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This paper is concerned with assessing the procedures used in cali-
brating spatial interaction models. It critically reviews calibration
methodologies which have been proposed.in the literaéare and determines
that the statistical estimation techniqges of maximum likelihood and
least-squares are particularly suited to this estimation problem.

The calibration statistics from the maximum likelihood and least-~
squares estimators are deveiﬁped from éirst principles and special note
is made of the behavioral assumptiogs impliéit in each.

Two issues are then reviewed: the reliability of the random
saﬁple in representing the‘mean distributioneof trips; and the defini-
tion of variables in calibration statistics. A hypothetical framework
is propesed, within which an examination of tHese issues is made.

The study'results indicate that tpe sample reasonably fepresents
the mean distribution and also that the incorporation of implicit beha-
vioral assumptions does not necessarily resul¥ in bgtter\model,pfedic—

tions.
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CHAPTER 1
AN ASSESSMENT OF CALIBKATION METHODULOGILES
- INTRODUCTION

The calibration of mathematical models involves finding the best
(in some well defined sense) values of their parameters. Calibration
transforms the general model structure into a set of exact empirically
tested relationships by giving precise empirical definitions to §he
variables and numerical values to the parameters. A model is calibra-
ted to improve its predigtive or descriptive capability. The theore-~
tical principles used to develop the model are seldom sufficient to
indicate more than the appropriate sign and probable order of magnitude
of the model parameters. Since the parameters are measures of the rela-
tionships between numerical variables, the precise empirical definition
of these variables affects the parameter values (Lowry, 1965, p. 163).

Mackie (1972, p. 39) identifies three components of the cali-

bration process:
(1) Specification of the type of model to be calibrated:

(2} Selection of a suitable statistic to optimize, which

yields the "best"” parameter estimates, and




-

e . ‘\
(3) Selection of an accurate and efficiegéy}echnique

to solve the cquations derived by the statistic,

This paper is concerned with the calibration of a particular
-t

. type of geographic model: the spatial interactiom model, *fae model has

been used as a trip distribution sub-model }n travel forcasting studies,
aﬁd, operating within the Lowry framework, as part of the large-~scale
modelling efforts in Britain (Batty, 1970c, p. 95; Batty, 1972, p. 152).

The paper will investigate the calibration of the doubly-
constrained spatial interaction model, which will be outlinéd later,
Therefore, Mackie's first componegt of the calibration process is
defined: Batty (1970c,p. 114) emphasizes the need for better calibra-
tion statistics to measure the model's goocdness-of-fit, g0 that a
unigue set of parameter values can be derived (Mackie's second compo-
nent). Also important is the devglopment of more efficient and faster
numerical methods of solution without a loss of accuracy, which is
Mackie's third component. Although several solution techniques will be
reviewed in this paper, its primary task will be to investigate Mackie's
second component of the calibration process: the selection of suitable
statistics, the optimization of which will yield the "best" parameter
estimates. ,

In this chapter, a brief description of the spatial interaction
model will be followed by a review agd assessment of the various
approaches to calibration which have been undertaken, particularly in

the British context. From the assessment, two significant calibration

approaches will be’ identified.
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Chapters two and three will explore these two calibration approa-
ches and examine the assumptions implicit in each.

Chapter four will critically assess the general problem of cali-
bration as 1t 1is applle; o urban systems modelling, and stress the
areas of weakness, ror. this review, a research design will be proposed
and tested in chapter five.

Finally, chapter six will summarize the research findings of

this paper and evaluate their significance.

SPATIAL INTERACTION MODELS

-x

Spatial interaction models are a family of models which describe
the 1nter;ctlon between sets of activities in terms of flows of people
or commodities. The equation which describes this, the gravity law, was
originally applied to the geographic field by analogy to Newtonian
mechanics. ft states that the intensity of interaction between two
zones i and 3}, 1s a.function of the population masses at 1 and j,
and of the impedance to interaction, measured by an inverse function
of distance. Wilson (1970) develops a general theoretical deriva-
tion of the gravity model from the fields of statistical mechanics and
information theory. The gravity model is derived by -analogy to princi~
ples in statistical mechanics by finding the most probable distribution
of trips, subject to a set of constraints placed upon the system, which
restrict the number of assignments giving rise to a distribution. The
same model can be derived from information theqry by defining the entropy
of a system to be a measure of its uncertainty (Shannon and Weaver,

.

1949). The probability distribution which results from maximizing the
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entropy, subject to whatever information 1is known about the system

(the constraints), 1s minimally biased yet maximally non-committal with
regard to missing informat%on (Wwebber, 1975, p. 14). Wilson (1970, p. 8)
shows that the distribution derived from the information theoretic
approach is equivalent to the most probable distribution derived from
principles of statistical mechanics.

From the general formulation of the spatial interaction model

t.. =ab,. £(8, c..) (1.1)
1) 13 1}
7
where tij = the predicted number of trips from 1 to j,
ai = a factor related to the ability of zone i
to generate trips,
bj = a factor related to the ability of zone j
to attract trips,
f(B, Cij) = the impedence to interaction,

.

four variations may be derived, depending on the constrai;ts imposed upon
the distribution: (1) wrconstrained flows; (2) production constrained
flows; (3) attraction constrained flows; and (4) production-attraction
constrained flows.

The unconstrained model is simply equation (1.1). There are no

constraints on the distribution, and the model estimates the number of

4

s

Lngerchanges between each zone pair, the tij' the number of origins

Z tij:\égd destinations, E tlj' within the framework. Both the produc-
j i

4
tion censtrained and attraction constrained models are examples of singly

- ———
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constrained spatial interaction models. In this case, the ti] are

e

subject to the constraint

.. 0 where 0 = a,/A,
ij 1 1 i

I~
)
I

for the production constrained model, or

. . D, where D = b, /B,
1) J J J ]

et~
o
]

~

for the attraction constrained model. The models estimate the tij and the
z;ij (destinations), or the Z;lj (origins), depending on whether the distri-~
i .

bution is production or attriction constrained. The production-attraction
constrained model is a doubly constrained interaction model, as the ;1

are subject to both of the above constraints, Since both the Z;.. and z;

9 ij © 717
- j i
are estimated externally, only the tij are estimated by the model.

The doubly constrained model is of interest for two reasons.
First, this variation of the spatial interaction model is generally used
for predicting the distribution of trips in transportation studies (Mackie,
1972, p. 27). For this, the calibration procedure is of some practical
significance. Secondly, the inclusion of constraints makes it more diffi-
cult to calibrate the model (Mackie, 1972, p. 24).

The unconstrained gravity model can be calibrated by transforming
the equation into logarithmic form and estimating the parameters by
regression techniques (Slsson, 1965, p. 3&), although Siedmann (1969)

stresses the problems d% this approach. The singly and doubly constrained
/

models on the other fhand, because of their intrinsically non-linear

»~
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character, cannot be linearized by a simple transformation (Draper and
Smith, 1966, p. 264), and thus require more sophisticated calibration
techniques. Any attempt at linearization, i.e., truncating a Taylor's
serles expansion at the first order, may lead to biased parameter esti-
mates (Batty and Mackie, 1972, p. 209). Presumably, a calibration pro-
cedure developed for a doubly coqstralned model should be applicable to

both singly constrained and unconstrained models.

APPROACHES TO MODEL CALIBRATION

The most important task in application is to calibrate the model so
that the most realistic distribution is generated, or so the model
"best fits" the survey data collected. Batty (1972, p. 156) notes some
related calibration problems thaf have arisen in model applicatior in
Britain and emphasizes the importance of this aspect of design.

Because of the singly and doubly constrained models' inherent non-
linear character, the model parameters have be#&h estimated by several
different methods. Specifically, four different approaches to the

calibration problem can be identified. Early attempts include graphtcal

curve fitting and tabulation methods, while more recent work has employed

systematic search algorithms and statistical estimators. BAn outline

of each of these approaches follows.

GRAPHICAL CURVE FITTING

Initial attempts at calibration can be seen in the work of Lowry

(1963) . Although the allocation sub-models used are not the Wilson-
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type spatial interaction models, the potential models used by Lowry
can be related to the gravity model (Isard, 1960), and thus the calibra-
tion problem is much the same. ‘Lowry estimates the model parameters
outside the framework of the model by approximating frequency functions
to empirical data manually (Lowry, 1963; Rexrf, 1973, p. 181). He takes
data on the relative frequency of work-trips by distance, disaggregated

to different socio-economic classes, and finds the distributions to

closely approximate a negative power function, 1i.e.,

=X

f(r) = ar (1.2)
where r = distance from the origin zone
f(r) = the relative trip frequency
&
a,x = parameters to be estimated.

The parameter values derived by Lowry are given by Reif (1973, p. 181).
Lowry's calibration technique, then, is simply a gr;phical curve-
fitting procedure, in which the parameter values are derived so the
hyp%tgesized function best fits the given data. The trip distribution

index is obtained from the point density function:

_flx) _ 1
G = S - T (1.3)
1]
Thus,
£ = 2nr - 2n r(x+l) (1.4)
13 ar_x a

eAamed ke ac am Ak
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The trip distribution elements, {tlj}, are then substituted into the
potential sub-model of locational choice. The entire process is repeated
to derive service locations using another freguency function (Reif,

1973, pp. 180-185).

The major ;eakness of Lowry's approach to calibration 1s that
because the parameters are estimated outside the model framework, the
interdependencies between the parameter values and the model are ignored
(Batty, 1972, p. 164). Lowry (1965, p. 163) acknowledges the dependence
of the parameters on the model variables (see page 1) but does not
incorporate this into his calibration technique.

5

TABULATION

¢ -

Subsequent Bratish work (Batty, 1970a, 1970b; Cripps and Foot,
1969a, 1969b; Turner and Williams, 1970; Masser,°l970) utilizes the
tabulation method to calibrate the parameter ‘values. This approach
involves the testing of dif%erent combin;tions_éf parameter values,
which are fixed within some predetermined range. If one assumes that
a unique optimum exists, then the search is for that combination of
parameter values which yields a best fit to the data. The correspon-
dence between the predicted and observed sets of trips can be measured
by various statistics. Usually a statistic of correlation, such as the

coefficient of determination is used (Batty and Mackie, 1973; Batty,

Foot, et al., 1973, p. 356), and the technique tests to find the maximum

~

correlation between the predicted and observed values. For tij pre-

dicted and tij observed, the algorithm measures:
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(1.5)

where N equals the total number of variables. Wilson (1974, p. 317)
states that the statastic varies LetWeen one, for an e*act correspondence
between the model predictions and the ‘observations, and zero, for no
correspondence. However, the range of the statistic is actually between
one and - «. The denominator of (1.5) is simply the sum of squared
deviations of the observation from its mean. If the predicted values,
;ij' significantly differ from the observed values, tij' and the devia=z
tion of the observed values from the mean is small, the right hand term
in (1.5) will be greater than one and negative values for R2 will

result.

An alternative statistic of correspondence which is commonly used

is the chi-squared statistic, defined as:

x2=zz_.j;j__ii__ (1.6)
1]

The method searches for the value or combination of parameter values
for which the statistic is at a minimum.‘ Ev;ns (1971, p. 25) notes
that this statistic is a reasonable measure of the model's goodness-of~
fit with the data. He postulates that the test statistic approximates

a chi-squared distribution if the data does arise in the way postulated
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by the model and all the tij's are reasonably large.

Other correlation statistics that have been tested in model calibra-
tion include the root mean square error statistic, defined by Hill, ¢t
al. (1965), and the standard deviation (Batty, 1970c, p. 104).

The tabulation method sets up a grid of combinations of parameter
values; for example, 1f a two parameter interaction model is to be
calibrated, a two dimensional grid of pairs of parameter values is

constructed (Figure 1). "

(a , 8)
n

FIGURE 1l: Grid Search in a Two Parameter Space.
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Each node of the grid represents a particular paramcter combination. The
model is then run at each node within a predetermined range of parameter
values. Alternatively, the nodes upon which the model is tested ain the
parameter space can be selected at random. More commonly, however, the
nodes are chosen by trial and error, i.e., successive choice is made of
the nodes 1in the parameter space which appear to be approaching the
optimum (Mackie, 1972, p. 38). The distribution generated by that com-
bination of pa;ameter values which optimizes the test statistic yields
the best fit to the survey data.

The principal draw-backs of this approach are that the method is
slow, inefficient, and inaccurate (Mackie, 1972, p. 38). Since the
correlation statistics require model output as variables, the model must
be run for each combination of parameter values. To improve accuracy
requires a vast number of tabulations to be performed. Referring to
this, Batty (1971, p. 425) notes that computer time increases directly
with the number of functional evaluations, which, for a model of x
parameters, can be approximated by nx, where n is the number of evalua-

s
tions to be made in the specified parameter range.

SYSTEMATIC "SEARCH

If, however, the test statistics are plotted over a range of para-
meter walues, a responge surface can be generated, measuring the model
prediction's correlation to the data. Batty (1970c,p. 111) shows the
re&%ﬁarity of these gurfaces, and several authors (Batty and Mackie,

1972; Batty and Mackie, 1973; Batty, Foot, et al., 1973; Batty et al.,

——
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1974; Wilson, 1974) suggest how numerical methods could be applied, using
the properties of the surfape to quickly find that set of parameter
values which gives the model predictions a best fit to the data. This
technique, defined as systematic search (Batty and Mackie, 1972; Batty
and Mackie, 1973) 1s simply a search algorithm, using standard mathema-
tical optimization principles designed to calibrate the interaction
models. The model is calibrated by optimizing a given test statistac,
such as the coefficient of determination or chi-squared. Two different
Optl?izing approaches have been employed. One 1s direct evaluation of
the statistics' response surface and the other optimizes by indirect

evaluation.

DIRECT EVALUATION

Direct evaluation methods use a set of direction vectors throughout
the search, and explorations are made along these directions on the
response surface. Subsequent action in directing the search is deter-
mined by the results obtained on the previous iteration. Direct evalua-
tion can be based upon linear methods, such as the Newton-Raphson tech-
nique, Fibonacci sequences, and search by Golden Section, in all of
which the direction vectors are witvariate, or it can be based upon
quadratic methods, which specify the optimum point by approximating the
objective function by a quadratfc. A numerical method of this type
which has been used in model calibration is quadratic search by conjugate

directions.

o e—
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The mechanics of all these search procedures are illustrated by the
method of Fibonacci sequences (Wilson, 1974, pp. 321-322). Con51dér a

spatial interaction model of the form:

-~

t. =ab, f(B8, c .) (1.7)
1] 1] 1]

-~

The model predictions, tij' are functions of the parameter 8. The res-

ponse surface, which is simply a function of the tij observed and the

-~ &

tij predicted, 1s also a function of B. The test statistic, such as

the coefficient pof determination, will generally vary with 8 in the

following manner (Figure 2). - ?

Rz(B)

e - o e v e e o = . -

e o o e e o

3 k )13 )3
81 83 84 82

2
FIGURE 2: The Response Surface of the Coefficient of Determination (R)

Against the Parameter 8

(Souxce: Wilson, 1974, p. 321)

B e e P,
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Therefore, the calibration task 1s the unconstrained optimization of the
2 th
function, R7(B). If we assume that at the k step, the method has
established that £ lies within the values Blk and 82k, the method then
k k
finds values for 83 and 84 such that,

by the equations,

F .
63k - ;5‘-1}'—" (szk - sl") s el" (1.9)
N+1-k
K PNk X K K
84 s (82 - Bl ) + 81 (1.10)
N+1l-k -

where N is the total number of evaluations, and Fy are Fibonacci numbers

defined by:

n 2 2 (1.11)

. . . . t
The procedure then determines which interval to evaluate in the (k +'1)s

step by evaluating the surface at the four points, 81, 82, B3, and 84

(Wilson, 1974, p. 322). The total number of functional evaluations, N,

is determined from the desired interval of search after the N iterations

AP sty . o
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(Wilson, 1974, p. 322).

Other numerical methods in this class, although different in ctruc-
ture, basically operate according to the same principle, in which the
reésponse surface is incrementally searched for an optimum point. Fur-
ther wnformation on the techniques within the modelling context 1s
available 1n the literature: Fibonaccl sequences (Batty and Mackie,
1973; wilson, 1974), Newton-Raphson (Batty and Mackie, 1972, 1973; Batty,
Foot, et al., 1973; Batty, et al., 1974; Wilson, 1974), and quadratic

J

search by conjugate directions ?Batty and Mackie, 1972). .Also, Mackie
(1972) gives an excellent account of several calibration algorithms,
including those discussed in this chapter.

The basic problem with this class of methods 1s that the search
vectors may diverge from the global optimum to local optima on the
response surface if poor initial parameter values are chosen. This may
be corrected by damping the procedure, i.e., by Fransforming the slope
of the response surface to a more regular shape (Batty and Mackie, 1973),
or by choosing the initial parameter values close to the optimum point
so the solution does not degererate (Batty, Foot, et al., 1973, pp. 359-
362; Batty, et al., 1974, p. 471). Hyman (1969, p. 110) suggest; that
since, in many cases, thg/value BE, where C is the mean trip cost, lies

between one and two, a reasonable starting value is given by the equa-

tion:

(1.12)

w
I

&

o
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INDIRECT EVALUATION

The method of indirect evaluation does not require explicit apprail-
sal of the slope of the response surface (Batty and Mackie, 1973), But
performs f;;ctlonal evaluations at the vertices of some geometric confi-
guration generated in the parameter space (Mackie, 1972, p. 39). The
only method of indirect evaluation to be applied to the calibration
problem in spatial interaction modelling appears to be the Simplex
method of sequential search (Mackie, 1972, pp. 53-56; Batty and Mackie,
1972, pp. 222-224; Batty and Mackie, 197;).

For the calibration of an n-parameter model, the simplex 1i1s genera-
ted by evaluating the objective function at n + 1 vertices in an n-
parameter space. The vertex having the worst performance with respect
to the optimization of the test statistic, i.e., maximize or minimize,
is identified, and the simplex is reflected away from this vertex. If
this operation improves 1ts performance, the simplex 1s expanded; if not,
it is contracted. An illustration of these basic operations is given an
Mackie (1972, p. 54). The method iterates by reflecting across the res-
ponse surface and adjustaing its shape until the optimum is reached.

Calibration by the simplex method is more reliable than direct
search techniques because it overcomes the problem of convergence to
local optima on the response surface. The method, however, takes some-
what longer to compute.

Despite the advances made in solving the statistics, there are

problems concerning the statistics themselves which cannot be overcome.
r
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Correlation statistics, such as the coefficient of determination, are
not as sensitive to changes 1n parameter values as simpler rerforrance
measures, such as mean trip length (Batty 1970c, pp. 108-109; Batty,

1971, p./4l6)§\>Furthermg;evxgg phe calibration of multi-parcmeter
“ . Y

/ .

N -~ .
1nterac£10n models, no single goodncss—of—?ﬁt statistlc can determine

the parameter values simultareously (Wilson, 1974, p. 323). A unique
set of optimum parameter values can only be derived 1f each parameter
1s related to a particular calibration statistic (Batty, Foot, et al.,
1973, p. 358). In other words, there must be as many calibration
statistics as there are parameters (Batty and Mackie, 1973). Also,
correlation statistics, in particular cases (Wilson, 1974, p. 343),
may lead to bogus calibration, which occurs when the response surface
1s peaked towards the maximum at the axis of one of the parameters.
Wilson (1974, p. 342) states that the bogqus calibration problem can
render certain correlation statistics vi{tually useless 1n parameter
estimation.

Finally, one cannot, wlth any confidence, draw statistical inferen-
ces from these correlation statistics because their distributions are
unknown. One 1s restricted to getting a feel for the goodness-of-fit
of the model to the observed data, when interpreting the results.
Although, this restriction can be somewhat overcome by choosing more
robust correlation statistics, such as chi-squared, which place less
stringent assumptions on the data, it is more meaningful to derive new
calibration statistics based upon statistical assumptions which consider

all the information available concerning the problem (Batty and Mackie,

T e s A P ot I e BNy e T
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1973). The statistic measuring the goodness-of-fit must take the

sample data into account 1n order to derive the "best" parameter values.

STATISTICAL ESTIMATORS

Batty and Mackie (1973) suggest maximwn likelihood techniques as a
meaningful approach to deriving calibration statistics. Based on the
wvork of Hyman (1969) and Evans (1971), for a trip distribution model of

the form

-~

p.. = ab, f(B, ¢ ..) (1.12)
1) 13 1)

where ;ij = the probability of a trip makér living

in i and having his de§tipatlon in\EBne 3,
the maximum likelihood estimator derives a set of 2n + 1 conditions for
the 2n + 1 unknowns. Given the sample data from a trip survey (Figure
3), the balancing factors, a, and bj, are chosen such that the proportion
of trips generated from and distributed to each zone by the model equals
the proportion of trips leaving and the proportion arriving at each zone
as observed in the sample, i.e., in the row and column totals of
the sample matrix. The parameter 8 in the impedence function is cali-
brated against the mean trip cost, and is at its optimum value when

the mean trip cost predicted by the model equals the mean trip cost

calculated from the sample.

—
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Cesario (1975) proposes the alternative principle of leudst-squares
to derive calibration statistics for spatial interaction models of the
same form. The conditions derived state that the parameters of the
model must be such that the sum of squared reglduals, defined as the
sum of thé squares of the difference between the number of trips from
zone 1 to j observed in the sample and the number of trips between 1
and ) predicted by the model, equals zero. Consistency in the balancing
factors 1s achieved on the sum of squares of row and column elements,
not simply on the sums of these elements as in maximum 11kelihood‘
(Cesario, 1975, p. 15).

The statistics generated by the maximum likelihood and least-squares
estimators possess characteristics which give them several advantages
over correlation statistics. The calibration statistics are simpler and
more sensitive to changes 1n parameter values. The maximum likelihood
estimator, under certain assumptions on the nature of travel cost
(Hyman, 1969, pp. 108-109), deraives mean trip cost as the statistic
against which to calibrate B; Batty (1970¢,pp. 108-109) shows the
sensitivity of this statistic. The statistics themselves are functions
of interaction variables, the tij' Batty (1971, p. 416) finds that
statistics using these variables are far more sensitive to variations
in parameter values than statistics which measure distributions of
activity, such as population or employment.

Secondly, the statistical estimators derive as many calibration

statistics as there are parameters, so that a unique set of "best” para-

meter values can be determined. The statistics are generated by optimi-
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zing the estimator with respect to each unknown parameter. Batty and
Mackie (1972, p. 214) develop calibration statistics for a two para-
meter shopping model and suggest several numerical methods for their
solution. Subsequent British work on multi-parameter models bases 1ts
calibration strategies on these statistics (Batty, Foot, et «al., 1973,
p. 359; Batty, et al., 1974, p. 466).

Thirdly, the statistics derived from the maximum likelihood and
legst—squares methods do not lead to bogus calibration problems, as do
correlation statistics (Wilson, %974, p. 343).

But perhaps the most significant advantage ©of the maximum likel:i-
hood and least-squares approaches 1s that one can look into the construc-
tion of the estimator to see exactly what assumptions are belng made
about the sample data. 1If the data reasonably satisfy the assumptions,
then one should be able to make inferences about the model's goodness-

of-fit to the sample observations.

SUMMARY

This chapter has considered four approaches to the calabration pro-
blem which have been proposed in the literature: graphical curve fitting,
tabulation, systematic search, and statistical estimators.

In the evaluation of these approaches, the method of graphical curve
fitting is rejected. It fails to consider the interxdependencies bétween
the model and parameters, by estimating the parameter values outside the

model framework. Tabulation methods are rejected too. Although they




- T O .

AT s e o

22

use a statistical measure of the modgl's goodness-of-fit to the survey
data, they are too slow and 1naccurate to be useful 1in thé calibration
of interaction models.

Systematic search techniques, which use numerical methods to opti-
mrze the model's goodness-of-fit to the sample data, based on a given
correlation statistic, are shown to be a better calibration method than
tabulation approaches. However, correlation statistics have several
properties which make them undesirable measures of the model's goodness-
of-fit. The statistics are relatively insensitive to changes in para-
meter values. Some statistics tend to optimize to a bogus solution.
The statistics also fail to yield unique parameter values for multi-
parameter spatial interaction models. But most important, because the
assumptions placed upon the sample data by correlation statistics are
unknown, it is impossible to make statistical inferences on the para-
meter values and the model's goodness-of-fit.

Statistics derived from statistical estimators, such as maximum
likelihood and least-squares estimators are preferred, since they do
not possess the undesirable properties of correlation statistics out-
lined above. Furthermore, because these statistics are derived from
theoretical principles of statistical estimation, one should be able to
deduce the assumptions madé by the statistics about the data, and thus
be able to make inferences about the model's goodness-of-fit. Therefore,
this approach to calibration is selected as the most appropriate for

estimating "best" parameter values.

[ope——
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It now remains to compare the statistics derived from the maximum
likelihood and lcast-squares estimators through an examination of the
estimators themselves. This 1s of interest because each estimator
derives statistics against which to calibrate the model parameters from
different basic assumptions about the data. Because the statistics
differ, so do the subsequent parameter estimates. Mackie (1972, p. 36)
asserts that a particular set of statistical conditions 1s based upon
speci1fic decision functloné "embedded" in the statistics. The decision
function can be related to trip purpose through the interzonal probabi-
lity density function assumed by the statistical estimator (Kirby,

1974, p. 101). Therefore, the different parameter estimates from alter-
native statistical hypotheses relate to the behavioral characterastics
of the trip-maker, of which trip purpose is a major factor. Since we

are attempting to find the "best" parameter estimates in the calibra-
tion process, a particular statistical estimator may be more appropriate
in deriving calibration statistics, depending on the type of interaction
being modelled.

The next two chapters will examine in detail the maximum likelihood
and least-squares estimators. The appropriate calibration statistics i
will then be derived and the assumptions that the statistics make upon

the data‘will be defined.

iy
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CHAPTER 2

THE MAXIMUM LIKELIHOOD METHOD Or PARAMETER ESTIMATION

INTRODUCTION

R

This chapter will examine the mathematical approaches which have
been used to derive the maximum likelihood conditions for optimum para-
meter estimates. In doing this, the 1nten;ion is to define the beha-
vioral assumptions which each approach implies.

In the literature, two distinct methodologies are applied. Hyman
(1969) defines the calibration problem to be one of hypothestis evalua~-
tion. Evans {(1971) and Kirby (1974) define the problem to be one of
point estimation. Hypothesis evaluati?n 1s based on the assumption
that competing hypotheses can be evaluated ain terms of the survey data
and that inferences can be made about which hypothesis best repre-
sents the observed distributi;n. Point estimation, on the other hand,
involves the estimation of unknowns of a given hypothesis from a single
function of the sample data (Freeman, 1963, pgz229).

Hyman's framework is included in this chapter on maximum likelihood
estimators for twp reasons., First, it will be shown, through an outline
of his approach, that hypothesis evaluation is not a suitable framework

upon which to calibrate model parameters. Second, the simplifying

assumptions which Hyman uses in his framework eventually reduce the

24
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problem to that of maximizing the likelihood function in Bayes' equa-
tions, which 1s equivalent to Evans' (1971) and Kirby's (1974) frame-
works when they approach the problem as that of point estimation.
Following the assessment of Hyman's (1969) work, the paper will
briefly outline the general principles of the maximum likelihood esti-
mator. This will be followed by the application of the maximum likeli-
hood estimator to parameter calibration problems 1in spatial 1interaction
models, through the work of Evans (1971) and Kaxrby (1974). The paper
w1ll emphasize the point that Evans (1971) and Kirby (1974) derive the
same key calibration statistics from different mathematical approaches,
and an attempt will be made to reconcile the two approaches on the
basis of their implicit behavioral assumptions. Finally, the‘chapter
will establish the relationship between the derived statistics and the
behavioral conditions in the survey and will summarize the findings of
the previous sections.
o
HYPOTHESIS EVALUATION AS A METHOD OF PARAMETER

CALIBRATION: AN APPRAISAL QOF HYMAN'S APPROACH

Hyman (1969) attempts to calibrate a trip distribution model using
the concept of evidence in Bayes' equation. By taking the log-odds

form of Bayes' equation (Tribus, 1969, p. 83), he develops the evidence

-

for hypothesis Hl over H,, with respective distributions {pij} and

I .
{pij }, where Pij represents the proportion of trips between zones 1

and j predicted by Hl.
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- -~ %

1
;9V(H1IDX) = Z X pi) log plJ - Z Z p._ log plJ (2.1)
1] 1]

|

where plj = the proportion of observed trips between

i and 3
D = the sample data
% = the conditions for the survey =

Hyman states that the choice of H, which maximizes (2.1) yields a

1
distribution [meaning hypothesis}] giving the best possible fit to the

survey data. He then defines

-

E(Hl!DX) = E § P log P, (2.2)

and states that the choice of parameters which maximizes this expression,

subject to the constraint

ij

e~
.~
oo
i
[

yields a distribution giving a best possible fit to the data.

Several points of criticism are in order. First, Hyman is confusing
the issues of parameter estimation and hypothesis evaluation. Thege
are two distinct topics (Mackie, 1972, p. 35). Secondly, because oP the
framework that he has set up, the approach becomes neither strictly a

Bayesian nor a hypothesis testing approach. Hyman's assumption is

that there is no prior evidence for one hypothesis over the other

i
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(Hyman, 1969, p. 106). This reduces the problem fré8m a Bayesian one
to simply maximizing the likelihood of a hypothesis on the data.
Second, Hyman states that maximizing equation (2.1) yields the
hypothesis which best fits the observed distribution and then, after
dropping a term in the eguation, states that maximizing egquataon (2.2)
ylelds parameter values wh1ch glve “1 a best fit. Since there 1s no
prior evidence to support one hypothesis over the other, how without
calibrating both hypotheses, can there be evidence for H, over H 7

1 2

Further, since the likelihood for H2 1s assumed to be zero, Hyman must
be assuming that this hypothesis cannot be calibrated, 1.e., a uniform
distribution. Since the concept of evidence applies to any competing
distribution, and since such competitors that can be calibrated exist,
i.e., the intervening opportunities model {(Hutchinson, 1974, pb. 107-
113), or the Charnes, Raike and Bettenger (1972) model, Hyman's
simplifying assumption 1s unreasonable.

As a maximum likelihood method of parameter calibration, Hyman's
(1969) approach is correct. As a Bayesian approach, as it is credited
in the literature (Evans,1971, p. 23; Batty and Mackie, 1972, p. 210;
Wilson, 1974, p. 318), it is not. A Bayesian approach requires the
hypothesis to be calibrated a priort and then to be altered by the
data. Since the prior hypothesis in Hyman's~framework is discounted,
the approach only considers the likelihood of the hypothesis based on
the data, and thus is not strictly Bayesian. The reader should refer
to Sheppard (1974, pp. 62-63) for a description of a Bayesian frame-

<
work for parameter calibration.
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Hyman's work emphasizes the fact that point estimation 15 the only
valid approach to parameter calibration, since, in effect, he ends up
taking this approach in equation (2.2). Other authors have apj rouached
the parameter calibration problem using statistical theory on point
estimation. Lkvans (1971) and Kirby (1974) use the method of maximum
li1kelihood as a parameter estimation technique. Following a brief out-

line of the mechanics of the method, their work will be reviewed.
THE MAXIMUM LIKELIHOOD ESTIMATOR

The method of maximum likelihood in point estimation can be des-
cribed as follows. Consider a random variable t and a sample of T
independent observations, tlJ from the same distribution, where tlJ
represents the number of trip interchanges between zones 1 and j. The
probability of observing tij 1s ¢(tiJ|8), where the form of 4 1s known
but the value of B 1s not. The joint probability of the observations,
which is a function of the unknown parameter B, is called the likelihood
function.

L(tijIB) =11 ¢(t,.|8) (2.3)

.
i3 1)

According to the maximum likelihood principle, we choose as our estimate

of B that value which maximizes the joint probability of the actual obser-

vations. The conditions for a maximum are thus:
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1) J
and

2
"——;4 0 (2.5)
RIS

Since log L(tljlb) and L(LlJIB) reach their maximum at the bame values

of 8 (Freeman,> 1463, p. 254), then equations (2.4) and (2.9%) can be

written
o

3 )

o - ——— =

55 log L(tlJIB) - g g ¢(c”x8) 0 (2.6)
and

a2

— | llec | <o (2.7)

38 1) )

to derive the optimum value of B.
The maximum likelihood ést?mator has several desirable properties
A
which make it preferable to other point estimation approaches (Larson,
1969, p. 223), and the reader is referred to the literature (Freeman,

1963, pp. 257-262; Larson, 1969, pp. 233-250) for a descraiption of these

properties.
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Having described the maximum likelihood approach, let us examine

a
1ts appMication to parameter calibration in spatial interaction modelling.

THE DEVELOPMENT OF CALIBRATION STATISTICS FROM THE

™
METHOD OF MAXIMUM LIKELIHOCOD

This section will review the work of Evans (1971) and Kirby (1974).
Basically, 1t wi1ll develop the calibration statistics by the likelihood
estimator from the authors' different mathematical approaches, and will

define the conditions required for deriving best parameter estimates.

EVANS APPROACH TO CALIBRATION

Evans (1971) derives optimum parameter values for spat:ral inter-

action models of the form:

plj = aibj exp (-8B Cij) (2.8)

~

where pl) is defined as the probability of a trip originating in zone 1

and having zone j as its destination. He assumes we are given a sample
N

of tr%g interchanges, {tij}' from which the proport¥an of t;Xps between

-

each 1 and j can be calculated:

t..
= 21
pij T ' (2.9)

where T is the number of observations in the sample. If we interpret



the trip proportions to represent probabilities (Lindley, 1965, p.

31

3;

Freund, 19952, p. 112), and their joint distribution to be multinomial

(Evans, 1971, p. 23), the likelihood for £ on the sample will be

(Edwards, 1972, p. 19)

and

13

or, on converting (2.10) to log-form:

= = | BN 1
log P(pij plj, vl'J) log T! % g log ti)

+§ ;

§ t.. log pij

(2.10)

(2.11)

(2.12%/////

/

(

Evans maximizes the likelihood of the sample on the joint distribution
']

of glj‘s.

max log P(pij =p.., ¥V, ) =1log Tt - Z"Z log tij!
14 i j

S.T. ) Py = ) a;by exp (=B ¢ ) =1
ij i3

(2.13)



Forming the Lagrangian,

A=

log T! - Z Z leg t ! + Z Z
i3 1] :

13

t

1

J

log b - B
{log a + log ) B c ]
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1]

+ AL =)} ab.exp (-8 ¢ )]
RN )

and differentiating with respect to the unknowns ai, bj and B yields

the first order conditions for log P(piJ

aA

3b,

J

3
38

!
J

t. .
A1 o (=
e A Z a; exp (-8 c,

1

§

ct

A

a,
1

J

L
3

t

i)

= A Z bj exp (-8 c;

~

3 J

-,

1 +J

Equation (2.15) is rewritten as

Y. =

3

ij

J

z a, bj exp (=B Ci')

J

and by summing (2.18) over i:

!

!
J

t

ij

= A

)

!
J

a; bj exp (-8B 4

P

)

.)

j)

!

.) to be a maximum.

for all i

for all j

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.14)
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Combining (2.13) and (2.19) qgives

13

Therefore, substituting for A into (2.15),

arranging terms results in the first order

-1 -
Lagbjex (-Beo) =gl =
J J
; =1y =
% a; b exp (-8 o5 = T% )
1
g § cij a; bj exp (-8 Cij) T g

Sufficient second order conditions for the

2 2 2
a%A 3°A 3°A
3, < 0. Vj’abj <0, Vyigg <0

From (2.15), (2.16) and (2.17},

2. y
3°A 1 \
e, ST T7 Lty <0
i a, 3
b S
2
3% 1
%, "7 Lty <0
j bl i

3
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(2.20)
[
(2.16) and (2.17), and re-

conditions on (2.12).

Yp .  for all 1 (2.21) ;
T 1)
3
Z pij for all j (2.22)
X
) 5ty ) ¢, Py . (2:23)
] i C
maximum are:
~
(2.24)
;
|
Ky
, {
aieg R (2.25)
bjEE R (2.26)
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2
A
55 ML
1

s

2
% <, bj exp (-8 cl]) <0 (2.27)

-

for a , b >0
1 )

Since by defimition a > 0, b > 0, the second order conditions hold.
1 ]

Therefore, the best parameter values are attained when:

(1) the proportion of trips generated in zone i by the model

agrees with the proportion observed in the sample (2.21),

g?) the proportion of trips attracted to ®ach zone j by the
model agrees with the proportion observed in the sample

(2.22), and

(3) the average generalized cost of travel is the same in

both the model and the survey (2.23). .

Because the maximum likelihood estimator generates as many equa-
tions as unknowns, then theoretically, the system should be solvaBle for
a unique set of values ai, bj and B. .However, because of the large
number of terms usually involved in the system of equations, Evans (1971,
p. 30) has proposed an iterative procedure which converges to the opti-
mum solution. Mackie (1972) has shown how the optimization methods

discussed in Chapter 1 can be applied to statistics derived by the

maximum likelihood estimator, to solve for the parameter values.
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KIRBY'S APPROACH TO CALIBRATION

Kirby, on the other hand, assumes that the sample matraix of tlj's
from a traffic survey is only one estimate of the number of journeys
from each 1 to 3. He hypothesizes that 1f the results of several inde-
pendent surveys were avairlable, a mean number of journoys on each inter-
change could be established. However, i1n most circumstances, this addi-
tional i1nformation is not available.

The model to be calibrated estimates the mean nwrber of journeys

from 1 to j,
t,. = a; bj £(8, Cij) (2.28)

and the observation, tij' is regarded as belonging to a probability
density function with mean ;ij‘ The probability ¢(tij) of obtaining
an observation tij is assumed to depend only upon the values tlj’ the
mean Eij' and certain properties independent of both i and j (Kirby,

1974, p. 99), sich as the sampling process.

Therefore,
JOWR ¢(tij|tij) . (2.29)
Kirby then finds the compound probability of obtaining the sample
matrix of trips, {tij}, which is, as defined above, the likelihood func-

tion.

L=1T1 ¢(t,
i3 i

jI;:ij) (2.30)

e o e
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Since the mean value is unknown from the observation, hut 1s generated

7
/

in the model
L =-r: i ¢(t13|a1 bj £(B, clj))
Qor

log L

Z log ¢(t..|la. b, £(8, c..))
i3 i3'71 73 ij

(2.31)

(2.32)

Maximizing the log-likelihood maximizes the compound probability

of obtaining the base year matrix of journeys (Kirby, 1974, p. 99).

Solving the first order conditions with respect to the unknowns yields

parameter values which maximize (2.32). These are

ij *
<1 Z a"%22~i.. t.. =0 for all i,
a, & . ij
J i
f g
. 3 lo L=_1_\_Z§_$u.t = 0 for all j,
Bbj bj i 9t 13 )

(2.33)

(2.34)
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9 log L 3 log ¢ atlj
o8 at. . 98
ij
e \
i3 3t

=]V, dlege |2 log £ (2.35)
ij !

If the a; and bj are defined to be strictly positive, i.e., each
zone attracts and generates interzonal trips, the conditions for optimum

parametexr estimation become:

jlloge. t5 =0 all i (2.36)
j atij

jlea s, Eij =0 v all j (2.37)
i atij

X z ; 9 log ¢ {9 log £{ =0 (2.38)
i3 o5t a6

e G e 5

R
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Assume the probability density function of the variable tlj to be

Poisson. Then, ,

N t

- . (t, ) Y .

¢(tij|tij)= Z_-‘?_ exp (—tU) (2.39)
13

By substituting (2.39) into (2.36), (2.37) and (2.38), first order condi-

tions for the maximum likelihood estimator are derived.

Z—?— ((<t,,) +t . logt, .6 -logt ']t =0 -
5 at 1) 1) 1j i) 1)
ij
€5 N

) SR i3 =0

j €43

Y (-t,.+t, ) =0 for all i (2.40)

j ij i3
Similarly,

(-t,. +t, ) =0 for all j (2.41

g ij 13 J )
and

TT -t +t,.) ?-—;—%—{ = 0 (2.42)

ij ij 1) B ot
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Providing an appropriate transformation is made on the cost funct.on,
log f (8B, clj), the statistics derived from Kirby's approach are identi-
cal to the statistics derived by Evans (1971), although the two are
developed on different mathematical f{rameworks.

Q.

ASSUMPTIONS OF THE TWO DERIVATIONS

In ordexr to understand why the two approaches yield the same con-
ditions on the parameters, it 1s necessary to look into the assumptions,
both implicit and explicit, made by both Evans (1971) and Kirby (1974)
about the sample data.

Evans (1971) examines the macro-state of the distribution. He 1s
interested in finding the joint probability of observing a given matrix
of trips, and he defines this to be a multinomial density function,
assuming that the sample proportions, pij' differ from the mean ;ij by
reason of chance arising in the §ampling of trips (Evans, 1971, p. 23).
Thus, for the multinomial, the distribution variable is deflggd as a
probability. Maximization of the density function with respect to the
parameters, after applying the required constraint on the variable
(Z Z pij = 1), yields conditions for deriving optimum parameter estimates.
Bia;s, therefore, is explicitly assuming the variation of trips between
each i-j interchange to be a Rroduct of chance in the sampling process.

Kirby (1974), oA the other h&nd, examines the micro-states of the
distribution. The maximum likelihood estimator requires certain assump-

tions, whether explicit or implicit, made upon the nature of the distri-

bution of trips between each i-j pair. Kirby (1974, p. 99) calls this

VSRR S Sy W
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the sampling distrtbution. However, 1t 1s more appropriate to define
the nature of the distribution to be a probability density function of
the variable tl)' to avoid confusing the terminology with the trip dis-
tribution, derived by the model,or with sampling theory.

Therefore, the probability density function must be kn&wn 1n oxder
to use the likelihood function to estimate the parameters. This densaty
function describes the probability that the value of tlJ wlll be observed
between a given 1-) pair. The likelihood is found by taking the com-
pound probability of the density functions describing the micro-states.
The parameters, thus derived, generate a macro-state distribution.

If the Poisson density function describes the variation of tij n
the micro-states, the maximum likelihood estimator derives 1i1dentical
conditions for optimum parameter v§lues to Evans' (1971) method of maxi-
mizing the likelihood of the multinomial density function. This may be
explained by reexamining the assumptions which Evans (1971) makes about
the variation of trips between each i-j interchange.

By assuming the joint probability of the observation to be multi-
nomial, Evans (1971), contrary to his assumption of random error in
sampling, is inplicitly assuming the probability density function for a
simple interchange to be binomial. Thus, the trip proportions are from

a probability density function with mean
= T .
u pij (2.43)

= tij ‘ (2.44)

B B T o
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(2.45)

(2.40)

Kirby (1974) in assuming the variation of trips between each 1-)

interchange to be Poisson, is implying a probability density function

with mean

ij

and variance

!

(2.47)

(2.48)

Identical conditions for optimum parameter values have been deduced

N

from both approaches, even though there is a fundamental contradiction

in the variance of travel on each i~j pair.

the difference

between the two probability density functions déséribing the micro-

states may not be significant, because the variance of the binomial

~

density function, implied in the multinomial, approaches the mean ti. as

-

pij approaches zero. This means that if the number of interchanges in

t..
the system is large and the proportion of trips (which equals -——&3——-)

t. .
1)
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<
on each interchange 1s small, the density functions are approximately

the same. Freeman (1963, p. 105) suggests that practical working

values for N and pi) are N > 50 and ;13 < 0.10. A system of n zones
generates N = n2 interchanges. Therefore, for a large number of zones,
the ;1) may be small enough for the assumptions made by the two
approaches to be equivalent.

The assumption of a Poisson or binomial density function describing
the variation of tl) on each interchange gives a~stateﬁent about the
variation of travel between the two zones. Kirby (1974, p. 99) relates
the densaity function to trip purpose, and asserts that one expects to
observe a greater variance for certain trip purposes, such as shopping
or recreational travel, than more regular travel patterns, such as
the journey-to-work.

Statistical conditions derived by the maximum likelihood estimator,
with the implicit assumption of a Poisson distribution describing the
variation of travel, are usual?y employed in model calibration of work
trips (Batty and Mackie, 1973; Batty, Foot, et al., 1973, p. 359).
Although the Poisson is known to describe the variation of traffic on
a road reasonably well (Kirby, 1974, p. 103), and interzonal travel
might vary in a similar manner, it is possible that the Poisson has too
great a variance to accurately portray the variation of journey-to-work
trips.

Kirby (1974, p. 101) suggests that other statistics, based on
different density functions, which can also be derived by the maximum

likelihood estimator, may be more appropriate for modelling journey-to-
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work travel. ©One needs to examine the higher moments of tlj' disaygqre-

gated by trip purpose i1n order to derive the appropriate statistics

against which to calibrate the model.

GENERAL CONDITIONS REQUIRED BY THE MAXIMUM LIKELIHOOD LSTIMATOR

|
!
;‘
i
!

S~

The conditions derived by the maximum likelihood estimator define
statistics which are calibrated against the model to derive "best"

4
parameter estimates. Because the statistics are derived from statis-

tical estimation theory, they yield the most pertinent irformation from
F
the sample data to give the model a best fit to the survey. For the

i single parameter spatial interaction model, the maximum likelihood

estimator yields 2n + 1 conditions for the 2n + 1 unknowns. The first
2n conditions (equations (2.36) and (2.37)) require the balmcing '
factors, ay and bj, to be such that some function of the trip-origins and
trip-ends generated by the model agree with the same functicn of origins

, and destinations in the sample. The actual form of the function 1s
dependent upon the probability density function which describes the
variation of the variable, ;ij' The statistic derived to calibrate the
parameter, B, (equation (2.38)) is dependent on the density function of

-~

tij' and some function of travel cost between zones i and j.
’ The cost function describes the generalized cost of travel between
R each i-j pair and is some combination of distance, time and direct

- money charges to the trip-maker (Evans, 1973, p. 40). It is assumed

to have the following properties:
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]
agf < 0 (2.49)
1)
and
2
S f2 > 0 (2.50)
3dc
1)

As the cost of travel between two zones increases, the cost function

decreases the number of journeys between the zones, ceteris paritbuc,

and the function decreases such’ that the amount of travel between two

zones decreases at a decreasing rate.
»
For a given probabilaty density function, several statistics

related to generalized cost can be derived. If the generalized cost

function is defined as:

£(8, cij) = exp (-B h(cij)) . (2.51)

where h is some transformation on the generalized cost of travel, then,

! -~

using Kirby's general conditions and assuming the density function of tl
to be Poisson, the calibration statistic is derived as follows. From

equation (2.42)

3 log f (8, cij} 3 log-f (8B, ci.)

A ® » 2.52
g g £ 38 E § i3 38 (2.52)

Y t. . h(c, .) (2.53)
3
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Hyman (1969, p. 109) derives calibration statistics for several

cost functions and argues that each function may be appropriate for

different trip purposes. He suggests the exponential wmoedel
8 (R 5
£(8, clJ exp (-f ij) (2.54)
1.€.,
h(c. ) = ¢, (2.55)
13 1]

as an appropriate measure of cost in the journey-to-work. This trans-

formation 1s often used for this purpose in modelling\applications
(Wilson, et al., {(1969), p. 339), and it is this cost ;hnctlon which makes
Kirby's calibration statistics equivalent to Evans' (1971). The cali-
bration statistic derived under the assumption of a Poisson density

“

function describing the variation of tij Qver each interchgnge yields,

from (2.53) and (2.55)

§ tiy i , (2.56)

since

g Z.tij ) § ty =T (2.57)

PUN
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g 2 tij ‘13 g Z tlj cl]
] = i) m (2.58)
Therefore,
% § Py~ € (2.59)

The parameter f is calibrated against the mean tzip cost, and 1s
at its optimum value when the mean trip cost predicted by the model
equals the mean trip cost observed in the sample. )

In general, if the probability density function is assumed to be
Poisson, the likelihood estimator calibrates the parameter B against the
mean value of the transformation on cost. Optimum conditions state
that the mean value of the cost transformation generated in the model
must equal the mean value of the traﬁsformatidn observed in the sanple.
It'will be shown iﬁ the next chapter, that a different density function,
the normal, yields other statistics.

To summarize, the baWoing fac;tors. of the spatial interaction
models are determined by statistics describing the variation éf the

tlji The model parameter, B8, is calib§ated to a statistic which is a

function of the probability density function of the t, , and the

ij
deterence function, which is a measure of the cost of travel between two
zones. The work of Hyman (1969) and«Kirby (1974) relates the doterence

function and density function to trip purpose. Since different combina-

tions of these functions yield different calibration statistics, one

~
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BT T

particular combination may be the more appropriate against which to

calibrate the parameter, depending upon the trip purpose being modelled.

A ]

SUMMARY

This chapter has discussed the maximum likelihood approach to para-
meter estimation. It has argued that parameter calibration is a problem
of point estimation, not hypothesis'evaluation, and has reviewed the
different mathematical approaches of bvans (1971) and Kirby (1974).

It has been found that the same key conditions are derived by the two
mathematical approaches.

ig‘ The cbapter has looked at the implicit and explicit assumptions
that each approach makes on the sample data, and it has been found that
in the context of spatial intera;tion modelling, the assumptions are

' approximately the same. Thg chapter concludes by examining the various
calibration statistics.which can be generated by altering the assump-
tions made §n the variable t,, and the trip cost, and notes that a

i3
particular statistic may be better suited for the calibration of a

specific trip purpose.




CHAPTER 3
THE LEAST SQUARES METHOD OF PARAMETER ESTIMATION
INTRODUCTION

This chapter will examine another approach to point estimation
which has been applied in the context of spatial interaction models.
This is the method of least-squares. As in the previous chapter on
maximum likelihood, it will briefly outline the general principles of
the liait-squares estimator. This will be followed by an application
of g;st—Squares to the parameter calibration problem through an out-
line of the work of Cesario (1975). The advantage of this estimator .
will then be shown by developing the same calibration statistics as
least-squares by the maximum likelihood estimator. It will be shown
that maximum likelihood makes very stringent assumptions about the
data to derive the same calibration statistics as least=-squares, and
that any less strict assumptions about the data result in different
calibration statistics. fThe chapter will conclude by interpreting
the least-squares statistics in the context of spatial interaction

modelling and will suggest situations when the least-squares estimator

is appropriate in model calibration.

48
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THE LEAST~SQUARES ESTIMATOR

Consider n random variables with known and possibly diffexent
means and known and possibly different variances. The variable tiJ
can be thought of as the outcome of a random sample of size 1l from a

population with mean

tij = f(uk) (3.1)

2
and variance, ¢ , where p_ represent the parameters of the model. The

k

observation can thus be represented by
t,. =t +e (3.2)

where o is8 an error term.

ij
Theé least-squares pr!nciple states that the best linear unbiased

estimator of the parametexs, y , is the one which minimizes the devia-

k

tions of the sample variance, defined by

02 m (b, -t )> (3.3)

i3 ICIRES,

'
i

The estimates for the parameters are chosen so that when substituted into

(3-3)1 i.e"

2 2
sw) e w] ] (e, - flu)) (3.4)
{ o4 i3 K
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they produce the least possible value for S.

The first order condition for (3.4) being a miﬂlmum is:
ds =0 (3.5)
Sufficient second order conditions require:
dzs positive definite (3.6)

Therefore, the optimum values of the parameters, My, are derived when

] z Z 2 3 v 2
— (b, - FuN) =) ] (£, - £ =0 (3.7)
Bul 13 ij k aur i3 ij k
and the principal minors, | Hl l, ey | H. |, of the bordered Hessian,
o%s 2%s
an2 ou) duy
1
| u| = ' (3.8)
2%s a2s
3ur8ul au2
x

are greater than zero.

The least-squares estimator has several prope&ties which make it
the best linear unbiased estimator of the parameters, uk, and the
reader is referred to Freeman (1963, p. 265) and Wonnacott and Wonnacott
(1970, pp. 21-30) for a discussion of these characteristics. Specifi-
cally, it is called the “"best" linear unbiased estimator because the
estimates of the My have mintmun vartance (sce Freeman, 1965, p. 265)

for a noto on the correspondence botween "best" and minimum variance).
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Let us now examine the application of the least-squares approach

1n the spatial interaction context.

THE DEVELOPMENT OF CALIBRATION STATISTICS P'ROM 'THE MUTHOD ?F

LEAST-SQUARES: CESARIO'S APPROACH .

£
Cesario (19757 approaches the problem by considering a set of

observations {tij} and an ostimate for the mean values of ti.,

o’

PN

tij = ai\bj f(B: cij) (3.9)

where a, bj are balancing factors and B is the parameter of the model
which must be estimated.
The least-squares principle requires the minimization of the sum

-

of squared residuals. Therefore, minimize

o2
s= ]} (e, -t ) (3.10)
S TRE RS
2
§ § (bg, = ag by £(8, ¢, ) (3.12)

98 9 . 2

S u - . - .12
a 3‘1 g § (tij ay bj f(8 cij)) 0 (3.12)

2 § (tij - ni bj £(8, cij) (“bj (B8, cij)) - 0
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Upon rearranging terms
i
a, Jb2e@, e.0% =)t b, £B, ¢, ) =0 (3.13)
. 14 1j “ 1y 3 iy
3 j
\ or
e, %-Te . e, =0 for all i (3.14)
T 13 ;i3 1)
3 3
Similarly
3S ) 2
‘o o ZZ (5 = a; by £(8, ¢, 7| =0 (3.15)
. i)
2 2 ¢
! by E a”y £(8, ¢ )" - % tp5 8 (8, o) =0 (3.16)
or
« 2 -~
iz_tij -E {5 by " O for all j (3.17)
™~
X and
b i—s—u L 2 »
L ) 38 " 3 ) (ty5 = a; by £(8, ¢ )) 0 (3.18)
(< $J
- A
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2 X z (¢t . -a b, £(B, ¢ .)) (-a_ b §£) = Q

i 1] 1 T ) 0B

1)

2 2 af Y af
. — - ~— 3.
5 Z % by f(8, ci]) o8 Z Z tl) % b] I8 0 (3.19)
i) 1)
or
. 29 log £ _ : d log f

Ll T T Ll tii by, THp = O (3.20)
1] 1]

Sufficient conditions for S to be a minimum exist if the second-

order conditions (3.8) are satisfied.

2
S z 2 2
=Y b, f(B, ¢c. ) >0 (3.21)
aa.2 j ] B
X
~
2%s ) 2 2
J——=) a " f(B, c..)" >0 (3.22)
w2 54 i3
b
2 2
3% 2 - ~ 2
> L (ty = &)
BT BT 13 4
2 2 2
°F °F 3°F
“1! la, b i ==+ £z Jl¢t.,a b
£3 |* 3\es? g TR Y
2 2
°f Py
. af : - b, = ¢
E g ai bj 332 (ai bj + ai bj £ g g ai j 332 13
2 2
3 f ° g 9 f
= X Z a, b, —~ |a, b, + ¢t - Z Z a, b, == (t,.) >0
} { ] 17 52 ( 19 13 {5 17y 98B i3

' for ai, b, >0 alli, j.
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The first order conditions yield 2n + 1 equations for the 2n + 1
unknowns so0 a unique solution exists. However, because of the non-linear
character of the 2n + 1 normal equatiops, Cesario (1975, p. 14) devises
an iterative procedure which converges to the optimum solution.

Also, the first order qonditions differ from the conditions derived
by the maximum likelihood estimator 1in the previous chapter. Instead
of requiring correspoﬁaence of trip-end and trip-origin totals, consis-
tency is achieved on the sum of squares of the row and column elements
(Cesario, 1975, p. 15). The parameter B is calibrated against a more
complex statistic (equation (3.20)), which is a function of the séuared
trip matrix elements, and of the generalized cost function.

A purpose of this chapter, as previously stated, is to examine the
assumptions made by the least-squares estimator on the data {tij}, and
to compare these assumptions with those of the maximum likelihood esti-
mator., This discugsion will lead to an assessment of the behavioral

hypotheses implied in maximum likelihood assumptions.

ASSUMPTIONS OF THE LEAST-SQUARES APPROACH AND A

COMPARISON TO MAXIMUM LIKELIHOOD

The calibration statistics derived from the method of least-squaras
(equations (3.14), (3.17), and (3.20)) yield unbiased parameter values
with minimum variance. The significance of this property is that it can
be proved by the Gauss-Markov theorem on a very.weak set of assumptions

(Wonnacott and Wonnacott, 1970, pp. 48-51). Spocifically, the least-

‘squares ostimator requires no assumption about the shape of the density

.
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function of the error term (Wonnacott and Wonnacott, 1970, p. 21). Thas
means the estimator requires no information about the density function
of the variable tlj.

The importance of this assumption can be shown by developing iden-
tical calibration statistics as those of least-squares, by the method of
maximum likelihood. Since the maximum likelihood estimator requires the
probability density function of ti) to be known, then the assumption on
the denstiy function by maximum likelilivod can be examined to compare
the two methods of point estimation.

Let us consider the distribution of the observation, tij' If the
probability density function of this variable is assumed to be normal,

~

with mean ti . the probability of obtaining the observation tij is

3

-

N 2,2 ,
¢(tij|ti exp [-(tij -t ) "/20%) (3.24)

3 = 3

o Jamw

»

Using the general maximum likelihood conditions developed by Kirby (1974,
p. 100), and upon substituting the probability density function defined
abave, the following first order conditions for optimum parameter values

result.

JLI9 Ot LV (e, -t,) t;, =0 foralli (3.25)
5 ot 13 13 7 S1y! My
3
i3
) (b5 = tyy) £y =0 for all j (3.26)
¢ Qdlogf 0 (3.27)




The conditions (3.25), (3.26) and (3.27) are i1dentical to the least-
squares conditions {cquations (3.14), (3.17) and (3.20)) against which
to calibrate parameter values. However, in order to derive these idcn-
tical conditions, where the least-squares estimator makes no assumptions
about the data, the maximum likelihood estimator must assume the t to
be normally distributed with common, constant vartance.

The assumption of a normal probability density function for t 1s
not at issue here. Several properties of the normal make i1t an appealing
density function to assume in the context of spatial interaction modelling.

[N

First, the normal is a reasonable description of the behavior of many
obgervable phenomena, and its application is generally a valid descrip-
tion of observable data (Freeman, 1963, p. 141). Second, the normal
probability density function is the limiting form of many other density

functions, including the Polsson. The;;ymmi\approximates other proba-
bility density functions when the mean/is large {Wetherill, 1967, p. 71).

Since the tij on many interchanges are likely to be large values, i.e.,

~

tij > 30, the normal-will reasonably approximate the data (Freund, 1952,

p. 233). There are some inconsistencies if the t, 6 are assumed_ normally

13

distributed, such as the assumption of the variable being continuous
when in fact it is discrete, and the allowance of negative values of the

variable t, . when the mean is small.

N 13

However, the maximum likelihood estimator places a severe restriction

on the vartance of the t,, when the density function is assumed normal.

i3

Conditions identical to least-squares can only be derived by maximum

likelihood if the variance of each tij is constant and equal over all

interchanges. Since tho moans (tij) can diffor by several hundred trips,
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this assumption about the variance 1is not reasonable. If we attempt to
relax this restriction on the variance by assuming 1t to be proportional

to the mean, 1i1.e.,

i ti) (3.28)

where o is the coefficient of variation, a different set of conditions
1s deraived. Since the probability density function of the variable ti

18 now:

. 1 ~ 222
ot b, ) = ——=—— exp [-(t,, - t, )°/2a° t° ) (3.29)
i3' 43 i ij ij
atij 12"
then \\\—v/“/’_'>‘
-2
(¢,. - t..) N
log ¢ = - 12 1 2lj - log tyy " log a - log [2%  (3.30) 4
20 tij

Using the me%hod of maximum likelihood, the first order conditiong for

optimum parameter estimates are from equations (2.36), (2.37) and (2.38):

o tm——s =

i A ARt < el B O it
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plleg ¢ ¢ .o
3 1)
) Jj atij
2
1 2t i 2t uE
X-—-—-—z-'- - +1-2';1‘1'—':_t-1 = 0 N,
3 2a v t< N ~N
1) 1} 1)
1 t2. t
el e
] a t t
1) 1)
t. t N
I N QES R I g all i (3.31)
I M5\ ]
Simirlarly
tx tx' 2
)_J.ﬂ =21 . &XQ all j (3.32)
1 tij tij 1
and
t t : ‘
py || Aoy ¥liegf alz A e Lo 4 ;‘; £ (3.33)
Ity \ Yy 13
1~ i -
Furthermore, the coefficient of variation must be estimated.
3 log £ %; ) (3.34)
i

s
-
o}
Q
6‘
7
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-2 20 -2 !

iy by T2ty tyy 1) - log t

1)

- log a - log f}u -0

E}
o tij
Y 2 v o2
Pi(=L-1)%-11 (3.35)
SALY { ]
2 lyov Sy 2
0 m sl ] - (3.36)
L3 e

o

The n + 2 conditiona are derived by tho method of maximum likelihood on

the assumption of normally .distributed varlables, t ,'with moan t, , and

ij ij
variance
" ¢ . .
, AR DN I S A (3.37)
oo 1]
. i3 tij

It can be aseen that the maximum likelihood estimator can only derive
the same conditions for optimum paramoter calibration as the principle
of least-squarea, if :ﬁe variabloa‘tij are assumed to be normally distxi-
buted with a common, coﬁatant variance. ﬁ%& laast-aquarea‘eatimator
derives theae same conditiona, although it makea ne aasumptiona about the
data.

Drapex and Smith (1966, pp. 60-61) suggeat the maximun likelihood
cattmqtsr ag baing appropriate if the denaity function of the var&aple

ia known, since the conditiona dexived for optimum paramoter valuos will
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A
will be different than least-squores conditions, with the exception of
a normal probability density function with common, constant variance
fo; all variablea. If the density function is not knawn, however, least-
squares is the better estimator to use, This is exactly what Kirby *
(1974, p. 102) states. The least-gquares estimator ls appropriate if'q%ﬁ
nothing is known about the sampling diatribution (moaning probabllity
dengity function) of tho variable tij‘

However, the comparison of assumptions py the two estimators, to
derive idertical calibration statistics, suggeats that the maximum
likef&hood agsumptions require an overspecification of the data to
dexrive calibration gtatiastics. Since the leastw-gquares eatiﬁator nakey
no assumption about the variable, tij‘ there is no behavioral hypo-
theals relating to trip purpoaé implied in tho calibration statistics.
The maximum likelihood eastimator, on the other hand, must make a
stringent, 1f not unroalistic, assumption about the nature of the pro-
bability denaity function Qt'tij‘ If thoe aasumption is not necessaxy,
then porhaps tho behavioral hypotheses “embedded" in calibration statis«
ticaarpnot at issue, and should not be cohaidorod whon ostimating

parameeoia for different trip purpoéaa. If this ia tho caso, then trip

purpooé should only bo a factor in the generalizad cost function.
!
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STATISTICAL CONDITIONS REQUIRED BY THE
LEAST-SQUARES ESTIMATOR
The conditions duriveq'by loast-squares, defining statistics againat
which the model parameters are calibrated, are more complex than maxi-
mum likelihood conditions. Because the conditions are functions of
tho .sums of the equared row and column olements, tho calibration sta-
tistica cannot be directly rolated to obgservable phenomena in the
sanmple matrix.

Consider the calibration statistic derived by least-aquares for

the parameter 8 }3
29 logf vyl 3 log ¢
vy g % "3 "1y T8 (3.36)

If we apply the eame tranaformation on the genoralized coat function aa

in the provious chapter,

2(8, Oij) w axp (=B h(Qij)) {3.39)

oquation (3.38) bocomos
\‘ A 2 a ’ ;.
% § tyy" hlog,) = E g by tyy hlogy) (3.40)

. -
Loast=gquares conditiona do not calibrate f againat a mean value
. , / -
that ocan bo caloulatad fxom the data, as 1h maximum likelihcod cond%tiona.

eince the moda@ pf@dlctlona, glj‘ entor both aidos of tho equation (i.0.,

V‘ . . .
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(3.41)). v

The sensitivity of the calibration statisgtic hﬂu not been discuused
in the literature, although the least-squarey sstimator has boen used
to calibrate doubly conatrained gpatial interaction models (Tanner,
1961, Cesprio, 1975), However, Turner (1970) reports that paramoter
values for singly conatrained Interaction modela, calibrated by leaut-
gquaros, may converge to a local optimum, giving a falase solution
{Batty and Mackie, 1972, p. 210).

In general, the least-squares estimator calibrates the parametor
againgt a statistic which 18 a function of the model predictionsg, ;13'

the observation, t,  , and the tranaformation on cost, the latter being

i)
asoumed to be gpecific to trip purpose (Hyman, 1969, p., 109), fThe

balanciné factora, a, and b, are determined so that there is conalatency

i 3

for the oum of aquares of row and column elemontd batween the btediction

and the data.

SUMMARY

4 ~
Thie chapter has diacussed anothor approach to point eatimatipn,.

the meﬁhod of least-gquarea. It has shown that the least-squares estima-
' : ‘
tor dexives conditione for optimum values without making any assunptions

about the probabllity density function of the variable, Fuxthore

- tij‘
more, it has chown that the maximum likelihcod estimator can qorivo the
samo aot of conditions only if vory restrictive aaaumpt}ona aro made

about the nature of the donaity function, and that any attempt to relax

}
!



—
SR

Y
LT

G ST

63

thease assumptiony results in different conditions on the parameters,
From this study, it is suggested that maximum likelihood assumptions
may not relate to behavioral hypotheses concorning trip purpose. The
chapter concludes by examining the least-squares statistics and inter-

proting their meaning with respect to the sample,
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CHAPTER 4

SOME RELATED CALTBRATION PROBLEMS 1N URBAN SYSTEMS MODELLING

é

INTRODUCTION

This chapter will discuas the assumptiona made by the modeller when
calibrating a model of spatial interaction. Theso are distinct from
the agsumptions on the data impliod by the statisticai estimators,
roeviowed in the previous two chapters. Instead, thay are the asgsumptions
which must be made about the obeservation, or trip survey, and about the
vartablas which must be defined in order to give the paramotexs nunerical
valuea,

The chaptor will oxamine thoae assumptions by first discussing the
information available to tha modellexr from the trip survey in terma of
sample sige and method of sampling. \It will then discuas the extent to
which the cbsorvations may doviate from the actual or mogn values,
egpeclally in a traffic survey, where a aingle random eaﬁplo 18 uveuwally
taken to oalibrate the model. It will aloo look at how generalised coot
is uauglly dofinod in tho calibration statistica derived by maximum
likelihood and least-squares, and will outline some weaknogsses to the

approach: |

64
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The chapter will go on to review the basic criticisms which have
been raiged throughout the paper. It will identify three research areas
which should be examined. The paper will then propose a framework tor

testing the hypothosoes,
THE “PROBLEM" OF MODEL CALIBRATION

The urban modellor is facoed with the problom of applying a mathoma-
tical abstraction of a physical syatom to a defined set of activities,
from which mgﬁt be generatad emp%rically-relevant output (Lowry, é965,
p. 160). The modeller assumos that a apecifically chosen hypothesis
sufficiently doscribes the phenomenon he ia studying. 7The "problem"
of model. calibration is thus one of defining the variablea against which
to estimato tho paramoters of the model, and of optimally “fitting" the
hypothesia to sample data.

The accuracy of the apatial interaction model's output ia closely
related ta the reliability of tho sample data, or tiip suxvoy, for it is
against those data that the model is calibrated, regardless of which
calibration statistica are employed, The modoller takes these data,
usually a small pexcentago of éhe:population‘(Chatorjoo, et al., 19714,
ps N, a8 a satiafactory roﬁreaoncaﬁioﬁ.of the actual digtribution, or
mean valuos, ho is attempting to mathematically déaoribo. Tho model 18
calibrated to these data, or more procimoly, the model parametors are
astimated from the obsorvation.

Given the paramotor véluoa detormined from tho sample, the model io

applied to tpo population from which the sample 10 drawn, -to genorate the
\

1
.
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existing distribution, or can be applied to projected activity variables
to conditionally predict future distributions,

The model predictiona aro conditional upon three basic assumptions.

1. Tho hypothesis is a suitable description of the phenomenon

under atudy.

2. Tho survey, againgt which the model is calibrated, is a

valid ropresontation of the phenomenon undor study.

—

3. Tthe parametor values determined from the sample data,
and the functional relaticnshipa describing behavior,
remain conatant over 8soale and over ftme (if used to

make conditional predictions in the future).

This papor doos not intend to test the validity of the firast aasump-
tion., It assumes that the spatial intoraction model reasonably describoa
the distribution of travel in an urban aroca. Nor is it goncernod with
the effacts of scale or time on the gonerated distributdon, Althougp
thome two lgsues must bo more thoro@ghly rogearched (Shepherd, 1974,
pp. 52-68) wWileon, 1974, p._391). the iasuwe which will bo discussed in
the chapteor ia thoe reldability of tho samplo data.

Thia 1nsu5 will bo exdminoed in two parts, One will deal with the
trip survey, and the othor will examine and assoss tho variables which

give * the paramoters numerical values,
~
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THE TRAVEL SURVEY AND ITS RELATIONSHIP 1O THE

POPUIATION I'T REPRESLNTS

Travel data, used to calibrate trip distribution models, are
obtainced primarily from origin-destination surveys, of which there are
-two kinds. These aro home-interview and roadetde-interview survoys. 10
detormino existing internal travel patterns, home-interview surveys are
usually conducted (Chaterjee, et al., 1974, p. 1), Thv arca is divided
into a sot of zones, and the survey is conducted by interviewing ;1 small
percontage of houseoholda in each zone randomly. In trip distribgtion
'modolling, tho éhrvey finda tho destination zone of cach household for
the particular trip purpose being modelled,

Aftor the survoy has been taken, tho results are aggregated into a
eample trip matrix, which doscribes thoe interaction in the systom obgerved
in tho survey., From this matrix, calibration atatistics, defined by the
astatiatical ogtimator used to oatimate tho paramctoxs, are calculated.

The lusue to bo discusdod 15 the rolation the sample bears to the
mean diséribution of tho populatiop. In the context of trip distripution,
the mean distribution is tho avorage travol betweon each origin and desti-
nation, for a specified trip purpose and in a dofined time poxriod, i.o.,
journey-to-wori tripa in a two-hour .peak §oriod. Tho major factor
influencing the correspondence hatween the obaervgd and actual distribu-
tions ia tha aarple ¢tso of cbaervatione, The eurvoy' data upon‘which
the paramc;ore are ostimated are congldored to be a randem samplo of T
variablea, and of sample olze equal to ono. The survey, which iy but one

4
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cstimate of the pumber of journeys between each zone pair for a given
time period, may or may not corrospond to the actual travel pattorn,
The actual number of trips between each i-j pailr varies from day-to-

day, and can be representod by a probability donsity function, ¢, with
- s/ <y

moan tij and variance °1j2‘ The aampling dietribution of the mean travel

on each interchange, 1s related to the actual distribution by the

following fundamental roelationship.

~

Consider 2 random samples taken from a population having mean t

33

The mean valuo, X, of the random gamplos, will bo

N

2
and vatriance oij .

distributed in a sampling distribution with mean
E(x) = tij (4.1)
and varianco
0 2 .
2, - ij N -2 .
0 (x) = = () . (4.2)

whon taken from a population of finite size, N éFround. 1952, p. 230).
These rolationships roveal that, on the avorago, the samplo mean oquélu
the population‘mean, and the variability of the sample mean ;a ogual to
or leas than the variability of ﬁho random variable of the population,
The variability of the sample mean decreases ag the number of random
samploa takon incroames (Fround, 1952, p. 231).

8ince, in actﬁal studios, only one trip survey ia usually taken
(Kirby, 1974, p. 93). the variance of tho samploe mean in a8 large as tho

variance of the variable “15 in the population. Thia varialice may be
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large for certain trip purposes (Kirby, 1974, p. 99). Therefore, the
data, againgt which the model ias calibrated, may significantly miw-
roprodent the muvan travel distribution,

This suggests that better data for calibrating apatial interaction
modola can be obtained simply by taking more than a single trip survey
in the area boing modelled. since trip surveys involve a considerable
exponse, in terms of timo and money, the correspondenco betweon a single
random sanmple and the mean travel ¢istribution shpuld be invegtigated
to determine whother roliable model predictions can be generated on the

basia of a single sample,
VARIABLE DEFINITION IN CALIBRATION STATISTICS

The prooigo empirical definition of variablos is important becaube
it affects tho values of the modol parameters (Lowry, 1965, p. 163). The
rolationship betwson variable dofinition and paramoter valuos can be
soon in the calibration statiastice dorivod by tho statiatical ogtimators
in the previous two chapters,

The maximum likolihood estimator, under the assumption of a Poisson
density function, calibrates tho parametor B against a tranuformation

of the goneralised ooot of travel betweon i and J.

g hte, ) = I T €. hiey) (4.3)
§ § i3 i) § § 1) 1 _

wvhore
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13 ) (4.4)

Tha least-gquares estimator calibrat. ' 8 against the same transformation

of cost,

§ g Qij heyy) = E g by tyy Bley) (4.5)

In ordor to derive numerical valueg for the parameters, it iy
necegsary to define the form of thoe generalized cost function, and to
define goneralized cost itself. Hyman (1969, pp. 108-109) suggests
aoveral cost functions and rolatos these ;o differont trip purposos,
Wilson (1974, p. 70) arguos that if a function of the form

.

f(Bl cij) = OXp (-Bcij) {4.6)

is umod in the sgpatial interaction model, the craéeller is parceiving
coat linearly. Savoral authors (Batty, 1970c; Batty, 1@71: Batty, Foot,
1

ot al., 1974) have ugsed this cost function in model application. Undar

this asaumption, the transformation on coat becomes

h(uij) oy , (4.7)

and the calibration statistics, from (4.5) and (4.4), bocome

BT LR - ' (4.8)
IRTRY 49 43
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and

. A (\‘ " )
} § tyy" oy .~f/§~:;} tiy iy ‘ (4.9) p

i

wilson (1974, p. 70) arguos that a power function of tho form

3 14 : (4.10)

may be morxe appropriato for long diatance travel, since marginal travel
ovor long distances is not likely to bo perxceived in tho samo linear
fashion. O'Sullivan (1968) has ugod this cost function to describe inter-
rogional froight flows. In this case, tho transformation on coat bucomos

hic,,) = log ¢

4.
13 ' 3 & ( ll)‘ @

and tho calibration sé%tintics,aro. from (4.3) and {(4.5)

L)

t,, log o, = t,, log e ' (4.12)
Hu 1 Hu 4

and : \

A 2 + .Y
E § tyy 109 ey = ?2 § ty by log %, (4.13)

)
Othor authores (Alonuo.'1972: Datty and Mackie, 1972; Batty and Mq?kio, ) l

1973) have waod the Tannoxr modol, whore tho coat function is spocifiod by

o
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. e 8 -
£(8, cij) cij exp (~u Cij) (4.14)

Both the maximum likolihood and loaut-squares eatimators derive atatistics
for each parameter. The statistics by maximum likelihood are (Batty and

Mackie, 1973)q
% % tyy gy " ) tyy iy (4.1%)

and

% § tij log cij » g g tij log cij (4.16)
Tho statistica from least-gquares are: ‘
~ 2 A
L] t € 4.17
bE g gyt Dby by oy 1A
N LY 2 L)
% § tij log °ij w‘} § tlj tij log cij (4.18)

In tho litorature, oareful convideration has been given to specifying
the form of the cost funotton. Howover, genoralized coaé} in moat readingu,
has beon duf&nod‘uimply ae trip length, i.0., trip dlaeancb.’ Thie 48 a
doparture -from the definition of “coet' in onrllo# studies., Wilson, et
al., (19G9) assumo travol cost io be a lincar gun?tion of meveral fac;ora:

travel time, Walting time (for transit), treip lén&th, parking cogta, and

a modal “penalty". Tho praciae dofinition of cogt in thie ctud§ i a
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vesult of extenaive woxk in people's valuation of coat for different
modes of transportation (wWilaon, et al., 1969, pp. 341-342): Although
Wiluon (19¥2, p. 14) gtates that for trip diatribution pwrposes, the
eoat function can be truncated to the form,

e, ta, q (4,19)
where hij “ travel t‘ime §
°ij = oxvean walting time
dij = trip length

fy¢ Qgs Ay ¥ parametexs to be eatimated (by regresaion) .

There ia ne evidence in the literature which indicates trip length to bo'°

an appropriate aurrogate for genaralised coat of travel. Teip length
wogld appear to be a‘poe& ﬁgaauga of ﬁrnvel egét‘gnQer qcnditxoné'ot -
congeation in the wrban area, ox when, pelitical strateglae, sueh ae
inoveaaing parkkng coats in hhelcﬂn are {nvolved, - ‘;

Fron equahien (4.7, it can h@'geen that if hrip‘length 16 uaed as

a surregate fox txip coat, calibration stantne&a my be reaﬁixy qaloulanod'

£rom tha aanple data, ainge inee:-aenal diahaneea aro odsily dote&m&nea‘

< »

CPeonm (4@ 0 -
R e .
: . J& . .- . 3 y ‘ | N
@ § ) uﬂ °t:3 . § § by oy o | (4.20)
« L I L ‘ o S : D
- § VT UL eaw
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where C » mean trip length (cbaorvead).

Although the moean trip longth ucnc1u§ic le wenaitive to changes in para-
metoxr vidlues (Batty, 1970¢, p 109). it {a not a valid atatigtio unless
the higher moienta o the diucribution dotermine thu cij dengity function
“to be Poiuson, Othar conditiony may maka tpe gtatiatic unsuitablo ag
well. Uox exanple, ehopping models cannot be calibrated to mean trdp

length becauge the trip pattexn, a priert, ia not Known, (Oponghaw, 1973,
367) . ' |

o

Vinable definition L8 important ) doeerminlnq-paxametgr values,
and paramatex estimation L8 eloegly related to medel pexformance
(eponahaw. xéva. pe 367).. - Empir&qal aeudteu. thcrqtoro. ahquld ba
directed towaxda ehe pmc&ae defindtion of the gonarauaed eott variable

in calibration aﬁaﬁ&a@lca. ga ag to inprove medel performance in applica-

tion.

A

A RIVIEW OF PRODLENG TN NGDIL GALIDRALION

‘ ?r@qvthe praceding d&acuaa&on in uhaptorn tua. ehsce an@ fouy,
three a&mm ;;a:cblcm aceqe can ho u\am:uied. @haphena to and thyea
have rovieved two qqmgﬁtmg mmmai mothede of paramotexr oat&mt&ox\.
aach mothed makaa é&ﬁtﬁxcﬁzj;aaumatiens eb@uﬁ eha au:vey data. The
tmimum ukettl\ead satim\tqr qau\\ma tmq t\“ Lo va':y o eagh &nu@:chmq@
by a epaetfécd prebah&&tw denniey Summmm /fm m}aq&ﬁed donadty ﬁ\mqt&en
| qan bo :ﬂaﬁqe to mg auxmaq. “gdnao. the, vam\mo af travol\m» a q&ven .
&n&enehnnga gc ditgerenh :at disfqtanh ﬁ:&g gurgaeqa‘ nqu«nae uhe~egqa&- -

ot
»
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tiod Qonuiny fdnation ylelde a unique ket of calibration etatistics,
optimum parametor valuog, dexived from the maximum likelihood estimator,
depend wpon the ﬁravel purpoée beding modelled.

The least=squares eetimator, on the oﬁ%er hand, makes no assumptions
about the‘daca. Only one @et of caliﬁration atatiatide are derivoq,
rogardloss of the data. Therefore, the optimum paramater values derived
by least-squares are not dependent wpon the probability density tune;ion
of “13‘ and thue do not require any aaeumpéiona about trip purposa.

Whereas the maximum likeliheod emtimator makes very reatriotive asesumptione
about the data, the leaat-aquares estimator makes vexy weak ones.

' Doge’ thie mean that {f the data really do arige in the way poatulated
byvtha maxdmun likeliheod eetimator, the parameter values derived by
thie mnehod will qiva the data & battor £it to tho data than the least-
uquarea agtimator? :£ so. then Kixby's (1974} aaaeﬁ%&oa that tr&p pure=
Ho8a, hpd henco ite ohaxaetexiqt&g probability deneiﬁy function, muet.be |
spovifiod, befoxe optimum pavemetor valuce aan be derived, 48 correct.
The prohlem ia thun te doeexmﬁge whéthoy thaae aaaumptiona are necoseary
to g&vq the modQl a best #it to the data. ,

anothex problom area gongorns tha :a;at&enah&p the randen pample
boars to the agtua distributien fron which it ie taken. Aasuminq there
ia uema varxaeien in srdVax hetwuen cach interchange, nyp&qally»winh
‘mean “&a and vaklange 0 44 , 48 has baan ahawn that for a aingle trip

' aurveya the varxdaince of the tampla wean && as 1«:@@ ag the vardaneo in-

ehg aouual hxavql on the ;nue:ahanqe‘ ginca uhe variation on a qivon
&nvgrehanqa aan be larqe. a single randenm aamnle may wot be a reltable

reg:eanntaeion of the mqan ﬁtavex din&i&but&én. whdch tho medel ie b:ying

/ . e , L.
Y — ) \ ) 4 .
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to prediet. 8ince the paramotere are calibrated againat the eample, it

ia important to determine whether a sultable correspondence between the
sample meantt and actual means exlata.

The third preblem area concerns the definition of vaxiablea in calil-
bration statigtica. It has been etated that ﬁaramotor véluou depend
upon théfempirfcal defindtion of the model variablea (Lowxy, 1968, p.

163), and that model performanve ia dependent upon the payrameter valuwes

! .
"~ derived by the calibration atatistioe. If trxip length is not a euitable

surxogate for the genoralimed cost varlable in the maximum' likelihood

and least=aquares calibration statistics, "thon calibration againat the .

variable yielde a predicted dlstribution having a eub-cptimal fit to the

survey data. The problem ie therefore to empirically datexmine what i

generaliued travel cost is fox calibration purposes. .

The next saction will ﬁ:epoaé a rescaxch deei¢n to resolve some of

A ROOEARQI DRBIGN ﬁéﬁﬂxamxua TR 190Ung \ _
IN CALIDPATION .- o o L o
LR
mh&elpape: new prepozed to consﬁ&uet a‘taamqwé:ﬁ uganrkhieh,gp'
oxam&ne two of tho isaucs d&qquaaad in the nrevious sogtien. Tho fxame=
work e’ deu&qned ta teat whethok the auaumpbiena about che aahn. impl&ad
by tho naxdmun Likelihood eat&mate:. daxivo paramaeex\valuea whxuh gdve .
eno mcdel & hottox €i4 to thq aampxg than lqaatsaquasea, wh&ah nakes no
tmpueu }aauw&mm. 'x'l\a zaamawcwk ia amé duntgmed tq aaaaan whethex

a smxu mndem mwle u em adacmaﬁc i‘cpmenmh&on e: ﬁhe mml d&am-

e “,;:J
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bution, upen which to callbrate aspatial interaction models. The iwmuue )
of variable definition muat be resolved by empirical examination. In the
proponed framework, which is a hypothetical example, this factor cannot

be studied, but caﬁ be oontrolled, to prevent it from blasing the xesulls
of the other two lsuwes.

The paper propoues a hypothetloal example, condlgting of a "typicnl“
urban area of madsrace alna, dividad into a set of aonea of equal aroa,
Wo are glven the number of origins and destinations in each gone, and Lha
genexalised coat of travel on each interchange ia asgunad to be the inter-
agnal ddetances, Glven this lnformaciﬁn. vo intend to wae a apecified
funotion of coat and parameter value, f, to dc!iﬂZ‘a dlstribution of
tripe 4n an urban area. . |

ﬁy ccnucruqéinq the framework in thie manner, we poseeus more data
than dogs the modellex when he applies the model in an empirical etudy.
Plrat, wo know the actual distribution of txavel in the wsben aystam,

aaaond. we know the cogt futhion that dotermines the tmpadence to travel

An the eyatem, vinally, we Know how ooag le defined in the diatribution.

:t‘wa take & vandom eanplo £rom the qanprahea d&ac:ibucton. we ean
(1) make a etaﬁietical measure of corxespondonce between chg sample and
the actual e:;P dtahxihue&on. and (2) calibiate 8 apat&al {ntexaction
madel ot the gama form  with the neae&nuxuax catimatora roviewed 4n
ehapeeta two and thxeo, g0 a8 to gonpare the d&utribmﬁienu gene:acad
fxom ehe eatimated paravotorg wtkh tha aample.

rs
R

Wa have {nfornatdon aheut govoral’ Sache:s in the ealtb:aclon proge=
Quyve whtch uauatly mnut he asgumad in pxaat&ca& eal&b:aticn applxeat&nnu.

A
\(. .., * N
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1.0, the function of generalizmed coat and the‘durinltion of coyt in the
calibration statistics, &ince theae factora are centrolled in the pro-
poued rram@wérk. nny:diffarenoas bpcwean the egtimated dlatributions (by
maximum likelihood and least equares), will result from the calibyation
atatletioa only. Thia enableg ug to evaluatoe the porfgrmunoo of the
tvo eatimatora againit the mawpla.:

The next chapter will define epecific hypotheses in the two areay of

Pans

redearch, and will deseriba the hypothetical urban area to he modelled.

1

Thie will enable ue to use the framework for analyding the problend,

l

1

-
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CHAPTER 8
AN ANALYSIS OF THE RELATIONSHIP OF THE TRAVEL SURVEY
10 THE MEAN TRAVEL DISTRIDBUTION, AND OF THE HRFECYT O

DEHAVIORAL CONSIDERATIONE ON MOLLL PERFORMANCH

INIRODUCTION

Chaptar four defined the framewoxk upon which the two ealibration

igeues are to be tested. It now vomaine to elearly define the hypo-
theses econcerning the relationghip of the sample data te the wean
travel dletribution, and the goodnesg-of-fit of the moddl predictions
vglng different methods of parametex est}mation. te tha trip survey.

Travellig/he‘be ddstributed in a hypothetical urban ayastem. 'Thg

,dayﬁeotaﬁy variation of tripa will be desoribed by a specified proba-
bidity donsity funotion. A four por cent randen ganple G&ll then be :

taken frem a diatribug&on of ttav?l on a “given" day. Tho analyaie
will conedat of two eperauienél In the fiyst, the q%r:naaendaﬂee ot
the yanden ganple to thq mean tnavel d&strtbut&en wili be examined.
The xesulte of this heat will qive ug on indication of whathex the
elngle tedp suevey auszie&entxy repaeaonte the noan d&nt::hutxen for

ealibrah&ng the epa&ial interadtion waded, ainee, in £aat. ehia ig tho
. E.a&stxibunian tha maaal &a &ntandad to ntad&et.

\M‘\ .' . ‘. ?9 , a8 . ' '
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Secvond, tha spatial interaction model will be calibr«Zed te the
sample datd by both the maximum likelihoad and leuut:uquar # atatiatical
estimators. ‘The Intention ig to draw the sample data from travel dluaw
txibutions whoae elementa are diupersed around mean values, according to
gpecified jrobabllity Qensity functions. In the firat exumple, the

Ly

denedty functions of the matrix elements, the t, ., will be Polsgon.

4
In the second, the denaity functione will be normal with common, con-
atant variance., The correapondence of the model predictiong (usling the
parameters watimated by the twe estimation technigues) to the random

sample, will then be examined. T }

the maximum likelihcod statistics will make the gane assumptions

_about the data in both examples, They will aggune a Qbiaaon denaity

"~ funotion for each “Lj‘ The leagt-gquares etatistice, by definition,

will not change in the two examplea. tiowever, in the gecond Qﬁﬁﬁ; the
least-gquares statistice will be identical to maximum likeliheod statie- »
tica, whigh ageume a nowmal Qonaity functien fox the “13‘ with common,

congtant varlange. This is exactly how the data will ocour.

We should, therefore, exwpeet that if conedderation of trip purpose

and {te characterietic prebability dena&t& fungtion i@ &mgcrtan€ in

deriving optimun parameter vniuea. whioh give ehe.médol a boat £it to
the data, then the naX4men 1keliheod oep&ﬁateé'aheuid give the medel

a botter f4t to the data dn the firvet exauple, and tha'leaat-aguarea_
cay! 9? should ‘gdve tna mééal & bottor t&g in the second eiample. 18
however, the diffexence in qebéneﬂe-&t-t&h botween the todele, prodicted
by the two cstimatorn, 4e not significant, then we can eenclude that
tadp guquaq¢;s~n§t a flecessary aonagdégét&on in'mﬁdéi qal&bééh&cn. and

S
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the specification of unique calibration statistics for specific trip
purpoges lg not neéa@sary to derive optimum parameter values.
These lusunes can formally be stated as hypothoses to be tested in

the analyels. Given the condlitiona in the experiment:

1. A alngle trip aurvey e a rellable representation of the
_mean ddgtribution of travel. Thiy will be consldered
veriflaa if there is a high degree of correapondence
(measured by some s;Luified criterion) betweon the sample

matrix and the mean trip matxix.

2. The calilbration technique whosge agsumptions are appro=
priate to the conditicna of the data provides better para-
meter eatimates. This will 66 éenaidaraﬂ vort!ied if the
paraneter valuwea generate a d&atribuc&én giving tho model
a significantly botter fit (measured by ¥oma apecified

criterion) to the sample.

If the socond hypothesia is true, then grip purpose, Alestinguiehed

" by ite characterietic pichability deneity function deacuibing the

variance of the t‘sielemnnta over each interchange,, ghowld be incexpe=
rated inte calibration atatistice.

The analyeis has hoan devalqpad to axam&ne theee hypeeheaea.
nowevar. beiore hhq.ana}yaia ia partcrmed. tha griterion SQ: neasuring
geoanmg-aﬁ-tih muat ba deuned and its Ma\m\pueaa ueuoa. w spaeiey

the uxﬁlha t;c tm uﬁt‘m&us&enﬁ which axa to be’ émm fxen thie at\xﬁy. .
S SOV . .
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THE RKLATIONSHIP BETWELN QPTIMUM XIT AND

OPYIMUM !‘J\R)\MUI‘I R VALULS

: X
The statiutical estimators, discussed {n chaptera two and throe,

detormine optimum parameter values which may or may not give the wodel

an optiinum £it to the aample data. In estimating parametere by thewe
techniquos, we must be aware of the twoealternative meaninge of

“beut" parameter valuea. The parameters muy'be the bost eatimates in
that they are optimum with reapact to the statlistical eatimator.
Alé@rnatiyély. they may be thesbeat estimates because they give the
model an optimum f£it to the uamp&e data. Is thare a unigue solution
involved, and if go, what conditions are neoaasary to*%encheieally
catimate parameeer values which give thﬂ"mcduk an optimum goodneas=of=
fit to‘Ehe aample data?

. ¢
Initially, one muat dotermine whethex the opt;malihy conditions of

‘a statistical estimator are suffiaiont fox optimiging the model's

goodnosa=ofi=£it. Wilson (l9?4, g, 320) Qtahea.that,atter derdving paxa=
mécbr values by a statistigal estimation teéﬂﬁiquo. guch as maximum
likelihood ox 1eaat-aquaroe, we ahould meaau:a the mcdul'u gcadneea-es-
£it to the aamgle daea with a correlatlen etaetatic. guch as hhe cooffin
clent ee'determinat&en (R ). Qn chi=gquared (x ) beeh cz which measure
the corxeapondence of the mcdel’a output to the daea. h&a. he augqeete.

-, glvor us the overall indieation we need to detexmdne whethax the Jparas
'mgeera dardived by optiniaing the étattag&q qanerahe'a distributdon which
'cerrbepende optimally to the data. It aleo helps ua choose batwaen

) dittovent tefma‘at function, euch ae tﬁg travel im@qdhnua gunctdon,

' L - - .
‘ : ) ¢
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It romaine unclear why correlation statistics should be more reli-
able in measuring the.model's goodneaa=-of-£it than maximum likellhood
or leagt-squaves mct;cd&. In them, the measurea of correspondence
bocwéan the predicted variables and the sampleo data are atill based upon
dmplicdt asaumptiong about éhc daca (see Chapter 1), batty (1970c¢,
p. 112) applies the coofficient of determination to measwe goodnesg-ofe-
fit and assumes the atatlutic to be normaily Alatributed. Yot thore is
no evidence which supporte this assumption. Given the inconeistencies ‘
which can arise in the application of this ytatistic gpagc 9), it s
progunptucus to make any assumptiong about ite distribution without
making a thorough inveat&gacion of its propertied. 8ince the etnt;a-
t19~1a uwnbiaged, consiatent, and efficient only if the data occur in the

way postulated by eha.eeaﬁistic, then one cannot infexr that {t glves

.any bettexr indication of goodnesg~of-f4t than statiatieal estimatore,

such as maximim likelihood or least=gquares. )

The ageumptions made by gpo ehl-aquafed statiptic about the data
are not ga‘qtt&ct as those made by othax astatietics. Alseo, ié& dishrin
bution is such, that qé the hurber of degraes oe\Sraaéem on the statig=
tic i;\ureaeqa. the dlatrdbution of chi-aquared approdches the nomal“ In
epatial intoraction medoMing, thore ia Mkely to ba & large pumbor of
dcgré@e of !téédem whon uaing the gtatietic, Aye té the number of varia=
bles invelved. In a ayatem of nrartqtna and n-duaﬂ&naﬁiena. the chi=
aqua§ed at&ti&e&e ie caloulated ovor n? vidablea, d.0., the tij The -

<

madol ‘whieh 8 cempared to tho.data de caloulated grem n ordgin-epecific

_ caeeera. ae dgeeinah&en-asenitic tanbura. 3. and tho parvameter .

whia reducos the nwmhor 96 degrﬁca o( ttcadam,en the utaﬁ&nt&c to .

R
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(Wothorill, 1967, p. 202)
n2 «l e« (n+n+wl) = n2 - 2n - 2 . (.1)

For a aystom of fifty oxigina un& titey deutinatfbnv. the #ize of the
hypothetical system in the analyals, tho atatietic hag 2400 degroevs of
troedom, which weans the dlstribution of chi-squared Le approximately
normal, ’

This arbitrarily xmpuagg a normal denglty function on the tij’
which may be inappropriate in spﬁcial interaction modelling. ‘“horefore,
ite moasure Gowfit may boe no m;re valid than any other statistiocal
noagura, Wetherill (1967, p. 203) net@é‘that thaxe are ofton better
tosty whioh wmay be weed when the data have some othoxr than a noxmal
dlstyribution. IPurthermore, other roﬁttiet&onefoonoerninq expoected
frequoncies (Wethexill, 1967, p. 203) mAke.che statlutic even leas
attractive to apply in the epatial {nteraction eontext.

u;w._ehen. Gan we measure whethar opt tmum paramotex values, derived
from a atatdatical estimator, qeneréea a dlatribution which yielde an

optinum £i% to the data? Bincd the corvelation statistics digoussed

abave may nah‘pa rollable for this puupnéa. they ¢annot rbyolve thia

.

Lesha. o ‘
. : © ) :
We still require a gtatietic to meagure the corxespondence between
predictions by the naximum likelihood .and least=squaroes agplmato:a\

Th&é paper-snopeaea,co'nﬂe the codﬁt&qiehé of dehe:m{naﬁlqﬁ to #oe Lf

© the mmxtmum xxkoxghged and laanu-squares catimatexs genorate prodictions

.whieh axe etmilan1 net to take anytnﬂaranees as to the pxoatuetona‘

-\

'
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\\“K?; r@muiniij)yonuiﬂtent in the use of the statietic,

goodnese~of~fit, Ny using this correlation utatistic merely to get a

"fool" for the similarity or Qisaimilarity of the two digtributions, we

\

THE PUYSICAL GKTTING POR THE ANALYS1S

Tho idealdized urban area to be modelled L8 shown in IMlgure 4. 1t
{g an abatraotion of a "typileal' urban ayatem and {s intended to be an
inastrument through which a epecffied set of trips can be dletributed,
From the dlatribution, a trip survey will be taken to calibrate the
gpatial interaction medel by th& methods of maximum llkolihcud and

.

leagt=aquaros. \

The aroa is divided into fifty aones, each of which ig equal in
slee. Bach gone i nunbered fér’idanetfiaaﬁxon,.and L& manually alle=
cated spocified proportions of trip-origing and destinations. Thisg
oporation doubly-conahraingxtha diatribution of tripe in the system.
The #onos can be aggregated to'farm gsavaral dlatinot aubeareus
(outlined by dark bnundﬁrios).'whieh re£1e§£ different land use cha=

vacteristics of a typical wrban areca, .The ocutqr sw-areas reprosent the

‘suburban or residential sectore of the "oity', and axe characterised by

many origine and fow de&tinat&én& in each zone. The inneyr sube-areas
ourrounding the centyal area have a groater number of destinatiens but
still quqraca'a slgnificant volume of travel. The contral axea 8 the

CoD, with many destinations and fow urip-amxgins: The proportions of

. origina and destinations allocated to oach gone d:e deaigned to refleat

a gradual increase in destinations towards the contyal axea fyom tha

i
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outskirts (Table 1),

Although thigs {s an idealized representation ;f the urban system,
it enablez us to generate a distribution of trips over the area and to
avoid many problems which beget modellers in empirical studies, The
confiésration of the arca is designed to be assymmetrical to prevent any

trivial solutiong fromoccurringin the generation of trips or the

S

calibration of the model. By dividing the area into zones of equal
size, and by strictly defining the number of briginq and degtinations
in each, instead of using proxies for attractivene;s, biagses are pre~
vented from entering the problem (Wilgon, 1974, p. €9).

In éhe idealized system, we are assuming the zone zize to be gmall
enough to account for all of the: potential inter~zonal interaction
(Batty, Foot, et al., 1973, pp. 353-354). Also, the example considers
internal tté;el only. This avoids the related problems of dummy zones
and closure, which usually must be taken into account in spatial inter-
aé;ion modelling (Batty, Foot, et al., i?%B, pp. 362-364).

The distribution to be generated and mode¥led is for a single broad
clagsification of trip purpose. From the allocation of origfns‘and
destinations in the system, the distribution that résults may well
chhracterize journeys~to-work. Travel is considered in ogz directiqg
only, from home to work. Tﬁis is the general modelling procedure in
urban transportation studies (Ben-Akiva, 1973, p. 34).

Under these idealized conditions, 100,000 trips will be generat%d
in the system by a spatial interaction model with known parameter values.
The generated distribution will be defined to be the mean di;tribution

of daily trips that‘occur over a specified time period (e.é., a year)

o

N

H
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TABLE 1

TRIP ORIGINS AND DESTfNATIONS ALLOCATED TO EACH ZGOHE

ZONE ORIGINS DESTINATIONS
1 2,000 56
2 1,299 226
3 3,200 68
4 3,599 226
5 850 2,496
6 1,000 2,837
7 700 5,674
8 800, 3,404
9 2,100 1,361

10 3,800 124

11 3,499 90
12 1,600 11
13 2,100 11
14 1,000 22
15 3,100 1,021
16 2,500 2,383
17 899 1,929
18 500 20,429
19 1,000 11,349

20 1,050 2,269
21 2,100 ‘124 .
22 4,000 136
23 2,299 68
24 1,600 45
25 1,400 79

5

88
/

ZONE ORIGINS DESTINATIONS
26 3,500 102
27 1,900 907
28 1,099 1,248
29 1,499 13,619

30 2,000 2,723
31 1,699 1,021
32 2,899 90
33 "1,099 3,858
34 2,200 1,134
35 2,099 453
36 2,499 113
37 © 2,700 873 /
38 3,000 771
39 3,399 726
40 3,300 158
41 1,799 1,248
42 1,000 4,653
43 3,700 4,426 -
44 2,499 1,430
45 3,900 590
46 23000‘ 408
47 1,399 ¢ 1,634
48 1,000 964
49 1,200 249
50 600 Gi3e
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in the urban area. Tte daily numbcrlof journeys on each interchange will
be allowéd to vary'from this mean.by, first, a Poiggon dengity function
-and gecond, a.ﬁormal denaity function. It-ia from these diztributignz
« that four per cent random uamp%es will be drawn. 7The spatial inter-
action m&del will'then be calibrated by the statistical estimators
against thege data, to determine the optimum parameter valueg., The
algo;itﬁms which perform these operations will be described in the

following sectiorf

- A DESCRIPTION OF THE ALGORITHMSE IN THE ANALYSIS

4 r

- e
The research design is basically a cbﬁ%rolled ekperiment consist-

?nq of two parts, eacg having a different function. The first part
involves aspatem simulation. 1Its function is to generate the variables
with which to make correspondence measures. These measures are
necessary to evaluate the competing hypotheses. ‘

The sequence of ope;atibns in the analysis is shown in Fiqure 5.,
The remainder of this section briefly describes each of the operations.

‘
r 1

System Simulation:

° o
The first operation in the analysis is DISTRIBUTION. Its function -
is to qeeﬁtate travel throughout the hypothetic#l urban area. The trip

matrix is generated by a spatial interaction model of the form:
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tij = A, Oi Bj Dj exp (-edij) (5.2)
vhere 0, » the number of trip origing in zone 3
D = tﬁc number of trip-destinations in zone § [
d, . ~ the distance between zonos L and
g = a parameter meaguring the extent to which travel
is congidered
B, = origin-gpecific and degtination-gpecific balancing

factors,

The value of £ 18 arbitrarily specified (f = 0.02). Since g io
regarded as a measure of the extent to which-distance (in oLr case) is
considered when travel daéisions are made (Evans, 1973, p. ﬁO), we
expect this paramecter value to affect the distribution of trips in such
a way that the mean trip length becomes longer. This tends to promote
more travgl from the peripheral guburban areas over longer distances
to the concentrated employment areas in and around the\CBD, This
pattern ?f travel would be expected over an e£f1c#ent transportation

)
network. The balancing factors are determined for this pandameter value

from the following equations (Wilgon, Z@70, p. 16).

1

A =
i % Bj Dj exp (-fd,

for all 4 (5.3)
j’

B, = L
3 %“1 0y exp (-Bd )

for all j (5.4)
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The model distributes 100,000 trips throughout the fifty zonc system
on 2500 interchanges, The variables which make up the resulting 50 % 50
trip matrix repreasent the mean travel éﬁneratad owver these interchanges.

8ince we expect the volume of travel to fluctuate on any given intor-
change, the finction of PROBSE%VE is to construct a new trip matrix which
reflects this day-to~day variation. The operation agsumes that a apeci-
fied probabifity density functivh describeg the variation in travel on
cach interchange, L.¢., Polggon ;r nomal, and uges random numbers to
conntruct a trip matrix which would be likely to regult if travel varied
in this manner,

SAMPLE takes a four per cent "home-~interview survey" thch is used
to calibrate the model, The origing in each zone are sélccted at random
and their destinations are tabulated, The results are aggregatad to
produce a sample trip matrix, from whicﬁ calibration statistica, speci-
fic to the maximum likelihood or least-squares egtimator, are calcula-

»

ted,

These statistics are input, into CALIBRATION to estimate the model
parameter B, and‘balancing factors hi and Bj for each statistical estima~

tion technique. Trip matrices, generated by these estimated parameter

values, are subsequently constructed and are input into the second stage

of the analysis,

Corregpondence Mecasures:

Only one meagure of correspondence is used to test the hypotheses,

" In spite of its apparent weaknesges (pp. 17~18), correspondence between

trip matrices is measured by the coefficient of determination. This




.7t T

.

statistic is choaen primaril} bacauge it fg computationally simple and
relatively easy to interpret. Although more reliable measures of fit

)
are available, such as the chi-squared otatictic or the "espected
information” etatietio (Morphet, 1975), thase are not eaglly applicable,
since many of the zonal interchanges in the sample trip matrix and the

generated trip matricen are 2ero., Interchanges with ti elements equal

)
to zero make these statistics undefined, To use the chi-zquared or
"cxpect?d information" statistic rcquifcn the removal of zZecro elements
iﬁ the trip matrix, either by zonal aggregation or by excluding these
¢lementg from the analysie, Both of these methods, then, measure the .
corregpondence botween matrices on reduced information. For the pur~
poses of this analygis, the coecfficient of determination is the most
patisfactory meagure of correspondence of those taken into consideration.
The reliability of the trip survey in representing the mean distri- 3
bution of trips ig determinaed by m;asuring the correspondence betWeen
the sample trip matrices gencrated in SAMPLE and the mcan trip matrix
generated by DISTRIBUTION. The maximum likelihood and least-squares
estimators are compared by measuring the correapbpdénce between the trip

matrices generated by the parameters derived in CALIBRATION, and the

sample trip matrix output from SAMPLE. Y
These measures of correspondence should enable us to cxamine

whether the hypotheses defined above are correct.

| o mm e
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THE RELIABTLITY OF A SINGLE TRIP SUKRVEY IN

MODEL CALTBRATION

Two preliminary tests were made to ghow the correspondence of the
trip matrices with elemonts varying by Polsson and normal density func-
Jgionc, defined ag Dp and DN raspectively, to Ehc mean trip matrix. One
test moasured the correspondence between the actual population-sized
matrices, The other measured the cortronpondence hetween gample-gized
matrices.

In the first test, it was found that the correspondence of both
DP and DN to the population-gzized mean distribution wag very close.
The R2 value of DP to the mean dintribution was .9958. The R2 value of
DN to the mean wag .9998,

The second test measure& the correspondence of four per cent sam-
plen drawn from DP and DN to a four per cent sample drawn from the
mean distribution. In this case, the R2 value of the Poisson sample
to the mean gample was ,9636., The R2 value of the normal gample to the
mean gsample wag gomewhat higher, at .9878,

In order to determine whether these differences in the Rz values
are significant, it is necessary to examine the structure of the statig-

tic ant% the charéctcristics of the trip interchange data it is measur-

ing., Congider the R2 gtatistic,

3 ' (5.5)



J

Since N ig the number of variableg, t ., the denominator of thia

13
axpression is simply the sum of squared deviations Ofﬁtij elements from
the mean., The mean numbér of trips pey inturchaﬂqn igr -
100,000 - 40
2,500

Consider the characteristice of the data, A large proportion of
the tij alcméntﬂ is significantly less than the mean. This implies that
the denominator of the statistic will in turn be large.

The numerator of kz is tha sum of squared deviations of the

A

predicted values, tij' from the obaervéd values., For small interzonal
volumas, the magnitude of the numerator will be small, regardlese of
the dengity function of the tij' ¢

What in fact is happening in these correspondence tests is ¢that
bacaﬁﬂc of the high proportion of low volume interchanges, which devia-
te significantly from the mcan, the value being subtracted from unity
in equation (5.5) is extremely small. Therefore, significant differ-
cncos'%n the distribution matrices are, in effoct, "buried" in
insignificant differences in the R2 values, |

Tho characteristics of tho data, therefore, render interpretation
of these valucs extromely difficult, if not impossible.

Although, there appoars to b¢ a better correspondence betwqen DN
and the mean distribution than betweon DP and the mean distribution, the

‘aignificancc of differences in correspondence cannot bo accurately

Qdetcrminod.
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N\
Table 2 displayn the distribution of tripg from a chosen zone,

which is representative of the entire synLum,laccoruinq to the three
population-sized matrices, The table emphasizes the fact Lha? while
»the Polnnon diut;ibutlon diffory from both the maan and normal distribu-
tions, this diffarence i only reflocted in the third decimal place of
the &% statistic.
op- the other hand, when sample~sized distributiond are being com-

pared, the denominator of the R2 term g much smaller than when popu-
lation~sized distributions are being compared. Althouqh'tha total
number of variables remains the same, the term z X t

13
i)
por cent of the total number of trips diagtributed in the system. The

is only four

mean number of tripg per Interchange, then, is only 1.6. The davia~
tions of tij from tha mean are thus much leas and the right hand term
in equation (5.5) becomes proportionately larger. Tha same difforonces
in ;orronpondoncc botween two matrices will produce difforent R2 values
for different scales of investigation. We cxpect, therefore, the
greoater differences in Rzlvalues betweon ths Poisson and normal samples
to regult partially from the sensitivity of the Rz statistic to changes
in Qcale. But the information loss resulting from taking a small sampio
cannot be precisely determined,

These preliminary tests emphasize tﬁ; difficulties of uging R2 as
a measure of correapondence& Although larger values of the statistic
indicate better correspondence with the data, it is difficult éo detor-
mine how much better this correspondence is, This problem can be

partially overcome by graphically assessing as well as analytically

assggsing the results of the test, to assist in the interpretation of

o

o M et e e =
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TABLE 2

THE MEAN, POLISCON AND NOTUMAL TRAVEL PATTERN

GENERATED FROM ZONE TWENTY~1IVFE

DESTINATION tij ‘tij F‘j DESTINATION Lij ti) tlj
“OHE (MEAN) (POISSON)  (NORMAL) ZONE (MEAN) (POTLSON)  (NOVPMAL)
1 0 0 0 26 1 ] 1
2 3 3 3 27 13 11 14
3 1 0 1 28 17 17 18
4 -3 - 3 3 29 191 165 J94.
5 3B 0, 40 36 30 37 44 16
6 39 48 | 40 3 13 10 13
"7 78 73 77 32 1 1 1
8 46 45 45 33 52 45 50
9 18 20 18 © 34 15 8 15
10 1 0 1 35 6 7 6
11 1 3 1 36 3 2 1
12 0 0 0 37 12 13 13
13 0 1 0 38 1. 12 11
14 0 1 0 39 10 7 10
15 13 8 12 40 2 2 2
16 = 32 31 31 41 17 13 17
17 26 32 26 42 64 60 62
18 284 288 282 43 62 69 62
19 160 168 163 44 20 19 20
.20 32 28 34 45 8 11 8
21 1 2 2 46 5 5 5
22 2 3 2 47 23 24>~ 23
23 1 3 1 . 48 13 10 T3
24 0 1 0 49 3 6 3
25 1 1 1 50 1 2 r
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tha nz valuas,

To datarmina.tha roliabbility of a ﬁinqlo random sample in represont-
ing the mean dintrihbution of travel in the urban area, the Pofsson and
normal samplos can bo sealad up to the population rize and compared to
the actual mean distribution, R2 valuen, showing the corraspondance of
the two random samples, drawn from Dp and Du, scaled up to the popula~
tion glze to the mean distribution, are .8674 and ,8969 reospectively,
Th;re ig a'aignificant docroase in correspondonce to tho mean trip
matrisx, ﬂ2 values of Dp and DN to the mean were ,99%8 and ,9998
rogpoctively., Aftor sﬁhﬂ)&%g and scaling, tho correspondence has hoen
roeduced by approximately ten per cent. .

Doenpite the roduction in correspondence, Batty (1970c) has sugges-
ted that Rz valuss of 0.9 still indicate suitable “fits" to the moan
distribution. However, ig is ugeful to visualize what this R2 valu;
meang in the spatial interaction context., Figure 6 shows how travel
is distributed from one of the zdnes, zona twonty~five, to all destina-
tiona,'as predicted by the scaled-up values of the two random samples,
compared to the mean distribution of tripa., (Notes The lines connecct-
ing the number of trips to cach zone ﬁavc no interpretive value, Thoir
function is simply one of illustration, in this and in succeeding dia~-
grams,) ,

The figure shows that the random samples are sensitive to major

N

traffic flows out of the zone, but tend not to account for Iow volume

interchangos. This.is due to the "coarsecness" of the sampling process,

whifch is related to sample size,” The probability of observing travel

on a low~volume interchange during a home~interview survey is much
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smaller than the probabilities of observation on interchanges of high
volume, Clearly, as the sample size incfeases, 1t 18 more likely that
some of these trips will be observed, 1f the survey 1s truly randem
(Chaterjee, ot «l., 1974). However, a fouf per cent sample, consisting
of only fifty~six "interviews” or sample EOLnts in this oriqgin zone, 1s
not large enough to observe this residual travel.

The other point to note 1s the consistent under-estimation by the’
samples of high-volume interchanges, and the over-estimation of medium
volume 1interchanges (Figure 7). Although part of this inaccuracy may
be due to the scaling-up cf the samples (by a factor of twenty-five),
there appear to be cother unxdentlfiéa factors which affect- the sample
predictions. The effect that this phenomenon has upon model predictions
w1ll be discussed later in thls chapter.

The analysis has enabled us to draw several conclusions concerning

the relationship of the samples to the mean trip distribution.

1. There exists a reasonable degree of correspondence between i
the two sample trip matrices and the mean trip matrix,
although significantly reduced from the correspondence of

the actual trip matrices to the mean trip matrix.

[y S

2. A small random sample tends to be a coarse representation i
of the actual distribution. Low volume interchanges are

generally not observed in such a sample. However, the i

probability of observing these interchanges is a function

of sample size, 1.e., they are more likely to be observed

-

in larger samplas.

[



il cusi e L LI

DEVIATION FROM
MEAN DISTRIEUTION
+100 1

+80 A

+40 4

+20 A

101

*

Poigson Sample
L %
/,/rL——————- Normal Sample

»
Scaled by a factor of 25

-60 4

-80 4

~100 A /

\

.
\

FIGURE 7: The Deviation of Scaled-Up Poisson and Normal Samples from

the Mean Trip Distribution Generated from Zone Twenty-Pive

DESTINATION
ZONE

1
v

PP A

et e o

A . o




P

102

3. High volume interchanges appear to be under-ectimated
and medium volume 1interchanges appear to be over-
estimated in the sample. The effect of this will be

examined i1n the following section.

A COMPARISON OF MODEL PPEDICTIONS GEMNEPATED BY THE

MAXIMUM LIKELIHCOD AND LEAST-SQUAFES ESTIMATORS

s
'A
The analysis in this section involves measuring the correspon&ég;e

between the predictions generated by paremeters derived by two compet-
1)

ing statistical estimators, under two different assumptions about

travel over the interchanges 1in the system.
2 .
The correspondence, measured by R, between the model predictions

and the sample data 1s given in Table 3.

TABLE 3

Jg

R2 BETWEEN MODELS ESTIMATED BY MAXIMUM LIKELIHOOD OR

t,
LEAST-SQUARES, AND THE SAMPLE DATA USED TO CALIBRATE THE MODEL

Model Estimated By Model Estimated By

M. L. Statistics L. S. Statistics
R2 RZ
Sample Drawn from DP .8815 .8784

Sample Drawn from DN .8924 . .B911

b R S
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The measures of goodness-of-fit, in both cases, are made with respect
to the sample distribution against which the model 18 calibrated. .This
is exactly the same procedure as practiced in model application.

The values 1in Table 3 indicate the differences 1in correcpondince to
the sample data to be only marqginal. When the probability density func-
tion@ﬂr?lj 1s Poisson, the parameters generated 57 maximum likelihood
statistics do not give the model a better fit to the sample data than
do the parameters generated by least-sdquares, even though the maximum
likelihood statistics assume the tij to occur exactly as postulated.
Furthermore, when the density function of t13 1s normal, with common,
constant variance, the parameters generated by maximum likelihood statis-
tics, which assume tij to be Poisson, do not give the model a signifi-
cantly poorer fit to the sample data, than the parameters derived from
least-squares s;atistics, even though the statistical condit:ions,
assumed in the maximum likelihood statistics are incorrect.

For one zone, the similarity in correspOndence<;f the two digtri-
butions is qualitatively assessed in Figures 8 and 9. Comparison cf
the figures shows the predictions generated by maximum likelihood and

least-squares to be almost identical, ip fact, exactly identical when

the density function of t25—j is normal. One distribution can certainly
4

«

not be preferred to the otﬁér, given this information.

‘Ano§her feature shown in the iigures is the over-estimation of high
volume interchanges, and the under—gstimation of medium volume inter-
changes by the models calibrated by the methods of maximum ?ikellhood
and.leastisquares. This agrees with the findings of Batty,'and appears

to be a characteristic feature of the gravity model. It tends to offset

the characétristics of the sample trip matrix noted earlier, i.e., that

o .
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high volume interchanges are under-estimated and low velume interchanges
are over-estimated.

The effect that gample inaccuracies and the compensetion tendencies
of the gravity model have upon the model's correspondence to the mean
trip distribution can be seen in Fiqure 10. In this fiqure, the model
output has been gcaled up by a faétor of twenty-five for comparative
purposes, (

Figure 10 compares the mean volume Qf traffic generated from zone
twenty-five to all destination zones, to the scaled-up traffic volume
as predicted by the model calibrated by maximum likelihood against
sample data in which each tij is normally distributed. Since the model
predictions are essentially identical for both calibration methods,
under both assumptions about tij' a single set of models predictions
suffices. P

Generally, the fit of the model to the mean trip distribution, from
this ofigin—zone, is qﬁite good. The over~compensation effect of the
gravity modgl tends to negate the characteristics of the trip survey
noted earlier, and model predictions reasonably approﬁimate the mean,
travel volume originating from zone twenty-five. Those interchanges
carrying only residual traffic are not accounted for in the model.

This is due to the "coarseness"” of the random sample, as outlined
earlier.

The results of the analysis, therefore, contradict the second hypo-
thesis defined in the chapter. The definition of trip purpose by cha-

racteristic probability density functions in the calibration statistics

does not necessarily give the model a better fit to the trip survey or
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to the mean distribution of trips in the system, Although Kirby (1974)

(B

has shown that there are certain theoretical requirements which must be

gatisfied to derive best parameter values, in practice, these require- .
ments do not appear to be necessary.

f .

: The remaining issue to be resolved is why these requireménts do

ndét have to be upheld in modelling practice.

FACTORS IN MODEL APPLICATION VHICH REDUCE THEORETICAL

. CALIBRATION REQUIREMENTS
\ ,

Two factors can be identified which contribute to the contradiction
W of the second hypothesis. They are related to certain assumptions implied

in the development of theoretical requirements for calibrating the model,

which do not hold in practice. The first assumption concerns the effect

that different density functions have upon the trip pattern in the sys-

tem. The -second assumption involves the sensitivity of the model 1itself.
If a specific probability density function is to be specified in

% ;
j the calibration statistics, we are assuming that the trip pattern gene-

A At e 3 b R R MUy, 0 et =

rated by that density functiom is siqnificantly different from the trip
“»

7

patterns generated by any other functions. Intuitively, this assumption
appears reasonable. By assuming different density functions, we are
trying to represent the characteristic variances in the day to day
travel, specific to different trip purposes, over the set of inter-
changes in the system. We are expecting these variances to generate

differegg,aggregate travel patterms.

Thédanalysis has taken two probability density functions, ¢1 and
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¢2, to be Poisson and normal respectively, with variance
24 =t (5.6)
17ty , ( '
2 _ ' 2
0" (6,) = (0.2(t )7 = 4 (5.7

where tij is the median number of trip interchanges in the system

(tij = 11 trips). It has then generated a travel pattern for each of

these agsumptions about the variance of tij’ and has taken a 8ingle
random samgle'from each distribution. Instead of finding the travel
patterns to be significantly different, the analysis has found the
correspondence of each to be very similari_ N

The similarity in ;orrespondence may be due to the fact that the
majority of interchanges in the system carry small traffic volumes.
Over these interchangee, the variance in volumes for both ¢1 and ¢2
will be essentially the same.

Other factors, such as the effect of sampling on the shape of the
density function (Kirby, 1974, p. 99), may also influence the corres-
pondence of the two trip patterns. However, this has not been researched
in this study. :

The characteristics of the travel pattern, therefore, may be such,
that the differences between different "behavioral patterns” (identified
by different probability density functions) may not be distinct. The

effect of different statistical assumptions on the data in calibration

statistics will thus be mipimal.
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The second, and perhaps more important factor concerns the sgensiti-
vity of the spatial interaction model to changes in the value of thg
parameter, B. Although little mention of this aspect is made in the
literature, there is some evidence (Batty, 1970¢, p. 111; Batty, 1971,
p. 426; Batty and Mackie, 1972, p. 215) to suggest that the fit of the
model to the sample remains relatively invariant, regardlesé of the
correlation statistics used, over wide ranges of parameter values.

Recalling Table 3, the correspondence of the distributions gene-
rated by the model to the samples are very similar. Table 4 displays.
the parameter valqes generating the distributions which produce thJse

measures of correspondence.

TABLE 4

MEASURES OF CORRESPONDENCE AND PARAMETER VALUES OF MODELS

ESTIMATED BY MAXIMUM LIKELIHOOD AND LEAST-SQUARES

Model Estimated By Model Estimated By

M. L. Statistics L. S. Statistics

8 R’ B R’

Sample Drawn from DP 0.0219 .881 0.0799 . .8784
Sample Drawn from DN -0.0138 24 0.0118 .8911

The table indicates that the best parameter values (meaning the
parameter values closest to the actual value) are obtained when the
agsumptions implied in the calibration statistics are satisfied by the

data. But it aiso indicates that similar measures of correspondence can

TP o
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be achieved from significantly different values of the parameter. This

lack of sensitivity may be an indication of the robustnegs of the model,
i.e., the capability of the balancing factors Ai and Bj to adjust the

tij ele@ents.

If the model is insensitive to changes in parameter valueg, then
the specification of probability density functions in calibration sta-
tistice is no longer at issue if correlation statistics are uged to
measure the model's goodness-of-~fit. This is because the model will ¢

most likely produce acceptable results, regardless of the calibration

statistic defined.

It can be seen that if the two assumptions implied when
the theoreticg} requiremente for calibrating spatial inter ion moddgls
~-- concerning the different trip patterns generated by differ
bility density functions, and the sensitivity of the model itself --
are not satisfied in practical model calibratio%, the th;g}eéizgl require-~
mente become no longer necessary. The problem in model calibration

becomes one of estimating parameter values as quickly and efficiently

as possible.
SUMMARY

This chapter has presented the results of the analy®is proposed in
Chapter 4. It first formally outlined the two hypotheses to be tested,
and defined the statistic to be used to measure the goodnesg-of-fit.

In doing so, it specified the restricted conditions under which the

hypotheses can be tested, to prevent the misinterpretation of results.

\v
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After describing the hypothetical area over which travel wag dias-
tributed and tests made, the chapter outlined the oprrations in the
analysis which produce the distributions to be examined,

The results of the analysis, which are limited in their content Ly
the restricted test framework, as outlined in the introduction to the
chapter, show that the random sample appears to suitably correspond to
the mean travel distribution. This implieg that reliable resultg can
be gencrated b; the gpatial interaction modcl calibrated to this data.

The chapter also shows that statistical agsumptions in the maximum
likelihood calibration statistics, which are necessary to satisfy
theoretical requirements for calibrating the model, do not significantly
affect model performance. The chapter concludes by comparing the model
output in relation to the sample, and then identifies factors which

appear to eliminate the theoretical requirements for model calibration.

mrdaamnn < Eemne i Aden e

The final, and following chapter will summarize the findings of

the paper and will suggest areas for further research.
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CHAPTER 6

A W)

SUMMARY AND CONCLUSICNG

This papcr has attempted to analyze two issues in the calibration
of spatial interaction models. The first issue concerns the theoreti-

cal requirements for calibrating spatial interaction models as proposed

by Kirby (1974). The second involves the reliability of the random
gample in representing the mean travel distribution in the area to be
modelled. The papervhas been developed through four gections.

Chapter 1 has defined the problem of model calibration ard has
degcribed the characteristice of the spatial interaction model which
make it difficult to calibrate. It has then assessed the different
approaches to model calibration which have evolved since the develop-
ment of the Lowry model, and has stressed the shortcomings in each
method. The chapter hag argued that gtatistical estimation techniques
possess properties which make these methods preferable to other cali-
bration approaches.

Chapters 2 gnd 3 have examined the two principal methods of sta-
tistical estimation. These are the methods of maximum likelihood and
least-squares. Chapter 2 has further argued that calibration is a
problem of poing estimation, and not hypothesis evaluation. It has
therefore rejected Hyman's (1969) approach as a method of parameter

estimation.

113
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The paper has examined the two conflicting mathemat.cal interpre-
tations of the maximum likelihood estimator in calibratings the spatial
interaction model. It has been shown that under certain condition:,
the i1mplicit assumptions 1in cach can be reconciled, even thougn tne

\ . N
calibration rroblem 15 afiproached from twe’ﬂréfgfont persiwctives.
' ~ - .

N -~

" —

Furthermore, the conditions under which these two apprcaches arep com-
plementary are likely to be observed when calibrating urban spatial
interaction. Chapter 2 has gone on to define the statistical condi-
tions which are necessary to satisfy the theoretical requirements of
the maximum likelihood calibration statistics. It has stressed that
the parameter estimates derived by the maximum likelihood estimator
are unbiased only 1if the trip data correspond to these assumptions.

The chapter has then reviewed the work of Kirby (1974), who hac
attempted to apply behavioural hypotheses to the maximum likelihood
calibration statistics. It has stated that the different calibration
statistics which can be derived from the maximum likelihood estimator
may represent different trip purposes which occur in the urban system.
These trip purposes are characterized by different probability density
functions over the inter-zonal interchanges and must be explicitly
input into the maximum likelihood estimator in order to derive
appropriate calibration statistics.

Chapter 3 has examined the least-squares estimator as a method of
model calibration, as proposed by Cesario (1975). Through an examina~
tion of its properties, it has been found that unlike the method of

maximum likelihood, the least-squares estimator makes no implicit

assumptions about the distribution of trips over the zonal interchanges,

-
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and thus imposes no behavioral assumptions on the calibration technigue.
The paper has compared the two mgthods of statistical estimation by

|
mmposing conditions on the maXLm&m likelihood estimator so that 1t
yields the same calibration statistics as the least-sguare. estimator.
It has shown that while the principle of least-squares makes no imglicit
assumy tions about the sample data, the method of maximum likelihcod
must make very restrictive assumptions, in order to derive 1identical
calibration statistics.

Thus, 1t has been shown that there appears to be a basic contra-
diction 1in the assertion of behavioral notions embedded in calibration
statistics. Theoretically, the least-squares estimator can derive
unbiased parameter estimates without making any assumptions about the
probability density functions of the trip interchanges. Conversely,
the maximum likelihood estimator can only yield unbiased parameter
estimates by making implicit, and sometimes unrealistic assumptions
about the nature of the traffic flow over the zonal interchanges. It
follows that if indeed the trip distributions derived from the compe-
ting methods are similar, the behavioral properties of the maximum
likelihood estimator are non-existent.

The fourth chapter has examined related problems in model calibra-
tion. Specifigally, it has discussed the reliability of the sample
observation, the trip survey, in representing the mean distribution
of trips in the urban system. This is critical because it 1s the mean
distribution which the spatial interaction model is assumed to generate.
If travel‘over the set of interchanges varies from day to day, the

random sample will retain these deviations from the mean. These

-
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biases will then be generated through the model. The paper has stresced
that the magnitude of this bias must be examined 1n order to assess
the quality of the model's output.
Second, the chapter has examined how the key variable in calibra-
1on statistics has been defined in the literature. This 1s the gene-
ralized cost variable, which has been defined as distance, time and
v .

various combinations of both. While 1t has concluded that the problem
of variable definition can only be resolved through empirical examlna-
tion, the chapter has proposed a hypothetical analytical framework,
which controls the bias which can be introduced through variable mis-
specification. The paper has propcosed to apply this framework to both -
the problem of determining the reliability of the sample observation,
and to the problem of determining the existence of behavicral notions
in maximum likelihood calibration statistics to see whether theoretical
calibration requirements are necessary to derive unbiased model
results.

~

The final section has presented and discussed the results of the’
analysis proposed in Chapter 4. After briefly discussing the conceptg
of best parameter estimates and optimum goodness-of-fit in order to
interpret the outcomes of the analé;es, the paper has formulated
several conclusions.

The paper has found that in the constructed hypothetigal frame-
work, the trip survey, drawn at random, retains the essential character-
istics of the mean trip distribution. It has found that the sampling

process inherently loses some i1nformation about the distribution,

especially concerming low volume interchanges, and has postulated that

.~

b e, Ao B

B2t st



. e
e

117

the information loss as directly attributable to sample size.

The analysis has also found that the satisfacticn of the thecre-
tical requirements for calibrating spatial interaction models do<s ncot
have any appreciable effect on the goodness-of-fit of the generated
distribution to the data. This serves to contradict the behavioural
hypotheses about calibration statistics, as asserted by Kirby.

A further result has been observed in the analysis which sujgests
further study. An inherent property of the distribution generated by
the gravity model was observed in the analysis. This 1s the tendency
for the model to over-predict high volume 1interchanges and under-
predict medium and low volume interchanges. This characteristic
perfectly counter-acted an undesirable property of the random sample,
that of under-estimating high-volume interchanges and over-estimat:ng
medium and low-volume interchanges. The result was a remarkably
accurate macro-distribution of travel in the area.

A verification and explanation of these observations is clearly
needed to reaffirm the usefulness of ghe spatial interaction mddel 1n
the planning cpntext.

The findings of this study can only be deemed tentative and this .
fact can only be appreciated through an evaluation of the analysis.

The problem of calibration has been approached by performing the

same basic operations as would the analyst when applying the spatial

3
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interaction model to a real situation. A single random sample has

been drawn from the population. Inferences about the gelationship of

the sample to the population, and about the fit of the generated dis-

W

tribution to the data have been based upon this lone sample only.
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The principal éifference, however, between the hypothetical frame-
work and an empirical study has been that we have possessed additinnal
information about the system and 1ts variables that the analyst could
not have collected. For example, we know exactly the function and
variables which distributed the trips. We know how trips were distri-
buted over the zonal 1nterchanges, and the mean trip distribution. The
empirical analogues are either unobservable or do not even exist 1in
reality. We have used this lnforAQtlon to test the modeller's assump-
tions (about thé sample) énd the theoretician’s prop051g10ns‘(about

statistigal requirements) with regardg to the issue of calibration.

*

Clearly, the design of the analysis could have been extended so
that more conclusive results were obtained. Instead of a single random
sample, several observations on the system coulé‘have been made to find
an gverage correspondence to the mean distribution. Similarly, the
spatial 1nteraction model could have been calibrated to each observa-
tion to yield a range of parameter values. These values could have
then been used to generate several distributions to find an average

measure of goodness-of-fit to the data. However, further research

must initially be directed to the sensitivity 1issue of the spatial

interaction model, and at the statistical measure used in the analysis

in order that the findings of this research endeavor be strengthened.
These two points warrant additional comment.

Consider first the statistics used to measure goodness-of-fit in
the spatial interaction context. The weaknesses of correlation statis-
tics were brought out in Chapter 1. In spite of their weaknesses they~

are still recommended by modellers 1in order to measure model fit. But

SO
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1t appears that little can be inferred, ezpecially from the Pz statis-
tic. Although 1ts use does not require aryy informaticn loss through
aggregation or omission of variables, 1t has more peculiar jroprrties
than origigally suspected, as seen 1in Chapter 5, which maxe 1t an
especirally poor statistic to use in spatial interaction mcdelling.

Clearly, what 1s needed 18 a statistic whose properties make 1t
especially adaptable to the spatial i1nteraction context. Its distribu-
tion and assumptions should be known, 1t should be sensitive, réﬁaln
invariant under transformation and should be defined over all values
of t ..

1)

Secondly, the wﬁole questiony of model sensitivity should be exten-
sively researched. It seems to be clear that i1f mcdel predictions
remain invariant or maintain their .goodness-of-fit throughout a range
of parameter values, calibration methodologies become less of an 1lssue.
There is no point 1in interpreting statistical conditions :in any context,
including trip purpose, if a unique "best" optimum does not exist.

Perhaps the best approach to this would be to plot the objective
functions of the statistical estimators over the range of parameter
values in question. This would enable us to determine not only the
general sensitivity of the statistic about the optimum but also the
reliability of the statistic, by observing its behavior over the para-
meter range.

If in fact, as is suspected from this analysis, the statistics
are generally insensitive to changes in parameter values around the
optimum, research in the calibration field should be directed towards

efficiency and reliability criteria rather than towards modifying
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statistics to incorporate non-existent or unobservable behavioral phe-

nomena.

Answers to the questions posed throughout this paper are necessary
to develop a sound theoretical and practical base for calibrating spatial

1interaction models. Although many points remain unresolved, this paper

can be regarded as another step in addressing these 1ssues.
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