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" CHAPTER 1

INTRODUCT ION

It is well known from experiments thgt the low temperature
electronic specific heat shows a strong deviation from the free
electron model behaviour as the coefficient of the linear temperature
part is sometimes bigger, sometimes smaller than 1its free electron
value. At the international conference ;n the Fermi surface held at
Cooperstown in 1960, Quinn suggested a mechanism of enhancement of
the electronic specific heat. On the other hand, Stern (1965)
proposed a mechanism which lowers it.

Since the experiments are carried out in dilute alloys, Stern
developed a theory to calculate the change in the Fermi level density
of states due tp impurities. He considered an alloy where the host
and the lmpurity have the same valence. The charge distribution around
" an impurity is not the same as around a host due to screening. He
exploited this fact to argue that the density of states gt the Fermi
levél decreases in the alloy from the pure metal. He calculated its ‘
chanée using second 6rder pe?turbation theory.

Quinn (1960) suggested that the electronic part of the specific
‘heat/could be enhanced significaﬁtly due to the remormalization of the
e;ectronic masgs és a result of the electron-phonon interaction. It

appears that an electron of momentum fk and energy €4 can scatter to

an electron state of momentum fik' and energy €t with the emission of

1



a phonon of momentum ﬁ(ﬁ—h;) and energy fhw(k-k'). This is a virtual
scattering process because the energy is not conserved. It raises

the energy of the system and therefore the specific heat. This change
in the specific heat has been calculated by various authors. Among

them is Migdal (1958) who used a Green's func¢tion technique. Wilkins
(1968) showed how one can obtain the same result from a self-consistent
second order perturbation theory. Ashcroft and Wilkins (1965) estimated
the mass enhancement from first principles, as did Pytte (1967), Janak
(1968), Trofimenkoff, Carbotte and Dynes (1968), Clune ané Green (1970)
and Carbotte, Truant and Dymes (1970).

Our purpose is to incorporate the two mechanisms which change
the electronic specific heat in a global theory, in order to discuss
their relative importance in a dilute alloy. Tavlor (1969) has
already tried to consider both the electron-phonon interaction and the
impurities. He evaluates in a trude way the contribution from the
emission or absorption of phonons at impurity sites. Our theory is
more complete than his. We obtain more terms and estimate them with
greater accuracy. We use a gelf-consistent perturbation theory approach
following Wilkins in order to facilitate the comparison with Stern's
theory. We also consider only alloys where impurities and hosts have
the same valence.

We write down the Hamiltonian of the system in the second
chapter. The concentration of impurities that we have in mind is of
the gfd;r of 1X or less. We may therefore neglect clustering and
{mpurity-impurity Iinteractions. We obtain the potential energy from

a knowledge of lattice dynamics and electron-ion pseudopotential. The



pseudopotential of an impurity i{s different from that of a host; this
will give rise to Stern's term as well as additional corrections. We

use second orger perturbation theory to calculate the ground state

energy of thle alloy at zero temperature. It contains the electron-
phonon inter on term of /the pure metal, an impurity term which we
call Stern's term, and two additional cross terms. Correlations

between the lon displacements from equilibrium are treated by a phonon
Green's function technique. We average over all possible configurations
of impurities to obtain a physical answer. Since we do not know the
necessary Green's functions, we approximate the phonons by the perfect
crystal ones. We calculate these phonons from a Born-von Kirmén force
constant model.

. In Chapter III-we find the energy of a quasiparticle of‘
momentum‘ﬁg propagating through the lattice. We present Stern's
theory, learn from him how to calculate the decrease in the density of
states at the Fermi level due to the impurities, and compare the
expressions obtained for a specific heat. From the electron-phonon
interaction terms we obtain m*/m in a fashion similar to that of
Carbotte and Dynes (1965). We combine the results of each mechanism
to get the total change of the electronic part of the specific heat.
We cannot however evaluate this formula numerically; we make three
more approximations to rewrite it in a convenient form. We use a
local pseudopotential, assume a spherical Fermi surface fnd use one
plane wave as the zeroth order wave functioq of the electrons. These

approximations are realistic for alkalis but not for the polyvalent

metals.



In the fourth chapter we present the results of numerical
calculations done for KNa and NaK alloys. They are alkalis, thus the
approximations should be valid. We use the Ashcroft form of the
pseudopotential form factor and the random phase approximation for the
dielectric function. This form factor is similar to those obtained by
other methods. It has the advantage of containing only one parameter
which has In fact been fixed from a comsideration of the electrical
registivity.

On the basis of these calculations we compare the importance,
in alkalis, of the two mechanisms which affect the electronic specific
heat in the fifth chapter. We discuss the relative impertamce of each
electron-phonon term. We relate our results to Taylor's work (1969)
and compare the validity of Stern's theory and ours in different
alloys.

We would like to mention that we assume knowledge of the

phonon Green's function method presented in Marshall and Lovesey (1971).

[



CHAPTER 1I
IMPURITIES AND ELECTRON-PHONON INTERACTION

2.1 Hamiltonian N
N

»

We are considering a crystal composed of N fons of which about
12 or less are impurities. The host and the impurity have the same
valence. The crystal 1s a metal., Therefore the Hamiltonian o3t
contain the kinetic energy of the fons and of the conduction electrons,
and the potential energy of the alloy which can be divided into three
kinds of/lnteraction energy: electron-electron, ion-ion and electron-
ion. /ﬁ; are studying a dilute alloy to avoid taking into account any
clustering effect or Interaction between impurities.

The solution of the Hamiltonian including only the kinetic
energy and ‘the potential energy of tﬁé lons is known. Therefore we
shall use perturbation theory to calculate the ground state energy of
the system at T=0Q. Weﬁgould get the same result using a Green's
functions technique., Nakajima and Watabe (1963) discuss the electron-
phonon interaction with Green's functions and get the same formula as
obtained by perturbation theory.

-

The unperturbed Hamiltonian is written In this way:

1 3N . L o
(2.1) Ho - k;z eEfEO +3 zza Miuu(i,c) + 4% 5 222' %B(z,z )ua(l,t)uﬁ(ﬁ , ).
.3 o8
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To obtain this equation, we expand the ifon-ion potential energy ¢ in

terms of the small displacements of the ions ua(i,t) and stop at gecond
-

. order. We also use the following defin}tions:

q

22
k 2m

ko g
‘ =0 if k> kg
' - 3¢
¢GB(2’£ ) aua(Q,t)auB(Q',t)

3

(2.2) R (t) = 2 + u(2,t)

where kF is the Pérdi momentum; 0 1is the spin; Ml is the mass of the
ion located at site RE; ua(i,t) is the displacement of the ion at the
i;th site at time t;—z,is the equilibrium position; a, B, Y are the
cartesian coordinates and ¢0 is the equilibrium potential energy.

It must be borne in mind that the unperturbed Hamiltonian
degcribes the perturbed phonons. In Eq. (2.1) we take 'into account
the difference between the host and impurity masses. We neglect
however any change in the force congtants.

The perturbed part of the Hawmiltonian describes the electron-

-

ion interaction in the adiabatic approximation. This means that we

suppose that the electrons propagate independently of the velocity



of the ions since the iens are moving slowly compired to the electrons.
The electron-ion interaction 1is expressed as a sum of pseudopotentials,

each one due to an ion located at site RQ.

N
(2.3) W(r) = ¢ wz(szQ) .
l ——

The pseudopotential 1s weak becausge it involves the repulsive
effect of the bound state electrons as Sell as the attraction of the
Hartree fields. The total potential energy is the sum over all
conduction electrons which becomes, in the second quantization notation,

\

f Sty .

v(x) (w+(£)) is the annihilation (creation) field operator which can

be written

;
f

Y(x) = i, (r)]o>
o 1 %o

+, +
¥ (r) = £ ¢x(x)|o>C, .

2l

+
Cko (Ckc) annihilates (creates) an eléctron of spin o in the state of

momentum k., @k(g) is a pseudowave function. It should be close to a

plane wave since W(r) is weak. Actually it is a superposition of a few

4

plane waves. Only specific ones however are mixed by the crystal

potential. In the m-plane wave approximation:



17 L L(k+Kg) T
¢, (x) = — T a (Kgle — -
A

where 2 is the crystal volume and Kg is a reciprocal lattice vector.

The coefficients ak(ﬁg) are found by solving the Schroedinger equation.

To shorten the presentation of the calculations, we take into
account only one plane wave. The generalization to the m-plang¢ wave
approximation is straightforward but tedious. The general equations

are given at the beginning of Chapter III. For the rest of this

chapter we consider \’11

(2.4) ¢, (0) = eikx

3l

The perturbed Hamiltonian is then

+
! -
(2'5) H k'zkc <¢E' le ¢E_>CE'OC_1_(_0

where the matrix element

2.6) <o, wle,> = f rop, @WD4, ©

-1 (k"-k)*R,  <k'[w, |k> ~
Le _— N
2

after use of the Eqs. (2.3), (2.4) and the following definitiom

1 3 -ik'- ik-y.
<_1_g_'iw2|_15_> = EO- [ dye = 'L w, (e L4



where QO 1s the volume per ion.

»

Thus the Hamiltonian is given by

1 3N .2 1 9N2
= - + ' .
(2.7) H=2TFef +5 I Mu@,t)+5 I 902,00 (2,0u,(",t)

k == 2,a 2,0

a, R

AR S I
+ ¢+ 2 e S ol e
0 k'k ¢ N UK

from Egqs. (2.1), (2.5) and (2.6). We omitted the spin o, as it is
understood that o cannot change since there is no interaction in this

Hamiltonian that could flip the spin, and the expectation value of

o+
R in a given state is zero unless o' =
o' ko

At this point we would like to mentiol that we are thinking of
doing the calculations for the real Fermi/ea which includes the effect
of the crystal potential. Therefore Brigg reflections should not be

included in H' and we shall discard the terms where the Bragg effects

come in.

2.2 Ground State Energy

To calculate the energy of the ground state we use

perturbation theory )

-

2
A
(2.8) E, = By + <tfut|e> 4 pr LHELEL

1 p E,~E,

P

where {f} 1s a complete set of eigenstates of HO, i.e. unperturbed

electrons and perturbed phonons eigenstates. The prime on the sum
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means that we restrict the sum to states wher;/gi # Ef. We stop at
second order. This gives the same result as is obtained using a
Green's function technique. We do not use Green's functions in order
to facilitate the comparison with Stern's theory (1965).

The first order correction vanishes for 3 reasons. First, the Bragg
reflections are to be thought of as included in the calculat;on of ES.
Second, the electron-phonon interaction does not give any contribution
because there are no phonons in the ground state. Third, the impurities
do not change anything to first order. We consider the case wh%re the
impurity has the same valence as the host, so the long wavelength limits

of the pseudopotentials are the same: W(q=0) = —ZEF/B, .. being the

3

|k> = 0 where

. < -
Fermi energy in the host. This means that ijimp Vosel K

"{up" stands for impurity. In summary then we can consider <i|H'|1> = 0.

The second order term can be written as

e Pf) .

o 2
2 _ o ]<1|H']f>|
(2.9 T )f:[d(rm,) e F § (hw + P

0

Here we separate the energy E1 into an electron part ¢, and a phonon

i

part Pi' The integral over w is restricted to positive values since

there is no phonon in the ground state. Using the equality

1 -{wt
(2.10) SChw) = 2%k f+m dte

as well as Egqs. (2.5) and (2.6) we obtain
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x<1] £ fe L - c;ck,lf>
k'k 2 -
int iP, t
% -1(K'-K)*R,, - r <K_"wg’.&> +
x <f] T I e e — e S CK,CK!1>
R'K 2 = =

In order to get
<t|Ge, [ E><flcp c 1> # 0

we need k' = K' > kF and k = K < kF' This means that for all the

virtual transitions from li> to |f> we c{;;te a hole in the state of

momentum fik and a particle in the state of momentum fik'. So

We use the phonon energy to introduce the Héisenberg operator Rg(t)

+int/ﬁ —iPit/ﬁ
Rl(t) z e Ri(O) e .

Now the subscript f does not appear explicitly any more and we take

advantage of the completeness of the states lf>. Equation (2.11)

becomes
o
2 ® d(fw) dt  -iwt
T™“° = ' f (1-f,, [ @ [+m Tiw
K'k K¢ K’ A €€y rhu I 2mh ©
<klwy fk"><k'fwy K> -1(k-k")-R,(0) -1(k'-k)-R,,(t)
A = == % == Ty
x Z <ile — e —_

(3 N2

[1>
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We expand the exponents in terms of the displacement u(%,t) defined in
Eq. (2.2). We keep the first order term only, neglecting higher orders.’

Keeping in mind that there are no phonons in the ground state, we obtain

"k

2 _ ., ) ¥ d(fw) dt _-iut
T % fE(l fEf) [ o f+m 776 ©

0 -
<E'wgl_‘£'><k_'lwg'}k—>

T RYCETAD
2

2L N

x [14(k'-k) - <i]u(e,0)u(e’', ) [1>- (k'-K)] .
<i,2(2,0)u(2',t)]1> measures the correlation between the displacement of
the fon £' at time t and the displacement of the ion £ at time O. From

this, one sees that
(2.12)  <i|u(g,0)u(e’~t)|i> = <1]u(e,t)u(e’,0)|i> .

This correlation function is reiated to a Green's function. In the
limit as the temperature goes to zero, one has (see Marshall and

Lovesey, 1971)

dt 1ot . 1
(2.13) [+° 7% © w <iluu(l,t)u8(2 ,0)|1> - - ImGuB(l,Z',w)

-

where a, B are thé cartesian coordinates. If one transforms (t) to
(-t) and uses Eqs. (2.10), (2.12) and (2.13), the second order term

becomes
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<kfw, [k'><k" v, [k>

2.14) 1% - 1 fk(l—fk,)f - ‘_’f“"zﬁw ; 5
ke EOET ST ge N
e oot K K
« R D o) - ¢ 28 1nc L (2,27,0))
w af
aB
where we set k'-k = K for simplicity.

Until now we have
hosts and impurities. We
configurations to get the

following definitions:

assumed a specific configuration of the
would like to average over all possible

physical result. For this we need the®

Wo =W + PlAw Aw = wimp - whost
w = Yhost Pl £ 1 if there is an impurity at Site.i&
= 0 otherwise .
Then
. 0
(2.15) < ¢ <EJWZIE'><E'IWQ'IE?EIE (£ 2 )Gas(i’g"w)>

e

= ek fulkt>] 3

+ 2Re{<k|w|k'><k'|aw|k>}< L B e
2
+ |<k|aw|k'>]|“< £ P P,,e

where < > means a configuration average.

et

1K- (4-2")

L e Gae(i,l',u)>

. —ot
N 1& (&_2’_ )GQB(QWZ"!‘”))
[]
\/ll

K- (2-2") ' ‘
Gae(l,i SW)>

We shall explain in detail

only the calculation of the most difficult configuration average and

quote the others.

We first draw attention to the following:

the
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h"

configuration.mverage restores the translational symmetry of the
crystal. This means that the impurities can be anvwhere in the crvstal

and that <G“ {(2,2"',w)> can be expanded in terms of the eigenvectors of

B8

the force constaant matrix. These efigenvectors gj(q) are the polarization

vectors.

1 N gt =-- igee’
(2.16) <G (1,8, u)> = ¢ poe 4TL G g (@r)e 12
9
F.B.Z.
3 . .

- I h| i

(2.17) 6 g(gq,w) = H‘j oa(i)de(_q)G (g,
3N
17 nolge (-0 302
} E'LB¢QB(2’Q e 08(3) = wj(&)cu(ﬂ)

where j is thbe mode index. We assune that there is no short-range order
in the system, {.e. that there is no correlaticn between impurities at
sites £ and 2'. "c¢" is the probability that a lattice site is

occupled by an impurity. We are now ready to calculate a configuration
average.

s (001
<r p iR LY

G g,
!‘2' 1 ug( b ,UJ)>

- I<P G (2,2',0)>+F I <PG (1,2',w)reiE (E72T)
g aB? ’ af N .

g g ot4y F

We average keeping ? and %' constant.

dd

o

h
%(Q,?',w)’]e

»

1K (-2")
=c I <G§§(2,Q',w)> +T I [c2<c (Q:i',w)>+c(l-c)<cg K-(2-2")

3 % L'#EL
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where Gizgmeasures the correlation between two impurities and Ggg means

that £ ‘is an impurity site and 2' a host site. From (2.16),

Tz caﬁ(g,w) +12 % [“ C(I cl-c) ¢ ( q,w )}ei(K*E‘J (&-2")
q % q £ 2'#2

-

~§ coh(g,w) + 228

We had to separate the terms where 2' = £ and &' # £ because, even if

. we assume no correlation between £' and 2, the site £ is "correlated"

with itself. For conveaience, we lift the restriction on the second

sum.
{2.18),
2 ’ - ) g '
=fro i@ + 1 o 5 Mgu + S (Mg w) (FEDEED s
2 dd
- c L G (i’“’) + ¢c° I G/.QB(&’M) [NGE_&_K& - 1]
9 g
+ c(1-¢) zG éﬂm)WG 1_&—-n b | .

vhere Kg is a reciprocal lattice vector. The other configuration

averages gilve:

AR, L2
(2',,19) <2§| € .,i _I_(_—_IS&

o7 ) e fp 0ty
(2.20). <. p X @D N2

AN T KK
o1K: (2 _g) 2 2

(2.21) <z P P = > = Nc(l-c) + N c G

22" K-Kg
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2.22) <z T EEDe (00> = ns G(% ,0) 8 (K~g-Kg)

- ! . : g ©

| 1K-(2-2") . _ s odd L2 |
(2.23) <£§' PoPore GQB(z,z yw)> ;Gas(q,w)[c(l c)+c' NGE‘“&'&&] .

r

Note that GaB(g_,w) is an average Green's function which does not specify

=

~ whether it correlates impurities, hosts or both.

Combining Eqs. (2.14) to (2.23), and using

P

\

8w i
\ rdmw) ek—ek,—'fw g, —€, , '
0 k X X X

- the second order term of the perturbation theory becomes

L |<elwlirs]?
2.24 T = Z" f 1- I 6 ]
2.24) e B T e T Skeke

2Re{<k|wlk'><k']aw]k>}

+ ZI' £ (1-£f 5
K'k 1_“( l‘_') e e ““k'-k-Kg '
f<k|awlx'>]? ,
S+ I'f (1-f e(l=e) J .2
e KO e N Okt ekekg]
: | vryeed can ]2
‘ dthey 1 N 3]E-K-o@]
- A0 e %
Kk = = 0 "k k' ¢ 3 . T
F.B‘.Z‘
x Tmf | <klw] k3] %8 (q,0)8
- t997%-g-Kg
+ 2Re[ k|w]k'><k'|aw|k ' ¢33, ) € + &2 - 2_2_)
’ <kjwik'><k’|aw|ks>] [ 9 0) (§ c 65.\_1_&& <
dh j c(l c) g,

€ “

4 ]<k{AWIk'>}2 dds j( 9w )[c(1 c) 6K#“ﬁ]} . :
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To go ahy further, we need to know the Green'; functions
:;igl,m), Gdd’j(g,f) and Gdh’j(g,m).‘ However, they hgve not been
calculated for the system that we are interested in. So at this point
we are going to neglect the change in the dispersion curve due to the -
impurities and we sha}l Qse che‘perféct crystal Green's function Pj(g,w).
Carbotte et al. (1970) showed that this 138 a good approximation. One
can easily imagine that the Fccoustic phonons which have long wavelengths
are very liétle perturbed by a few impu§ities.'

By convention we evaluate the imaginary part of Pj(g,w) by giving

a small positive iméginary part § to w and taking the limit as § ‘goes to

zero

¢

h| 1
PY(q,w) = 1lim
§+0% (w+id) 2—w§ (@

3 =L - _
gz.zs) ImP- (q,w) = 2mj(g) [Gfm mj(g)) 6(w+mj(g))] .

The perfect crystal Green's function has been calculated by Dawber and

Elliott (1963).  From Eq. (2.25) °

' Iij(g,m) - 1
ﬂ: dw € € P f - ij(g) 8 ek—sk.-ﬁwj(g)

L]

and Eq. (2.24) becomes
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(2.26) . !
]<k|w|k'>]2 \ \
Tz - £ (1-£, ,) I . .
k'k k k el‘.-e.li' k'-k-Kg oo
2Re [<k|w|k"><k' | aw|k>] ?
+ klk f}s_(l_fk') Ek-ck' CGE'—_-E&
2 f
| <k|aw|k'>]
c(l-c)
+I'Z f_k_(lfk) — N +C6E'__S_]

ol i-xy-od @ 1% [<kfulx'>|?

§ ..
K'k Y 2MNw 3 (@ El‘_-e‘_c_'—ﬁmj (@) ~(k'-k-q-Kg)
F.B.Z. ’ 5’
Bl (k'-k) o7 (@) |° 2Rel<k|w|k'><k’[Aw|k>]
- £ (1-f, , T 8
}S'h .}ES l(.. ) SJ ZMij (ﬂ) €£-€lc-'—ﬁwj (g) ¢ (_ls”-_l&—ﬂ.—l(_&)
F.B.Z. 4 ) 5
. Rl (k'-k) o’ (@] |<k]aw|k'>]
- I £0-f,) I 5 '(') — )IC(IN"Q
k'k = 2 g vy 3 A R ,
F.B.Z.
+ c26

(k'-k-g-Kg)

-

TN R Y et

We would like to discuss each of these terms. Tﬁg first one
bdescribes Bragg scattering from the static lattice. We shall forget ;
about it for the reason mentioned earlier. The second one is a cross -
term between the Bragg term aund the impurity term. We mnst discard it
too. The third term is related to what Stern (1965) calculated. He M
thinks that it is the matin factor in the change of the Fermi density
of states and consequently in the specific he;c; The fourth one is due
to the eleétron—phonon.interaction. It has been calculated ﬁy Ashcrofé
and Wilkins (1965). They believe tbat this is the important influence!

on the specific heat. The two last terms are due to the electron-phonon

interaction together with the influence of the impurities.

”



CHAPTER III
ELECTRONIC SPECIFIC HEAT

3.1 Quasiparticle

¢

So far we know the ground state energy of a system of N ions .
and N conduction electrons. Howeve; we are interested {n the energy
of the low lying excited states of the conduction electrons. To get
these we proceed as follows: we calculate tffe energy of an excited
state of momentug fip of a system of N+l electrons from whicﬁ we
subsract our previbus value for the ground state energy of N electrons.
This gives thé energy of a quasipartiéle (electron dressed with phonons)
of momentum hp gropagating in the crystal. Letting its momentum go to
ﬁkF we shoulq have a good evaluation of the energy of the quasiparticles
involved in the specific heat. —
For simplicity we write the energy of the system of N electrons

.

in the following way:
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We neglect the terms proportional to c2 since we have in mind that c is

less than 1X. In the m-plane wave aﬁproximation, the coupling constants
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replacing <E'+5n,lw|5f5n><kf§nlwlh fgn,>

‘Ihkfgjlz is obtained Erom,lgkjgjl
+
by 2CR°[65'+5n‘IWl5f5n><kf5nlAwlﬁf+5n'>]' 3 &

We easily calculate the energy of a system of. N+l electrons where
the added electron has womentum fip. The additional electron propagates
in the crystal and polarizes it in its vicinity. The electron plus its

cloud of phonons is a quasiparticle whose energy 1Is given by:*

_fk (1-f5.)- ) ‘
Eﬁfegfﬁwj(grk) , ak;eﬂj@wj(grg) -
ey by 12 05 e T
ki kpj > B.-EE.—ﬁ,w P (p-k) elc_—eR-H‘lm 5 (p—k)
-fy . (I-£1)
N T Ly — =

: i - }
kqd kpqj € Ep ﬁwj (@) . CE"CR'H:]NJ (@)

\
The f%rst part of the qurly brackets reflects the fact that the sLate
of md;entum Bp 15 now occupied and cannot be used in‘the virtual
transitions while the ;econd part comes because it is ﬁow possible
to create a hole of momentum fip. We aég ready to calculate the change
in the specific heat.

3.2 Stérn's Theory

Stern (1965) has given 'a theory of the effect of fixed impurities
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on the specific heat. It seems appropriate at this polnt to derive his

theory and relate it to\ours.

Stern takes a éf;rting point different from ours. His zeroth
approximation to the alloy potential is the average crystal potential.
He is mainly i;terested ip"the noble metal alloys. He notes that

/experiments have shown fhat the area of contact of the Fermi‘surface
neck with the Brillouin zone boundaries varies linearly from pure silver
to pure géld.. He then assumes that the whole Fermi surface changes
lineaFly from silver to gold which implies that‘ic can "be calculated
from an average potential and that the specific heat also Qaries linearly"
from silver to géld in ze;ogh approximation. The average potential has
the periodicity of the lattice. He treats the difference between the
real %;loy po&entigl and the average one a8s & perturbation which does
not héve the perio&ibity of the lattice. Stern calculates the energy

levels from second order perturbation theory.

The average potential is

v, (@ =evy 1):(3:_) + (1-e)V, ()
&

where c is the atomic fraction of atoms 1, le anq-Vzp are respectively

~ “the p"eridgic potentials of type 1 and type 2 ioms, i.e.

.

- J1Rgr
sp () 2 Yy (Kg)e .

+

The alloy'potezgiél is a sum over all lattice sites Eh ’

A
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V() = I V(z-R)
n

where V(E:gn) may be V1 or Vz, the potential of the particular ion

located at the nth site. The perturbaﬁion is the difference between

them

G V() = I VGERY) - eV (R + (edy, (2R )]

with the condition

v (Xg) = 0 .

&

Starting with the Hamiltonian

B=2 5oy + V@ + U,

second grder perturbation theory gives

(3.8) B ="E() + B,k

A E

(3.9) E,(k) = i' ER)-E(K")

and

where the energies E(k) are the same as for a pure metal with the

periodic potential VP. One calculates the matrix elements s&‘tvslgy '

-

from Eq. (3.7) and the following definition:”
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It gives

<k'|av[k>  1(k-k')-R
'V |k = ———— T e 3

N
where the sum extends only over the atom-l sites. Stern 1s thus
distributing the difference of potentials over the atom~l sites.

Substituting this expression for {Eflvs|5?<in Eq. (3.9), we get

N A R TS PN W
(3100 B, & =3 2& EQ-E(R) || ° 1=
' ' i(.ls—k_')'&j 2
We are interested in the configuration a7erage of }2 e ]
because this is the physical quantity. K ’ §

LGk R
dre 7 B avet-o) + ¥iPslek K

Ueing the condition Vs(gg) = 0; this equation reduces to

1(k-k') R
<lz e —jl2> - NC(l-C) -

Equation (3.10) becomes
< fav]> |2

c(l-¢) .,
L TE@-EED

B, (k) =

. At this point we see that his term is a bit different from ours (Eq. (3.2)).

<
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Stern's term does not include the periodic part of AV because he has
introduced it in the unperturbed Hamiltonian.

He calculates the specific heat in the following way. Using
Eq. (3.8) énd the definition of the density of states at the energy

level Ek’ one obtains

2Q I dse )
v, [EGO+E, T

p(E) =

X em?

8}

He assumes that Ez(g) depends only on E(k) since ]{5]AV,Ef>I2 does

not vary much for k' cleose to k. Y
‘ ds
290 e
p(E ) = f
e @@m3 1 U EEN L+ 238,09 /3EE]

Then he expands [1 + 3E2(§)/3E(&)]_l in a Taylor series and keeps only
the first term. The first derivative is small (m10-3) and so that is

a gdod approximation. Therefore

9E, (k) ‘ -
p(B) = pa(EC)1 - "3';3—(1:)—3 '

where p (E(k)) is the zeroth order density of states at E(k). Since
thé_eléctronic part of the specific heat 1s proportional to the 'density

of states at the Fermi level, we obtain

3E, (k)
or = F
Y=Y :
*-;—9' = Kc(l-c)

0
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g | <k']av)i>|?
SECR) EGO-E®)

1
where K 5 (

(z'

k' |k]=kp

-

and Yo is the linearly interpoliated result between the specific heat
of ihe pure metal of type 1 and that of the pure metal ?f type 2.

This linear Qghaviour is introduced by Stern because he uses
the virtual cr;stal (average potential) approximation as his starting
point and builds in the disorder‘as a perturbation on the average
potential. On the other hand, we start with the pure metal so that in
the zeroth approximation it is Yo for ¢=0 that comes in and we build
in the alloy‘nature as a perturbation on the pure metal. Stern's theory,
as c*0, reduces appropriately to ours neglécting the contributions from
the electron-phonon interaction. -

if we go back to Eq. (3.6), éonsider the first two terms and

proceed as Stern does, we get

2
[Mip] " :
3 =P
P(E ) = p, (e )1 ~ zt 3 .

R S I _/
We-neglect the variation of ’ikalz for k close to p which is the region
of interest. Then -

l4p1”
p(R) = pole )1 + 2! —=—y)
E 2 k (ep_—ek)

80

(3.11) Y = yO(c-O){1.+ As]

where ks is an average over the Fermi surface since all the states at

the Fermi level contribute to the specific heat.
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€3.12) As = dSR_ .
A “~

Sp

3.3 Mass Renormalization

We now want to calculate the contributions to the specific heat
due to the electron-phonon interaction. We consider Eq. (3.6) neglecting
Stern's term and, in particular, we look at the energy denomimnators.
Since the electron-~phonon interaction is most 1mport§n6 near the Fermi

A
gsurface, we define

E-I_C-‘E"SF

|=

The denominators become Ek - ¢+ Huw

L3 P 3

shall let EE go to zero because we are interested in the behaviour of

(p-k) and € T €p +fhwj (@). We

the low lying states of the conduction electrons. Typical phonon ener-
gies and Fermi energies are respectively of the order of 10 meV and 1 eV.
Therefore the dominant contribution to those terms comes from small

ck's or states near the Fermi surface.

2 2
ML fpaj

do not vary significantly and we approximate them by.their value for k

. 2
Over this range the functions ngnjl and I ]
lying on the Fermi surface. y ﬁ?

Each term is treated in the same way so, for conciseness, we

shall only go through the calculations for the term proportional to
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where R 1s the crystal volume, then
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|2. Let us go back to Eq. (3.6) and treat k as a continuous variable.

=& +

-0

ds ~-f (1-£fy)
i z f E 8 . 2 rz 4, 1 k - LS
22y ) EIvT o3 ®kp k EE e (prl) T EpmE Hho (pok)

Sp

The first integral extends over the Fermi surface. The second one extends

from -e_, to O for the first part of the bracket and from 0 to « for the

F

second part. Since only the small ek's make an important contribution,

we extend the interval [—eF,Ol to [-~,0]. The electron-phonon term

b

becomes

dSy Q 2 - 1 1
£ filv, | 3 Igggjl dey {-E -&_-hw, (p-k) ¢, -¢_+hw (g—k)}
3 "k @m o — ko 3ETE CkTppRTE

P .

—

The renormalized mass is given by

. g2
h kF ng

— W ——
d

mx
B

prky
The electron-phonon term is however more a function of EB-than p and

we expand it in terms of EEf

-~ g ’ 4 a - -~
E =€ + AE (0) + — AE (e ) €. + ...
B P P 3€P_~2£g=op_~~
P
(3.13) E =€¢ - e
B 2. PP . N . . )

-



since the quantity in the curly brackets goes to zero as ER goes to

zero. We consider only the first order term.

f dSk I l
A==z g [“
P 4 S ﬁi [ (27 ) kp i ._

0
3 1 1
Rl e —— + = w71 | .
3§2 _?E.€2f§wj(a k) ek.egfﬁmj(g_k) | ?Efo

|
We differentiate with respect to Ek
EE’and Ek equal to zero which means that we set k and p equal to k

instead of %2: Afterwards we set

— F.
 ~ [ dlSk| g P
2 S A Q@ )3 kpJ ﬁwj(RﬁE)

We write §2 in a more convenient form using the equality

l= [ dwé(w-mj(gfgg) .
0

Then A_ equals
P

~ r dSy
do-
(3.14) A_=2 £ [ = 5 | G(m—m (p-k)) .
2 o o 3 s, hlyEJ ( gkgjl

We define éé(m)?(w) by the equation

(3.15) A =2 [ do (m)F(w) )

0

It is defined this way to emphasize the fact that 1t looks like a

frequency aistribution. It is in fact a Qeighteq‘phonon frequency

28
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distribution. It fs a measure of the importance of the phonon of
ftequenc& w in the électron-phonon intera?tion. It is however
\girectional and applies to a particular electron. We ére interested
i;\the Fermi surface averagé of ég(m)F(m) as all the conduction

electrons on the Fermi surface contribute to the specific heat. We

define

dSR 2 )
ameir g

bo

S

(3.16) a(@F(w) = e
hl?gl

S

R —

LY

This function contains all the information about lattice dynamics and
the electron-phonon interaction (without impurities) that we need to
calculate the renormalization of the electronic mass. It also
determines superconductivity in the Eliashberg (1960) formulation of
pairing theory. V

Naturally, we will be interested in knowing A
(3.17) A = 2 fcn%f-az(m)F(m) .
0

Its values’range between a few tenths to more than unity. It can
clearly be quite large and it is therefore not valid to use second
order perturbation theory. It is necessary to go to a higher order. °
Howe;er, as we mentioned, perturbation theory does give the wesult
obtained by Green's function techniqées provided we use the Brillouin-

Wigner perturbation theory. This is a self-consistent procedure which

29
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consists in replacing the g's by the E's. This way we sum up terms
|2

of higher order in lgEEJ

According to this prescription, Eq. (3.13) becomes

E =€ - 2E
P B PP
or
E (141 ) = ¢
2( 2)
and

.

Again we want to average AE_over the Fermi surface. Therefore

(3.18) 1‘;1;- 1+ A

4
L4

A being defined in Eq. (3.17). Thils result is very close to the one
obtained by using a Green's function method. In fact Migdal (1958)
showed that Eq. (3.18) is correct up to a term of order (xn/M);2 if
one neglects Umklapp procéﬁses and assumes a spherical Fermi surface.
The most difficult part in a calculation of m* is now done.
Ve next put together the other terms involved in the mass reﬁormalizacion.

From Eqs. (3.6) and (3.14) to (3.17), one finds

" m* .
(3.19) o 1l + sz + AwAw + Aﬁwz
where
X 2 ™ A
w
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(3.20) A =2[ dy S (IF ()
wiw w
0
2
ds ds Iy oq)
B k Q kpj
['ﬁ'rv“pri [ﬁj\’;r (277)3 —;: '5(w“wj (p-k))
S 2 Jg L3
' 2 F
(3.21) a'“(w)F(w) = = -
_p
[ hiv
: s
"2 F
(.22 3 o [ SLLEL
Aw 6 w
2
o Bp Sk ¢ I fipgyl 5 Coms (1))
Al g, JEle T 503 % w-ws (3
s s =
(3.23) "3 (W)F(w) = —- F — )
P
[ hlv I
Sp 2

All that 1is left 1s to combine the results of Sections 3.2 and 3.3.

Since
pe) = Hanq

and the linear coefficiert of the specific heat

2
2n 2 m*
Y 3 kBp ( FF) m

kB being the Boltzmann constant, we get from Eqs. (3.11) and (3.19)

. 0
(3.24) vy = Yo[l + As + A 2 + AwAw + A £
- w Aw

0
where Yo 1s the specific heat of the pure crystal at zero temperature

]

31
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ignoring the electron-phonion renormalization.

3.4 Approximations

So far we have neglected the change in the phonons and we have

assumed that the matrix elements lg 12, I 12 and if |2 do not
ks’ 7 Pipy

kpgj

vary very much with E_for k ¥ k To facilitate the numerical calculations,

F*
we shall make three mzxe apperimacions.

We use a local pseudopotential, we assume a spherical Fermi

surface and we approxi&hte the zeroth order wave function of an
electron by a single plane wave. These approximations are qdite
reasonable for the alkalis because the conduction electrons act very
much like free electrons. The Fermi sea occupies half of the Brillouin
zone. The Fermi surface is therefore far from the Brillouin zone
boundary and is almost.sphefical. Thede approximations are obviously
not as realistic for polyvalent metalg.

Nevertheless we are’ going to use the?e approximations to bring
Eqs. (3.12) (A)), (3.22) and (3.23) (A ,) to more convenieat

aw
expressions. ' Let us consider (3.12)

E oy

[ ds 14
z"
hijv | 2
. S Pk (ezv-el‘:)
8 dsa -
- BT
ke : SF . 2

We substitute for IiERIZ the formula (3lé), go to the 1imit of a

continuous,gfand change the variable of integration foom k to g = k-p.

> -
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as_ . o 2
f P ¢ _ 8 ‘Pfd3q aw(q)
Kv,l ¥ (503 R
. P Pt
8 dSR
- ﬁlle

Sp

S
X -

where "P" means principal part. In this step we have assumed a local
pseudopotenfial and used one plane wave (Eq. (2.4)). TFor the

following one, we suppose a spherical Fermi surface

ds& c 1 3 .2m.2 Aw(g!z
v, N 3 P]d7a(%3) 72
S F o (2Zn) o 2k qutq™)
F
A -
: .
o 'ﬁvF
SF

where p is the cosine of the angle between p and g. The integral over
q is independent of the direction of p, so we do not need to average

over the*Fermi surface. The integration over angles gives:

1] m 2 2 1 1
(3.25) A = S B Prquw(q) { + } .
8 N (2n)3 ﬁzkp A 1 -~ q/2kF 1l + q/2kF

B

We had to be careful in integrating over the variable u since there was

a singularity at q = ZkF. {Time dependent perturbation theory tells us

/
what to do in that case. If we define the perturbed potential as Ve{ét

and let a go to zero, one cam prove the following equation (see Appendix )
A) -

2

(A.3) E =E, + <i|V]|t> + 1im I lﬁiL!LEZL_

toeee W

bl
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This indicates to us that one can avoid the singularity by going in the
complex plane. This is how we got Eq. (3.25) which can be integrated

without difficulty.

Let us now consider Eqs. (3.i22) and (3.23) and use one plane

wave (Eq. (2.';;))

Q
(3.26) 2 -2rdw
rw? A (23
Idsz fdskl |aw]p>]? & el @l (w0, ()
— <l_c_ Aw|p> = I S (w~w q
’ﬁ{vp_l v, T 271§ @ Ay 3
s s x

°F F - -
< ds -

P

J/ﬁ]v [

Sg 4

Next we assume a local pseddopot:ential and a spherical Fermi surface.

We prove in the Appendix B:

¢ ds aSy 2 £(q)
(B.3) f EJ = f(g'-g_)=2—“-“i—f d’q —

ﬁ{v}i[ ﬁ]vy] 4 )

5. ; 2

where the integral over g extends over a sphere of radius 2kp. Using

4

this equation, one obtains

3 41
r

ds sy
) = 2 2
a2 [ gy | H T |1 Gep el @)
s, & s, = ¢ f
F F :
2
2 aw(q')
- 2"‘2 dsq' ,___qT__ I&"E.j(i)lz . . . ;
A <2k ) S . \
Let us define u as being the cosine of the angle between"g_j () and q'. .

.

The right hand side of Eq. (3.57) “be;omes ‘ .
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22 F -1
27 am q'dq‘Aw(q')2 [ duq'zuz
g 0 +1
or
.2 am? 3 \2
(3.28) 3 *——-[ q'd"q'aw(q")” .
A
<2kF

A4

i

—

thiifollowing definition of the frequency distribution

Fw) = § I 8 (w-w, (9))
g9,)
F.B.Z.
and Eqs. (3.26).to (3.28), we obtain for A )
Aw .
/
. . ' 3 2 - .
(3.29) 2 ,=c 33 f qd’qAw(q) I duw F(;’)
Aw 48 A nMk )
F <2k 0

F
where n is the ion concentration (N/Q).

We are now ready to do numerical calculatiotnis,

o~ (q). does not appear any more because its norm is equal to one.

Using

35



CHAPTER 1V

NUMERICAL CALCULATIONS AND RESULTS

In this chapter we describe how we calculate the pseudopotential
form factor. We indicate where we get the pbonon frequency distribution
functions: F(w), az(w)F(w), a'z(m)F(w) and we present the results.

Following Hayman and Carbotte (1971) we use the Ashcroft model

of the pseudopotential form factor. In real space it is defined as

wOCr) = 0 for r < Rc

e2
.---? for r > Rc . =

By
. -

<2

Rc is a parameter of the order%of the ion radius. 'The idea 1is to cancel
the Hartree fileld of the ions andrche repulsive effect of the core
electrons (due to Pauli's principle) inside a core radius Rc, This is-
a Qimple model but it g}ves results similar to what has been obtailned
using the Heine-Abarenkov or the Shaw form of the pseudopotential for
the éalcuiation of A. It certainly {s a good description of the real
potential for large r's_and small q's. ié 1s not as realistic for big
q's.

In recip?ocal space . Lo

0 1 4re® ; .

w {g) =- cos(ch) ‘ o

90 q2

36
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where Qo is the volume per fon. Actually the potential is screened by
the conduction electrons and we write

[ %
1 4we2 cos(ch)

ﬂgere £(q) 1is the dielectric function. We choose for this the Lindhard

form which is quite simple:

>

2
k_e . 2 gq+2k
F 1 2 F
e(q) = 1 + {1+ (kL - 53 2nl———|1} .
r qkg " F 4 q-2kg

So all Qe need to know is Rc, the lattice parameter and kF at zero
temperature, . £

They have been evaluated by Hayman et al. (1971) for sodium and
potassium. They fixed Rc by fitting the electrical resistivity at a
certain teflperature. In the, case of sodium they fitted the constant
pressure (atmospheric) electrical resistiﬁ?ty ay 90°K. They used the
phonon dispersion curve measured by Woods et al. (1962) at 90°K and
anabysed according to the Born-von Kirmin force constant model. In
the case of potassium, they fitted the constant volume'(zero temperature)
electrical resistivity at 90°K. Here they used the phonon dispersion
Eurvehmeasured by Cowley et al, (1966) at 9°K. 'In doiﬁg 'so they
neglected the difference between the lattice volumes at 0°K and 9°K.
This me?hod however leads to two values of Rc. For ea;h of them they
calculated the constant vélume electrical ;esistivity as a function of

of temperature. They éot rid of the ambigﬁity by comparing their

results with-experiments. The chosen valﬁes are given in Table 1.
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The Rc values that we use are those of the pure metal. Ve
should use those appropriéte of the alloys electron density but one
does not know how to calculate these from experiﬁental measurements.
Choosing the values of the pure metal we do a consistent calculation
which enables us to compare the relative size of each term entering
‘the speéific heat.

The frequency distributions that we need have been calculated

by Kus et al., (1974). The method used is described in detail by
Carbotte and Dynes (1968) and Carbotte, Dynes and Trofimenkoff (1969).
The force constants between ions are obtained from the phonon

dispersion curves measured by inelastic neutron scattering. Then the

3

dyndmical matrix is constructed and the polarization vectors ¢ Q .

are calculated at every point of the first Brillouin zone. With these
values, the dispersion curve and the pseudopotential form factor,

az(w)F(w) and a'z(w)F(w), are computed. The van Hove singularities
1

are resolved by using the computer technique developed by Gilat and
Raubenheimer (1966). We have plotted F(w), az(u)F(w) and u'z(w)F(w)
for the alloys KNa and NaK in Figs. 1 and 2.

s A 5 A
Aw Aw2 s

and y with the help of Eqs. (3.17), (3.20) to (3.24) and (3.12).

Having these data, we were able to evaluate A, Aw

There is however one point that we should mention about the evaluation

of AB. The Ashcroft pseudopotential form factor is not a good

approximation for big values of q, due to the drastic condition imposed
on w(r) for small values of r. At zero, wiq) = —26é/3,'then as q T
Increases, the pseudopotential increases, it becomes positive, crosses

¢

!
the q axis aéain and oscillates. We do not want to take into account

v
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the oscillations, so we stop the integration over q at the second node

Na* The second node of wy occurs at a smaller value of q than the

second node of WNa' q*. Therefore, Eq. (3.12) is modified to:

of w

*
c ¢! m |2 2 1 1
A=z —5 ()" P I dqaw(q) {3 + }.
s | N (2")2 ‘ﬁzky . 1 q/2kF 1+ q/2kF

The final results are given in Table 2.



Table 1:

Table 2:

Data taken from Hayman and Carbotte (1971) and used
to calculate the Ashcroft form of the pseudopotential

form factor for sodium and potassium.

The contributions to the heat capacity enhancement due
to electron-phonon interactions and the impurities for
NaK and KNa. The underlined metal is tge host. Tﬁe
star‘means that vy is évaluated for a concentration of

1Z. Ax = %vAw + A 9 ¢
Aw

RO

| it e S AR AT - s B e

t



TABLE 1
Lattice Fermi .
parameter momentum
Metal at §=0°K at _T=0°K Ec
(A) (A-1) (A)
i
Na 4,2268 ¢ 0.9222 0.8282
K 5.2275 i 0.7456 1.0353
‘ g
" TABLE 2

Nak kNa
A 0.185 0.134
AwAw/c -0.158 0.092
A Lle 0.166 0.091

Aw
AX/c 0.008 0.183
ks/c ~0.003 -0.004
Y/Yg 1.185+c(0.005) 1.134+¢(0.179)
0 .

(Y/YO)* \,\\-1.185 1.136
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Figure 1: The phonon frequency distributions F(v) (—),
ZMIFM) (-++++), and a'*(VIF(V) (-==--) are
plotted as a function of frequency v for KNa.
uz(v)F(\:) and a'z(\))F(v) are scalec.:l up by a
factor of 10 and 100 ‘respectively. v is in units

of 10 Hz.
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Figure 2:

The phonon frequency distributions F(v) (——),
a?(WIF(W) (-++++), and a'?(VIF(V) (-=---) are
plotted as a function of frequency v for NaK.
The latter two distributions are scaled up by a
factor of 10. In additiom a'Z(V)F(V) is

multipiied by (-1). v is in units of 1012 Hz
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CHAPTER V
DISCUSSION AND CONCLUSION

5.1 Discussion

‘We have calculated the electronic part of the specific heat
of a di1UCe alloy at zero temperature. We have considered two
mechanisms: the change in the Fermi level density of states and the
electronic mass renormalization. The former is due to the addition
of impurities in the pure metal; the latter comes from the electron-

phonon interaction and the impurities. It was found that:

0 .
(3.24) y-yo[1+x 2 t waw+x 2+>\8] .
R w Aw .

We have evaluatéd the different corrections for two alloys
NaK and KNa. The addition of a low concentration of impurities (1%
or less) ﬁas very little effect on y. One percent of impurities
causes a change of legss than 1% in the value of vy Including the
electron-phonon interaction of the pure metal. As.is negligible .
compared to AwAw and XAVZ which indicates that the effect of the
impurities on the electron-phonon interaction is a more important
cause of change in the electronic specific heat than Stern's
mechanism. lwawl is of the séme size as Asz. In the case of KNa

they add Qp while for NaK they almost cancel.® One would need more

calculations to see 1if this is a general result when Aw is negative.



—

)'/

and A 2 change with R . It

[of
- Aw

and y could decrease or

For example, one does not know how AwAw
might be that IAwAwl is bigger than XAWZ
. ingrease as impurities are added. Experimentalists could investigate
the behaviour of y in this kind of‘systeﬁﬁ .

-

— In any case our calculations show that Taylor (1969) should not

He considered only A , which he estimated to be
Aw

.09¢c "in KNa. This is equal to our result which is purely accidental

)

have neglected Xwaw.

because Taylor makes many approximations., TFor example, he uses the

Debye model to evaluate
-

+
~ L1 2
I G=)
fw(g)
q g
and he approximates
2uN(1-c) ' 2. _
_ kz' 3 ]vimp(g_ k) |1 cose_,k)s(e}s, e_k_)
3, ©

by 1/t whére 1 18 the relaxation time of the electrical resigtivity,

e the angle between k' and k and V , Ehe scattering~potent1al of

k'k

imp
a single impurity. Doing so he considers only the longitudinql modes

of the crystal while he should also take into account the transverse
modes. . * ‘ W
- Our numerical results for NaK and KNa show that‘the,electronic
mass renormaljzation is a more important mechanism than the change in
the Ferml level density of states proposed by Stern: Ste¥n's theory

however certainly has the prop%r qualitative behaviour for the

"™\ ""electronic specific heat in the case of a gold impurity in silver-gold

)
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alléys (see Green and Valladares (1966), Martin (1968), Davis and
Rayne (1972)). The experiments show that y first decreases with the
addition of gold to silvé%, then starts increasing when the
concentration éf gold reaches about 302’and finally goes up to the
pure gold value. In our theory vy can decrease only if‘Aw <0, 1.e.
¥ could decrease for the addition of gold to pure silver 1if the
pseudopotential of gold were less than that of silver and the screening
should be very important and/complicatéd to make the pseudopotential
of silver less than that of gold in a crystal where gold is the host.
One should not be surprised that our theory cannot explain the >
variation of y in silver-gold alloys because the noble metals have a
-ﬁery complicated Fermi 'surface. There.are necks which means Ehat the \\“”’
electrons at the Fermi level are far from being free electrons. .Im
this case the use of }seudopotentials is not valid.

> If one neglects the electron-phonon. interaction, Stern;s"theory
reduces to ours for low comncentration. If Stern's mechanism is*the
important o&e, we would expect that it is also import%nt in the P
sodfum-potassium alloys and we should éee this in our calculations for
a low codEéquation of impurities. This is not the case and it leads
us ta think thgt Stern's mechanism is not the importagt one. His
calculatioqa are crude:  he assumes that_l{&lvlzljylzyis constant and
doeg notncouple ihe states at the Fermi level to the d-states. He s
neglects-clustéring, impurity-imburity interactions and claims that
his theory is valid for any ¢ provided that‘I{&[VlQIQ?IZX[E(E)-E(ﬁ)]~1

is small. He"uses a "virtual crystal" as his starting point without .

much’ justification.” In his paper with McAlister and McGrdody .(1965) he

.,J“" 4\"



admits that this assumes that the amplitude of the alloy wave function
for the electronic states near the,Fermi energy is nearly equal on each
constituent. This is generally not true but he believes that it is
valid for silver and gold since their potentials are similar. To
summarize, at this point we do not believe that any simple theory can
explain the change in the electronic specific heat in silver-gold alloys
because they have a very complicated Fermi surface. We think that if
the addition of impurities would cause a major change in the Fermi
level density of states of the Ag-Au alloys, it would be the same in
~sodium—potassium alloys and we should Pave found this in our
calculations.

{

5.2 Conclusion

We ﬁave evaluated the change in the electronic specific heat
in NaK and KNa at zero temperature. It is found that the electron-
phonon interaction causes the major change. The addition of impurities
does not modify significantly the gituation existing in the pure metals
either through a direcg chahge in the Fermi level density of states or
their Interactions with phonons.

We made a few approximgtio;s to arrive at this conclusion but
they should be realistic for alkalis. We avoided uncertainties by using
the Ashcroft\gorm of~the éséﬁdopotential form factor since it is fitted
to‘elec;rical resistivity experiments. If one knew the necessary phonon
Green's functions, one could easily introduce them in the theory (Eq.

(2.24)) and make more accurate calculations. One could also evaluate



the various corrections without assuming a spherical Fermi sphere and
using a single plane w'ave as the zeroth order wave function of the
electrons. It would take however a lot of computing time and we
believe that it would not change the results by very much.

Ster;'s theory does explain qualitatively the results of
experiments on silver-gold alloys while ours vouid require the
additional assumption ‘that Aw be negative for both the pure gold and
pure silver ends of the alloy series and that IAwAwI is bigger than
XA 2° We do not believe however that Stern's theory is more realistic

W

thgn ours because the noble metals have a Ferml surface which is too

complicated,to be described by simple theories.
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APPENDIX A

Time-dependent perturbation theory is described in Kittel

(1963), Chapter 1. We will write down his results and calculate the

second order contribution to the energy.

The Hamiltonian is

-at
H= Ho + Ve

E'S

where o 1is positive. The exact wave function of the ground state Y can

be expressed in terms of the wn's, solutions of HO. n=0 corresponds to

the ground state,

- 1) (2)
(A.1) ] wo + I a_ wn + I a wn + ..,

where
) <wn|vlwoz '
A.2)  a ™" = E,~E_+ia
<y [V]w ><y IV]w >
and a(z) = F A k k 9

n x (EO-En+Zia)(EO-Ek+ia)

for n # k. Kittel also proves that

<¢0|V]¢> .
» -+ - R .
E Eo <W0|w> )

or
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<¢0]v]¢>
ot T . @
l+a0 +a0 L

E=E

are orthogonal to each other. The a_'s

since the eigenstates of H n

0

must be small coefficients otherwise V is big compared to HO and

perturbation theory is not valid. So we expand:

E= Eé + <w0[V|w>[1 - aél) ~ aéz) .

Using (A.1)

)

1
E= Ey+ <w01vtw0> + <¢olvl§ aél bt e (- aé ). aéz) -

,

We keep the first and second order terms only:

( (

1 1
E=E,+ <¢0|v]¢0> - a5 )<¢Olv(¢0> +§ a )<¢0|v[¢n> +oe

~

After use of (A.2), we get

2
l<volviv >
E ~Eg+ia

veoes o

(A.3) E=~E; ¥ <wolv|q;0> + I,

n¥0~ 0



APPENDIX B

-

The proof can be divided finto two parts. First one writes that

3 (.3
[ePefadereq s ety e

¢ dSp J dSy

T | et | seeep e wiepit ey

or
3

A
(B.1) Id de k'f(_lg'—_k_)é(sE-eF)G(ey-eF)

dSk dsk:
) fﬁrvkl fﬁlvk.TfQ‘- - :

S

The integrals on the right hand side of the equation extend over the
Fermi surface: on the left hand side however, they extend over all
space. This allows us to define g as k'-k and write

.

jd%kjd:*k'f(_g'-_lg)c(ek-ep)s(ek.—ep)
3.(.3
- Jd kjd qf (g)ﬁ(ek-e\F)G(gkﬂst) ’

Assuming a spherical Fermi surface, the right hand side becomes equal to

L2
Id3k[d3qf(g)6(¥:k—£F)6[%(kzﬂ;z-quu) - e

-~
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where u 1is the cosine of the angle between g.and‘%. It can be

3

rewritten as:

stqf(g)szdld (e, e p) I dudé f;—' 8(q2-2kqu) .

Using again the assumption of a spherical Fermi surface and the delta

function G(Ek—EF), we can specify IEJ = k = kF' The integration over

dk becomes easy: we change the variable k to €y tO obtain:

3 . d J2m3e §(q/2k_~u)
m k k F
Jd qf (q) 2 J 3 G(Ek-—eF)Jdu

Zqu .

We get after integration

(B.2) Id3kfd3k{f(gf—h)6(ek-eF)G(ek,—eF)

21’ 3 f(q)
4 d‘q q -

# <2ic '
F .

The norm q is restricted to values smaller than ZkF because u varies

in the interval [-1,+1] and we need the delta function §{q/2k_—u) to

F
be non-zero.

Combining Eqs. (B.1) and (B.2), we get the desired result:

dsy dSy s ’ ‘2ﬁm2 3 £(q)
B. = = k'-k) = —v —_—,
(8.3) folvkl fﬁlvk.l B0 =7 [ @i

<2kg
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