I •• 
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THE LEAST-SQUARES ESTIMATOR 

Consider n ranuom variables wlth known and po~sibly difft'I('nt 

means and known and possibly different variances. 'l'hf' vilriabh' t 
i) 

can be thought of as the outcome of a random sample of Slze 1 from <.l 

population with mean 

2 and variance, 0 , where ~k represent the parameters of the model. The 

observation can thus be represented by 

(3.2) 

where eij is an error term. 

The least-squares prtnciple states that the best linear unbiased 

estimator of the parameters, llk' is the one which minimizes the dovia-

tions of the sample variance, defined by 

(3.3) 

, . 
I , The estimates for the parameters are chosen so that when substitutod into 

(3.3), i.e., 

(3.4) 
.... 

1 

.:.J 
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they produce the least possible value for S. 

The first order condition for (3.4) being a minlmum is: 

ds ::: 0 (3.5) 

Sufficient second order conditions require: 

d2
S positive definite (3.6) 

Therefore, the optimum values of the parameters, lJ k, are derlved when 

and the principal minors, 

a2s 
2" ali 1 

I H I ... 

a2s 
dlir

a1l1 

are greater than zero. 

Hl I, ... , 

a2s 
tl1l

1
(lli

r 

(l2S 

a 2 
lir 

(3.7) 

H I, of the bordered Hessian, r 

(3.8) 

The least-squares estimator has several prope~ties which make it 

tho best ~in6ar unbiased estimator of the parameters, lik , and the 

reader is referred to Freeman 0963, p. 265) and Wonnacott and Wonnacott 

(1970, pp. 21-30) for a discussion of these characteristics. Specifi-

cally, it is called the "best" linear unbiased estimator because the 

estilMtes of the \.Ik havQ minimwn variance (soe Freeman, 1965, p. 265) 

for a note on the correspondence between "best" and minimum varianco). 
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Let us now examine the apphcation of the loast-squ.:Ires appro,"l.ch 

10 the spdtial interaction context. 

THE DEV£LOPHI::NT OF CALIBRATION STATISTICS I'lWl>l TilE l>lI.:'l'1I0D fF 

LEAST-SQUARES: CESAl\I 0 IS APPHOACII 

<', 

Ccsano (1975)' approaches tht:' problem by cOllsipering a set of 

observations {t, ,} and an ostimate for the mean values of t, . I 

~J ~J 

(3.9) 

where ai' b
j 

are balancing factors and e is the parametor of the model 

which must be estimated. 

Tho least-squares principle requires the minimization of the sum 

of squared residuals. Tne~efore, minimize 

s '" (3.10) 

(3.11) 

First ordef conditions for the minimization of S require I 
... 

- .i bj f(~. cij»2] .. 0 (3.12) 

~ L (t
ij 

- lli b
j 

f(6, C
ij

) (-b
j 

f«(3, c
ij

» '" 0 
j 

: \ , 
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Upon rearranging terms 

or 

Similarly 

or 

and 

a. I b 2 fW, c .. )2 - ~ t. b. f(S, c.) 0 
1 j) 1) j 1)) 1) 

\" A 2 
Lt .. 
j 1) 

\' t .. t '-' 0 
[. 1) ij 
j 

for all i 

b
j 

L a\ f(S, C
ij

)2 - L t .. a
i 

f(S, C
ij

) .. 0 
i i 1) 

... 2 ~ f t ij - I t ij t ij 
.. 0 for all j 

~ 

, 
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(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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(3.19) 

(3.20) 

l 
the second-

order conditio'ns (3.8) are satist:icd. 

(3.71) 

. a2s \ 2 2 
J--2 ... L Ai f(e, c

ij
) > 0 

ab i 
j 

(3.22) 

a2s a2 
L L 

" 2 - .. - (\j - t
ij

) 
aa2 ae2 

i j <1 
· L L t (,2£ ,2£)] - L L t ij 

a
i 

b
j 

a2f ab -+f-
aa2 i j i j ae2 aa2 i j 

• L L 
a2f (01 b j 

) ,2£ 
a i b j -2 + a b· f - L L a. b j -2 \j 

i j ae i j i j 1. 06 

a2
f (01 b j • ~1j) a2

f 
• 1. L a i b j 2" - r L a i b j ae- (tij ) > 0 

i j aa i j 

for ai' b j > 0 all i, j. 
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The first order conditions yield 2n + 1 equations ior the 2n + 1 

unknowns so a unique solution eXl.sts. However, because of the non-11.nedr 

character of tho 2n + 1 normal equatl.C\l)s, Cesario (1975, p. 14) deVlses 

an iterc1tive procedure whl.ch converges to the optimum solution. 

Also, the first order conditions differ from the conditl.ons dt-rived 

by the maximum l1.kelihood estilll<ltor l.n the previous chapter. Instead 

of requiring correspo~ence of trl.p-end and trip-origin totals, consis-

toney is achieved on the sum of squares of the row and colu~) elements 

(CesariQ, 1975, p. 15). The parameter 8 is calibrated against a more 

complex statistic (equation (3.20», which is a function of the squared 

trip matrix elements, and of the generalized cost function. 

A purpose 'of this chapter, as previously stated, is to examine the 

assumptions Ill<lde by the least-squares estimator on the data {t, ,J, and 
l) 

to compare these assumptions with those of tho maximum likelihood esti-

mator. This discussion will lead to an assessment of the behavioral 

hypotheses implied in maximum likelihood assUJllptions. 

ASSUMPTIONS OF THE LEAST-SQUARES APPROACH AND A 

COMPARISON TO MAXIMUM LIKELIHOOD 

The calibration statistics derived from the method of least-squares 

(equations (3.14), (3.17), and (3.20» yield unbiased parameter values 

with minimum variance. The significnnco of this property is that it can 

be proved by the Gauss-Markov theorem on a very weak set of assumptions 

(Wonnacott and Wonnacott, 1970, pp. 48-51). Spocific~11y, tho loast-

'squar~s estimator requires no assumption about the shape of tho density 
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/ 

functlon of the error term (Wonnacott and WonnClcott, 1970, p. 21). Tlus 

means the estimator requires no informatlon about the dt'nslty functl(lll 

of the vdrlublc l 
1) 

'l'he importimcE:' of thlS assumption can be ShOWIl by dpvelol'lng iden-

tlca1 calibratlon statistics as those of least-squ.lrcs, by Uw method of 

maXlmum likelihood. Since tile m.:lXlmum l1k.elihood estinutor rcquucs tilt' 

prob,lbi"'11ty density functlon of t. to be known, then thl' dssumptlon on 
1) 

tht' denstiy function by ma~umum likelihood can be examined to compare 

the two methods of point estimation, 

Lot us consider the distribution of the observation, t ... If the 
1) 

probability density function of this variable is assumed to be normal, 

with n~an t
ij

, the probability of obtaining tho observation t
ij 

is 

(3.24) 

Using the general maximum likelihood conditions developed by Kirby (1974, 

p. 100), and upon substituting the probability density function defined 

above, the following first order conditions for optimum paramctor values 

result. 

for all i (3.25) 

for all j (3.26) 

t t (t t) t~ a 109 f a 0 
L L ij - ij ij aB 
i j 

(3.27) 

L 
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The conditions (3.25), (3.2tj) and (3.27) are ldentical to tlll' least-

SqUdlt'S conditions (NJuations (3.14), (3.17) and (3.20» agulOst winch 

• 
to callbrate l,ar"metpr values. !/owev€>r, in order to derive these id~n-

tlcal Cond1l10nS, where the least-squares estim<;l.tor makes no assumptH)IlS 

about the delta, the m<lX1mum likcllhood estimator must assume the t to 
1) 

be l1orl11,111y tlistrlbuted wlth C0I7U110n, ('(.mJta~lt v(l1'iance. 

'I'he .:lssumpLion of a normal probablll ty densl ty function for t 1S 
1 J 

not at issue here. Several properties of the nonnal make It an appeallng 

density functlon to assume in the context of spatlal interaction modelling. 

First, Lhe normal is a reasonable description of the behavior of many 

observdble phenomena, and its application is generally a valid desctip-

tion of Observable data (Freeman, 1963, p. 141). Second, the normal 

probability density function is the limiting form of many other density 

functions, including the Poisson. The L,approXimates other proba­

bility density functions when the mean/is larg~\Wetheril1' 1967, p. 71). 

Since the lij on many interchanges are likely to be large valu(>s, i.e., 

t
ij 

~ 30, the normal-~ill reasonably approximate the data (Freund, 1952, 

p. 233). There are some inconsistencies if the t
ij 

are assumed.normally 

distributed, such as the assumption of the variable being continuous 

when in fact it i9 discrete, and the allowance of negative values of the 

vari.able t
ij 

when the mean is small. 
,\ ' 

However, the maximum likelihood estimator places a severe restriction 

on the valtiance of the t
ij 

when the densl ty fWlction is assumed normal. 

Conditions identical to least-squaros can only be derived by maximum 

likelihood if tho variance of each t
ij 

is constant and equal over all 

interchangos. Since tho mo~s (t
ij

) can diffo~ by several hundred trips, 
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this llssumpt10n about the v<:lriance 1S not reasonable. If W(' ullGmpt to 

relax thls rGstrictlon on the vari<:lnco by assutn.lng 1 t to be l' rOI'Ort10(l.11 

to tho mean, 1. (,) . , 

2 2 ~ 2 
o :"(1 t. 

i) 1) (3.28) 

wh('rc (4 is the coeffic1ent of variatlon, ,) di ffcrent set of concil tlOIlS 

15 dCrlved. Since the probdbil1ty density function of thl' v<1rlt\blo t. 
1J 

is now: 

1 
"'.. exp 

at .. r;;-
1) 

(3.29) 

then 
~--

__ 12 [(til -~ij) 2] r::;;-
log • ~ - - - log t

ij 
- log Cl - log J 2u 

,2Cl t ij 

(3.30) 

. 
Using the method of maximum likelihood, the first order conditions for 

optimum parameter estimates are from equations (2.36), (2.37) and (2.38): 
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as L l. ex as 

i j 

1 -
Furthermoro, the coefficient of variation must be estimated. 

a 109 f a 
aex .. rei l L log ,,~\ 0 

i j 
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(1 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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- log Cl -

(3.3~) 

(3.36) 

The n + 2 C01Hli tions are derived by thll method of' maximum lik.olihood on 

the ttf.lsumption of normally ,distributed' variables, t ij , ,'lith moan t
ij 

and 

varitmce 

'~ 

(3,37) 

It c~ b~ aeon ~h~t the ~x1mum likelihooa eati~tor can only derivo 

tho 8~me conaition9 for optimum parameter calibration aa tho principle 
~ 

Qf leaot~o~uareaf if the variable,' t~j are a~8umed to be normally distri-

buted with a oommon, CO~8tant variano.o·, ~~ laallt-oquarea" estimator 

derives theao Game oonditiona, althouuh it ~ko~ no aaoumptiono about the 

Dra,por and Sm!th ,(1966, pp. 60 ... 61) 8~ggeat the lMximwn likelihood 

oattm~tor Ai bQin9 appropriato it tho ~Qnijity function of thc variablo 

io Known. ,inoo tho oonditiona aOllvod for optimum p~r~Qtor v~luoo will 
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will be di'fferent than least-squaros condilion~, with the excoption of 

a normlll probliliil.l.ty dtlnaity function with conunon, constant varianco 
~ 

for dl variables. If the donaity function is not known, howtlver, l(lclst-

squares is the better (lsti~tor to use. '1'hi8 is exactly what Kirby 
• I 

(1974, p. 102) 61tates. 'l'he least-squarea e~itimator is appropriate i(~ 

nothin9 is known about the sampling d~ atribution (meanin~ probabi 11 ty 

density function] of tho variable t
ij

• 

Howover, the comparhon of assumptions by the two ostimatoru, to 

derive identical calibration otatistic8, 9u99cats that the maximum 
# 

likolihood assumptions require an overupocification of the data to 

derive calibr~tion 8t~tiotics. Siooo the lea9t~oqu~re9 6otimator makos 

no assumption ~out tho variab~e, t ij , ~here is no behavioral hypo­

thoai~ rolating to trip purpose implied in tho oalibxation statioticu. 

Tho maximum likelihood ootimat'Or I on tho other hMd, must make a 

.trin9~ntf 1f not unroaliotio, assumption About tho nature ot tho pro-

bAbililY dond ty funotion ot .t
ij

• It tho auum,ption ill not noooDoary, 

then porh~s tho behavioral hypotheeoD "emboddod" in oAlibration otatio'" 

tiou are not at iaaue, Mel "ho\11cl not bo considored whon Q,timatinCJ ' 
. , 

parnmotoro for diffarent ~rip pur.poaaa. If thio i8 tho oaso" then trip 

purpooo ahould only bo A faotor in tho gonoralizod oout funotion. 

'j 
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STA'l'IS'rICAL CONDl'l'IONS Rl!:QUlru:O BY 'l'BE 

LE1\S'l'-SQUARES I::S'fIMA'l'OR 

'I'he conditiolls dor! vael by 10t1!Jt-Nqunro!J, defininq stati'9'tics dgaintlt 
, .JI' 

whiClh the modtl1 p.;\ramoturs ctro CAlibrated, nre more complex thatl mctxl-

1ll\Ul\ l1kolihoC1U condition8. UOCdU!H;l "the conditiont:J are functiomJ of 

tho ·UUIll!J of the oqual'6d row and co 1 UIIU\ olelnonts, tho calibration t1ta-

tiaticfl cannot be directly X'olntod to ol.>norvablo phenomoua in tho 

Consider the calibration otatletic derived by ~O.~t-AqunreD for 

the ~rM\eter B 'X 
j 

l l ~ ~ a log f 
i j i j a~ 

. 

(3. 38) 

If we apply the came tr'tnflfottnation on thtl gQnorali~t)d cOttt function lUl 

in th~ proviouo chapter, 

(3.39) .. 
oquation (3.38) booornoo 

(3.40) , 

'-
LQaot-oquAfo8 oonditlona do not ~Alibrnto n AQAinot Q mean vttlue i ' 

thot OAn bo OQloul~tQ4 from tho 4AtA, al ih ma~imum likolihood conditiona, 
, ~ ." 

" ~nao tho modQ~ pro41otiono, t ij , antor bo~h aido~ ot tho oquntion (i.Q., 
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(3.41)). 

Tho 90nBitivity of the colibration otatiBtic htUI not betln di~cutilJt)d 

in tho li teraturo, although tho lell~t-uqu",ruu tlutiUl/ltOl. lilt!> boon used 

to caUbrute doubly coolltraillod 8,pl\tia1 intoraction modula ('l\U\lIor, 

1%1, Cet1~rio, 1975). lIo~evor, 'l\u;ncr (1970) reports t.h"t paramo tor 

valutls for singly constrained interaotion models, calibratod by It)cwl-

aquarotl, may convergtl to a looal optimum, giving a falae solution 

(D~tty and Mackio, 1972, p. 210). 

In general, the 1oaut-squllro6 eotimator ca1ibrato6 tho parametor 

ltgainot tl ntatiutic which is a ~unction of the modtll predictions, t
ij

, 

the obuervation, t
ij

, and tho trannformation on cost, the lMtor being 

l1011umed to be specUic to trip purpose (Hyman, 1969, p. 109). 'I'he 

balancin9 factorp, a
i 

and b
j 

are determined 00 that thore is conaintency 

for tho O\lm of t1qu~re8 ot ro\'1 ru\d column olomonto betwoon the prediction 
I 

and ~ho data. 

SUMMARY 

!-~ 

Thie chQptor haa diaousaod another app;oach to point o8t1roAtie~r 

tho mothod ot leftut-Dquaroo. It h~1 ohown t~at the loaub-.quarap ootima-

• tor deriveD oonditione tor optimum valuQs without ~king Any a~iumptiona 

About tho probAbility do.ndty function of tho variablo, t ij • Furthor .. 

morc, 1t haD Dhown that tho ~x1~um likolihood oatimator oan dorivQ tho 

Dama pot of Qondition~ only it vary reltriativQ aloumpt~on8 are mado 

obout tho nat.urQ of tho dondty function, and that any attompt to rolax 
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these dtlBUmptiona results in differtmt conditiontl on tht> par.unt:>tt11B. 

From t.his study I it is SU990sted that maxill1um likolihood l\l.IHumptiorw 

may not rolattl to bohClviordl hypqthtl 80tl concorninq trip purpo!Jo. 'l'Iltl 

chapter concludos by examininCJ the llllwt-uquar(ls st./ltiutics cU\d inlor-

prot.ing their moaning with respoct to tho tltlmple. 

/ 

. ... 
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CHAI'Tim 4 

S~E RELA'l'ED CALTUM'l'ION PHOllLEMS IN UIUlAN S,{S'l'EM~ HOl>ELLING 

I N'l'HOO UC'l'I ON 

'I'hie chaptor will dincustJ the Muumptiontl IMdo by tho modollt'r whon 

c~librn ting a modol of opatial interaction. '1'hl.'loo are ditltinct from 

tho ADsumptions on the data implied by the statistical oatimator6, 

reviowod in the previou8 two chaptors. Inatead, thoy tiro the AtiSiUmptionu 

which muut be fMde nbout the obool"tJation, or trip (lurvtlY, and about lho 
, 

val"l:ab'tao which m\let bo defined in ordor to qivu tho l'AUmotoru numtlric~l 

valueo. 

Tho chaptor will eXMlino thoDO ausumptiona by fira\: digcuotlinV tho 

information a.vaibblo to tho modoller from the trip llurvey in terma of 

oample ohe and mothod ot Damplin~. \ It will thon dhouaa tho oxtont to 

which tho oboorvations may doviate from tho aotual or mo~n valuQo, 
. 

oupooidly in a traffio survoy, whoro a einglo rnndom oamplo h uBually 

taken to oalibrato tho modol. It will ~loo look at 'how 90nQratlaod ooot 

ie uDually detined in tho o~libration etatioticQ dorivod by mQximum 

likelihood and 10mJt"Qquare8, and will outlino aomo WOaknc.HJt.lCfI to tho 

t\pproQoh, . 

" 

64 
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The chapter will go on to revit,w the basic criticit>lns which IhlVO 

been raised throughout tho paper. It will idontify throo rtHJo"rch t\rtlMI 

which should be (lxtlmined. Tho pt\por will thtln propo~o II fr(\mewod, tor 

ttHlt inq tho hy.potho!Jus. 

TUE "PROUIJ;.M" 01" MODl.':L CJ\LIllM'l'lON 

'l'ho uroan modellor i8 hcod with the problolfl of applying l\ mMhoma.-

tic~l abstraction of a physical syatom to a defined Dot of act1vitioD, 

from which must be generatod empirically-relevant output (Lowry, 1965, 
~, ~ 

p, 160),' 'l'he modellor aesumCD that a 8pecifically choDon hypothtHliu 

uufficionlly d09cribeu tho phtmomQnon ho iD studyin<), Tho "problom" 

of model. calibration 10 thUD ont) of doj'inino t.ho variablotl aglli1wt which 

to eotimate tho paramotors of tho modol, and of optilM~ly "fittinc;" tho 

hypothooi' to pamplo data. 

'rho aoouracy of tho npathl intoraction modol,' 0 out1l ut ill clotloly 

rolated to the reliability of tho "ample data, or trip ourvoy, for it 10 

against thooe data thAt tho modol 18 oalib;atod, rogardloso of which 

odibration Statlot.icD aro omployed,. 'rhQ' modoller take" tho DO data, 

uDuallya amall PQroontago of the~population (Chatorjoo, c~ at., 1974, 

p. 3), a. A Datiafaotory ;oproOQntbtion of tho aotual diotribution, or 

monn VAluou, ho io attempting to mathomotioQlly doscribo. 'rho model io 

oAlibrated'to these dnta, or mora p~~oiooly, tho modol pafamotora are 

Qotimatod trom ~ho obsarvation. , 
Givan tho paramotor valuoD dotorminod from tho oamp19, tho moaal iu 

applied to tho populc\tion from whioh tho Dnmplo 10 drawn, ·to generate \;ho 
I 

1 

I 
I 
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existing diRtribution, or CAn be applied to projoctod l\cti vi ty Vllri(lbltHi 

to conditionally predict tut~ro distribution9 . 
. 

Tho modol prodictionn dro concH t ionAI upon throo lnwic lUlaumpt1on~. 

1. Tho hypotheoil1 is a tluitdble d(locription of tho phcnornonon 

under otudy. 

2. '1'ho llUrVt1Y, against which the model i~ calibratod, is a 

valid roprosentation ot the phonomenon ~ndor study. 

3. 'I'ho p~nmeter valueD determined from tho !lample d:lta, 
-' 

llnd tho funotional roll1tionships dOBcribin<] behavior, 

remain conatMt over 8cato nna ovor time (if UfJod to 

make conditional prodictions in tho future). 

Thill pnpar doos not intond to te~t the validity Qf tho first aUflump-

tion. It AOSUlnoo that tho spatial intoraotion modol reasonably de~oribon 

tho diutribution ot trnvel in An urban arOA. Nor io it~oncernod with 

tho effoctCl ot Cloala or time on th.o gonerated diotribution. AlthoU9}l 

thoDO two iUDuoa mUQt bo more thoroughly roooarchod (Shophard, 1974, 

pp. 52-69, wileon, 1974, p. 391), t.he iooUQ whioh wUl bo diaouulod in 

tho ch~ter io the ro11ability ot tho aamplo data. 
I 

~io iusuo will ~o oxAffiinod 1n two parte. Ono will doal with tho 

trip ."rvo)-. And tho othor will oKM'lino aJlct ~0800Q tho vari(\blco whiQh 

9ive' tho parAmotoro numerioal valuou. 
~ 

. \ 

I 

• 
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TilE 'l'RAVEL SURVEY AND 1'1'S RELA'rION~~II1P TO "111:: 

POl'UIJ'I'l'ION 1'1' lU:I'R1~Sr:N'l'~ 

Tnwol data, uIJod to calibxcltt;) trip dist.ribution models, nro 

obtl1inod prin ... uily from origin-dotltinatioll !lurVtlys, of which tlwrtl (110 

d(ltormino oxiuting intornal travel pailorna, homtl-inlerviow lena voys .:\rtl 

usu~11y conductod (Ch~tt)rjoo, ~t ~t. / 1974, p. 1). Th~ «rUd is divid~d 

into a Dot ot O'.on09, and the aurvoy ill conductod by intorviowing a sm..'\ll 

porcontago of houueholdu in onch zono randomly. In trip diutribution 

'mod\'llin9, tho ourvoy finds tho dC£ltination zone of onch household for 

tho particular trip purpoDo boing mod~llod. 

Aftor thQ ourvoy ht\8 btren takon, tho rOQulta aro a9gregatod into.~ 

o~npZo trip matr~m, which doacribea tho intoraction in tho ~yutom obDorved 

in tho ourvcy. From thin llI.'\trix, calibration atathtico / dofinod by tho 

otatiotical ostimator uBod to ootimato tho paramotors, ~r() caloul~tod. 

ThQ ioaul) to bo diocuoaod is tho relation tho Qample bOQrs to tho 

mo~n diutribution ot tho populatio~. In, the contoxt of trip diotribution, 

tho menn di.tiibution iu tho Qvor~90 travol botwoon oaoh ori9in and douti-. . 
nation, for a apooifiod trip purpooo and in a ~of~Od time pori~d, 1.0., 

journoy-to-worK trips in a two-hour.poaK poriod. Tho major fnotor 

influonoin9 tho oorroopondanoo botwoon tho obsorvod and aotual diotribu-

Uonu iQ tho oanq>to oillo of ~baorvaHono.. Tho lurvoy data upon which 

tho parMlotorQ a,ro ootimntod Qro conddorod to be (\ random Bftmplo ot 'l' 

varbbloa, and of Damplo Dba oquAl to ono. 'l'ho 8urvoy, whioh iu but one 
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ostimate of tho pumbor of journeys betwoon oelch zono pair for a given 

time period, ""'Y or m.:lY not corrospond to tho clctual travel pattorn. , 

'l'he actual numbor of trips betweon ouch i-j p,1ir v.-trios from day-to-

day, and can bo represontud by a probability dOllllity function, ¢', with 
/ 2 ~ 

moan t ij and vari~u\c(l 0ij' 'l'ho o'Ullpl-ing diotribution of tho ml)M travQl 

on onch intt:>rchango, is rolatod to tho tlct\lnl dilltribution by tho 

following fundamont.:ll rulationship. 

Conoidor Z random urunplos t~kon from a population hllving m"""" t ij 

Tho moao valuo, X, of tho randoln oltmplos, will bo 
, , 

diotributod in n aamp1in9 diDtribution with moan 

• 

Clnd vlu:ianco 

(4.1 ) 

(4.2) 

whon tak~n from a population ot t~ni~o aiza, N (Fround, 1952, p. 230). 

Thouo rolationuhipa roved that, on tho avorago, thQ oarnplo monn equalo 

tho population' moan, And tho varinbili ty of tho lIamplQ mean iG oqual to 

or lOCI than the variability of tho r~dom variablo of tho population • 

Tho variability of tho eamplo mann dooronuol tUl tho numbo): of random 

DQmplo. taken inolo(UtQU (Fround, 1952, p. 231). 

Sinco, in (\otual ,tudiol, Only o~o trip surv~y i. uounlly takon 

(J(i~b¥., 1974, p. ~~), tho v{\rianoo of tho 8Qm,plo moan ~a au largo na tho 

vAriAnoo ot tho variAblo t ij in tho populAtion. Thiu varial\Oo may bo 

., 
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largo for cortain trip purpotlo~ {Kirby, 1974, p. 99). 'l'htlrefol'lI, tho 

data, t1<)t1inat which tho modo1 it! caUbratod, I\I.-ly siqnific(\Iltly mit.l-

rOprO!Hmt. tho m!>tln t.rnvd diHtdbution. 

modola c(\n 00 oot"inud simply by ttlldng moro thl1n U 811\<]10 trip !Jurvcy 

in the artH\ buing mooolll'u. ~inctl trip tJurwya i.nvolvtl .1 consiuorablll 

axponso, in tornw of timo und InOntlV, tho cOrrtHlpondonco botwoon a tJillqlu 

random sClnl!>lll und thu nlu(tn trt\vul ~tJtril.>ution uhpuld 1.>0 invNltigatod 

to detorllline whQthor rolinblo modol prt\dictionu can bo gontlrated on tho 

bal'liu of a !Jingle eamplo. 

VJ\RIJ\nLE Ollio'INI'l'ION IN CJ\LIBRA'l'lON S'l'A'1'IS'UCS 

'l'ho procho ompirical definition of variablof1 is important becnutlo 

it a!feota tho valueo of tho modol paramotoro (Lowry, 1965, p. 163). 'I'ho 

rolation.hip bettwuon variablo dofinition Md piu:'amotor valUOD eM po 

800n in tho oalibration otatiotico dorivod by tho utat10tical oQtimatofu 

in tho proviouu two chaptors. 

Tho maximum likolihood Qutimator, undor tho aooumption ot a Poio8on 

don.ity function, calibratos tho paramotor B againot a tranoform~tion 

ot tho oa"oratiaod ooot of travel botweon i and j. 

(4.3) 

whoro . 
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, 
" .I.', j 

(4.4) 

Tho lo.:lut-uqunrofl cati,mator cnlibrilt" ' t3 tlg.linot tilt' !;ItlIno tranHfol"IMtion 

of coat. 

(4.5) 

In ordor to derivo numerical valut){J for tho paramO-tera, it itl 

nocooeary to define tho form ot tho gtlnordhod cost function, and to 

define 90notalittld cost itoolf. Hyman ().969, pp. 100-109) UU9CJtlf.ltv 

sovenl coot tunctionu and rolatos thoDo to dif foront trip purpOtl(Hl. 

Wilson (1974, p. 70) arquoo th~t it Q function of tho torm 

(4.6) 

is uMod in tho apatial interaction modol, tho travollor io porcoivin9 

• 
COlt linearly. Sovaral authors (Batty, 191001 Batty, 1971, DQtty, }i'oot, 

Qt at., 1974) have usod thin Qoot function in modol ~plicQtion. Undor 

thia aBDump~ion, tho transformation on ceat becomos 

(4.7) 

an4 tho calibration otatiatico, from (4.3) And (4.4), bocomu 

(4.0) 

I 

I' 
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and 

(4. ~) 

Wilson (1974, p. 70) d,,9uOS that a powor {unction of tho (orm 
... 

(4.10) 

may bo moro appropriato for 10n9 distanco travol, uinco marqinal travol 

ovar long diotnncos i8 not likoly to bo porcoived in tho aarno linear 

faahion. O'Sul1ivdn (1968) haa u00d this coat funotion to doscribe intor-

rogional froight flows. In thio' cnmo, tho tr~n6!ormation on cont bucomos 

(4.ll) 

" and tho oalibr&tion BtntioticB.aro, from (4.3) and (4.5) 

and 

(4.12) 

(4.13) 

• 
Othor ~uthQro (A1onao. 1912, DAtty ond MAOki0, 1972, ~fttty and M~okiQf .. 

1913) havo uaod. tho Tanner modol, whoro tho COlt tunQtion ia opaoifiod by 
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I 

(<l.101) 

Doth thtl maximlUo likulil\oud and lOl\tll-uqutlJ;OU ()!Ilinll1lorfJ dvriVt' Ilt"tiutivu 

tor odell pa.ntlnutur. 'l'hv utAtiuticlI by miud,mum likllUhuou d[,O (n,1lty nnd 

(4.1!i) 

e1nd 
• 

(4.1<1) 

Tho Itatiotico from loaot-oquar~H ar~1 

(4.17) 

(4.16) 

In tho litorAturo, onreful'Qonu'idarntion hMl boon {Jiven to opoc1tyin<J 
r-

tho torm ot tihe coat j'w1o'bi.on. Howover, oenor(\li fOCld OOtl~ .. in moo t rOlldi n911 , 

hnl boon doti.no4 dmply A. trtp ZQn£1"bl" .1.0., tdp dhtt\noo. 'X'h1u 10 A 
I , , 

doparturo 'trom the c1of1nition ot "coot" 1n on.rliolt ,t\.ldhu. willlon, ot 

a%.., (~069) allumo travol OOlt to bo a Uncal' t~nftion of aovornl hO,toro I 

travel timo, waitin9 timo (tor trandt), trip lon9t'h, park!no OOf;ltu, «nd 

Q mod"l "ponalty". 'l'ho pNcioo dofinition ot oo~t in thh utudy iD a 
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eo~t funQt!on oem b~ tr\\l\c~t.l;)d to thQ form, 
'" 

(4.19) 

tli;\ .. ttAv~l t~me ( 

01j .. OX(l@f)til wdtin~ tim~ 

"1j fiI trip It'f\9th 
I 

~l' ~2f ~3 ~ p~r~~toru to bo e~~1m~ted (by r~~r0Q"1on) 

'1'h~re h no ~vJ.~Ol\QO 'in tho Utuat"l'Q whio.l\ 1n~tQat(Ht tdp lftn~th to PO 

an ftPPfOpri«~o U"rro9ato fQf Qener(\l13e~ Qout ot travol. T~1p lan9th 
, '. 

woul~ ~~Q~r to be a' poor mQ~R"~e ~f ttavol OQut ~ndQr aondition~ of 

oonU0l't1on in tho "r~~1\ ~rQ(\, or whet). poUUQ<\l otrM~09iQOf;> luoh AO 
"...." f ••• 

J.noreruUn9 parklnu QOatu in t~e coo al'Q involvo", 
• i , 

FfOl\\ oq\\Auiol\ (4,7), i.t can 1).o/.",QI\ tOl\t it, trip'lon\1t.h 1.u "aQ~ cut . . 
a '"l'logato to( t11~ coot. calibration Itl~l.tlQ ~ OQ rQ~Uil~' QAlo~~atod 

\ . ~ . ~ ~ 

fiom,tho aftroPl0 datA. ulnoo !n~OI'·z~nA~ 41otAnQO' lro Q~al1~ dQta~mln~, . , " , " 

rrom ('(\ .,6) 

,,, , . ' . ' 

.,< 

.. 
. " 

1 
l 
t 

~ 
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whore.> C ... menn tril' lonCJth (ol.lt~orvea) • 

motor w\lueu (u(\tty, lQ70o, p. 109) I it hi not (\ v~U<l llt(\thUo \U\1\1 (Ht 

tho hiVh~l' mOI(\onttt (;f t.he ditttributJ..on d()t~rmino th", t
ij 

dendty tunction 

, . to be I'O.ilH'lOI\. Othor oondition" !MY I\ll\K~ tho (1 t~ti6tiQ un6u1 tAblo fttJ 

woll. t'o~ o Ktl1ll.).l 1 (;I , "h().pl~in~ l1lO~eh OAnoot be QAUbrt\ted to motln trill 

l'Qn<;ltt\ boot\\UjO thu trip p~tte1:n~ a PX01:()-l'i, 10 not known, (Oponghftw, 1973, 

p. 3(7). 

VA~iftblO dOfinition 11 lmpQrtftnt ifi dotormln~n~ p~rQmQt~r VAlue!}, 
. I 

ftn~ ~rftmQtor eot1mftt1on la alQooly rOlnto4 to moddl portormftnOQ 

(epO\\l}h~w., ln3, p, 3d'l)", &mpirLa~l fl\1UCU,CO. thorQ~ora., ono""ld bo 

dll'OQtad tawftr4a tho l'~chQ dOfinition ot tho \10nOrlUJ:l~d eo~t vn~iMl.tI 
, , , \ 

1n oftllbrfttion otAttotlae,'cQ AI to'l~roVQ modal porformanao in ~plio~· 

tiou, 

• 
rronytl\o 1i~Q<lino 41110"fUJ10n in onapt,QrfJ ,t.wo, thrctl· t\'~(\ to"~. 

.. " 

• .. , M 1 

tbroQ ~l~t.ina.b p~ltm ara{\o Ql\Il. :~~ t40n~i'lo<t, ' Ch~uQr. two nn4 tn:Q(! 
" ., 

bC\VQ I'Qv1owcd tw~ Qq~aUl\~ atAfWlu'ol\l" tl\QQ~o41 of pafftmo\101' ~aUl\\{\Uon, 
, '- ~.: . ·0, .. .. r • a· • 

~aon tl\Qtbo~~a~Q' 4lt~~t l\'.~tiono .~O~t (h~ i"~YCf d~tA, ,Tho 
, . 

• ,. 1.-4. . , . '" 

l\\{\t(ttt\\\m l.~kQU\\Qo.~· .o,~!\\\~t.~ ~OQ\\maa .~(l t.t:tl :~Q.' ~~~ .~n QaOh tn~~l'ob{\n~o 

'Py·t\ opcot~~~ PN~1U.t¥-~~nCl{~ '~funQd~~t' 4ba t»O~t'Qd 4Qn.l~f f\U\Q~ton 
, t... .' ,"j ..,,' , 

~ \ II- J '0' ,'" • , I I I _;"") 1\ 

oon b~ ~l.lt.tl4 to '~~lp .'P\\f~6Q,f unQQ. th~ ,v.ari..~nQO Gf. ~~~VQl. (W"ar- l 91v~n 

1ntarQb,MttJQ ~. Q4it(a.~~":~~~·~~~Q~nt, t\f~' p~t~~~~~ . Jl~~~\\~~. ttll~, ,p~~4. 
, .. " \' .. . . . " " . . . ... ,',' " , 

" . " , ... " '1. '. \ , '",,:' .. ,.::. : .. , .:, . "., ' ....... '. :: ': .' .' : ... :.' ': ;" ,',' .' ' 

,. 

• 1 
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tiod d"nu1ty ~1not1on yJaldu Q unique hot ot oalibrntion utnt1utiuu, 

optimum Pcu,"/1Il\Qtar VAluOD, dedvad froID tho IDftx!mum l.tkalihQod O&lUmAtor, 

dapend \\pon tho travel pUl'pOIi\O bdnu moool1oQ. 
-' 

'l'ho hHH~t-~Qu~rof;l outimAtor, on the othor hAnd, m(\kee no l\IiiIlUlIlllth)IUJ 

About t.hQ dAtA. only on(\ (lot of oal1bfAtion IltAt.i.OUC(l afO derivad, 
<" • 

ragArdleoo ot the data, Thoroforo. tho optimum PAfAIDfttcr VAluQU dOf~ved 

by lo"ut-squArcu Arc not dependant upon tho p:Ob~ility Qeneit:y function 

ot t 1j , and thUD do not requiro any Aooumpt1oni About trip purpooo. 

WhQf{HUt t-ho maxim\\ll\ U)(ol1hood ol:1Uma,tor mAkoti vort &'oQtdotivCl 4UI"umpdono . 
About tho datA, tho lOAo~lquAroft o~timAtgr makao very wOAk onco, 

\ DoaS"th!u meAn thAt it tho data rcally do Ar!o~ in tho way pootulAtad 

by th~ ~AKtmum 11kal1hooa o.t1~tor, tho par~Qtor vAlu~e darivod by -, . 
this mothod wUl Vivo tho (lAtn ~ battor fit to tho· "Atft thAn tho leAttt, ... , ' 

"- ot • , 

oq\\(\rol outimMorl' It 8~, them 1<irQf' i U.il14) Iloo~t~on th(lt trip pur':' 

~POIQf Ind henoo ~~I chft~lat~ril.t1o probGbi~1~ dan,Lty ~\\notion, mUfit.bo 

.PQo1,Pio4, botOH opUm\,\tt\.p4rM\Qto~ ~l\\al 04ln bo "e"dvo"f, 18 correot. 
, " . 

,Tho problom 11 thulcto 4otQrm~o whQthQ~ thoce 'B~~t1ona ~l'o ncoeaeft~ " 
. ' . . 

to fivQ tho mo4~.bO~~ ll~ to ~hQ 4(l~1. .' 

Another problc~ IrOQ conOQrn. tho rQ~aulQn.hlp tho rftn4em ft~mplo 
I '. 

bOlrl to tho aqt\\~l di.tr1b\\~1o~ from whiob it ia tAkon. Aaaum1nu thoro 
<. "'. . 

iI ".0..'1\(1 vldltlQl\ 1n ~ra'Joi botweon Ollan i.ntorOlumgo, ~p1QftUy 'wlth 

'lnaQn .i~' Mel Vl\u.n~ ~l3a I .~t hAlilQon .hown IIhAts. ~~ a f~OIO t~l.~ 
.\arVQ~. tho vlr-LOfigO 'Qf ,tho .~\l mQM 't II 1«\1'90 I. tho ",,"fionQQ in" 

thQ ft9t~Al "~VQ1"on ,tho ll\~Q~Qh4n~Q. Singa ~Q VQri~tl9n on I givon 

intQ~oh~QQ'aln he i.fiO. (\ .inqlQ ~an~om '~10 m~ ~Qt bo A roltftb~Q 

t:Cp~l~ntotlon of- ~hQ l\\~on ,"t\,(\Y~i 4iflJib~t.~~n. wl\iob $0 mQd~l 11 ~J.!fi.nQ 
• I ! ~ . , '.." ' " , , 

" /'/' . , I 
, "l . . 

f 
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to pred1ot. 6inoo th6 v~ramotoru aro oal1brntod a~Ainpt thQ Dample, it 

in importAnt to dfttQr~n~ wh~ther A oultabla 001ropvond~nQe bQtw~Q~ the 

'rha third l).robhm area oonQornu the ("~Uni ticn ot '1(% dClbltH'I in un li­

brt%tion ~tC\t1ijt1oo. Xt .hl\o boem'Dtntea that paramoter vnlu()o d~l)Ond 
/' , 

utlon th~ oll\t,lr!:Qul doUnit1on of the mod@l var1AbloD (Lowry, 196~, p. 

163), AHa that moc\{}l vortor~ngt} h. dopend.ent: upon th.~ p(\~Amot.nr Vd\UHl 

I . 

derivo9 by tho calibrAtio~ ntnt1utioo. It trip len~th 10 not A "uitablo 

ft\u'ro~nto tor the <,JQl\ofAlhed eOQt vcu'1t\blo in tho m(\xj,mum'likolihood' 
, " 

,and leaut·~q"areft onlibr(\tion otAtiotiQo, ·thon aalibrAtion A<,JA1not tho 

Y"rlA~lo yiQl~t1 a prediotod c1iatribution hAv~n<J a ftub-optlmAl fit to tho 

ourvay aat~. Tho problom 10 tharotoro. t~ ompiriQ~lly aatarlMna wh~t 

" ~OlW1Q1L()fla:t~N ~',mXt.M1Nm 'l'nm :t8fJ~GfJ 

~N . CM.Jllru\'1'lON 
, : ' -r 

I •• 

. ': .~ 

ThlU papo~ now propoaol to.QQnlt~"Qu~ ,tr~mawbrk upon'wn!a~ to 
~ ~. ,. , 

oH~mlno tWQ of t~o lilual 4il9UQIQ4 i~~bo P~VLO"' 'QQ~Lon. 1bof~~mQ~ 
WQ~~ "11' t\Qllun~'d to tQ~t whotl\cf ~a {\.~Ulll,llt~on. "etbO~t thQ~, 4&t~. iffipllcc1 . . 

• ~ • 'r* • ,_ , _ It'. 

bf thQ mft~1m~m 11kollhoO~ o.~tm~t~~. darivo porftmota~ vdl\\oi Whiuh 91VQ 
t. ' ~,-~ • , 

tttQ,ltio~Ql " bQU~Qr 'fit,'~~ thQ ~~~1.o ~ht\n l:"4Ult.-OQ\\Qnlf wlliol\ makoo nQ . 

~l~~~:t'\Q."~~l~l~ ," Who' 'ft~Q\'{~~~,',: .. 'lIO:dCG~~~~" ~Q ft&IQla, whothor . 
,.r / ," ...., ' ...• ,' ... ". '. ',' , ., 

. "itngb l'(\lld~" u~1tl 'il' ~n. ~QQ.u~~o. '~~Qont\~~!o~ '.of th~ :(t~~\\~1 41aQrl·" ," 
, <~:: .' '.>' '., ',': :', '~'<' . .''''' 'I .... :·', .:; '. " • ~,,,, ::I<;~':: :': . ':,. '::' ~:. 

, . 

" , 
, '. . ~ ... 
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bution, upon whiah to o(\l1br~te op"U(\l intor~Qt1on modt1l&\. 'I'ht) itHJUt) 

111 till' 
" 

b~ utudi.od, but. o~n bt\ contl'OHocl, to prevent it from biAl>lin\l thl<' l1o'l.:Iull.!;I • 

ot th~ oth@r two iD"U~O. 

'l'ho pQPor propoj;\~D (\ hyvottu~t:.io(\l eXl\tnpl'" f oondhtinQ of t\ "lypi<.'t\ 1" 

urbAn Aron of mOdorate "i~e, divided into a oct of ~onou or equAl Aru~. 
~ 

Wo nr~ CJ1vcm tho hu!1\btlr of ol'ioj,nti .nnd deoU1HlUonp in ()(\oh ~on~, ~nd thtl 

UOMraUlo1ed ooat of trcwol on "net, interQhAIlQo 18 ~tH~um(,H1 to 1:16 the 1nt.€lr­

"pnd d1gt~naQa. Given thiP 1nto~I1\(\Uon, wo 1ntand to upe n tll)(~oU'hd 

tunotion of coot l\nc1pAr(\m~ter ""l,uo, a, to daUno -0 dbt.dbutd.on of 

tripo in nn urban ArOA. 

ny Qonuta:uQUnu tho t'l'a.mework il'\ thh nmnnor, we pa&UHHUJ mora dntA 

thAn 40el thQ 1OOt16.11o: when ho ftPpUoo tho mOOol L.n ~n Omp~dQAl lItudy. 

r,rat, wo know tho AotUAl 4totrlbu~~on ot trA"al tn tho urban oyfttom. 
. , 

Deaood, we know 'tho cOlt. fuoatlon th1\t. ~ot.Qrm1noQ tho illlPol1Qnco to t.r(wol 
. . . . .' . 

\. ~ 1n tho I~.tam, rlnAUf.t WI know ~ow oo.~ 11 4,Hnol1 ~n t~(t 4htdb\tUon; 

. U' w~ tNt~ • rAndom 1~10 from tho Qonoftltod 41I)tdb\t~1on ~ we OM 

(1) mako Q 6t~~~.tiQal moaouro' ot QotrooPQndanoo botwoQn tho oamplo and . . . . . ~ . 
• to, • • 

tho Aotual tr~ 4i~tri~"tion, and (a) OA11b~tQ' ~ ,pAti.l.i~tQrAot.ion 

mo4ol ot tho Itlma fom- ,whh tha otAtiiti.Ql\l cUIt.im~tor. ~vJ.owo\\ in 

ohaPt~~. two And th~o., .0 (\ft to QompArQ th~ 4Lat.dblltionl \1Qnot'(\t~d'" 
from th~ lltinmt.od pc'\rM\ouori\,.w~~t\ tfi~ ~Hmpl~., ., 

Wo "btWQ informAti.on Gout .oovo~.i· t.at=1 in tho Ql\Ubr~t.lon Ilroa~· . . . . 
" . 

4uro Wht9h ~q"311~ muat b~-I.~uma~ 1n·praoticll oa~1brl\tion- ftPplio~t~Qn", . . '~ ~ 

. " 

I 
" , ' . ," 

.. .. 
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La., tho t"notion ot t;1oll()rnlhed ()Oflt ~nd t.ho ~uUniti()1l of OCltJt in thu 

, , 

pottod frAmework, tlny'difforono"u betwoon the Qutiul¢ltcd d1tttributiontl (by 

maximum likelihood Md leApt '0'1\\(\1'01.1), will rQftult trom tht) onlibl.'ntion 

"tQtitlt.1.o~ only. 'J'hi,(j an(tl)lef.1 UII to cwalu(\to th6 p()rtorm~no(1 ot th6 
:. 

rauoaroh, and will dCHorlbo tho hy~o~ho~1aAl "rb~n area to DO modQllQ~. 
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IN~'I\OOllC'l\ION 
" .'1 •. " ....... 

Cl\{\ptal' toUI' daUna(\ tho tl'ftrnewol'k upon wh1uh thtl two (a~U.br3UOl\ 

lfU'"OI {\l'O to bo teu ted, :tt. now l'crndntt t.o Q l.t'l\l' 1y (lQU M the hypo­

tboUQO eoncarn1n~ tho relft Uonohlp of ~ha ~u\mplo dAta\ to th~ mot\1l 

travol di-fitr1bution. And tho CJoo"nQuo-ot ... t1t. ot tho moool N~ed1QUono 

"g1n~ dlftarene mQthodo ot ~r~m~uor ootimauion. to tho tr1~ Hurvoy. 

Travol !! .. to gO dbudb"to(.\ Ln t\ hypothot1aal u).:b~n oyotem, Th~ 
.----. 

... 4~to·4(\y vAriAtion of tr~ft w11~ UQ ~oool'ibo(\ by n ~po~lt1~d proba-

bl~lty danoity tunouioft. ~ tour par oont rAndom G~rnplo will thon DO 

tMon 'hom (\ cU.otdbuUon of tl'{WQl. on A'II;ivon" 4"Y' Wh'O t\l\(\lyah ., ' 

will oonollt Q~ two opaI'Auioni', In the Ur,u, tho o~roepQn~QliOQ Qf 

~Q rAndom '~l.o to tho mQl\n trl~ol. 4i.~ribution will be o~&m1n§~l . ~ . 
Tho l:clu.1t.a of th~ij tc.~ w111 <,Jive \t, (m .1ndtot\tlion of whathol'" the' . ~.. . . 
linvl~ trip I~rvo~ l"ffL9iQn~ly, ~~~~aQnU6 tho mQAn,4t~tlib"tlon tor 

Q~llbr~t1n~ tho .~~1'~ L~~~r~dtion mado1, 11nQQ, 1n fact, thi. 10 tbo . " ~ , -

.4l.\~1~uiOn ~o m04Qllo.~ntan~o~·'o ~rQdlO~, 
'I i ' ". .. • 
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SUQond , the op~ti~l interaotion model will be C~libr~f.~d to tho 

"~mvh dat.tl by both the IMximulIl liX0Uhood And ll't\tlt-lHlU':U'~tJ I3t~tinti""l 

(hmtlily tunoUofltl of thtl 1II"t.rix l'l(jIDt'nttl, tilt' t~ijf will b., l)ciIHWJI. 

~ In thl;) IHH.;'Qnd, th~ d~l\fll ty tunoti(JO" wUl be norm"l with COIIUl\on, C01\" 

IaltAnt v~r.i(m(l{l. 'l'h~ oOl.'rc.1~PQndgncQ ot tho rood~l rrt><UoUol\l.i (\H~.tI\V t\w 

p~u.·amet{;)r~ ~"till't\ted by thtl two outimation ,toahniq\HH1) to thts rimc:lom 
, "1 

Ml1\Vlo, wUl thtm be @xeunlna(\. ~"r: 

'1'1\0 m(:\ximutl\ lik~Uhood €ltftt1at.ioD wH.l mftko tha ~HUnQ tHHlum,ption§ 

, "bout tho dtltt\ in bot!~ ·ol(~u".pl~fl.. '1'hey will "~8umo A pb1Mon dondty 

. function for OAo1\ t
ij

, '1'tu~ haut .. oquAt.eo tttaUotitUl, by <loUn.lUon, 

will not QhCUlUO in the two e:·((\m,ploft, tlowavol:" in tho ~gQ()nd Q{UlO, tho 

lOM,t-oq\uu'al utfithtiolt wUl bo ldontioCll to ~x1m\\", UkoUhood otClth- .. 

Uou, wh.t.~n auumo ft nQ.l'mCll dOI\D1ty funcUon tor tha t ij f with QOfOO\on, 
\ . 

conatftnt v~rlanQQ, ~h1~ 10 OKftotly n~w thQ dAtA will OQQur. 

we ~hQ"ld, theroforo, oxpoat thAt it oOnot4orntion ot trip purpoH@ 
. . 

• l\n4 ita Qh(\~A(itodttt1o prolH\blUt:y c1ono1ty f\U\OUOll iQ importAnt in 

dorlv1n~ o~utmum ~rAroatar valuoD. which givo tho modal A baIt .fit to 

tho "fitt\, than tho ~X~mlm\ lUtoUhoo(\ Quttmt\to:" GhOU14 give -tho 'ma~Q~ 
n ~attQr :1~ to·th~ 4~tA in thotlrlt .OKQmp~Of on4 tijo lOfiat-cqUftfOi. 

, 
oat I C!~ ohQ"l.d '91~Q thO roooo1. • bottor 11 t. tn tho Booand QKftmpl(l, ttl . . 

. . \ 

hawov.,r, tho 4ttl6ronoa in goo4nao,-of-tlt betwoon th~ modalo, pra41oto4 
.. . '. . 

. '. .. .... ~ 
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tho l1puClifio~t.lon ot uniqua calibrt\tion I!tAthtioH tor t:lpeoitio td,lJ 

th~ ~\lH\lydiit Oivun the QondHiooti in thfl ()x,verilntJntl 

\ 

1. 1\ dnt;llo tril' fturvoy itt ~ ft)l ia.bl.., r~~'r(1fl~ntA_t:.1on of tho 

m~ftn di~trlbution ot tr~v~l, ~\iu will b~ oQn"1a~r~d 

" (moAu\\red by uomo IlpooUlcd odt.edon) botwolm tho linmplo 

matrix And tho meAn trip mAt~1x. 

prbto to the Qond1t.lolUl of tho, data pf()vidoo bettor 1'IAI,'A­

motor aAtiInAtct\. 'thh wil.l bQ oonoic.\Qrod vor1t1ed it tho 

n uJ.Qn1Ual'ntly bot.tol' tJ.t (mc(llul'od by fOmo u11001,1'10d 

ar1tQr~on) to t.ho eAmplo~ 

" 

l~ tho. It<loon''' hypothclb 11, taruo. thon t~tp P"t'poIO, diot1ntJuhhod .. 
. b~ ito oharftc~QrJ.IU10 p~b~l~~ dQnoJ.~ ~nQtJ.on dQ.Q~1bin~ tho . 

" I 
V4\r~{\naQ of tba ~J.~' ,@lemQntft over c{\oh J.~"ftrc.lh{\noo" Ill,ould bo inoCJ1:po", 

X'lta4 into QI~J.brAuJ.on It{\~£DtJ.QD, 

~Q ftnaly.u~1 nftl been 4oVQ~oPQ~ to tXAmlnQ tholo ~othQaCD, 

1l0WQYQr. boforo tho. l\l.lll~lJ.I 11 performod, ino orltadon rot: "'Q".\\rlnCJ 
".', , .. 
,', • • '. l! 

90odne.o-ot-flu m"~t bo dofJ.nod And ito A.8~t~on. nou~f to epootfy 
, '. 

th~ .~lmt~u ~o" tl\'~,:~'~Ql~~:t.~~~ ~nid~ IrQ \0 bo' 4~ftwn fr~ thl1 't\\dy~ 
. ", '.~:., :. '. , ' ~ , - .. , 

. .-
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TUR ruUJ\'l'I ON811l r llWl'Wl,a-:N Ol"l'lMUM lQ't' "ND 

.,' .. 4' --........... --...---

OP'l'IMUM N\Itl\Mt~'l'lt;H Vl\l,ul,a: . ..~ -.. -.. ., . ........-.-

d"t;~rlnir\(~ opt 1m"m Vl\rt\m~t('r VI\ hHH.I whivh m~y or rn~y not \1i vu t:h~ mod€11 
. " 

tuchniqut1o, W~ m\UHi bo "wnfO ot tho. two dtarnntiva m~nninuo of 
• 

"bQl1t" p{U'AmC3ter v~luo,. 'l'h~ l)(\rnmot~rtt lMy'bo tho Dou't Qt1tinmtut.1 in 

tl\at theJY l.\t:" optim\\m with roftpaat to tho otAt.iotioal ootimAtclr. 

I\ltQrnnti~~lY, toay fMY ba th()-I,l.bont QutimntaH.\ bCQC\ul.'lo they Qivo tho 
, ! 

modol an opUmum tit to tho- ltMlplo dntt\, :to tharo n uoJ-qUQ ooluUcm 

involved, ana if QO, whnt eondU,lonu ~r", ncaOIUHu:y to~t"tht1ot'\lly , 
outirtlr.'tte ptlt'(l!l\otor ValUQD whioh caivo ttla' m()t1~).. (Ul optimum <;JoodmHlo-of­

fit to tho oamplo d(\tA? 
( 

InitiAlly, one mU{lt dotermine whethor tho optilMlity condition8 ot 
. " 

gOOt\nOR8-of-:it. WUlJon (lP'14, PJ 32'0) Qt{\tol tn{l~ {\ftOf dodvinu pal'A" 
• ' 0 ,,' 

motfof vAluOD by A BtAU,UOAl oQt1~tLon tool\niq\lo. 8\lall AD m(ut1m~ 

l1koUhood or lOA&lt .. sqUAl'OD, we .~ould mO(\I\\fO tho medal'l gcodnooo-of­

fit ~o tno IAmplo dAtA with {\ col'fo16tlon otAtbt10,f ouoh AD tl\a cooUi­

oient ot 'd.Qtormll\~U,ol\ (Ra,). ·O~ ohi".q\\{\rod (XJ ) f both Qf wh1gh mOAoura-

tho oQrro@pQndonQQ of tho modal t., output to tllo 4Ml{\, '1'h10. ho uU'J'lOttttl. 

", (Jiveu, \lO tho ovor~ll 1n<.Uct\t1.on wo nod. to dQt.tu~~ino whothQI' thQ ,l16f(\-

, motoll dorivod. b~.optimi.ino tho 't~t~.ti~ VQno~.to'& 41otr1but1on which 
',' ." . . '(; . ' , 

. -. 

corro@PQnd. opti~lly to thu dAtA, It A180 holpo uo ehcola botwoon . . ~ , . 

. ' cU.ffor~l\t tor'I , Qf f\\ncUon, 0\\01\ •• thO tf"va~ 1ropc:dAnCQ 'unoUon., 

\ . . '11 
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It relMinu unolo~r why oorrtlltttion ut~titJtiou HhQuld U6 mor~ rol1-

1\1>10 in mt)(\uudnQ the ...moclel ,~ \I()Odn~M-ot'-t1 t than [MximUIU Hkoliilood 

tit l:\\ld (\fH.tUmfHI tho otatitttio to DO normdly <l1u.tributocl. 'lett thor~ ill 

no ovit'hmou which f,j\lpporto thh AOOW1\{lt:iQl\, 01 von the inClOn",htenoit:l~ 

whioh (')M Arh" in tho L\Pplicmtion of thio utaUtltia (ptlQo 9) I it :hi 

llrCUHlll\l,t\\QUO to In(\ko nny t\DO\U\\l,Uont About itt! diDtr1buUon without 

ll\.'\kinQ tl thorou<;Ih inv(uJtl<;Jt?oUon ot it.a proportietl. !lineo tho tttatiu" 

tic· 10 \,n.blluu~(\, aonttittt.ant., And ofticitmt (mZu if tho data Cleaur i" tho . 
W{\y p08tulfttocl by tho, IItQUOUC, th9ll ono CAnnot in tor th"t it Uivoo 

.~ny bottQl' 1nd1o~t.ion ot ~codnoDu·of-fiu t.hAn otAulutioal oatlrnatol'@, 
" 

aU9h Aft maxim\oo likolihoOd or lo~ot-eq"Qrao. 

Tho l\@;umptlono ~4o'))y tho Qhl-Iqu~re~ otftt1~ttG ~bo~t tho d~~ft 
'. . 

Arc not AD Dt~lot AO thODe made by othar otAt1otloo. Aloo, itg dititri-
, .' 

bution iu Duoh, thGt ~ tho numbor of 400fCQQ ot, trQOdom on tho ot"ti~-
tic inoreQloft, tho 4iut.ributlonofohi-lquGfe4 appraftchau. th~ normAl. In 

\ 

opQt~Gl jntorAct~Q~ mc4Q~~tn~J thQro 1a ~lkQl~ to bo • lArva numbot ot 
~ ,., . , 

4ogrcQo o( frQ~4om wh~n ulino tha tt~tl't.l0 •. 4~Q '0 tho number ot v~r1A· 

bleD involvcd. In A 'IYlte~ of n.orlulna And n.dQ'~1nA~ion@. tho, ohi-. 
, • , eI • , • 

ac£u1fo4 .~{\~hlUO l' o.10\\1f\t~ ov~r ni 'v~d6bl~u'f 1.e1" tho tl~" ~hc' 
'm0401'whiah 1. g~rcd to·~ho.4'tG 18 o'lQ~l~t.Q~ f~~'n orlvl~.,p~oifLQ ." ~ , , 

f.~tOfftf Al , n d~.t~nG~~~~O~QPit~o fftot~t'~ .~~~ .n~ tho ~tamotor B, . 

Whl •. ~du~Q8 th~.~umbQr 91 4Qg~QI o( ftcQ~Qrn,on tho It~tL.tiQ to , 
i ," . ". ,. , 

" 
~ , . 

.. 
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(Wethorill, 1~61, p. 202) 

2 2 
n - 1 - (n + n + 1) "n - 2n ~ 2 (~.1 ) 

hYll0thoth:(%1 tlytttol1\ in th~ Af\~lydH, tht3 t.1tl\thtio ht\o 2400 (\"\lr()~11 or 

tro(ldoll\, whioh IIUHmtl the "htribut.iun ot ohi-~q\lC\rQd h A1Jl'fox.l.l\IAt~ly 

nUflM1. 

'l'hh tu'bitnrlly inwO&ltHt C\ nor-nml dondty tunotion on tho t
ij 

f 

whioh IMY bQ inAJ~proprinttl in opM:.iAl intorl\cUon IDo<.\o.l11nu. fl'luuefoX'@, 
.. I 

ito mOc\fturo ~t1t rooy bo' no IDoro vnlid them Any othor flt(\.tht.iolll 
, 

ll\O~Lture. Wothtu'Ul (1~G7, p. 203) no~oft. tl\(\t thQX'Q "r~ otton bot tor 

toutb whioh limy bQ UGo.d when tho dn tfi hAvo DQIDO othor tntm ~ nonn~l 

<1btdbution. 11'urtharmoro. othor roptX'iot,-iontl o.Olloo1'n1n<;1 C>1(PQQtod 

froquonaiol (Wotho1'ill, 1~61, p. 203) mAko tho Itat1utio ovon 108ft 

attr~otlvo to ~ply ib tho "pfitiAl intorAotion oontoKt. . . 
Uow. than. CAn wo 'mOAouro whQtht\l' o,pUmum pAl'amotot: VdUQD, <.\(}dvod 

from A fttAU.~lQ~l eoUlMtol'. c;,oMt'At:a • 41utrlb\luion whloh yhldf} fill 

opUmum U.~ to tho d~tc\? 81ncea tho Qorrell\tion ot_U •• tlo~ <11oo\luood 

Above mAf not ~Q t'ollablo ~Ql' ~hl. purpoQOf Uho~ olnnob rQ~olvo thtl .. 
~ . 

Wo Itill rQ~ulra ~.tAti.tlo to mQ~ourQ tbo OOl'ra.~ondQnoQ betwoon 
l' , .' • 

pred£ot1ona b~ tuo m~xlm~ l1kQ11hood .«nd lc~lt·.~unroa ~lmato~l\ 
.. ,t • 

~ 

Tnl& p~~ p~OP0801 to'uoo Uha OOQ~t!oiOnU of d~tQ¥minfttlQn to lOa if . 

. tho ~Klm"m l~kol~\aQd and lQGlt-oqu~roa QQ~lmatorl ~onar'to prcdiotlonu 
. Iy' • 

, . , ' . , ' 

whioh' t'U:O ot,mttdl". not to ~kQ In¥.lntorQ~co. III t.,o ~hO P~Qc.\~ot1onl\' 
. \ 

\ 
I 
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uoodn~ug·ot-tlt. Dy u61n~ thia corrol~t1on utnllutiu mur~ly to ~~t ~ 

lit""!,, for tho &l1milnrity or (lbttilnilarHy of the" two ,U~trib\'t:jol\~, W(1 

~ 
• TO ro:",! n 11,on81o ton t io tho u.. of tho • tot !. tl" , 

, 

'rul!. PlIY[IIGAL OW1"l'lNG 1~{)1~ 'l'fIl~ J\NJ\(:allr. 
•• --..... I - ............. 

iutltl'\U\'\()l\t thro"uh wh1Qh ft opoo~~j.od tttlt ~t tdlHi cnn U\l db trJ.b\lt~d, 

From thtt dbtdbut.lon, A t:dp D\lrV0Y w111- bo t~k(m to onlibrntu t.ho 
j • 

opnUAl lntornctian modol by thQ mothoc.\o at ml\x1mum l1kol1hoQd ~m{\ 
t' 

. -
61/;10, EQuh ~on~. 111 n\lllWorod for'iaonUf1cntion,- And h rMnul;\lly t\ll(l." 

C(\~cc.l apoa1tioc1 proportiono Of todp-orlu-1na (lnd tl{t,Unfttlontl. '11\10 

o,~r~Uon ~oubly-col\ott(\~ tho 4tntdbuUo~ ot tdps 1n tho ny.tem, 
~. 

~hQ zonoo CAn bo AggrogAtod ~o form 80verAl dlottnQt oub·Ar~Ao 

(ou~UnQt\ by -d(u:k bQun4a.deft) f whioh rofloct 4Uforont land \\Uo ChA­

t(\otodut.1.ce of {\ ~pla(\l urbM AreA. ,'1'h.o o\ltqr liIub-nfOM l'tll,rOI1{int. tho 
, .. . ,,-

l~urb(\I\ or rQlidcntl(\l ICat~1 of ~Q "oit~", amt 4~O o1\Ql'aotodic4 b~ 

ro&:\~ ori.Cjlina {U\(l few 4euUnM.ion. in OAoh Ilona. Tho innar uub-a.rQft&} ., ~ 

- . ' 

eDD. with ~ny 4ogtin~tionl ond. few trlp-oILqlni, Tho proportlono at 

ol'lvina l)mt 4olt.1ntlUOnO C\11.qa~to4 to a~ch zono (\Iro d~dunq4 to ~tl~Q't 
.-> • 

ft UrftdUftl.tngreafto 1~ r.\Q8~inl~lann tc~ftr4~ eno oon~rll 'rp~ tro~ th~ 
"\ I /.-. . . . ' . 

j' \ t " _ ) . '. 
I , . 

. 
.' 
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dutsKirts (Table I), 

Although thig is an id(!aliz€:d rfJpreBentation of the urban f:;Yl'.ltcm, 

it enablee us ~ generate a distribution of trips ov~r the area and to 

avoid many problems which beset modellera in empirical studies, The 

config'dration of the area ia denigned to be aasymmetdcal to prevent any 

trivial solutions ~romoccurringin the gp,n~rati6n of tripg or th~ 

calibration of the rr~del. By dividing the area into zonea of equal 

size, and by strictly dafining the number of brigin~ and destinations 

in each, instead of,using proxies for attractiveness, biases are pre-

vented from entering the problem ~~lilsotl, 1974, p. 69). 

In the idealized system, we are assuming the zone size to be ~mall 

enough to account for all of the' potential int~r-zonal interaction 

(Batty, f'o,,~, et at., 1973, pp, 353-354). Also, the (:y.ample considers 
, , 

internal travel only. This avoids the related problems of d~l zones 

and closure, which usually must be taken into account in spatial inter-

action modelling (Batty, Foot, et aZ., 1973, pp. 362-364). 
~ 

The distribution to be generated and mo~ed is for a sinqle broad 

classification of trip purpose. 

destinations in the system, the 
. 

characterize journeys-to-work. 

From t~e allOcation of origins-and 

distribution that results may well 

.,' 
Travel is considered in one direction 

r.t-

only, from home to work. This 1s the general modelling procedure in 

urban transportation studies (Ben-Akiva, 1973, p. 34). 

A 
Under these iqealized conditions, 100,000 trips will be generated 

in the system by a spatial interaction model with known parameter values. 

The generated distribution will be defined to be the ~an distribution 
, 

of daily trips that occur over a specified time period (e.g., a year) 
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TABLE 1 J 

• TRIP ORIGU1S AND DESTINATIONS ALLOCATED TO EACH Z'ONE 
i , 

I 
I 

I 
ZONE ORIGINS DESTItfATIONS ZONE OlUGINS DESTIHATTr;w; 

1 2,000 56 
. , 

26 3,500 102 

2 1,299 226 27 1,900 907 

3 3,200 68 28 1,099 1,248 

4 3,599 226 29 1,499 13,619 

5 850 2,496 30 2,000 2,723 

6 1,000 2,837 31 1,699 1,021 

7 700 5,674 32 2,899 90 

.} f 8 800, 3,404 33 1,099 3,858 

~,::~ 9 2,100 1,36~ 34 2,200 1,134 

>: 10 3,800 124 35 2,099 453 

11 3,499 90 36 2,499 113 
• 

12 1,600 11 37 2,700 .. 873 / 
I> 

13 2,100 11 38 3,000 771 

14 1,000 22 39 3,399 726 

15 3,100 1,021 40 3,300 158 

16 2,500 2,383 41 1,799 1,248 

17 899 1,929 42 1,000 I 4,653 I 

18 500 20,429 43 1,700 ~',426 . 
19 1,000 11,349 C 44 2,499 1,430 

20 1,.050 2,269 45 3,900 590 
1 

21 2,100 124 . 46 2,000' 408 
. 22 4,000 ; 136 47 1,399 ~ 1,634 

23 2,299 68 48 1,000 964 , 

24 1,600 45 49 1,200 249 
'''T''-"':' 1 
~* ~' 25 1,400 79 50 600 ~136 
.' 
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in the urban area. daily number of journf.!Yo on each interc.:hangr: will 

be allow~d to vary' from thia mean by, firnt, a Poiecon d(:r'fiity functi("Jn 

\ 
,and flf.:,cond, a .normal dl.!naity function. It ia from thf.,HW dl f>tribution~J 

,: that fou'r pr:r cl)nt l',md(JtII flamp)f:fJ will be drawn. The Hpi.ltial int/,r­

action model will then be calibrated by the BtatiBtical cntimatorr. 

Clgain13t theaf.! dat4, to t,:1eterminc th/;' optimum paramr.!ter valuI:!L Thl: 

algorithms ~hich perform theae operationa will be df.!scribod in thf.! 

following sectiorA 

. A DESCRIPTION OF THE ALGORITHMS IN THE M-IAL'lSIS 

_/ {.! 
The reaearch design is baSically a cOfttrolled e%~riment con5ist-

I 
ing of two parts, each having a different fUnction. The first part 

involves Bgst+Jm siTmLZation. Its function is to generate the variables 

with which to make co~epondence ~asUPe8. These measures are 

necessary to evaluate the competing hypotheses. 

The sequence of ope~ations in the analysis is shown in Figure 5., 

The remainder of this section briefly describes each of the operations, 

System Simulation: 
,. 

The first operation in the analysis is DISTRIBUTION. Its function 

is to geprate travel throughout the hypotheticc!fl urban a,rea. 

matrix is generated by a spatial interaction model of the form: 

The trip 
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r -------- ~ -- . SAMPLE 

, 1 
I , 
I , 
I 
I 

I 
I 
J 
I 
I 
I 
I 
I 
1 
I 
I 
I 

, I 

CALIBRATI~' 

(Maximum LikelihOod) 
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'. o .. tlH: nUmbf!X' of. trip or1'1 ioo 1 n u)nV 1 
i 

D .. tho numb(;r (.)f trip-d(~9ltinatjooll in ZOO(j j 
, j 

d i j - the din tancl) bl!tw(:cn zonrJrJ i bnd j 

e .. a paramet(;! mf.!ar.lUring tho (:xt(:nt to which trav,;l 

Ai' B
j 

• oriqin~epecific and deltination-specific balancing 

fact(.)rH. 

(~.2) 

The value of e is arbitrarily specified (e .. 0.02).. F-ince e io 
" 

regarded as A meaaurc of the extent to which·di&tAnce (~n out ca~e) i6 

cOO6idered when travel decifiionD are made (Evans, 1973, p. ~O), we 

expect this parameter value to affect the distribution of tripo in such 

a way that the mean trip length becomes longer. Thin tends to promote 

more travo~ from the peripheral suburban areas over longer distances 

to the concentrated ~mployment areas in and around tho CBP. This 

pattern of travel would be expected over an efficient t anaportation 
I ' 

o 
network. The balancing'factorl arc determined for this 

trom tho following equation. (Wil.on, .r970, p. 16). 

for all i 

Bj a t A (ad ) f i 01 exp - ij , 
for all j 

etcr value 

(5.3) 
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The model ClhtributollJ 100,000 trir,fl throufJhout tho f)-fty zona IJYfJt('m 

trip flVltriY. r(:r)r('rJ~nt tho mean trav!:l 90ncratud vvor thoru: int(:rchilnqr:p,. 

Since we (':Y.P(!ct tho volume of travol to fluctutstl: on llny gj Vlim j n tr:r-

change, tho tcrnction of PRODSERVE iN to conntruct a now trip matriy. which 

rcfl(~ctfj thiB day-to-day variation. Tho opl:ration [,WrlUm(:~J that is np(:ct-

He'd probability de:naity functi'rln del'Jcriheu tho variation in trawl! (In 

oach intl:rchangc, Le., Pottwon or nc'Jtlnal, and UBCsa random numh(;rn tr) 

COnfltruct a trip matrix which would bl) likely to r00ult if travr!~ vari(:d 

in this manner. 

SAMPLE take a a four per cont "home-intervi~ survey" which i!J UB(Jd 
, 

to calibrate the model. Tho origins in each zone are Delected at random 

and t~eir destinations arc tabulated. The reBulta arc aggregated to 

produce a aample trip matrix, from which calibration statistica, Bpeci-

fie to the maximum likelihood or leaat-equare8 estimator, are calcula-

ted. 

These statistics are inpu~ into CALIBRATION to estimate the model 
, 

parameter ~, and balancing factor! Ai and B
j 

for oach statistical estima-

tion technique. Trip matrices, generated by these estimated parameter 

values, are eubaequontly cpnstructcd and are input into the second stage 

of the Maly6is. 

correGpondence MCa0UreG~ 

Qnly one meanure of correspondence is uned to test tho hypothcaes. 

In spite of its apparent weaknesses (pp. 17-18), corresponqence between 

trip matrices is me~6ured by the coefficient of determination. This 
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otat1atic 10 cho(lon primarily b!'..cauglj it iu computtltionlllly rlimplo and 

rolatively Q~oy to intorprot. Although more reliablQ mQd~UrDn of tit 
1 . 

ar€: availablr:, fluch ae thrJ ahi-equal'eri (Jtatinti(! or th(l "c;r.p(~cuul 

information" fJtatintia (Morph{Jt, 1975), th/w(! atp. not M$s.ily Ilpplic'.lble, 

'Jinco many (Jf th(: zonal int6rchang()(J in tho fJamr1l0 trip matrix and, th(s 

g(:norat/~d trip matriCflrJ ilr(J Zl:ro. Int(:rchanq(Ju with t
ij 

IJlem(mtl'l ,c:qUlll 

to zero makfJ tl'IOM f:4t~ tif~ticB unaotinod. To uno tho chi-gqUl.lrcd ('Jr 

"expected information" tJtatiIJtic requiren the romevt11 ot zero eJ (:mr.:nt.!1 . , 
in thl! trip matrix, either by zOMl aggregation or by oy.cludinq tMne 

clemonts from the analyais. Both ot theae mcthoda, thQn, moanurc tho 

correapondencc betw(wn rna tr ices on reduced inf orma tion . For th(! pur-

peace of this analysin, tho coofflcicnt of detormir~tion ia tho mo~t 

eatisfactory measure of correspondence ot thooe tak6n into connid~ration . 

The reliability of the trip aurvoy in representing the mean distti-

bution of trips is determined by moaauring the correopondcncc bet"'oerl 

the sample trip matrices generated in SAMPLE and tho mean trip matrix 
I' 

generated by DISTRIBUTION. The maximum likelihood and least-oquarce 

es~imatorg are compared by measuring the corresp~ndence between th~ trip 

matrices generated by the par~meters derived in CALIBRATION, and the 

sample trip matri" output trom SAMPLE. 

TheBo mca6uros of corrospondonce should enable us to examine 

whether tho hypotheses ~efined abovo arc correct. 

I' 
" 

, ' ( , 

i f ' 
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M()DJ:!Y, CAI.TDMTIOfl -

~ion~, dofinod bfi Dp and DN rcnpcctivoly, to ;ho mOan trip mdtrix. 

tONt moaDurod tho corro~pondcnco botwcon tho actual populdtion-bizod 

matricol'l. 

In tho fir~t toat, it wa~ found that the correspondonc~ of both 

0p and ON to the population-sized mean diatribution waD vory clo~o. 

(;no 

The R2 valuo of Dp to the mean diotribution wa~ .9958. 

DN to the mean WiHJ • 9998 • 

2 Tho R vlllu#) of 

The Becond tcot measured tho correspondence of four per cont aam-

ploD d·rawn from Op and ON to a four per cont sample drawn from tho 

mean distribution. 2 In this oa80, tho R value of th~ Poisaon aarnplc 

to the mean sAmple was .9636. The R2 value of tho normal eamplc to the 

mean aamplc was eomcwhat highor, at .9878. 

In order to determine whether these differences in the R2 values 

are significant, it io necessary wto examine the 'structure of tho statig-

tic a~~tho characteristics of tho trip intorchange data it i8 measur-

lng. 2 Conoidor the R atatiDtic. 

(5.5) 
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fHnc4'J tl ig th" numb"r o~ vllrillb1fJ{J, t
1j

, thfl t;l~n6mJ.nat()r r;f t.hifl 

cy.J:)r(lflfSiofi ifs Bimr)ly th(s ~luttl of nqu.ilrnt;l r.1'Jv.iatil".>nl: (Jf, t ij n1omfJ1Jtn frvm 

tho moan. Tho motln nurnlnlr of triPfJ por lnt.urchtlrl(10 .LUI 

100(000 .. 40 
2,:'00 

Con§idor tho chAractari~ticm of tho data. A large pro!~rtion or 

tho t
ij 

ol£:montfl io fJiqniticllntly 10s9 than tho moan. ThiN implicfl that 

the do nominator of tho Btatiatic will 1n turn b~ largo. 

Tho numor~tor ot R2 1s tho ~um ot gquarod doviations of tho 

pr~dict{)d vAlue., t
ij

, from the oboorved valuos. For amall intorzona1 

volumon, tho maqnitudo of the numorator will bo nrnall, rogardlooe of 

tho donsity function of the t
ij

, • 
WhAt in fact io happening in these corroapondenco to~t~ ia that 

bocaU80 of the high proportion of low volumo in~orchangoa, which dovia-

to significantly from the mean, tho valua being subtracted from unity 

in equation (5.5) is extremely emall. Thorefore, significant ditfcr-

cnces in tho distribution JMtric09 are, in effect, "buried" in . \ 

insignificant differences in the R2 values. 

The charactoristic, of tho data, thereforo, ronder interpretation 

ot thes6 valuog oxtremely difficult, if not impossible. 

Although, thoro appear& to bo a better correspondence betw~en DN 

and tho moan. distribution than between Dp and the mean distribution, tho 

si9nificanec of differences in correspondonce cannot be ac~rately 
determined. 
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" Tabla 2 dil'Jplayn tho c1i,:tributiCJrI r,f trjpu (rrim 11 c.:hrJUf'n zrJOI', 

which 1~ roprh~ontatlvb at tho nntlrn cYAL~m, dcc0rulnq to tho ~hTh~ 

ti on fl , thin di(fortmco j(j only rf·fl(,r:t(Jd in thfl thir4 d(,cirrl(.11 pillCO of 

thn R2 atatlfiti~. 

qp.. tho oth(Jr hilnd, when tJampl(:-fl.tzod difltribut;ionH IU"(: boinfJ (.;om-

2 parod, tho dlJnominator ot tho R t'lym 10 much tJlTIt1llor than who" P()fJU-

lation-mizf.:d c1intr i putions An! poinf) compared. Althoug~. tho total , 

numbor of vAriablo9 rcmaina the aamo, tho ~orm ~ L t ij i6 only tour 
i j 

por cent of tho total numbor ot tripa dictrihutod in tho nyDtom. Tho 

molln number ot tripo per int(Jrchang(~, then, iE.J oTlly 1.6. Tho dovib-

tionf.l of t
ij 

from tho mean t!.r~ thun much 10M And thf..: rigttt hand t(!rm 

in equation (5.5) becomOB proportionately largor. Tho ~lam~ diff(Jr.c·ncofJ 

2 in corronpondonce between two matrices will produce ditforcnt R valuev 

for difforent scalon of invoBtigation. Wo expect, therefore, the 

groater differences in R2.valueG betweon tho PoiaRon and normal r.amplco 

2 
to result partially from the ocnsitivity of the R otatiotic to changcB 

in Deale. But tho information loa" rcsultin~ from taking D omall camplo 

cannot be preciooly determined, 

~ 2 
Theoe preliminary tosta emphasiz~ the difficulties of using R as 

a moasure of correapondonce~ Although larger values of the atatistic 

indicate botter correspondenco with tho data, it is difficult to dctcr-

~no how much better this corrcapondonee is. This problem can be 

partially overcome by graphically aesoB&ing as well as analytically 

aSG~~.ing the rcault~.of tho toot, to assist in the interprotation of 

. , 
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TABLE 2 

THE '1r~NJ, l'OHWuN AUD NOf<11J\I, TMVf.:L l'JI.'I"I'r.rm 

GEtH:!RJ\Tf!D F'P.()f1 ZONE 'l'WT~NT'I-r··IVp. 

c>r-;wr I NAT IOU t
ij .tij ,t j j Df;STUIA'fH)fJ t1l t j 1 t 

ZONE roUE l.j 
(Mf;J\N) (I 'ell ~H;{JIJ ) (N(;R1-.1)\L) (MEAN) (N)1 ~;:;{)N) (N(M-1/d,) 

-----
1 0 0 0 26 1 1 1 

2 ) 3 3 27 13 11 14 
) ~ 0 1 28 17 17 10 

4 ._ 3 ... J 3 29 191 1(,5 J lJ4. 

S 35 
F 40 36 30 37 44 36 

6 39 48 40 n 13 10 13 .. 
7 78 73 77 32 1 1 1 

.. r 8 46 45 4~ 33 52 45 ~o 

; \.,. 9 18 20 18 v 34 15 fJ 15 ' . 
• • It, 

10 1 0 1 35 6 7 (, .. 
11 1 3 1 36 1 2 1 
12 0 0 0 37 12 13 13 , 
13 0 1 0 38 11· 12 11 ... 

39 14 0 1 0 10 7 10 
15 13 8 12 40 2 2 2 

16 ~ 32 31 . 31 41 17 13 17 

17 26 32 26 42 64 60 62 

18 284 288 282 43 62 69 62 

19 160 16tJ 163 44 20 19 20 
,20 32 ~8 34 45 8 11 8 

21 1 2 :2 46 ,5 5 5 

22 2 3 2 47 23 24~_ 23 ... 
, ' 23 1 3 1 48 13 10 0 ' A. 

24 0 1 0 49 3 6 
• ~ I .. ' 25 1 1 1 50 1 2 r ,~ ;' t 

;.,<-' , 
" ' 

,,' 
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th(l llctul.Il mMn diutr1.butirm. 

tho two rl1nclom tHlmpJMJ, drawn from DI> lind 0U' IIcalocl up t(> ttll! pfJpulll­

t1.0fJ dl,o to tho moan dintribution, aro .&074 und .fi1J69 r tJIlI{J(!ct1voly. 

Thoro i£l li Bigniticl1nt docro/loc in corroo-pondfJnco to tho mOlln trip 

2 mil tr.Lx. f( v111u(J(J of Op and 0tJ to tho moan worn .9958 and .99913 

rOHfJoctivcly. Atter rHi~'n9 and Ilcalin9, tho corr{Jf}pondonco hil~ boon 

reduced by approximAtoly ton per cent. 

Ooopitc tho roduction in cor.xorJpondonco, nl:ltty (1970c) hall lJUCJqMJ-

2 ted thl1t H valuoD ot 0.9 otill indicate fJuitab16 "titfJ" to tho moan 

distribution. 
2 ., 

However, it is u50ful to ViSUAlizo ... whllt thlfl R vl1luo 

moang in tho gp/l~al i~terAction context. Figuro 6 nhow~ h~~ travel 

io dintributod from ono of the zonos, zona twonty-fivo, to all d6gtinn-

tions, as predicted by tho scaled-up values of the two random gamplo§, 

compared to the moan distribution of triPI. (Uotos Tho liTli:!fJ 'conMct-

in9 the number of tripo to each zono have no intorprotivo vnluo. Th~ir 

tunction is simply 000 of illuatrAtion, in this And in succeeding dia-

grams. ) 

Th. t1gor •• howl tlult tho r.~ .ampl •• or ..... itiv. to major 
"-

trAffic flows out of tho zono, but tend not to account for ~ow volume 

intorchan90S. This, is duo to tho "coarSenOIHJ" ot tho stul'\pling process, 

Which is rolated to sample size.' Tho probability of obsorvin9 travel 
I 

on A low-vo~umc interchange durinq A homo-interview survey 10 much 

(~ 
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smaller than the I,robablll tics of observat1on on interchanges of h.lgh 

volume. Clcdrly, as the sarnr,le Slze increases, 1t 1S mOrE.' llJ.:dy thdt 

some of thf_se tr 11):3 w111 be observed, 1f the survey 15 truly randGm 

(ChatcrJN', "t Ill., 1974). HO'Never, a fout' per cent s3mp1e, conslstu,g 

of ordy flfty-six ".lntervlC"N,S" or sample [)olnts In th1S orlgln zone, 15 

not large enough to observ~ thlS res1dual travel. 

The other pOlnt to note lS the cons1.stent under-estllnatlon by the 

samples of rugh-volume Interchanges, and the over-estimat1.on of medllIm 

volume 1.nterchanges (Figure 7). Althoagh ~art of this inaccuracy may 

be due to the scallng-up cf the samples (by a factor of twenty-f1.ve), 

-k 

there appear to be other un1dent1.fied factors WhlCh affect· the sample 

predlctions. The effect that,. th1S phenomenon has upon model pred1ct1or,s 

w1.ll be d1.scussed later 1.n th1s chapter. 

The analysls has enabled us to draw several conclusions concern1.ng 

the relationship of the samples to the mean trip d1.stribut1.on. 

1. There exists a reasonable degree of correspondence between 

the two sample trlp matrices and the mean trip matrix, 

although slgnificantly reduced from the correspondence of 

the actual trip matr1.ces to the mean trip matrix. 1 

! 
I 

2. A small random sample tends to be a coarse representation 

of the actual d1stribut1on. Low volume interchanges are 

generally not observed 1n such a sample. However, the 

probabilIty of observing these Interchanges is a function 

of sample size, l.e., they are more likely to be observed 

in larger samp1os. 
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DEVIATlOO FRO.'It 'eo. 

Ml!'A!1 DISTRlEUTlotl 
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FIGURE 7: The Deviation of Scaled-Up Poisson and Normal samples from 
the Mean Trip Distribution Generated from Zone Twenty-Five 
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1 3. High volume interchanges ap~ear to b~ uod~r-~stlm~ted 

and medium volume Interchanges appear to be 0ver-

estimated in the sample. The eff~ct of thIS ~ll1 be 

examined In the fbllowlWJ sectIon. 

A COt1PARISON OF HODEL PPEDICTI0NS GF:HEPATED BY THE 

MAXIMUI1 LIKELIHOOD AND LEAST-SQUARES ESTHtATORS 

J.y 
The analysis In this section involves measuring the correspon~nce 

between the predictIons generated by parameters derIved by two compet-

ing statistIcal estimators, under two different assumptions about 

travel over the interchanges In the system. 

2 
The correspondence, measured by R , between the model predIctions 

and the sample data IS given In Table 3. 

TABLE 3 
,f 

R2 BETWEEN MODELS ESTIHATED BY HAXI11UH LIKELIHOOD OR 

t~ 
LEAST-SQUARES, AND THE SAMPLE DATA USED TO CALIBRATE THE r,lODEL 

Model Estimated By Model EstImated By 
M. L. Statistics L. S. StatiStICS 

R2 R2 

Sample Drawn from D .8815 .8784 
P 

.' Sample Drawn f~om DN .8924 .8911 

I 

, 

I 

, 
,1 

t 
f 
t 
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The measures of goodness-of-fit, in both cases, are made ,.,ith re5'r)~ct 

to the sam~le d1stribution aga1nst which the model 1S calltrat~d. .ThiS 

is exactly the sam~ procedure as practic~d 1n mc;del appl1cQtIon. 

The values 1n Table 3 indIcate thr; dl fferenc.(;s III corrr:::.[-rJfldf,nc..f:. to 

the sample data to be only margln;.l. Wbf:fI the probabih ty densIty (unc-

tion~ . 1S P01sson, the parameters generated by maximum likelIhood 
, 1) 

statlstics do not give the model a better fit to the sample data than 

do the parameters generated by least-squares, even though the max1mum 

likel1hood statist1cs assume the t .. to occur exactly as postulated. 
1) 

Furthermore, when the density funct10n of t 1S normal, w1th common, 
1) 

constant varlance, the parameters generated ty max1mum likellhood statis-

tics, which assume t .. to be Poisson, do not give the model a SlgnIf1-
1) 

cantly poorer fit to the sample data, than the parameters derIved from 

least-squares statistics, even though the statistical condltlons, 

assumed in the maximum likelihood statistICS are incorrect. 

For one zone, the simIlarity 1n corresp~ndence~f the two distri-

butions is qual1tatively assessed in Figures Band 9. Comparison of 

the figures sh~NS the predictions generated by maximum likelihood and 

least-squares to be almost identical, in fact, exactly ident1cal when 

the density function of t
25

_
j 

is normal. One distribution can certainly 

not be preferred to the other, given this information. 

. Another feature shown in the \igures is the over-estimat1on of high . \ 

volume interchanges, and the under-~stimation of medi~ volume 1nter-

Cha~ges by the models calibrated by the methods of maximum rikel1hood 

and least:squares. This agrees with the findings of Batty,l and appears 

to be a characteristic feature of the gravity model. It tends to offset 

the characftristics of the sample .trip matrix noted earlier, i.e., that 

• 

\ 

l 

t 

i 
j 

~ 

I 
" 
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Poisson Sample 

Maximum Likelihood 
Predictions 
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DESTINATION 
ZONE 

FIGURE 8: Comparison of Maximum Likelihood and Least-Squares Predictions 
with Poisson Sample for Tiips Generated from Zone TWenty-Five 
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high volume interchange~ are under-p.fJtimated and 10'''' volume intr;rchilng(:s 

are over-cg~imated. 

The effect that aamIJlc inar;curacies and tho c..omp r!Tl5Gltlon U.:nd~ncH:s 

of the qravity model have upon the model's corr~spond(:nc(: to the mc:an 

tr ip diS tr lbution can be seen in F 19urc 10. In thi!'; figure, the m(,(J(~ 1 

output has been scaled up by a factor of twenty-flve fc)r comparative 

purposes. 

Figure 10 compares the mean volume of traff1c generated from zone , 

twenty-five to all destination zones, to the scaled-up traffic volume 

as predicted by the model calibrated by maximum likelihood agalnst 

sample data in which each t .. is normally distributed. Since the model 
1) 

predictions arc essentially identical for both calibrat10n methods, 

under both assumptions about t
ij

, a single set of modeh,predlctions 

suffices. 

Generally, the fit of the model to the mean trip distribution, from 

this origin-zone, is quite good. The over-compensation effect of the 

gravity model tends to negate the characteristics of the trip survey . 
noted earlier, and model predictions reasonably approX1mate the meanf 

travel volume originating from zone twenty-five. Those interchanges 

carrying only residual traffic are not accounted for in the model. 

This is due to the "coarseness" of the random sample, as outlined 

earlier. 

The results of the analysis, therefore, contradict the second hypo-

thesis defined in the chapter. The definition of trip purpose by cha-

racteristic probability density functions in the calibration statlstlcs 

does not necessarily give the model a better fit to the trip surveyor 
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to the mean distribution of trips in the system. Although Kirby (1974) 

" 
has shown that there are certain theoretical requirements which must be 

satisfied to derive bC3t parameter values, in practice, th~se rcquirc-

ments do not appr!ar to be necessary. 

The remaining issue to be resolved is why these requirements do 

n6t have to be upheld in modelling practlce. 

FACTORS IN MODEL APPLICATION t-IHICH PEDUCE THEOPETICAL 

CALIBRATION REQUIREMENTS 

'-

Two factors can be identified which contribute to the contradiction 

of the second hypothesis. They are related to certain assumptions implied 

in the development of theoretical requirements for calibr~tinq the model, 

which do not hold in practice. The first assumption concerns the effect 

that different density functions have upon the trip pattern in the gys-

tem. The·second assumption involves the sensitivity of the model ltself. 

If a specific probability density function is to be specified in 
\ 

the calibration statistics, we are assuming that the trip pattern gene-

rated by that density functio~ is significantly different from the trip 

patterns generated by any other functions. Intuitively, this assumption 

appears reasonable. By assuming different density functions, we are 

trying to re~resent the characteristic variances in the day to day 

travel, specific to different trip purposes, over the set of inter-

changes in the system. We are expecting these variances to generate 

differep,t aggregate travel patterns. 
~ 

... f.j. 
The analysis has taken two probability density functions, ~l and 

( 
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~2' to be Poisson and normal rc:spectlvely, with variance 

0
2 (~l) '" t

ij ( (5.6) 

2 ' 2 a ($2) .: (O.2(t
ij

) '" 4 (5.7) 

where t
ij 

is the medlan number of trip interchanges in the system 
I 

(t
ij 

= 11 trips). It hag then generated a travel pattern for each of 

these assumptions about the variance of t
ij

, and has taken a Bingle 

ra~dom sa~~le from each distribution. Instead of finding the travel 

patterns to be significantly different, the analysis has found the 

correspondence of each to be very similar. 
'-

The similarity in correspondence may be due t9 the fact that th~ 

majority of interchanges in the system carry small traffic volumes. 

OVer these interchanges, the variance in volumes for both $1 and $2 

will be essentially the same. 

Other factors, such as the effect of sampling on the shape of the 

density function (Kirby, 1974, p. 99), may also influence the corres-

pondence of the two trip patterns. However, this has not been researched 

in this study. . 

The characteristics of the travel pattern, therefore, may be such, 

that the differences between different "behavioral patterns" (identified 

by different probability density functions) may not be distinct. The 

effect of different statistical assumptions on the data in calibration 

statistics will thus be mi~mal. 
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The second, and perhaps more important factor conccrn'3 the sensitl-

vity of the spatial interaction model to changes in th~ valu~ 0f th~ 
" 

parameter, e. Although little mention of this aspect is made in th(~ 

literature, there is aome evidence (Batty, 1970c, p. 111; Batty, lry71, 

p. 426; Batty and Mackie, 1972, p. 215) to suggest that the fit of thA 

model to the sample remains relatively invariant, regardless of the 

correlation statistics used, over wide ranges of parameter values. 

Re~alling Table 3, the correspondence of the dlstrlhutions genc-

rated by the model to the samples are very similar. Table 4 displi.\Ys , 
I 

the parameter values generating , the distribution, which produce :;J0' 
measures of correspondence. 

TABLE 4 

MEASURES OF CORRESPONDENCE AND PARAMETER VALUES OF HODELS 

ESTIMATED BY MAXIMUM LIKELIHOOD AND LEAST-SQUARES 

Model Estimated By Model Estimated By 
M. L. Statistics L. S. Statistics 

t3 R2 B R2 

Sample Drawn from Dp 0.0219 .881 0.0799 .8784 

Sample Drawn from DN -0.0138 24 O.OllS .S9l1 

The table indicates that the best parameter values (meaning the 

parameter values c~sest to the actual value) are obtained when the 

a~sumptions implied in the calibration statistics are satisfied by the 

data. But it aiso indicates that similar measures of correspondence can 

Jl 
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be achieved from significantly different values of the parameter. Thig 

lack of sensitivity may be an indication of the robustnes'l of the mo(]'!l, 

i.e., the capability of the balancing factors Ai and B
j 

to a~juqt the 

t ij elementa. 

If the model is insensitive to changes in parameter valu~s, then 

the specification of probability density functions in calibration nta-

tisticB ie no longer at issue if correlation statistics arc u~ed to 

measure the model's goodness-of-fit. This is because the model will 

most likely produce acceptable results, regardless of the calibration 

statistic defined. 

It can be seen that if the two assumptions implied 

the theoretical requirements for calibrating spatial inter 

-- concerning the different trip patterns generated by dlffer 

bility density functions, and the sensitivity of the model itself 
. ,i ~ "-= 

are not satisfied in practical model calibrati~r' the theoretical require-

ments become no longer necessary. The problem in model calibration 

becomes one of estimating parameter values as quickly and efficiently 

as possible. 

SUMMARY 

This chapter has presented the results of the analysis proposed in 

Chapter 4. It first formally outlined the two hypotheses to be tested, 

and defined the statistic to be used to measure the goodness-of-fit. 

In doing so, it specified the restricted conditions under which the 

hypotheses can be tested, to prevent the misinterpretation of results . 

I. , 
, . , 
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After dl.!Bcribing the! hypoth0ticdl i3r(~a over which t1"/.1VfJl warj difl-

tributed and tr'p,tf) madr., the chapter outl ined thf! opr'1"ationfl j n thl! 

an3lysio which produce the dintriLutionc to be cxaminnd. 

the restricted tent framework, iHl o1Jtllned in thf! introdur-tlon tt) ttl I' 

chapter, f..ho'N that t)-If~ random S<lmfJ1e appears to aui tably corrcB['ond to 

I 

I 
the mean travel distribution. This implies that relidble r€-Bult'! (an 

.. 
be generated Li th~ spatial interaction model calibrated to ttllO data. 

The chapter also shows that statistical assumptions 1n the tnilY-lmum 

likelihood calibration statistics, which are necessary to satisfy 

theoretical requirements for calibrating the model, do not significantly 

affect model performance. The chapter ct)ncludes by comparing the model 
" 

output in relation to the sample, and then identifies factors which 

appear to eliminate the theoretical requirements for modal calibration. 

The final, and following chapter will sununanze the findings of 

the paper and will suggest areas for further research . 

. \ 
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CHAPTER 6 

, 

I SUMMARY MID CONCWSIONS Q 

~ 

This paper has attemptl!d to analyze two issues in the ('bllbrutl()n 

, , . of spatlal interaction models. The first issue conCE'rno the theoretl-

cal requirements for calibrating spatial interactlon models af. propr,;;.!d 

by Klrby (1974). The second involves the reliability of the random 

eample in representing the lOOan travel distribution in the area to b/' 

modelled. The paper has been developed through four section~. 

Chapter 1 has deflned the problem of model callbration a~d haq 

described the characteristics of the spatial interaction mf.Yld ·"hich 

make it difficult to calibrate. It has then a9sessed the different 

approaches to model calibration which have evolved since the develop-

ment of the Lowry model, and has stressed the shortcomings ln each 

method. The chapter has argued that statistical esti~3tion techniques 

possess properties which make these methods preferable to other cali-

bration approaches. 

Chapters 2 ~nd 3 have examined the two principal methods of sta- l' 
1 , 

tistical estimation. These are the methods of maximum likelihood and 

least-squares. Chapter 2 has further argued that calibration is a 

problem of poin~ estimation, and not hypothesis evaluation. It has 

'.' therefore rejected Hyman's (1969) approach as a method of parameter 

1 estimation. 
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tatlons of the maxImum lIKelIhood cstl~ator In callbratlnJ the spatlal 

InteractIon mode:l. It has been show:1 that uw]er certaln c0ndltIOrj~, 

the ImplIcIt dssumptions In (-ac', can be reconcIled, eV'~-!l thou']:1 til'" 

. \ 
callbra tion :t yoblem lS l'PrOJcl2.Cd from t~~cnt rers!'.-:.:tl Vf'.3. 

" / . 
~-_/ \ 

Furthermore, the condl tons under whlch these two ZlprrGachl~s an:' cIJrn-

plementary are lIkely to be observed when callbrating urban spatIal 

interactIon. Chapter 2 has gone on to define the statIstIcal condl-

tlons WhICh are necessary to satIsfy the theoretIcal requIrements of 

the maXImum lIkelihood calibratIon statIstIcS. It has stressed that 

the parameter estImates derIved by the maxImum likelIhood estImator 

are unbIased only If the trip data correspond to these ass~~ptions. 

The chapter has then reviewed the work of KIrby (1974), who ha~ 

attempted to apply behavIoural hypotheses to the max~um lIkelIhood 

calIbratIon statIStICS. It has stated that the different cailbratlon 

statIstICS which can be derived from the maximum likellho?d estimator 

may represent different trip purposes WhICh occur in the urban system. 

These trip purposes are characterized by different probabIlity densIty 

functions over the inter-zonal interchanges and must be explicitly 

input into the maximum likelihood estimator in order to derive 

appropriate calibratIon statistics. 

Chapter 3 has exam~ned the least-squares estimator as a method of 

model calibration, as proposed by Cesario (1975). Through an examina-

tion of its propertIes, it has been found that unlIke the method of 

maximum likelIhood, the least-squares estimator makes no implicit 

assumptions about the distrIbution of trips over the zonal Interchang~s, 
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and thus Imposes no behaVIoral assumFtions on the calibrotion t(-dmlCiue. 

The ~aper has (_OmFared the two lI\ethods of statIstIcal cstlmatlon bi' 
i 
\ 

ImposIng condltions on the ma~ likellhood estl~~tor so that It 

YIclds the s~me calIbratIon statIstLcs as the least-s1uarn~ ~~tlmdt0r. 

It hds showTI that whlle the prlncl!-le of least-squares makes no l!r.i_l1clt 

aSSumrtlo~S about the sample data, the method of w~xImum likelIhc0d 

must make vC~J r~strl~tIve assumptlons, In order to derIve IdentIcal 

callbratlon statlstics. 

Thus, It has been shown that there appears to be a basIc contra-

dictlon In the as'sertlon of behavioral notIons embedded L"l callbration 

statIstics. Theoretically, the least-s~~ares estImator can derIve 

unbIased parameter estlmates WIthout making any assumptIons about the 

probabliity densIty functions of the trip interchanges. Conversely, 

the maximum lIkelihood estimator can only yield unbiased parameter 

estimates by making lmpllclt, and sometLmes unrealIstIc assumptIons 

about the nature of the traffic flow over the zonal Interchanges. It 

follows that if indeed the trip distributIons derived from the compe-

ting methods are similar, the behavIoral propertIes of the maxlmum 

likelihood estImator are non-existent. 

The four'th chapter has examined related problems In model callbra-

tion. Specifically, it has discussed the reliabillty of the sample 

observation, the trIp survey, in representing the mean dIstrlbutlon 

of trips in the urban system. This is critical because it IS the mean 

distribution WhICh the spatial interaction model is assumed to generate. 

If travel over the set of interchanges varies from day to day, the 

random sample will retain these deviations from the mean. These 

l 
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bIases will then be generated through the model. Tne paper has stre~~~d 

that tr£ magnItude of thIS bIas must be examIned In order to assess 

\e 
~0n 

qualIty of the model's output. 

Second, the chapter has exarrun~d how the key varIable In c~llbra-

statIstICS has been d8flned In the lIterature. ThIS IS the gen~-

rallzed cost varIable, WhICh has been defined as dIstance, tIm( and 
~ 

varIOUS combInatIons of both. Whilp. It has concluded that the problem 

of varIable defInItIon can only be resolved through empIrIcal examIna-

tlon, the chapter has proposed a hypothetIcal analytIcal framework, 

WhICh controls the bIas WhICh can be Introduced through varIable mlS-

specifIcatIon. The paper has proposed to apply thIS framework to both' 

the problem of determinIng the reliabi~lty of the sample observatlcn, 

and to the problem of determinIng the existence of behaVIoral notIons 

In maXImum likelIhood calIbratIon StatiStICS to see whether theoretIcal 
( 

calIbration requirements are necessary to derive unbIased model 

results. 

The final section has presented and discussed the results of the 

analysis proposed in Chapter 4. After briefly dIscussIng the concepts 

of best parameter estimates and optImum goodness-of-fit in order to 

interpret the outcomes of the analyses, the paper has formulated 

several conclusions. 

The paper has found that in the constructed hypothetical frame-

work, the trip survey, drawn at random, retains the essentIal character-

istics of the mean trip dIstrIbution. It has found that the samplIng 

process inherently loses some InformatIon about the dIstributIon, 

especially concerning low volume interchanges, and has postulated that I 
j 
1 
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the 1nformat10n loss 1S directly attr1butable to s~~ple SlZ~. 

The analysis has also found that the satIsfactIon of th~ theor~-

tical requ1rements for calIbratIng spatIal interactlt.Jn mrxlels dO'_3 :'lot 

have any apprec1able effect on the goodness-of-flt of H'e gener;}t(,d 

dIstrIbution to the data. ThlS serves to contradlct the behavl0ur,:::] 

hypotheses about calibratlon statlstIcs, as asserted by Klrby. 

A further result has been observed in the analysIs · ..... hlch SUj';-2 c,tS 

further study. An inherent property of the dIstr1but1on generated OJ 

the gravity model was observed 1n the analYS1S. ThIS IS the tendency 

for the model to over-predict high volume Interchanges and under-

predict medium and lryN volume Interchanges. ThIS character1S~lC 

perfectly counter-acted an undesirable property of the random sample, 

that of under-estimatlng h~gh-volume Interchanges and over-€stir.~t~~g 

medium and low-volume lnterchanges. The result was a remarkably 

accurate macro-distribution of travel 1n the area. 

A verification ~d explanatIon of these observations 15 clearly 

needed to reaff1rm the usefulness of ,the spatIal Interact10n model 1n 

, 

the planning cpntext. 

The findings of thIS study can only be deemed tentatlve and th'lS 

fact can only be appreciated through an evaluation of the analysis. 

The problem of calIbration has been approached by performing the 

same basic operations as would the analyst when applying the spatIa~ 

interaction model to a real sltuation. A sing~e random sample has 

been drawn from the populatIon. Inferences about the .elatlonshlP of 

the sample to the population, and about the fit of the generated d1S-

tribution to the data have been based upon this lone sample only. 

I 
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The prlncipal difference, however, between the hypoth~tlcal frame-

work and an empirlcal study has been that we have posse:osed add1 t10fld 1 

lnformation about the system and Its variables that the analyst could 

not have collected. For example, we know exactly the functlon dr.d 

var1ables whlch dIstrIbuted th~ trl~s. We know how trIpS w0re dlstrl-

buted over the zonal lnterchang0s, and the mean trlp distributlon. The 

emplrical analogues are e1ther unobservable or do not even eX1st 1n 

/ 
reallty. We have used thls lnformatlon to test the modeller's assump-

tlons (about the sample) and the theoreticlan's proposltlOns'(about 

statlsti~al requIrements) WIth regard~ to the issue of callbratlon. 

Clearly, the des1gn of the analysis could have been extended so 

that more conclus1ve results were obtaIned. Instead of a slngle random 

sample, several observatlons on the system could have been ~ade to fInd 
'-

an average correspondence to the mean distribut1on. Slmllarly, the 

spatial 1nteractlon model CQuid have been calibrated to each observa-

t10n to yield a range of parameter values. These values could have 

then been used to generate several distributions to find an average 

measure of goodness-of-flt to the data. However, further research 

must initIally be directed to the sensitivity 1Ssue of the spatlal 

interaction model, and at the statistical measure used in the analysIs 

in order that the findings of this research endeavor be strengthened. 

These two points warrant additional comment. 

Consider first the stat1st1cs used to meaSU4e goodness-of-fit in 

the spatial interaction context. The weaknesses o( correlation statis-

tics were brought out 1n Chapter 1. In spite of their weaknesses they 

are still recommended by modellers ~n order to measure model fit. But I 
t • " 
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It appears that lIttle can be Inferred, especldll-; fr0m th., fi2 stJtlc;-

tIC. Although Its use does not requIre arjy InformatIon ] OSS thr'-,'qh 

aggregat10n or omlSS1on of var1ables, It has mor(~ I,,,:,ull,tr rrop·rtJ(':' 

than originally suspected, as seen 1n Chapter S, '",lllCh rr':"f:" lt an 

espec1ally poor statIst1c to use 1n spatIal Int~ractlon mGdelllng. 

Clearly, what is needed 1$ a statIstIC whose prOFcrtles mdke It 

espeCIally adaptable to the spacIal InteractIon context. Its distrIbu-

t10n and assumpt10ns should be kno'Nn, 1t should be senSItIve, remaIn 

invarIant under transformatIon and should be deflned over all valu"s 

of t " 
IJ 

Secondly, the whole questioq of model senSItIVIty should be exten-

sively researched. It seems to be clear that If model predIct10ns 

remain Invariant or maintaIn theIr,goodness-of-flt throughout a range 

of parameter values, calLbration methodologIes become less of an Issue. 

There is no point In Interpret1ng statIstIcal condItIons In any context, 

including trip purpose, if a unique "best" optImum does not eXISt. 

Perhaps the best approach to this would be to plot the objectIve 

functions of the statistical estimators over the range of parameter 

values in question. This would enable us to determine not only the 

general sens1tivity of the statistic about the optImum but also the 

reliability of the statistic, by observing its behaVIor over che para-

meter range. 

If in fact, as is suspected from this analysis, the statIstICS 

are generally insensitive to changes in parameter values around the 

optimum, research in the calibration fIeld should be directed t~Nards 

efficiency and reliability criteria rather than towards mod~fYlng 

I 
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• i 
t , statistics to lncorporate non-exlstent or unobservable behavIoral ~he-

nomena. 

Answers to the questlons posed throughout thlS paper are necessar~' 

to develop a sound theoretIcal and practlcal base for callLratlng sratlal 

InteractIon models. Although many pOInts remaln unresolved, thlS raper 

can be regarded as another step in addresslng these lssues. 
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