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A pfocedure based on the finite element method was
developed for simulating the excavation of underground openings
in rock for the actual initial state of stress in tﬂe field
for various K conditions. This procedure éan also incorporate
orthofropic behaviour due to roék bedding, ;nd\other directional
variations in the elastic properties of rock.‘ This excavation
simulation was then coupled into the timc-dependent analysis of
underground openings to study the influence of rock 5queeziﬁg
usiﬁg the incremental initial strain method. Appropriate
stress-strain-time relationships and strain accumulation méthods'
are readily incorporated into this fjinite element program.

(A survey of time-dependent constitutive relationships for

rock is given to guide in the selection of appropriate creep laws.)
The excavation and creep simulation aspects were then extended

to model underground linings and lining placement

strategies. This includes the ability to consider the lining

and the rock as.two different materials with rough or jointed
interfaces between them. Further, this simulation allows

for creep of the rock before lining installation, and creep
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of the rock and concrete lining after its construction for
-appropriate rock and concrete constitutive relationships.
The full simulation procedure (excavation, creep and lining)
was used to study an actual tunnel constructed in squececzing
rock. There is reasonable agreement between the predicted
performance and measurcd performance to date, and this '

comparison with monitored field information is continuing.
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CHAPTLR 1

INTRODUCTION

Interest in the creep behaviour of rock has gained
impetus in the last few years, particularly since "squeez-
ing'" has resulted in several recent failures (Jaeger, 1972).
Examples of such failures would include: the El-Colegio
Tunnel in Columbia; Kamui Tunnel in Japan; and North
Tauern Tunnel in Austria (Lane, 1975). The linings for
these tunnels had been placed before movement of the ground
had ceased. Even in "good" rock (granite), creep
deformations have  been found in the quarries on Vinalhaven
Island in Maine (Feld, 1966). 1In the Niagara formations,
rock movements have been reported during the constrgction of
tunnetls and open trenches for the Ontario Hvdro Adam Beck
development (l.o and Morton, 1975) following completion of
the Thorold Tunnel under the Welland Canal in 1973 and the
Redhill Creek Culvert near Hamilton in 1975. The Thorold
Tunnel and Redhill Creek Culvert movements caused significant
damage to the linings and remedial work was required.

Terzaghi (1946) refers to this condition as '"squeezing
ground" and states that the loading on the tunnel support is '
likely to increase for weeks or even months after construction
to a value which is many times higher than the initial one.

This creep behaviour of rock under loading is observed in
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. both the laboratory and the field for a wide range of rock

types. Generally speaking, current engineering practice
is to ignore or approximate this time-dependency in the
analysis of rock problems. The extent of the errors intro-

duced by such approximations depends on the particular rock

and problem being considered. It may also depend on whether
the concern is for the stresses or for the displacements.

In a situation involving nonhomogeneous media, such as

o Eee e,

a lined tunnel, pcan stresses in the rock may actually

increase with time. Also, there are occasions when knowledge

ek SEn ot

i

3,

of the entire displacement history may be of value. A
displacement history which enables predicting the useful 3

life of an underground opening or a slope allows the engineer

to take remedial measures if necessary and possible. Also,
underground excavation in rock is one of-the most expensive,
forms of engineering construction. In practice, the ground
support usually represents 30 to 50 percent of tunnelling -
costs, and its placement often controls the rate of progress.

Thus, there is a pressing néed for a systematic method

i

for predicting both the severity of squeezing ground

conditions (creep response) and for designing tunnel support

" systems and pZacement strategies compatible with the

potential ¢ p response.

1.17 Outline of the Problem

A major consideration in the design of excavations

in rock is the evaluation of the structural stability of

(e v
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the opening. The essential step in this evaluation is

the det'ermination of the deformations (strains) and

stresses in the surrounding rock, and the excavation's
behaviour with time. It would appear that the dependence

of rock creep on stress level is nonlinear, so that incremental
solution procedures are generally required to realistically
analyze rock mechanics proglems involving creep. Due to

the complexity of material properties and boundary conditions,
such problems are difficult to idealize, and cannot generally
be solved analytically. Thus, the finite element method

has been widely adopted for the solution of problems in

rock mechanics.

The objective of fhis study is to simulate the excavation
in rock for an underground opening, considering the initial
state of stress and the bedding of the rock in order to
realistically represent the\actual field conditions. It is
also important to predict the behaviour of the opening with
time and to evaluate the time-dependent defqrmations and
any stress concentrations that may build-up around the tunnel.
Finally, it is necessary to evaluate the support system
req&g}ed for the tunnel, to predict any stress concentrations
that can develop in the lining (tensile stresses), and the
lining's influence on any creep. This is critical, as the
lining can be crushed over a short period as a result of
rock creep if adequate design precautions are not taken

before the lining is placed.



1.2 Scope of this Investigation

The finite element method of stress analysis was
used to simulate the excavation and creep responsc of a
tunnel in squeczing rock. The 1nitial state of stress
representing the in situ stresses for various K conditions?*
was adopted as the starting point for cach simulation. tor
many rocks and tectonic histories, high values of K (range
of 1 to 10) may be involved. A computer program for simu-
lating the excavation procedure was developed, and the
elastic displacements and stresses can be determined during
a single step excavation simulation, Linear displacement
triangular elements were adopted for this plane strain
situation. Anisotropic properties can also be included in
the analysis to more adequately represent rock bedding in
the field. The incremental, initial strain method developed
by Emery (1971) was then used to incorporate creep simulation
into the analysis., .

A thick-walled cylinder was used as a simple example
application to verify the procedure adopted for the excavation
and creep analyses.

A computer program was then developed to simulate
placing the concrete lining after excavation, and to allow
creeV before and after the lining placement. This program
can also incorporate joint elements placed between the
concrete lining and the surrounding rock.

A typical field problem involving a large intake

tunnel to be constructed in shale near Toronto was then

K 1s the ratio between the hortzontal stress and the vertical

stress.
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analyzed. The tunnel opening is 13 feet (4 meters) in
diameter and at a depth of 200 feet (61 meters), in soft
rock thaf has been classified as- shale. Rock properties
such as elastic modulus, unit weight and Poisson's ratio
were assumed from initial test data (provided by Fkranklin
Trow Associates Limited) and a careful examination of the
properties of shale published in the literature. The initial
stress state for various K conditions was determined before
excavation and the deformations (strains) and the stresses
after excavation of this underground opening were obtained
for both isotropic and orthotropic rock properties. Creep
solutions for the tunnel with, and without, a concrete lining
in place, and for various placement strategies, are presented.
The results from the finite element simulation and the field
measurements during and after construction are then compared.
The conclusions and some possible exténsions of the

work are presented in the summary.



CHAPTER 2
REVIEW OF LITERATURE

2.1 Introduction

Previous studies of time-dependent behaviour in
rock mechanics have been primarily conducted in the laboratory.
It has been observed that most rock exhibits significant
time-dependency, at least at. high stress levels and/or
high temperatures (Winkle, 1970). Most of the laboratory”
investigations (Robertson, 1963; Hobbs, 1970; Winkle, 1970;
and Afrouz and Harvey, 1974), and the corresponding stress-
strain-time relations developed have been uniaxial in nature.
A few tests have been conducted (United States Army Corps of
Enginecers, 1963; Semple, Hendron, and Mersi, 1973) to
evaluate creep behaviour in triaxial tests. Some attempts
have been made to gain insight into time-dependent problems
by utilizing rheological models (Winkle, 1970; Emery, 1971).
Numerical techniques utilizing computers have been used to
study fairly complicatéd problems for realistic constitiutive
relationsh?ps. The finite element technique has been
successfully applied to some problems in nonlinear creep
analysis for different materials (Boresi and Deere, 1963;
Greenbaum, 1966; Winkle, 1970). However, only a small amount
of work concerning creep of rock has been published, and that

work has been limited to specific types of rocks.
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2.2 Creep of Rock

Creep can generally be described as inelastic
deformation under constant stress, usually below the yield
stress, and at any low strain rate. This expresses the
dependence of strain rate on the stress history. It has
been observed that all materials deform with time under
sustained load. Metals, plastics, concrete, soils, and
rock have very different structures, but all exhibit creep.
The simplest assumption to make is that one fundamental
mechanism causing creep is common to all, which immediately
implies that‘the mechanism exidts at a very small or
fundamental level of structure (Winkle, 1970). In soils,
the mechanism causes the gradual displacement of an inter-
particle contact location until it can no longer be maintained
(Semple et al., 1973). Failure of such contacts results in
a rearrangement of particles with new contacts being formed
and the process continuing. Creep may eventually lead to
ruptﬁre. Such creep rupture is usually defined as failure
of the material unQer a stress condition that 1is less than
the applicable strength measured in standard laboratory
tests. Without methods ?or the analysis of creep and creep

rupture, design methods for structures must be based on high

safety factors or the experience gained from previous failures.

2.2.1 Available Creep Relationships

The empirical approach appears to have the widest
ac&%ptance for representing the creep of rock (Robertson,

1963). In this empirical approach, various parameters such
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as strain and strain rate are measured experimentally as a
function of time, stress, and temperature under controlled
conditions. From the parameters seclected to represent the
experimental data, creep equations are developed to describe
the material behaviour., The creep of metals has been
studied extensively (Lubahn et al., 1961; Pennvy et al., 1971)
and the general behaviour of rocks has been found to be

very similar. The typical behaviour of many metals and

rocks is shown in Figures (2.1) and (2.2) which represent
strain-time curves and the strain rate with time curve

under uniaxial compression respectively. The total strain
(elastic plus creep) ¢ shown in Figure (2.1) for a fixed
stress level (say 03) may be represented by the following

general equation:
€ = eyt ep(t) + At + ET(t) - (2.1)

where: €6 is the instantaneous elastic strain; gp(t) is the
primary creep; At is the steady-state creep; and cT(t) is the
tertiary creep.

Creep Equation (2.1) is only one of the equations for
rock given in the literature. However, only a limited amount
of experimental work has been carried out on the inelastic
(time-dependent) properties of rock. Some of the work
published prior to 1964 has been summarized in review papers
by Robertson (1963), and Murrell and Misra (1962). Other
papers have been published by Boresi and Deere (1963), United

States Army Corps of Engineers (1963), and Hobbs (1970). More
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recently, papers have been published by Wankle (1970),
Cruden (1971), Semple, Hendron, and Mers: (1973), and
Afrouz and Harvey (1974).

There are several strain-time cquations for rocks
published in Obert and Duvall (1967), Farmer (19068), and
Jaeger (1972), but these equations do not give the strain
as a function of the stress level as well as the time. These
equations are not generallyv of use in predicting the creep
behaviour of rock masses, since it is clear that the creep
behaviour of most rock 1s dependent on the stress level .

Boresi and Deere (1963) suggested a creep law for

rock of the form:
e = ko t (2.2)

where: € 1s the creep strain; t 1s the time; o is the
stress; and k, n, and m are constants. Tests have been
conducted by the Uﬁited States Army Corps of Enginecers (1963)
on rock salt to evaluate the constants k, n, and m for
Equation (2.2). They used triaxial extension tests where

the confining pressure ranged from 1000 psi to 3850 psi.

Equation (2.2), for the particular rock salt tested, becomes:

e = 1.87 x 10713 52-98 [0.36 (2.3)

where: o is in psi and t is in hours. This equation has
been used by some 1nvestigators (Boresi and Deere, 1963;
U.S. Army Corps of Engineers, 1963; Winkle, 1970; Nair et al

°

1973) to study openings in rock salt. However, 1t is generally

o
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agreed that this form of equation 1s really onlv applicable

for evaporites.

An empirical exponential equation commonly used 1n

rock mechanics creep, problems 1s:

A ol (2.4)

~
f

where: ; 1s the strain rate; v 1s the stress; and A and n
are constants.  The value of n for a number of rock tvpes
from uniaxial creep testing at room temperature 1s given an
Robertson (1963), and Obert and Juvall (1967). This
cquation mav not be valid for all ranges of strain or for
creep occurring in the steady-state phase (Obert and Duvall,
1967).

Farmer (1968) gives the following creep law for

different rocks:

e = (g)“ In t (2.5)
where: ¢ 15 the strain; o i1s the stress; E 1s the modulus

of elasticity; t 1s the time; and n is a constant depending
primarily on the stress magnitude. In this reference L and
n are given for various tvpes of rocks tested. This
equation does not cover the secondary creep range.

Singh and Mitchell (1968f/;uggested a onc-dimensional stress-
strain-time function for soils. This equation is very uscful
1n studying soil creep, and its application to the creep

behaviour of fault gouge and the prediction of tunnel support

requirement in squeezing ground conditions (Semple ¢t al.,

[y
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1973) 1s now being developed.

Hobbs (1970) made attempts to fi1t a number of empiri-
cal equations to longitudinal strain-time results for a

range of rock types. These experiments were carried out

using uniaxial compression tests at room temperature. dJ/niaxial

compressive stresses ranging from 26.4 MN/m2 (3800 psa)

to 41.4 MN’/m2 (6000 ps1) for periods from a few minutes to
more than a vear were used 1n the experiments. Hobbs' \\
equation may be apbllcahlo for the bulk of sedimentarv roc \

types {siltstone, sandstone, shale, and limestone). The

stress-strain-time equation developed bv Hobbs 1s given by:

e = +gol t+ K, alog (t+1) (2.6)

where: ¢ 1s the instantanecous eclastic strain; o 1s the
stress; t is the time; and g, f, and KZ are constants for
each type of rock. Hobbs tested four types of rock:
siltstone; sandstone; shale; and limestone. The constants
for cach rock type were determined by Hobbs (1970). He
found that the strain rates predicted by Equation (2.6) when
t 1s small are less than the experimentallv observed strain
rates, but that at longer times (up fo a vear) the strain
rate predictions were reasonable. It is considered by the
writer, based on the literature review, that this is a most
reasonable creep law for shale if the one year base 1s
reéognized.

Afrouz and Harvey (1974) completed their experiments

»

at room temperature on dry and saturated rocks exhibiting
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unilaxlial creep compressive stresses within the soft to medium

strength range such as arr-dried and saturated coal, under-

clav, limestone, and sandstone, The compressive stresses were
€

>
1in the range between 6.6 Kg/cm™ (91 ps1) and 58,5 Kg/cm2

(830 ps1). Thevobtained best fitsfor the experimental results
™~

by a computer an#1y31§‘{gf Lhé/roéi<<}ostod. They also

|
compared the experimental results with moasurcmsnts of
time-dependent deformation of underclay along the floor or
mine roadwav and close similarity was achieved. They found
that the creep relationship depended on general roch type
as follows:

a) Air-dried soft to medium strength rocks behave 1n

an elastic-viscous manner that can be described by

the Burgers Body model expressed in the general
form:
e = A+ Bt + D (1 - exp (Et)]) (2.7)

b) Saturated soft rocks exhibit nonlinear creep behaviour

expressed by:
C E
e = A+ Bt + Dt (2.8)

where: ¢ is the strain; t is the time; and A, B, C, D, and

E are constants depending on the rock type and its conditions.
These equations, in which the strain is only a function of
time, nced laboratory tests at appropriate stress levels to
determine the constants applicable for use in predicting

field creep behaviour.
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2.2.2 Limitations

A number of creep relationships for rock have been
presented. These are summarized in Table (2.1) with the
limitations clearly indicated for each. 1In addition to the
limited applicabilitv of the laws, there are limitations
related to the testing.

Winkle (1970) studied the time-dependent deformation
occurring 1n mine openings in potash ore. He concluded that
uniaxial unconfined tests are not sufficient to obtain a
complete description of the material response. Multiaxial
loading and unloading tests are required.

A comparison of the steady state creep rates for
uniaxial compression and triaxial extension tests was done
by the United States Army Corps of Engineers (1963) and the
results are given in Stagg and Zienkiewicz (1968). This
comparison shows that the rates of creep in triaxial
éxtension are less than those at the same stress level in
uniaxial compression. Thus, the uniaxial creep test is too
severe for use in predicting time-dependent displacements
around underground openings. This is obviously an area

that requires further testing and research.

2.3 Finite Element Method

To handle the complicated geometries, boundary condi-
tions, and loadings involving nonlinear, time-dependent
behaviour of rock, the finite element method (Zienkiewicz and

Holister, 1965; Desai and Abel, 1972) of stress analysis
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CRIEP IQUATIONS
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AND LIMITATIONS

ROCK CRLEP EQUATION

ROCK TYPES

LIMITATIONS

7 mgr

n _m
¢ = Ko t

(Boresi and Deere, 1963)

. n
£ = Ao

(Robertson, 1963)

oM
€=(E-) Ln t
(Farmer, 1968)

(

€ =€+ goft + K,0 log(t+l)

(Hobbs, 1970)

€ = A+ Btc + D[1-exp(Et)}
(Afrouz and Harvey, 1974)

€ = A+ BtC + DtE

(Afrouz and Harvey, 1974)

Rock Salt

Most rocks

-,

R,

Siltstone,
sandstone,
shale, and
limestone.

Air-dried
soft (coal,
underclay)
to medium
{sandstone,
limestone)
rocks

Saturated
soft(coal,
underclay)
rocks

The constants (K,n,m) are

given only for rock s<alt
and for stresses ranging
between 1000 psy and 3850

pet

Values of n calculated from
primary creep data are
given 1n Robertson (1903},
This equation may not be,
valid for all ranges of
strains, 1.e. does not
cover the steady state
creep and the tertiary
creep. Also, it requires
experiments to define the
constant A for the rock
type used,

This equation does not in-
clude the secondary creep,
The values of n are depen-
dent on the stress magni-

tude and the elastic modulus.

The constants (g,f,K)) are
given for the four réclk
tvpas for stresses ranging
between 3800 psi1 and 6000
psi. The equation does
not cover tertiary creep.

The constants (A,B,C,D,E)
are given for stresses
ranging between 6.6 kg/cp”
(94.0 psi) to 58.5 kg/cm*
(830 psi) In these equations
the strain is only a
function of time. The
constants for the rock
type tested should be
determined experimentally
for the stress level anti-
cipated.
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1s used 1n conjunction with appropriate creep relationships.
Closed form solutions become very difficult, 1f not
impossible, to formulate for many practical problems. In
rock mechanics, problems such as: the stability of rock
slopes (Desai, 1971); the design of undervround structures
(Zienkiewicz, 1971); the prediction of displacements and
stresses during and after excavation (Meek, 1973; Kulhawy,
1974, 1975); initiation of cracks (Desai, 1971); and elastic,
elasto-plastic, linear and nonlinegr material behaviour
(Greenbaum, 1966; Desai, 1971; Meek, 1973) can be studied
by finite element techniques. The finite element method
also has the capability of being used to: wmodel joints
(Goodman et al., 1968) and oth.r forms of discontinuitie;
that exist in rock masses; incorporate no-tension solutions
to redﬂstribute the stresses; and propagate joints or cracked
zggggz Also, in earthquake and dynamic analysis, the method
has found application in soil-structurc interaction problems,
A summary of various applications of the finite clement
method in geotechnical engineering and rock mcchahics are
found in Zienkiewicz et al. (1965), Zienkiewicz (1971),

Desai (1971), and Desai et al. (1972). A brief description

of the method is given in Appendix A.
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CHAPTLR 3

EXCAVATION ANALYSIS

3.1 Introduction

Time effects play an 1mportant role 1n determining
the Jeformations and stress distributions associated with
underground copenings, particularly when long-term behaviour
is of 1interest. Also, the in situ stresses before construction
of an underground obening w1ll affect the behaviour of the
rock afster excavation. A procedure, and a computer progranm,
were developed for modelling the excavation of underground
openings using the finite element technique. This procedure
is based on the criteria for modelling underground tunnels
established recently by Meek (1973) and Kulhawy (1974). The
finite element stress analysis for a thick-walled cvlinder is
used to check the accuracy of the techniques, and the results %
obtained are in good agrecment with the closed-form solution

(Greenbaum, 1966).

3.2 Excavation Procedure //f‘“\\\i
/

Goodman and Brown (Desai et al., 1972) developed thé/
general numerical procedures for simulating embankment construc-

tion and excavation problems in geotechnical engineering.

The procedure adopted in this study to simulate excavation is

o~

based on this method, and is similar to the analysis used in the

theory of plates to obtain the stresses in a plate with a hole,

17
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subjected to 1n plane forces. This procedure was also used
by Meek (1973) for excavation simulation.

Figure (3.1) 1llustrates the main steps of the excava-
tion analysis performed here, assuming that the entire
construction takes place 1n a single operation. It represents
the actual site of the tunnel and the boundaries which are
assumed to be far enough awav to have small 1nfluence on the
opening. The'flnal stresses, o, around the tunnel after
excavation can be considered to be the sum of two cases. The
first case is the initial stress field, S due to the actual
field conditions before excavation. The second case is the

perturbation stresses, 8o sy due to the release forces acting

around the opening.

3.2.1 Initial Stress Condition

Existence of a nonzero state of stress prior to loading
of a geological medium can signifcantly affect its subsequent
deformation behaviour. For most problems in geotechnical
engineering, the initial stress condition depends on the
consolidation and subsequent loading history of the particular
deposit. These stresses, for a deposit with a horizontal

A
surface, are given by o _ and oy, - The vertical state of stress,

\
S at a point is computed as the overburden pressure due to
gravity as shown in Figure(3.2. The horizontal stresses, Oy

is calculated from the condition of zero lateral strain.

Thus, the in situ stresses are given by:

‘,/
. ihasan e aran SO S ST
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o, = vY (3.1)

oy = K 9, (3.2)

“vh © Thv 0 (-3
where: v 1s the unit weirght; Y 1s the depth; v 1s the shear

stress; and K is the ratio between the horizontal stress and
the vertical stress. K 1s often evaluated from the theory of
elasticity which 1s not usually realistic for rock with large

*

lateral pressures:

K = v/(1 - v) (3.4)

where v is Poisson's ratio. The value of K in rock depends

upon many factors such as overconsolidation, the stress

history, faults, folds and other tectonic effects (Desai, 1971).

The only reliable way of estimating the value of K 1s by means
of field measurements (Jaeger, 1972).

A review of ground stress measureménts for Western
Ontario shown in Table (3.1) indicates that the horizontal
stresses are higher than those acting vertfcally computed
on the basis of the gravitational loading due to overburden.
From a detailed examination of this data, a K value range of
from 1 to 10 is considered more likely to apply for much of
the rock in Southern Ontagio of interest to this study. (Those

values shown with a question mark appear extremely high from

the literature.)
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TARLE 3.1

PIVIEW OF

PUBTTSHIED HORTTONT AL

GROVND STIRESS

[
to

VEASURTMENTS

PPRINCIPAI

PrrsoIpal

HORTTO" -

DLPTH , CALSIPEOS (pog)t h
. . , VERTICA] - 4 AN oo e
LOCATTON ROCK TYPE ’ . ‘ ”
l L TS (ps1) ‘A TOR HINOR v
bl
'”\()1‘0“1, Dolomite § g2 13.7 959 756 “”L‘
Untario Lirestone to 81 to &4, to 2130 ] to 1750 fto 237
Missyssauga, bundas 24 N 25.0 up to A
ontario Shale to 10 to J41.7 1200 o
Fickering, Collingwood S0 52.1 - 285 -111 1,3
Ontario Shale to 80 to 83.% to 1080 [ to 956 -
hesleyville, Limestone < 150 156, 3 1200 8§70 113
Ontario to 1900 | to 1540
Niagara falls,j polorite § o0 J08.3 200 - 200 1,
< -
Ontario Shale - to 2800 | to 200 to 9
Niagara ¥alls, Dolomite St 15.6 1000’ S UL
26
New York ~ 10 10,1 870l | -330
2
North Bay, < &80 52.1 ~ 1100° 21°
Ontario
2
Ottara, < 50 52.1 ~ 330 6
Ontario
1110t Lalke, Diabase 840 875.0 gy 3100l 3.5
Ontario
1. Average of several measurements
2, Average of major and minor principal stresses
3. Below the bedrock surtface
4. Positive values indicate compressive stresses
5. Unit weight assumed to be 150 pcf
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3.2.2 Perturbation Stresses a“dkiﬁiﬁfﬂﬁﬁi‘M“tflx

The perturbation stresses are developed when
equivalent forces are applied at the nodes dn the excavated
surface to represent the excavation process as shown 1n
Figure 3.1} These equivalent forces are those necessary to
give a stress free boundary at the excavated surface (Meek,
1973). The equivalent nodal ftorces are determined from the
stresses within the efcments removed to simulate the excavation
process. Figure (3.3)shows the stress distribution within an
element, and the equivalent forces at midsides between two
adjacent nodes (Desai1 and Abel, 1972). Equation (3.5) gives
the relationship between the nodal force vector prior to

excavation, and the stresses within an element:

[ Pu1 | [ by ¢ b, 0 ag +a, |
Pu2 by * by 0 a) *ag
(q) = 03 - % by + b 0 a, * a o]
] pvl . 0 a; + a, b3 + b2 4 oy s
Py2 0 )+ ag by # o3 | | yy
L Py3 | 0 3 * 3 by * by

(3.5)

where h 1s the thickness of the triangle in the Z direction.
These forces, with opposite sign, then represent the equivalent
nodal load vector for the removed elements and are applied at

the nodes on the excavated surface.
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A) NOTATION

B)

%

CONSTANT STRESS-
DISTRIBUTION

STATICALLY EQUI- |
VALENT FORCES AT
MID SIDLS (PER fo,0%7, ,35) « BT
UNIT THICKNESS) 2
“Py2

3-Txy a3)

(oy a3+rxy b3)
B x

FIGURE 3.3 THE YQUIVALENT NODAL FORCES FROM
THE ELEMENT STRESSES

24

1 3%
2 - 173
37 %7
1T Y27Y;
27 V3N
37 N7
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*each of the midside
forces is divided
equally between the
two adjacent nodes

kAN dm e e . L

EUSEEN

1

|



. I,

¢ ——————— A ey 20 %o

The main stiffness matriyv 1s used when determining

the nodal displacements for the complete mesh, After excava-

tion, a new <trffness matrix 1< developed with due consideration

of the removed elements. The coeffarcients of the «tiffness
matrix of the elements within the opening are reduced to
negligible vatues. hulhawy (1971) found that the moduly of
the excavated elements must be reduced to at least 1o © times
their value prior to excavation. It thev are reduced by
substantially lesser amounts, the values computed for the
remaining elements are not reasonable (kulhawv, 1974).  The
stiffness matrix of the new mesh 1s obtarned, and displacements
{8U}, strains {ae} and stresses {801 can also be determined.
The final displacements, strains and stresses after

excavation dre determined from the following equations:

{uy - {Uo} ¢ {aly (3.6)

fed = (e )+ {06} ‘ (3.7)

{o} =(OO} + {bo} (3.8)
%

For excavation problems 1n soils and rocks, the
displacements and the strain due to gravity loads before
construction are not taken into consideration. Only the

stresses before excavation are relevant.

3.2.3 Incorporation of Orthotropic Rock Properties

The conditions of homogeneity and 1sotropy generally

assumed in theoretical stress analysis are seldom realized in

~2
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materials such as rock (Jaeger, 1972}, Rock laver< that show

obvious differences in composition, grawn site or <hape,

porosity, cementation, and other characteristics can be expedted
4

to have distinctive <trength and detormational properties.

But, even where composaitional and other characteristics are

sufficrently unitorm tor a rock sequence to be considered

reasonably homogencceus, the presence of bedding wurtaces Zan

have progyunteq eftfects on these propertices,

/
© The durectional varitations 1n the elastic properties

\

/
\ ' ’
of roch effects the stress distribution 1n rock surrounding an

undorgroﬁhé~e*fﬁ\dtlon (Obert and hanvall, 1967, For stratited

or transverselv psotropic material (1n which o 1otational

-

symmetrv of properties exists) five independent elactic constants

are required for a full description of the rock. Yl and vyoare
the elastic modulus and Poisson's ratio ain the plane of the
strata and 1,, v, and G, are the eclastic modulus, Porsson's

o

rat1o and shear modulus 1n the plane perpendicular to the
strata. Fagure (3.3 shows the directions and moduli involved.
The general stress-strain relationship 1s given by

Equation (3.9).

{o} = [D} (¢} (3.9Q
where [D] 1s the constitutive matrix. For isotropic material
and the plane strain i1dealization (sz = 0), bkquation (3.9)
becomes:
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~ ] ) S -
. . (1-v) v 0 €
p - - }‘ (1‘ ) 0 4 | -
% T Ay v v ty (3.10)
(1-2v)
[ “xy 00 2 ) Yy
F&r a transversely 1sotropic medium and the plane:strain
idealization Lquation (3.9) becomes:
6 ] ”n(l-nvz) nv,(1+v.) 0 (e T
X 2 2 1 X
1
- “2 (1+v) (1) 0 ¢
4 O L = 5 n\).) v - 4 L.
y (1sv,) (1-vy-20v) | = 1 L y
1 1 2 2
_ D
i XYJ I ] 0 m(l+v1)(1 v hnvz)— ny

(3.11)

yhere: n = EI/EZ; and m = GZ/EZ' The stress in the Z direction,

”~
&

07, 1s calculated from: «
Oz = V) 0y * N Vv, 0 (3.12)

To obtain the elastic solution for an underground
opening taking into consideration the stratified rock conditions,
it is only necessary to specify the five elastic constants for
the rock in the computer program. The new stiffness matrix [K]
for the model can then be generated since [D] for each element

is known.

3.3 Brief Description of Initial Strain Method

The initial strain method is based on the general

incremental approach that is often used for nonlinear analysis,
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in which the solution 1s developed by considering a series of
linear problems (1.e., multi-linear). This procedure begins
with the elastic solution and the incremental c¢reep strains for
an appropriately small time interval and the selected creep
law are computed by the methods given in Appendices B and €. The

L
creep strains are regarded as 1nitial strains and equivalent
creep nodal forces are introduced 1into éhe solution to evaluate
the incremental nodal displacements. Element strains and

stresses are then determined (incremental, total, creep and

elastic) for the end of the interval and used for the next

creep increment. This creep solution then proceeds to the final

desired time (Greenbaum, 1966; Emerv, 1971). In this study the
incremental, initial strain method developed by Emery (1971)

was adopted and is given in morc detail in Appendix B.

3.4 General Program Description

To study the aspects of tunnel behaviour of interest,
a plane stréin, linear displacement, triangular element, finite
element computer program was developed that:
a) determines the initial state of stress in the field;
b) simulates excavation of the tunnel;
c) allows for creep of the tunnel; and,
d) incorporates various tunnel linings and lining

strategies.

Simplified flow charts describing the program steps for deter-
mination of the initial stresses and simulating excavation

procedure are shown in Figures (3.5)and (3.6) respectively. The
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\RLA(Y INPUT DATA FOR THI MESH CONSIDERED /

CALCULATL THE MAIN STIFFANLSS MATRIN

IN SITU STRESSES

Y
CALCULATE THE FIFTLD STRESSES ACCORDING TO K VALUF )
Y
<
OBTAIN THE LOAD VEICTOR BY RFADING THE LXTERNAL LOADS
OR BY DLTFRMINING THE GRAVITY LOADS IF REQUIRED Yy
YES
LOAD VECTOR = ZERO
DETFRMINE NODAL DISPLACIMENT v

1. |

DETERMINE ELEMENT AND NODAL STRAINS AND STRESSES

Y <

EXCAVATION

FIGURE 3.5 SIMPLIFILD FLOW CHART FOR INITIAL STRISS
DETERMINATION USING THE FINITE FLIMENT METHOD
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READ INPUT DATA TOR
FXCAVATION

Y

DETERMINE THI LQUIVALENT NODAL I'ORCLS FROM
THE STRESSES ALONG THE FXCAVATION SURFACE

1

REVERSEL THOSE AT THL P XCAVATION BOUNDARIES

Y

RLDUCL THE STIFINESS MATRIN FOR LACH REMOVED

FLEMENT AND GENERATE THE NEW MAIN STIFFNFSS
MATRIX

Y

DUTLRMINE THE NODAL DISPLACLMENTS

+

DLTERMINL FLEMENT AND NODAL STRAINS AND STRESSES

T

™ DETERMINE THE FINAL DISPLACEMENTS, STRAINS
AND STRESSES

FIGURE 3.6 SIMPLIFIED FLOW CHART FOR EXCAVATION PROCEDURE

USING THE FINITE ELEMENT METHOD
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)
creep daspects of the computer program were developed from the
programs provided by Lmery (1971). The saimplified flow chart
for the creep steps of the program 1s given in Pigure (3.7) .

The lining aspects of the program are discussed 1n Chapter |,
The program can also be used for problems anvolving different

materials and a wide variety of creep laws.

3.5 Lxample Problem

A thack-walled cylinder was used to check the accuracy
of the techniques adopted as analytical solutions are available
for this problem (Greenbaum, 1906). The radial deformations

and stress distributions 1n the c¢ylinder due to an internal

pressure of 365 psi1 were determined by two finite element methods.

The first finite element method used was a direct solution.

Figure 0.8)gives the finite element idealization of the cvlinder

used for this solution. Because of the method used to handle boundary

conditions, 1t was necessary to analyze a quadrant of the
cross-section and equivalent nodal forces were specified to
represent the internal pressure. The second method is the full
"excavation'" finite element procedure cxplained before. A solid
cylinder was considered with the same outside radius and same
properties as for the first method. The internal pressure was
replaced by equivalent nodal forces acting at an imaginary
boundary (nodes a to o in Figure 3.9) represented by the inside
radius of the Opénijéf‘ After obtaining the element stresses,
equivalent nodal ferces were calculated for the material removed

from inside the opening. These forces, with reversed sign, were

then applied to the mesh at nodes a to o after reducing the
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@————Xii/\l) INPUT DATA TOR (‘RHI‘/

TOTAL TLAPSED TIME (1) = IIRO

% <
CALCULATE THL TIML INTERVAL (4t)

! 3

T =T + At

Y

CALCULATE THI FQUIVALINT FLIMLNT STRESSES

Y

CALCULATL THL FQUIVALENT CRLEP TLEMENT STRAINS FOR THIS TIME INTERVAL

» )

CAICULATL THE COMPONENTS OF CRELP STRAIN INCRIMEN]

Y

CALCULATEL THE LQUIVALINT NODAL FORCES FOR THESE CREEP STRAINS

T 3
: i'
/

CALCULATT THL NODAL DISPLACIMENTS CORRESPONDING TO THE IQUIVALENT FORCLS

Y

CALCULATE THL STRAINS AND STRESSE'S INCREMENTS (INCREMENTAL,
TOTAL, CREEP AND I'LASTIC)

HAS NO

Y

FINAL DESIRED TIML
BEEN REACHLD

FIGURE 3.7 SIMPLIFIID FLOW CHART FOR INCRFMENTAL CRFEP
ANALYSIS USING THL FINITL LLIMLNT METHOD
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modulus of any removed elements. The perturbation stresses
were than obtained, and using these and the 1nitial stresses,
the final stress distribution was determined. In both methods,
creep was then initiated from the elastic stress state.

The c¢reep relationship used to check the program s
given byv:

e = 6.4 X 10'15 0‘1"’ t (3.14)

where: ¢ 1s the creep strain; o 1s the stress in psi; and t 1s
the time in minutes.

For the two finite element methods, the results were
identacal., Figure (3.10) represents the radial deformations
and Figures(3.11) to 3.13) gi1ve the radial, circumferential and
axial stress distributions in the. cylinder respectivelv. The
elastic stresses, steady state creep stresses (about two hours

N

after creep) ‘and radial Jdeformations were then compared with

the plane strain closed-form solution for this problem (Greenbaum,

W

1900). Figures (3.11) to (3.14) show these comparisons. It
can be seen that there is close agrecement with the closed-form

solutions.

The finite eclement excavation procedure is used 1in

Chapter 5 when the actual tunnel is considered.
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CHAPTLR 4

TUNNEL SUPPORT SYSTEMS

4.1 Introduction

The main functions of the tunnel support system are:
a) to stiffen the undergrqund structure; b) to reduce or
prevent any swelling (expansion of rock due to water absorp- .
tion); and c¢) to prevent failures due to ground squeczing.
For openings in rock, support design is still a highly
empirical practice and the Terzaghi design system is often
adopted in which a zone of failure over the arch is prevented

from collapsing (Terzaghi, 1946). Theoretical approaches

%
(using shell theory, or considering the tunnel support as
a fixed arch or a circular ring) are being used, but none
are widely used or have been adequately validated in the T

S

field (Lane, 1975). There is a great need to model such
problems with a realistic representation of squeezing ground
in order to develop rational approaches for the design of

underground supports.

4.2 Creep of Concrete Linings

After construction, the concrete lining may be subjected
to additional stresses due to loading from the squeezing
rock (concrete itself has time-dependent propepr@s) and the

lining creeps under these additional stresses (Neville, 1970).

” ' 42
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Thus, in order to adequately simulate the behaviour of a
concrete lining, this time-dependency must also be 1ncluded.
Attempts have been made to express the creep behaviour
of concrete obse?Ved{in laboratory tests in the form of .
simple creep laws th%} can be used for predicting long-term
responses in the field (Straub, 1930; Neville, 1970; Spooner,
1971; Illston and Jordaan, 1972; Dhir and Sangha, 1972).
These creep relationships contain a varying number of constants,
some of which have direct physical interpretation, but most of
which require tests for their determination. The most important
expressions for creep of concrete have beecn reviewed by
Neville (1970) and will not be given in detail here.
Straub (1930) studied the creep bechaviour of concrete

and suggested the following creep equation:

o St Bt . 5 o e PO

e = Ko t (4.1)

where: ¢ is the creep strain; o is the stress; t is the

v e -~

time; and K, n and m are constants depending on the properties
of concrete. Equation (4.1) has often been adopted to

study the time-dependent deformations of concrete (Neville,
1970). Straub (1930) developed the constants (K, n and m)

for Equation (4.1) from experimental work for a study of

the creep behaviour of an unreinforced concrete arch subjected
to uniformly distributed loads. Straub's problem was similar !
to the study presented here, consequently Equation (4.1) is

the most appropriate and realistic stress-strain-time relation-
ship available. Equation (4.1) will be used in the following é

form:
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€ = 56.7 x 10710 01'3 04 (4.2)

where: o 1s in psi and t is in days.

4.3 Modelling of Joints

In this study, joints between the lining and the
surrounding rock were considered. The computer program
for joints developed by Nguyen (1976) to study ice slope
problems was incorporated into the tunnel creep program.
The Goodman et al. (1968) theory for rock jointsused is
summarized in Figures (4.1) and (4.2). The main assumptions
made to model the interfaces between the rock and the concrete
lining as linear elements were: a) these elements can not
sustain any tensii? stresses; b) the width of the elements
equals zero; a &(c) the linear elements represent rock-
concrete intey{zces and have no time-dependent propertics,
The joint parameters K“, KS and Ksr are required
input data, where Kn and KS are the joint stiffnesses per uhit
length of the joint in the normal and tangential directions
with respect to the linear element, respectively. Ksr is
the residual joint stiffness per unit length of the joint
in the tangential direction. For this study, appropriate Kn’
K and Ksr values were obtained from tests made by Goodman
et al. (1968) on rock joints. Since jointing between rock
and concrete is a recent research area, detailed information
on these values was not available. This area nceds. further

experimental resedarch work.

The stiffness matrix of each linear element was

»




o}

1  TANGLNTUIAL STRESS

NORMAL STRLSS

45

W WIDTH = 0 Y, Wn
TOP a 1
4 (? 1) emmmeemmddim —O 3
W D x,hs
1 &- o2
<> BOTTOM
1 Un
L/2 _F 1L/2

FIGURE 4.1 JOINT ELEMENT WITH ITS LOCAL COORDINATE
SYSTEM (GOODMAN et al., 1968)

F_ NORMAL FORCE

n

F SHEARING FORCL
W NORMAL DISPLACLMENT PFR UNIT LENGTH
W TANGENTIAL DISPLACEMENT PER UNIT
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FIGURE 4.2 DATA FROM DIRECT SHEAR TEST ON A ROGK JOINT
(GOODMAN et al,, 1968)
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obtained from:

Ck, 0 K0 K0 -k 0
2 - -2
0 “Kn 0 Kn 0 Kn 0 uhn
KS 0 2K 0 -ZKS 0 -ks 0
0 K 0 2K 0 -2K 0 -K
(K] = % ’ n N ]n ‘ n | n (4.3)
-ks 0 -“ks 0 2K 0 ks 0
0 -Kn 0 -2hn 0 ZKn 0 Kn
-ZKS 0 -KS 0 KS 0 Zhs 0
i 0 -2k, 0 K, 0 K. 0 ZKxu

These joint element stiffnesses were incorporated into the
main stiffness matrix. After each stress determination, a
check on the joint stresses 1s necessary to generate the
appropriate main stiffness matrix for the next iteration. If
a joint "fails" due to the joint shear stress exceeding the
joint shear strength, the coefficient Ksr will be used in
Equation (4.3) instead of the coefficient KS and Kn remains
unchanged. If the joint failure is due to tensile stresses
perpendicular to a joint, the computer removes the influence
of this '"debonded" joint from the main stiffnessimatrix. This
procedure is repeated for a number of cycles until a stable
configuration is obtained. More detail on the linear joint
elements is given in the literature (Goodman ¢t al., 1968;

Nguyen, 1970).
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4.4 Modelling of Concrete Linings

- There are several important factors that must not be
neglected during the design of a lining. These factors

are: the rock structure and its properties; the state

of stress before constructing the lining; the creep behaviour
of the surrounding rock; the stiffness of the lining(itsclf;
and the creep behaviour of the concrete lining due to any
ground squeezing. In the simulation developed here, all these
factors are considered, based on the assumptions that the
concrete lining is homogencous and isotropic. The elastic
modulus of the concrete was assumed to be constant with time.
This assumption is reasonably accurate as long as the concrete
lining does not take any significant loads before gaining full
strength.

In this study, to compare the general interaction
between the lining and the surrounding rock, cases representative
of the two possible extreme conditions were considered. In
the first, a rough interface was assumed, i.e., no separation
between the elements representing the concrete lining and
surrounding rock. Figure (4.3) shows this simulation (two
different materials connected by the same nodal points) for
the underground opening with its concreteqlining. In the
second case, lincar joint elements between the rock and the
concrete lining were used to allow for slip or actual openings
between the materials. These lincar elements have strength
parameters decpendent on the contact and friction between the

rock and the concrete liniﬁg. Figure (4.4) shows the simulation
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for the lining with joints.

A simplificed flow chart for the finite element computer
program for lining simulation and creep analysis is shown ¢
in Figure (4.5). To save computer storage and time, there
is one restriction on numbering the nodes for the rock
interface 1f a lining is to be placed. The nodes at the
excavated surface should be numberedlast as shown 1n Figure
(4.4) for minimum increase 1n band width when the lining
elements arc incorporated. The concrete elements are
incorporated in a stress free state. Therefore, for the first
crecp increment after placing the lining, only the rock under-
goes creep deformations. The creep forces then cause dis-
placement of all the nodes including the lining nodal points,
and hence internal strains and stresses start to develop in the
lining. Creep then continues for both materials according to
their creep laws. This will be shown in detail where specific

examples are given in the next chapter,
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CHAPTER S
SIMULATION OF A TYPICAL
FIELD PROBLLM

5.1 Introduction

The finite element method presented in the previous
chapters was used to simulate the creep behaviour of an
underground intake tunnel for a large filtration plant near
Toronto. This tunnel is a circular opening of 13 feet (4
meters) diameter at a depth of 200 feet (61 meters). Pre-
vious Geological Survey ot Canada (Map No. 1263 A) work
indicated that the tunnel is located in Collingwood shale,.
The general trend of the beddihg dip in this part of Ontario
is south-westerly with a magnitude of 0.2 degrees, i.e.,
the bedding is nearly horizontal. Table (5.1) shows the
rock properties at the site of the tunnel as measured experi-
mentally by Franklin Trow Associates Limited, who have
cooperated in the field aspects of this tunnel simulation
study. These values were not all available at the time of
the study, so that the set of representative valucs shown in

Tables (5.2) and (5.3) were assumed from initial test data

\
and & careful examination of the properties of shale published

in the literature (Farmer, 1968; Jaeger, 1972; Bollinger,
1974)., It can be seen from Tables (5.1) to (5.3) that the

assumcd values are very close to the final measured values.
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In this chapter, a complete finite element simula-
tion of the problem is presented, including: elastic
solutions for isotropic and orthotropic rock properties for
various initial states of stress; and a complete time-depend-
end analysis, with and without a concrete lining: A
comparison of the rock movements as measured at the site of

the tunnel and those predicted by the finite element simula-

tion is als¢ given.

§.2 lﬂpaliza£igﬂ
The plane strain, linear~displacement, triangular

element, finite element idealization tor- the opening is shown

in Figure (5.1). Because of the symmetry of the tunnel with

respect to its vertical axis (goemetric and loading), it

was 0nl§ necessary to analyze one half of the cross section,

(bue to gravity loading considerations, there is no horizontal
p

symﬁet?x). For the opening itself, it was adequate to

rop;esoﬁ} the rock removed from the opening during excavation

by a single row of elemonts (24 olements for the half cross

section), This row of elements is shaded in Figure (§.1).

§.2.1 Mesh Configuration and Bbundary Locations

The finite elemont &esh was carefully glocted to
onsure that tho results obtained were not significantly
influenced by: | ‘ |

a) the mesh not being fine enough; or
b) .the boundaries not being far enough away from the

L 4
opening.
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180 ELEMENTS
110 NOQES

6.5 FEET
(TUNNEL RADIUS)

ELEMENTS REMOVED
TO REPRESENT EXCA-
VATION (24 ELEMENTS)

10

.0
SCALE, FEET

FIGURE 5.1 FINITE ELEMUNT IDEALIZATION OF THE TUNNEL
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Kulhawy (1%74) found that a reasonable criterion for meshes
would be a minimum of 125-150 elements for typical plane
strain finite element simulations of structures in homo-
genecous rock where there is a plane of symmetry as in Figure
(5.1). Kulhawy (1974) also found that to have a "perfect"
comparison with the closed-ferm theeretical solution, the
boundaries of the finite clement mesh would have to be at
"infinity". Obviously, this perfect comparison is impossible
to achieve and Kulhawy indicated that the mesh would be
adequate if{ the largest difference botween any of the computed
and thoorgtical stresses or displacements, on or near the
opening, is less than 10 percent, He found that this 10
percent criterion is roadily satisfied with a boundary locatued
6 times the radius away from the centre of the opening.
Therefore, to be conservative, boundaries 7 times the radius
away from the centre of the opening and 180 elements wcre

adopted in tho mesh used to study the tunnel.

5.2.2 Hxcavation

The solution in cach case was started by obtaining
thé approbr{atb initial stresses for various rébrosogtativo
K conditions. For excavation simulations in isotropic
elastic rock, K values of 1, 4, 7 gnd 9 woro considered with
the largor values roprosenting higher initial horizontal
strosses. For excavation.simulations in orthotropic elastic

\

rock, K valuos of 1 and 4 woro considered. Theon, the first

row of tho eloments (shaded eloments) of the finite element

BT IOy e ST
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mesh shown in Figure (5.1) was removed to simulate excava-
tion of the tunnel opening. The clastic displacements,

strains and perturbation stresses duc to excavation of the

—-——

opening were then computed. These displacements, strains
and perturbations stresses plus the initial stresses,

Figure (3.1), then'represented the elastic (instantaneous)
displacements, strains and stresses in the rock duec to the

construction of the underground opening.

5.3 Discussion of Elastic Solutions

a) Displacements

For the isotropic elastic rock, the instantan-

R eous displacements around the tunnel due to cxcavation weroe
S uniform for the K equal to 1 condition as shown in Figure

fﬁ , (5.2). This is as expected since tho K oqual to_.l condition
is similar to a hydro@tatic loading condition., When high
initial horizontal stresses were modellod for the tunnel

sito as indicated by K equal to 4, 7 and 9, the horizontal

displacements increasod as shown in Figures tS.Z) and

(5.3). However, the inward displaccments for the crown
point "A" and the floor point "E" decreased, and for K

equal to 7+and 9, points "A" and "E'" actually moved othards.

This divergonce under high lateral strosses is expoctod from

field evidence of arch failures in some tunnels whoro high
latoral strosses wore known to exist,
ﬁg}j , For the orthotropic elastic rock (bedded) and K

% oqual to 1, it can bo soon from Figure (5.4) that tho vorticul_
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convergence is greater than the horizontal convergonce due
to bedding influences represented by the orthotropic condi-
tion. With K increased to 4, the horizontal convergence

value incrcased and the vertical convergence valuce decrecased.

Table (5.4) summarizes the horizontal and vertical convergence

values for both isotropic and orthotropic elastic rock and
various K values. It can be secon that the horizontal
convergence values for both isotropic and orthotropic cases
are nearly the same, but the vertical convergence for tho

orthotropic case is greater than for the isotropic case.

b) Stress Concontrations

Figures (5.5) to {5.8) show tho stress concentrations

for isotropic olastic rock for K cqual to 1, 4, 7 and 9,

reospectively, Figuros (5.9) and (5.10) show tho stross

concontrations for orthotropic olasti¢ rock for K equal to

1 and 4. It should be pointed out that tho nodal strossos
at the surfaco are actually the average of the stresses in
tho adjacent olemonts and will not generally be oqual to
the actual surface valuos. Genorally, due to oxcavation
the radial strossos decroased while the tangential stresses
incroased noar tho oponing. With increasing distance away
from tho Oponiné, the various stresses convorged to their
values boforo oxcavation, i.0.,, stross concentrations becamo
unity as anticipated., At tho springline, tho radial
comprossive strosses incroased with increasing K valueo

(high initial horizontal streosses), while tho tangential

o

P
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.gshear stresses from measureiients. It can be soen that tho

‘aro subject to cens@dorablc scai;ér $0 that the agreemont o ;gr

70

strosses dozroasod and tonQion was dovelopod for high values
of XK (7 and 9) as shown in Figures (5.7) and (5.8). At

the crown, the radial and tho tangential compressive
stresses Increased with increasing initial horizontal stresses,
and some of these stresses (K oqual to 7 and 9) oxceeded

tho comprossive strongth for the rock as shown in Figures

(5.7) and (5.8). This may causo cracks aﬁd failure of the :
rock at tho crown. Such failures are ofton observed whon
tunnolling in rock with high latoral stresses.

The stress concentrations for isetropic and ortho-

tropic elastic vock wore aluost the samo for K equal to 1,
but for tho orthotropic case highcr tangontial compressive
strosgos at the crown and spring soctions were developed for
K cqual to 4 and lower radial compressive stressos at tho "
cr¢wn soction as shown in Figures (5.9) and (5. 10) Figure

(5.11) givos a compariqon bctwuen the horizontal strossos

porpondicular to the tunnel axis moasured in the field and

the values computod by tho finite clement excavation method,

Figure (5.12) givoq a similar compari&on between the calculated i

computed values for K quaf to 1 aro {n a roasonable agrooment
with tho fiold moasurements. It should be notod that field w

neasuromonts in rock mochanics, partigularly stress values,
. \ Y

is considered to be very roasonable for this field study.
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5.4 Croop

For the roasans discussod proviously in Soction
(2.2.1), Bquation (2.6) was adoptoed for tho simulation of
tunnol creep in rock, The constants for shale in this
oquation have beon developed experimentally by Hobbs (1970).
From thoso experimental rosults, he concluded that the
slopo of secondary croep for shale is indepondont of the

stress level, and proposed the followling creop equation:

emeg+1.08x 1077 v v 756 x 107 %000g (t+1)  (5.1)

whore: ¢ 1is the total strain (elastic and creop); 6, 18
the elastic strain immediately after excavation;. t {s the
timo in minutes; and c’ls the stross in MN/m?, Usiﬁg tho
incremonial. initial straln method dlscussed proviously,
Section (3.3), tﬁu croop analyses (approximately 4 1/2
months creop) for various representative K conditions (1, 4,
7 and 9) In isotropic eiastié rock wore started after the

olastic solutions had beon obtalned.

§.5  Discugsion of Creep Solutions

a) Diaplacoments

Figuros (5 13) to (5.10) show the radial creop
ﬁisplacemcntq of tho tunnol (squcozing) with time for K
equal to 1, 4,7 and 9. It can bo secen that the tunnel deforms
at a constant croep rate for the various initial’ horizoatal |
stross conditions after a brief primary poriod, . For examplo,
the croop deﬁcrmation rate for K oqual to 1 i3 0,016 inches/month

~

dapns e SR 2 g e S

C v e g




74

TN G Y R S S L e

e e

1= ¥ Y33 TARIL HIIR INSTEOVIESIa TVIGYE €17 ZENII3

SHARIEN 2 “IHIX

L4 £ [4 ' H
: i

SAUNEE 2 ‘THIL
G088002 80C05R 883851 £o3Ls

T N [ .

. e i ——

4

]
W
Q

" 1sd g0T X S9°0
i€°0

]
A
S

3°g SINIod ~
3°g°Y SINIicd ————— SI1 1333588 JILURIOSE

NE 1 CINANIDOVIS TE IVIAVY

N

it

;g.




75

¥ = X 04 INIL HLIN INZHEIVISSIQ TVICVE #1°S IUOIL

SHINGH 3 ‘=L

4 < Z 1 0
r Y H ] ¥ P |
STIMIN 3 *THIL
085037 6oo3sT CIC00T €30GS (1]
4 1 |

Zr o~

e ol
e —— — S — v
Sp— . a P
- - —— = 9
o .- NNOQ
- u ..-ll -

3 INIOd d . = =X a .
= a Isiad - - is WQM X MW‘Q = =z . 1 ¥Z2°0
Jixied T T I€°6 =« )

g INIod —— — .
VINigd ——— .0 S31IEEIEI J140¥I0S1
v
3 1 ! 9“0

.
Qs

SUHONI 0 *ANUNTOV'IUSIA TvIQW

A




70

£ = % E0d ITHIL HLIIm IXNZTDEDVILSIE IVIgYVE <S1°S IEoid
SHLVH 3 *THIE -

< z ¥

o<

s 8 utiva

|4 T | §
IONIW O3 =1L

S

LI O

3355

L2 41 I I I 1Y)

INIOG
iNiog
INICd

INISE

vl

['d

fu

%)
ot

"

1t WA
(LY ¢
. 4
(=3 v
([}
2wl
(%)

g [

%

IZ°0

SUHONI "0 L INHIUOVIAS T VIOV



77

& = ¥ B33 Sall HIIw INZGEOVI4ASIQ TIVICYE 91°S SIS

SHINOK 3 ‘Tl

i’ o

¥Z°0

7 < z ® 1.
' H 1 13 11 ]
SIIINIK 3 ‘Tiii
633502 SB35 LIty 3 4
¥ [}
15d g0t X €976 = 3
- NW-O = A
3 INIOod
€ INIOE - SIIIBIITES DISSELLST
) INIGg — o
- g INIOd —_ 3
¥ INIGH - =~ —— = _ T S
e e —— —— o — _—— - - ——— -
pra = -
”~e
¢ —
e >—— - - - - - - |L
- m M
-~
o)
—_ -

—d

970

CSHHONI @ “LNHWHOV'IASIT Tviavy




(creop straln rate of 00,0002 inchos/Inch/month based on
tho radius of the opening). 1t can also bo sedn that the
max imum croop deformation rate occurs at the crown point
CMAY for the varlous K condlitions, Flgures (5.17) and

(5.18) show typ'lcul computed movements (magnitude and

diroctlion) around the tunne! for K uqudl to 1 and 4, respoct- X }
ively., Table (5.5) summarizos tho computed convergoenco %
valuos (closure) and croep deformatlon ratoes for the varlous %
inlttal hortzontal stress conditlionu, It can bo seen that ;
the vertical convergence rates are relativoly Indepondent’ g
of K while the horizontal convergenco ratos docrease with i
incroeusing K valueo, ?

Tahle (5.6) shows a comparison of tho computed ‘ i
donvergence rates with those measurcd in the fleld {or the ' !
tunnel, Théso measured values were taken at 4 different :
locations (profiles) in the tunnel. Flguro (5.19) shows 'é
& comparison botween the measured croep digplacements with - ?
those computed by the flnlte elemont excavatlion method, %

Generally, the computed values for the K equal to 1 condition A
are much cleser to the measured values than those for K
oqual to 4. Thus, it would appear from the comparison of

flold measuremonts with tho finite olement simulation €hat

the appropriate K value for this aite is close to. unity. ﬁ
This 1n%onmutian, hased on a simulatlon, is of groeat help ?
when dotevmining thé lining stressacs since direct_determiﬁa- , )
tion of K is difficult in the field, : |

The computed inward horizontal displacements for
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TABLE 5.5 SUMMARY OF coMpuTd (FINITE ELEMENT) CONVERGENCE 81
VALUES AND CRELP RATES
1
2 8
3 7 RUFLRENCE POINTS NUMRERING SYSTEM
4 ( >
)
M) ‘ /
CONVERGENCL  (INCH)
INITIAL b+ e e it eng e pe e - . N
2‘::3}‘22 SPAN T IML 1 IME RATH
SR ' SINCH e SINCH a LING/ MONTH)
BXCAVA'T 10N HOVEMENT EXCAVAT TON MOVEMENT
K (DAYS) CINGID C(DAYS) CINCH)
! 1.h 21 0,079 127 0.152 0,02}
2=6" 0.075 0.137 0,017
5.7 0,076 0.1541 0.021
- - r__r - [ | PRI e B e s v B T T oy iy
4 18 16 0,061 100 0,121 0,021
2w 6% 0,152 0.178 0,009
3.7 0,275 0,205 0,007
r A 4 e G BN S 0t 0 e e Y T, (U IR LEP I NP R W S - R B A S LI SV T B e ke S :.,’w v
7 1-§ 16 0,047 - p7 0.101 0.020
240" 0.240 0,260 0,007
8.7 0.481 0.400 0.004
L—‘m‘- z
0 1-8 19 0.041 119 0.106 0,020
2.6% 0.300 0.32% 0.007
.70 | 0.610 0,626 0.002
P

* HPAN (d4-8) I8 SAME A8 SPAN (2<6) UROM SYMMHTRY
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TABLL

15,6 COMPARISON OF MEASURED CONVERGLNCE VALUES

WETH FHOSE

COMPUTED BY FINFEE ELIMENT MUTHOD

2 o
RUFURUNGE POINTS NUMBERING
3 7 SYSTHM
q b
5 - - ~ - 4
MEASURID COMPUTED  (FEM)
. " RATH AVERAGL , RATL
’“ﬁg‘““ SPAN- L7 MONTH) RATL K NG/ MONTH
o N PO wh e mae Ak A e s e - ee . 3 ~
b 1.4 0. 190 1 0.0A
2 1-5 0,167 4 0,041
(AVERAGE O
: L, 2, 64y .
3 1-5 0. 680 o / 0,020
4 1<b 04 024 0 0,020
2 246 0, 051 ! 0,017
3 20 0., 006 4 0,000
4 2-6 0,012 0,027 7 0,007
2 4+4 0,047 0 0. 0068
4 44 0.017 | 0.021
2 3.7 0.088 4 0,007
Y 0.010 > | 0.027 7 0. 004
4 87 0,014 ) 0. 002
N,

L4
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" DISTANCE FROM CENTRE
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& : K
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2, COMPUTED (FINITE ELEMENT) DISPLACEMENTS FOR K = 1
AND 4 REPRESENTED 9 DAYS CREEP. »e J
3. POSITIVE (DOWNWARDS) DISPLACEMENT MAGNITUDES
CORRESPOND TO INWARDS MOVEMENT, :
FIGURE 5.19 COMPARISON OF MEASURED CREEP DISPLACEMENTS WITH NO. 3 3
THOSE COMPUTED BY FINITE ELEMENT METHOD, (i
LOCATION OF EXTENSO- :
METERS "'ﬁ%sé‘
i
i,
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~

the spring point '"C" for K equal to 1 are¢ the same as

the measured values (Extensometer No. 2, Figure (5.19)),
but the computed inward vertical displacements at the
crown point "A" and floor point "E'" as shown in Figure
(5.19) are less than the measured values. Also, the
computed vertical convergence is less than the mecasured
values as shown in Table (5.6). These differences are
closely rclated to the influences of the bedding of the
rock which was not considered in the creep analysis part of
this study. Obviously, this must be the topic of future
research where the anisotropic properties‘of rock are
conside;cd in the creep analysis. This will also require

experimental information on the creep of bedded rock.

b) Stress Concentrations

Figures (5.20) and (5.21) show the #tress con-
centrations for K equal to 1 and 4, respectively, after
approximately 1 1/2 months of creep. The corresponding
values after excavations are also shown for comparison
purposes. Tables (5.7) and (5.8) show the radial and tangential
creep stresses around the opening for K equal to 1 and 4,
respectively, compared with the stresses before and after
excavation. Generally, it can be seen that for K equal to 1,

\

the radial and the tangential compressive stresses near the

opening increase with time, while these stresses at some

" distance from the opening decrease with time. For K equal

to 4, the creep behaviour of the tunnel is different from

i e

R e g P
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that for K equal to 1, At the crown, the radial stresses
decrease slightly near the opening while at some distance
from the opening thesc stresses increase duc to creep
cffcgts as shown in Figure (5.21)., The tangential stresses
decrease with time at any point along this section. For
the springiine, the radial stressces increase near the
opening and decrcase with increcasing distance from the
opening. The tangential stresses increase with time at any
point along this section since load is being transferred
from aboyc the opening to the tunnfl sides. ' From Tables (5.7) and
(5.9) it can also Ec seen that for K equal to 1, the stresses
around the opening (radial and tangential stresscs) increasc
(compared with the stresses aftsz—gxcévation) with time due
to the effect of ground squeezing. For K equal to 4, the
radial and the tangeptial strcsseg at the crown and the floor
points decrease (compared with the stresses after excavation)
with time duc to stress rclief; while the stresses at tho
spring point incrcase (compared with,the stresses after
excavation) with increasing time.

Finally, it can be concluded that, for K cqual to
1 and 4, the stresses are compressive around the tunnel
(squeezing the opening) and no tensile stresses were developed.

This conclusion is of great help for constructing the

plain concrete lining as discussed in the next section,

5.6 Concrete Lining

t

Figures (5.22) and (5.23) show the finite element

idealization for modelling the rock, the concrete lining
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and the interface between the concrete lintng and the rock,
as discussed previously in Section (4.3). A concrete

lining 9.5 Inches thick was uged for this simulation ag
indicated for the Inftial deslign by FIA. The compressive
strength specified for the concrete to be used is 4500 pui.

A unit welght of 150 pef Is considered appropriate for the
concrete, and the clastic modulus was obtained from (Neville,

1970)

P

E o= 57000 fr’"g (5.2)

where: E is the elastic modulus in psi; and f! ts the
compressive strength in pai.  The probcrtics assumed for

the concrete lining are summarized in Table (5.9), Table
(5:]0) gives the propertices agsumed for the interface between
the rock and the concrete lining as discussed previously in
Section (4.3).

In this simulation, the concreote lining was con-
sidered for the worst podsible operating conditions of the
tunnel. First, the normal internal pressure of a 60 psi
due¢ to flow of water in the tunnel (140 fcet depth of water
above the tunnel axis) was not considered since this pressure
would tend to reduce the stresses dczslopcd by the squeezing
rock. Seccond, the total unit weight of the rock was utilized

for the full height above khe tunnel without any reduction

for projected boundary c¢ffects due to water in the rock joints

near the tunnel.

Two lining strategies were examined: a) the lining

e et
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was considered to be constructed immodiately after excavation;
and b) the lining was considered to be constructed approxi-
mately two months after excavation where some of the creep
strains would already have beon developed.,  From the previous ~
analyses, Sections (5.%) and (5.4), It was concluded that

the appropriate K valuesfor this «eite is close to unity,

thug for the lining strategles K was consldered equal to |,
For comparison some cascs were considered for K equal to

4. The crecp period considered for the rock and the lining
was generally two months which i's constdered a very high
period for creep analysis, For more conservative deslgn and
to check the stress concentrations (maximum compressive and
tensile streosses in the concrete lining), 5 1/2 monthy

creep after lining construction was also considered for K
cqual to 1 and 4 as a long term analysis, The creep relatjon-
ships adopted for rock and concrete were Lquations (5.1) and

(4.2), respectively,

a) Displacemonts

For K equal to 1, Figure (S.Zk) shows a comparison
of the radial displacements with time for the concrete
lining and the two placement strategies. It can be secen
that the deformation rates (squeezing) for the concrete
lining placed two months after cxcavation (rock has had
time to creep) arc less than those for the concrete lining
placed immediately after excavation. (It should be noted
that the scale is in terms ?ﬁ time from placement and therc

is actually a two months offset from the time of excavation
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) Q
for the delayed lining placémcnt.) This is very important

as it 1s clear evidence that delaying the lining installa-
tion will significantly reduce the induced stress levels

in the lining. A delay of two months is also realistic from
the viewpoint of field construction. Thus, as shown in
Figure (5.25), two months creep for rock before lining
construction was considered the base for all of the analyses
of the deformations and stresses for the rock-lining creep .

simulation. This figure shows the influence of the concrete

lining on the radial movements of the rock walls due to creep.

The lining reduced the average deformation rates for the
crown and spring points rom 0.016 inches/month to 0.009
inches/month, and for the floor point from 0.008 inches/month
to 0.002 inches/month,

Figure (5.26) shows the deformations for the two
limiting conditions of rough and jointed interfaces used to
model the 1nteraction between the concrete lining and the
rock. It can be seen that the creep deformations for the
lining with joints are less than those for the rough inter-
face. This is due to the characteristics of the linear
elements that allow relative displacements between the two
interfaces (i.e., slip). It is considered for blasted
tunnels that the rough interface is probably the appropriate
interface condition. However, for tunnels excavated with
boring machines (moles) a smooth jnterface with potential

slip is more appropriate. The tunnel being considered will

be "moled'" for most of its length, so the rough interface tends

~

e
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to be a conservative assumption,.

) Figure (5.27) gives the radial displacements for

the rock with time for K equal to 4 and the standard lining
strategy of a two month delay. It can be scen that the

crown point has a higher creep rate (0.008 inches/month)

than the spring point (0.003 inches/month) and floor point
(0.005 inches/month). These creep rates are very low, and

> while a steady-state condition is indicated, it is clear

from laboratory and field studies for similar stress levels,
that the creep rate would actually decrease and creep move-
ments eventually stop. This of course would require modifica-
tion of the adopted creep relationship with its steady-state
, secondary feature. Recent monitoring of the tunnel indicates
that siginficant creep ends approximately three months

':iﬁ after excavation if the face is some distance from the profile
considered. However, small movements are probably still

occurring that will of course accumulate over time. Thus,

the analyses appear conservative.

b) Stress Concentrations

Figures (5.28) and (5.29) show for K egual to 1,
the radial and tangential stresses for the rock and the
concrete lining at the crown of the opening with time.

. Generally, it can be seen that the rock stresses increase

after placing the lining. It can also be seen that if the
concrete lining is placed immediately after excavation, the
stresses in the concrete-lining will be higher than if the

plaglement of the lining is delayed for two months, while the
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rock stresses will be less for placing the lining immediately

after excavation, i.e., load sharing shows up clearly.

Figures (5.30) and (5.31) show the radial and the tangential

stresses for the rock and the concrete lining at the crown

' of the opening with time for the two cases of representing
} the lining placement using the rough and the jointed 1nter-
faces. Also, the normal stress for the joint:with time is
given in Figure (5.30). It can be seen that the concrete
lining and the joints are subjected to compressive stresses
due to ground squeezing. The compressive normal and shear
stresses for the joints are very low as shown in Table (5.11) .
and no tensile stresses develop between the rock and the
- concrete.
Figures (S.32)7nd (5.33) give the radial and
tangential stresses, respectively, at the crown and spring
points for both the rock and the concrete for K equal to 4.
It can be seen that the stresses arc increasing at a
constant rate, i.e., the steady state creep conditions

have been reached.

Figure (5.34) gives the location of the points

at which the rock and concrete stresses are summarized

and these stresses are given in Tables (5.12) to (5.15).
"

It can be seen that Oy and oy remain in compression, for

8 both the rock and concrete adjacent to the excavation (K

equal to 1 and 4).

Since the single layer representation of the lining

N does not yield detailed stress distributions, the much refined
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mesh shown in Figure (5.35) was used 1n a more detailed
stress analysis. The K equal to 4 condition which is
considered the wofst possible field situation for the con-
crete lining was examined. (As indicated previously, the

site is probably closer to the condition of X equal to 1.)

The stresses in the lining, due to five months squeezing
(lining considered to be placed two months after excavation)
were obtained by imposing the appropriate creep displace-
-ments as the external boundary conditions on the lining mesh.
Small tension zones were developed in the concrete,

- and these zones are shaded on Figure (5.35) 'and the values

-

summarized 1n terms of 9y and Oyy on this figure. The largest
tension developed is a oy of 53.4 psi, while the largest

» compression developed is a o of 1158 psi. This maximum

- compressive stress is in fair agreement with that obtained

by the single layer analysis given in Table (5.13). The
output also permits a consideration of principal stresses

and maximum shear stresses, but it is clear that the low
tensile stresses will cause no cracking problems. This

method of studying the lining stresses allows the designer

to select the critical lining thickness.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

The major:contribution of this study of tunnel
excavations in creeping rock are:

1. A procedure based on the finite element method
was developed for simulating the excavation of under-
ground openings in rock for the actual initial state of
stress in the field for various K conditions. This pro-
cedure can also incorporate orthotropic behaviour due to
rock bedding, and other directional variations in the
elastic properties of rock. Since high lateral stresses
are often found in rock, it is important that they be con-
sidered in any stress analysis.

2, Coupling this excavation simulation into the time-
dependend analysis of underground openings to study the

influence of rock squeezing using the incremental initial

strain method. Appropriate stress-strain-time relationships

and strain accumulation methods are readily incorporated into

this finite element program. (A survey of time-dependent
constitutive relationships for rock is given to guide in the
selection of appyopriate creep laws).

3. Extension of the excavation and creep simulation

aspects to model underground linings-and lining placement

strategies. This includes the ability to consider the lining
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and the rock as two different materials with rough or

jointed interfaces between them. Further, this simulation
allows for creep of the rock before lining installation,

and creep of the rock and concrete lining after its construc-
tion for appropriate rock and concrete constitutive
relationships.

4. The full simulation procedure (excavation, creep and
lining) was used to study an actual tunnel const£uctcd
in squcezing rock. There 1s reasonable agrecement between
the predicted performance and measured performance, to date,
and this comparison with monitored field information 1s
continuing.

Based on this study, the following topics appear to
require further study or extension:

1. The stress-strain-time relationships for a variety
of rock types and for Yarious loadings, particularly multi-
axial, should be obtained in order to develop guidelines for
the selection of rock creep laws. Such laws must ultimately
take multi-axial béhaviour into account and this may require
an extensive creep testing program.

2. The anisotrop}c properties of rock should be incorporated
into the creep analysis to more accurately represent field
conditions.

3. The representation of jointed iéierfaces between the
rock and the concrete appears adequate to simulate the
field conditions, but there is little information available

on the actual mechanical properties of joints between rock
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and concrete., The development of 'creep' joints appears

essential and will most probably require experimental studies.

4, For low or moderate stress levels there is no need
t; extend this work to include elasto-plastic behaviour.
However, for high stress levels simulation of this behaviour
would be essential.

An extension of this work to consider cracked

elements and low tensile strength of brittle materials
appears to ‘be a logical complementarv step to the above items.
Further, with the heavy use of the computer in creep analyses,
solution efficiency must always be considered. It 1is

anticipated that most of these aspects will be considered

in the continuing program to study the creep of geotechnical

materials.
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APPENDIX A

FINITE LLEMLNT METHOD

The basic concept of the finite element method 1s
the representation of the actual structure by a set of
simple elements of finite size. These elements are assumed
to be connected to adjacent elements at a finite number of
points called the nodal points of the elements. The hohaV1Bur
of each element is described by the relationship between the
generalized forces {q} and the displacement%{U} at the 3

nodal points of the element. The coefficient matrix of the

force-displacement relationship is called the stiffness matrix

[k] for the element (the displacement method is used throughout).

The displacement (stiffness) method is based on the
minimization of the potential energy of the body. For static
equilibrium, the principle of minimum potential energy states
that: of all the compatible displacement fields that satisfy
the specified boundary displacements, the displacement field
that also satisfies the conditions of equilibrium minimizes

the potential energy. This is given by:

s { J’W av - J' 'I‘i Ui ds - J’ Fi Ui dv} = 0 (A.1)

\% ST \Y

where: the terms in brackets represent the potentiagl energy

of the body; W is the strain energy density; V is the volume of
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the body; ST is that part of the surface, S, where tractions
T are prescribed; Fi are the body forces; and Ui are the
displacement fields.

From Equation (A.1), the stiffness matrix [K] 1s

given by: .
-1,T T -
(k] = J’ (A "1 [B] [D} [B] [A 1] dv (A.2)
\
where: [A'}] 1s the displacement transformation matrix \\

relating the vector of generalized coordinates to the vector
of nodal displacement; [B] 1s the strain-displacement matrnx;
and [D]) is the stress-strain matrix (Desai et al., 1972).
Once the stiffness relationships for all elements
of the structure are obtained, the governing system of equations
for the body is formulated by superposition of the element
stiffness relationships to satisfy the following conditions:
a) the displacement at any node must be the same for
all elements attached to that node; and,
b) the generalized forces acting on each element must be

in equilibrium with adjacent element forces, and the

applied loads.

From the relationship between the force vector {Q} \

and the total stiffness matrix [K]:
[K] (U} = (Q) (A.3)

the nodal displacement vector {U} can be calculated. The

strain {e} within any element can then be calculated from
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the appropriate strain-displacement relationships (Zienkiewicz

’

o

1971; Desai et al., 1972). Finally, the stress {o} can then

be obtained from the appropriate stress-strain relationships

(Zienkiewicz, 1971; Desai et al., 1972).
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APPENDIX B
GENERAL INCREMENTAL APPROACH FOR

NONLINEAR ELASTIC CREEP PROBLEMS
(Taken from Emery, 1971)

a) Formulation for the Incremental Approach

To handle the noqlinear elastic problem by the
incremental approach, it is necessary to expand the Principle
of Minimum Potential Energy to permit the determination of
an incremental state superimposed upon a body with an exist-
ing equilibrium stress state. For this case, the potential

energy, V, of the body from Equation (A.l1) becomes:

v =D, gv- J.(w(l) + aW) dV - ‘( (Ti(I) + a1y 8U;) dS
v S
J v ary D v vy av (B.1)

\

where the superscript (I) and prefix &4 indicate the initial
equilibrium values of the variables and the incremental
change in these variables, respectively. Expanding this
equation and truncating the Taylor series expression for the

change in strain energy after two terms gives:
L 3

E E
(D (D oW E 32w Bejibey,
VIV 8V =V st | ) W
€. . de, .0€
v ij i} ke
L) L
ij ij

- (1) (1)
J’ (T,* Uy + aT,U N7 + AT aU;) dS

St

R S
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(M ey (D, ,
f (F,") au; + oF.U, 8F8U,) AV (B.2)
%

where: ¢ 1s the strain; and the superscript E denotes elastic
behaviour. The incremental state must be such that the strain

increment is small enough to truncate the Taylor series

Y

expansion after the second term. From th% principle of

virtual displacements:

I o.. (D aE gy - [ 7.0 4. ds - JF.(I) AU, dV = 0 (B.3)
j i i i i

<
-5
<

. . _ 1 E E
and, noting that: W= Dijkz €ij kg
w = °i§1); and azw Aeil = Ao. . (B.4)
8913 aeijaekz
£ (D £ (D
1j 1]

to: .

o..l.\el;:jd\’ - J ATi(Ui(I) + AUi) ds - JAF{(Ui(I)mUi)dV A

ij
5 v

<

<

G

+
< Ny
0f =

g

(B.S)
Substituting the linear incremental stress-strain law for

Aoij’

_ : E
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into Equation (B.5) and taking variations with respect to
all admissible incremental displacement fields yields the

desired variational principle:

«

_ 1 E  E . . _
5 = §{ -[ E’DijszeijA‘kz dv - J- ATiAUidS J_AriauidV} 0
Vv

Sr \%

(B.7)

-Comparing this equation to Equation (A.1), 1t can be seen

that the previous formulation for the linear elastic case

may be used where the variables EE-

ij° o.., T. Fi’ U are now

1)’ 1’ 1

1

8F;, aUy. °-

“

replaced by increments of the varaiables Ae?), Ao.iJ ATi’

b) Introduction of Creep Strain

. . E .
The increment of total strain Aeij’ and an increment
of non-recoverable creep strain, Acgj' The increment of
creep strain 1is assumed to be an initial strain for any time

interval At and to be constant during the interval.

_ E C 3
or
E _ C
Asij - Asij = AEij (B.g)

Substituting Equation (B.9) into Equation (B.7) yields:
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1 C C cC. C
8{ J’ 7-Dijkl(AcijAckl-AeijAekl-AcijAek1+A£ijAckl)dV - I' ATiAU]dS
\Y

ST

- JAFiAUidV} = 0 (B.10)
v ¥

Then, using the incremental forms and the symmetry condition

(Desai and Abel, 1972), Equation (B.10) gives:

¢ | J' (@i (A I IBI D] B AT ) (6@ - QAT 1L (B ID] [8e7)
YN

L
+ 3 Dy (658 av - QI (AT [0 1y (8THdS
Sty
J (oQug[A 1581 aFyav (| = 0 (B.11)
i
VN x a E

where the summation is carried out for all the elements and
[¢S] represents the spatial functions specialized to surface
positions. Taking variations of Equation (B.11l) with'respect
to the increment of nodal displacements and assuming that the
creep strains are constant during the time increment yields

the desired stiffness relationship: 3

S o g
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3 : J (A S BIR DI Bl (AT ey, - (AT BI D] 2] v
: N
1
‘ - T -1 T, T, ..
b - J’ [A 1]g[%]N{AT}NdS - J’ [A 1]N[MNLAHNdV =0
Sty N
(B.12)
or I [[K]N{AQ}N = {AP}N + {AL}N] (B.13)
) N
where the element stiffness matrix [K]N is given by,
-1 T -1
[Kly = J (A1 [B] (D) [B] [A ™), dV (B.14)
2; VN
the element nodal load vector {AP}N is given by,
i -1,T -
(8P} = J (A ]N[¢S]:£{AT}NdS+ J (A 1]£[¢]§{AF}NdV (B.15)
V
St N
.ﬂ and the creep strain nodal 'load' vector is given by,
(AL} = J[A-l]g[B]g[D]N[AeC]dV (B.16)

V.

}L .

“TJe value of the coefficients of the material

matrix [D]N for each element depends on the stresses and elastic

strains for the increment.
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% APPENDIX C

, EQUATIONS RLEQUIRED FOR THE DETERMINATION
' OF THE TIME INCREMENTS AND THE COMPONENTS
OF THE CREEP STRAIN INCREMENT

)
The strain hardening constituitive relationship

(mechanical equation of state) for the creep rate at constant
temperature is given by:

ec = f (04,60) (C.1)

where: éc is the creép strain rate, eg 1s the equivalent

accumulative creep straln; and e is the equivalent stress

which is usually given for plane strain by (Desai, et al.,

R 1972):

(C.2)

This strain hardening assumption is widely adopted in rock
k; X mechanics and appears most appropriate for this study.

- However, the solution method can incorporate other creep
strain accumulative rules such as time hardening or combina-
tions of strain and time hardening.

AN

In the incremental procedure for nonlinear creep

problems, the time intervals selected must be small enough
to ensure the stability of the solution process (Greenbaum,

1966; Emery, 1971). This staﬂplity is ensured by the following
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; limits:
? Acz 1
1 T 7% (c.3)
‘e
where: Aeg is the equivalent creep strain increment; and
/
CE is the equivalent elastic strain, and
| Atj+1 < 1.2 Atj (C.4)
where: At 1is a time increment.

The components of the creep strain increment for

plane strain problems are then obtained from:

. C
oo de = 75; (2 o, - Oy - a,) . (C.5)
- AE:(I
- e = S (2 6. - a. - o) (C.6)
y Zce y z x :
. c Ae
1 =
Ayxy 3 S TXY. (C.7)

, €

These creep strain increment expressions are developed from
the Prandtl-Reuss incremental plastic flow equation (strain
. increment directions coinside with the deviatoric stress
directions and no volume change due to creep strains).

Complete details on the above are given by Emery (1971).






