
Applications of Low Density Graph Codes in Two 

Source Coding Problems 



APPLICATIONS OF LOW DENSITY GRAPH CODES 

IN TWO SOURCE CODING PROBLEj'VIS 

By 

ZHIBIN SUN, B.Eng., (Electrical Engineering) 

McMaster University, Hamilton , ON., Canada 

A Thesis 

Submitted to the School of Graduate Studies 

in Partial Fulfilment of the Requirements 

for the Degree 

Master of Applied Science 

McMaster University 

April 2009 



M.A.Sc: Zhibin Sun IVIcMaster - Electrical and Computer Engineering 

Master of Applied Science (2009) IVIcMaster University 

Electrical and Computer Engineering Hamilton , Ontario 

TITLE: 

AUTHOR: 

SUPERVISOR: 

CO-SUPERVISOR: 

Applications of Low Density Graph Codes 

in Two Source Coding Problems 

Zhibin Sun 

Bachelor of Engineering 

McMaster University, Canada, 2007 

Dr. lun Chen 

Dr. Kon Max Wong 

NUMBER OF PAGES: xii , 78 



Dedications: 

To my family: 

Jiayi H 01l, Jim ei Wang, Jianmin Slln and Qingyun Li 



Abstract 

In this thesis , we present the applications of low density graph codes in two different 

types of source coding problems. First, we consider asynchronous Slepian-'!\Tolf coding 

where the two encoders may not have completely accurate timing information to 

synchronize their individual block code boundaries, and propose LDPC design in this 

scenario . A new information-theoretic coding scheme based on source splitting is 

provided , which can achieve the entire asynchronous Slepian-Wolf rate region. Unlike 

existing methods based on source splitting, the proposed scheme does not require 

common randomness at the encoder and the decoder , or the construction of super­

letter from several individual symbols. We then design LDPC codes based on this 

new scheme, by applying the recently discovered source-channel code correspondence. 

Second , we consider the lossy source coding problem. In contrast with most prior work 

that has focused exclusively on the binary uniformly distributed source , we address 

the problem of lossy coding for sources with arbitrary alphabets and distributions. 

Built upon the idea of approximating the optimal output distribution indicated by the 

rate-distortion theory vvith a uniform distribution over a larger alphabet , we propose 

a multilevel coding scheme using LDGl\II codes t hat can approach the rate-distortion 

limit for a general source. Experimental results validate the effectiveness of both 

proposed methods. 
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Chapter 1 

Introduction 

1.1 Backgroud 

In this section we provide a review of Slepion-vVolf coding and lossy source coding 

problems as background materials. 

1.1.1 Slepian-Wolf Coding 

X R\ 
Encoder 1 

(X,Y) Decoder eX,Y) 

y R2 
Encoder 2 

Figure 1.1: Slepian-Wolf coding problem 
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As illustrated in Figure 1.1 , two correlated sources (X,Y) are encoded separately 

at two encoders and decoded together at one joint decoder. It is known that to 

encode a source X , R must be greater or equal to the entropy H(X). Therefore, to 

encode X and Y separately we need R = Rx + Ry ;::: H(X) + H(Y). However , in 

the seminal work [4] , Slepian and Wolf showed that it is possible to compress two 

dependent sources in a distributed manner at rates no larger than those needed when 

they are compressed jointly. More precisely, when two discrete memoryless sources X 

and Y jointly distributed as QXY in the alphabets X and Yare separately compressed 

using block codes of length-n at rates Rl and R2 respectively, both sources can be 

reconstructed with asymptotically diminishing error probability at a central decoder 

using any rates (RIo R2 ) such that 

Rl > H (XIY), R2 > H(YIX) , Rl + R2 > H(X, Y). (1.1 ) 

This rate region is illustrated in Figure 1.2. This result has been generalized in various 

R 
H(Y) --- --------i 

H(XIY) iL--_---'--'--_----_----_----_---,'----____ _ 

H(XIY) H(X) 

Figure 1. 2: Achievable rate region of Slepian-Wolf coding problem 

ways [5 , 6, 7, 8], one of which is the asynchronous Slepian-Wolf (A-SW) coding sce­

nario considered by \iVillems [7]. This consideration is practically important , because 

2 
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although we can assume perfect synchronization in the simplistic Slepian-\i\Tolf setting 

such that the length-n block codes can be applied on each corresponding block pair 

{X (t), Y (tHt=Qn+ L ,(Q+1)n, in practice the two encoders may not have such a perfectly 

accurate global clock to synchronize their block code boundaries. It was shown in [7] 

that even in this case, the rate region result (1.1) still holds , as long as the decoder 

is aware of this asynchronism. 

1.1.2 Lossy Source Coding 

In the lossy source coding problem, we are given a source alphabet X , distribution 

Px and a distortion metric d(·, -). A source sequence xn is drawn from the i.i.d 

distribution Px , where n is the message length. We want to map each sequence xn 

to a codeword in a code book containing 2m codewords. First , one need to map 

the n-bits source sequence xn to an m-bits codeword index zm, thus , the encoding 

rate R = min. The codeword in that corresponds to the index zm is the decoded 

sequence or called reconstructed sequence. The lossy source coding problem is to find 

the encoding mapping and the code book satisfying the rate constraint R such that 

the average distortion D = IE[~ 2::7=1 d(Xi ' Xi)] is minimized. 

The trade-off between the encoding rate R and the achievable minimal distortion has 

been proved by Shannon [3] and is expressed in the rate-distortion function as follows: 

R(D) = min J(X; X) , 
P,Y: IX 

(1.2) 

where the minimization is over all possible test channels P XIX subject to the constraint 

IE[d(X'1Y)] :::; D. 

3 
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1.2 Motivation and Contribution of the Thesis 

Recently the applications of low density graph codes associated with various message 

passing algorithms to source coding problems have shown extremely good perfor­

mances [13, 21, 22,37]. However , these codes and the associated algorithms are not 

consummated in the sense that they only work under certain conditions such as the 

following two cases. In the recent researches of the Slepian-Wolf problem, LDPC 

codes have been applied. However , most code designs fo cus on the corner point of 

the achievable rate region with the joint distributed source that can be modeled as 

a binary symmetric channel [10, 11 , 12, 13]. Moreover, the practical coding scheme 

and code design method are missing for the asynchronous case. The similar restric­

tion can be seen in the researches of the lossy source coding problem in which the 

LDGM codes are adopted. For lossy source coding using LDGM codes, almost all 

the existing results fo cus on the binary uniform source [21, 22], and the application 

of the existing coding algorithm directly to binary nonuniform source incurs signif­

icant degradation. The restrictions on these source coding problems motivate us to 

develop a code design method and encoding algorithm that can be applied in a more 

general setting. In this thesis , we discuss two aforementioned source coding problems 

and focus on general sources. The contribution of our work is that we propose a 

LDPC code design method and an encoding scheme that can achieve the general rate 

point on the Slepian-Vlolf rate region with arbitrary joint source distribution under 

both synchronous and asynchronous scenarios. For t he lossy source coding problem, 

we propose a multilevel coding scheme using LDGM codes that can approach the 

rate-distortion limit of a general source. 

4 
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1.3 Organization of the Thesis 

T he thesis is structured as follows: 

• In Chapter 2, we present two low density graph codes, LDPC cods and LDGM 

codes as well as two message passing algori thms, BP and SP algorithms. 

• In Chapter 3, we focus on the A-SW problem. A new information-theoretic 

coding scheme based on source splitt ing is provided. We design LDPC codes 

based on t his new scheme, by applying the recently discovered source-channel 

code correspondence. Simulat ion results are given. 

• In Chapter 4, we focus on the lossy source coding problem. A mult ilevel coding 

scheme using LDGM codes for t he general source and distortion measure is 

proposed based on the idea of approximating the optimal output distribution 

indicated by the rate-distortion theory with a uniform distribut ion over a larger 

alphabet. Simulation results are given. 

• In Chapter 5, we conclude t his thesis and suggest the fu ture work. 

5 



Chapter 2 

Low Density Graph Codes and 

Message Passing Algorithm 

Recently the applications of low density graph codes associated with various message 

passing algorithms to source coding problems such as the application of LDPC codes 

to the Slepian-\ iVolf problem [13, 37] and the application of LDGM codes to the 

lossy source coding problem [21 , 22] have shown extremely good performances. In 

this chapter , we will briefly describe these two low density graph codes, LDPC and 

LDGM codes , as well as the message passing algori thms associated with them. 

2.1 Low Density Graph Codes 

Low density graph codes such as low density parity check (LDPC) codes and low 

density generater matrix (LDGM) codes refer to the codes that can be represented 

by graphical constructions. The term "low density" indicates the sparsity of the graph 

construction that makes the message passing algorithm efficient for decoding such a 

code. 
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2.1.1 Low Density Parity Check Codes 

Low density parity check (LDP C) codes were invented by Gallager in 1960 's [1] . A 

binary LDPC code is defined as follows: 

C = {x E {O , 1}n : H x = O} , (2.1 ) 

where H is an m x n sparse matrix called parity check matrix , and the code is given 

by its null space . The term "sparse" here means the number of 1 in the matrix H is 

sparse. Bipartite graphs also called factor graphs was first suggested by Tanner [2] t o 

capture the LDPC code structure. The bipartite graph in Figure 2.1 represents the 

code structure of an irregular LDPC code. Each variable nodes (0 ) represents one 

bit in the codeword and each check node (0) represent the parity check constraint 

specified by one rovv of H. If the entry (i, j ) of parity check matrix H is 1, the i­

th check node and j-th variable node in the factor graph is connected by an edge. 

These two connected nodes are called adj acent nodes . The rate of LDPC code is 

r = 1 - m i n , where m and n are the number of check nodes and variable nodes 

respectively (n > m). The degree distributions of check nodes and variable nodes in 

t he factor graph are represented by P and A, respectively. 

Define p(x) = I: ~l~ l PiXi- 1 and A(X) = I:~~ l AiXi-1, where Pi and Ai denote t he portion 

of all edges connected to check nodes and variable nodes wit h degree i , respectively. 

The degree of a check or variab le node is defined as the number of edges connected 

to this node. \!l/e use de to denote t he maximum check node degree and dv to denote 

the maximum variable node degree. 

7 
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n 

m 

Figure 2.1: Factor graph of LDPC code 

2.1.2 Low Density Generator Matrix Codes 

Low density generator matrix (LDGM) codes are dual of LDPC codes . A binary 

LDGM code is defined as follows: 

C = {x E {O , It : x = G · z}. (2.2) 

G is an n x m sparse matrix called generator matrix , and the codeword x E {O , l}n 

is given by the product of G and information bits z E {O , I}17l . The term "sparse" 

here means the number of 1 in the matrix G is sparse. Bipart ite graphs or factor 

graphs are also used to capture the code structure of LDGM codes. The bipartite 

graph in Figure 2.2 represents the code structure of an irregular LDGM code. Each 

variable nodes (0 ) represents one information bit and each check node (0) represent 

the generation constraint specified by one row of G. If the entry (i,j ) of generator 

matrix G is 1, the i-th check node and j -th variable node in the factor graph is 

connected by an edge. These two connected nodes are also called adj acent nodes. 

Different from LDPC codes , the rate of LDGlVl code is T = min , where m and n are 

t he number of va ria ble nodes and check nodes respectively (n > rn) . Same as LDPC 

codes the degree distribut ions of check nodes and variable nodes in the factor graph 

are also represented by P and /\, respectively. 
d . 1 d ' 1 . 

Define p(x) = ~i:l PiX'- and >- (x) = ~i~ l A.iX'- , where Pi and A.i denote the port lOn 

of all edges connected to check nodes and variable nodes with degree i , respectively. 

The degree of a check or variable node is defined as the number of edges connected to 

8 
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this node. de denotes the maximum check node degree and dv denotes the maximum 

variable node degree. 

n 

m 

Figure 2.2: Factor graph of LDGM code 

2.2 Message Passing Algorithm 

Message passing algorithms are the general decoding algorithms associated with the 

low density graph codes. Based on the factor graph of each low density graph code , 

these algorithms can be summarized as that at each iteration of the algorithm mes­

sages are passed from the check nodes to the adjacent variables and also from variable 

nodes to the adj acent check nodes. Therefore, the message passing algorithms are 

also iterative algorithms. The message in terms of probabilities or log-likelihood from 

either check node or variable node is calculated based on the messages passed to 

this node from the adjacent nodes in previous iteration. In the following , two im­

portant message passing algorithms , belief propagation (BP) algorithm and survey 

propagation (SP ) algorithm , are presented . 

2.2.1 Belief Propagation Algorithm 

BP algorithm is an important message passing algorithm which is presented by Gal­

lager [1] and has been proved to have promising performance when decoding the 

LDPC codes in channel coding problems [34] and Slepian-Wolf problem [13] . 

9 
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In belief propagation algorithm, the messages are called beliefs and take the form 

of log-likelihood ratio (LLR). How this algorithm applies to the LDPC codes when 

solving the Slepian-W"olf problem with side information is briefly discussed in the 

following: 

Sequences xn and yn of length n are drawn by the i.i.d joint distribution PXy(x, y). 

The syndrome sequence sm of length m are given by Hmxn . xn. The algorithm aim 

to decode sequence xn given sequence yn and syndrome sm. 

The LLR of X based on the observation of Y is calculated by 

L 1 P(Xi = ° IYi) 
= og-----

P (Xi = llYi) 
(2.3) 

At each iteration the messages are passed from variable nodes to the adj acent 

check nodes first . The message sent from i-th variable node to j-th check node is 

calculated by 

.A1v; -+cj = L + L Mc,-+v; 
IEAc(i)\Cj 

(2.4) 

where Ac( i) is the set of all check nodes connected to variable node i . The initial 

value of the message from check node to variable node is set to zero. 

Then the messages are passed from check nodes to the adjacent variable nodes. 

The message from i-th check node to j -t h variable node is calculated by 

iVlci -+ Vj = 2tanh- 1 [(1- 2si ) IT tanh (MV~-+Ci)l 
IEBv (i)\ IIj 

(2.5) 

Once the algorithm nms to the certain number of iterations, the estimated Xi is 

found at each variable node by 

if L + l: IEA c(i) .Mcl"--;V; ~ 0 

if L + l: IEAcCi) M C1 -+ V, < 0 

The sequence of 5;n found from n variable nodes is the decoded sequence. 

10 
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2.2.2 Survey Propagation Algorithm 

Similar to the BP algorit hm , SP algorithm is also a kind of message passing algorithm 

as well as iterative algorithm. However , it is always associated with LDGM codes. 

Initially it is designed to solve the satisfiability problem and has shown good per­

formance [20]. Recently, survey propagation algorithm associated with LDGIVI codes 

has shown to be effective for lossy source coding problem [21, 22]. 

This algorithm resembles to BP in message passing behavior. However, the mes­

sage or survey in SP algorithm is a triplet of probabilities and denoted as (MO, Ml , M*) 

in the binary case. Each element in this triplet message represents the marginal 

probability that the destination node is forced to be 0, 1 and free state respectively. 

Moreover, the messages in SP algorithm will converge after a number of iterations 

and a new procedure called" Survey Inspired Decimation" (S ID) is introduced. When 

all the messages that pass along the edges converge or the number of message pass­

ing iterations reaches a threshold value, SID starts. In SID , the bias value of each 

variable node is computed to indicate the tendency of this node to be zero or one. 

Then compare these bias values with a certain threshold and fix the value of those 

variable nodes whose bias values are greater than the threshold value or fix the value 

of the variable node whose bias value is the largest if no bias value is greater than 

the threshold value. Remove the fixed variable nodes from the factor graph and up­

date the source va lues associated with each check node. Keep on doing until all the 

variable node values are fixed. The sequence constructed by all va1ues of the variable 

nodes in a sequential order is the encoded sequence. The decoded or reconstructed 

sequence can be obtained by multiplying the encoded sequence with the generator 

matrix C. 

11 



Chapter 3 

Asynchronous Slepian-Wolf Coding 

Using LDPC Codes 

In this chapter , we consider the code design problem in the A-S\lV setting. Formally, 

the encoders are associated with two integer-valued delay parameters dx and dy , 

respectively, in the range of 0 to n - 1. The values of dx and dy are unknown 

to the encoders but known to the decoder. Thus the q-th block of the source X 

consists of {X (t) h =qn+l+dx,,(q+l )n+dx and the q-th block of the source Y consists 

of {Y (t)h=qn+l+dy,,(q+ l )n+dy' It is easy to see that for t he two corner points of the 

achievable rate region , this problem is not very different from that in the synchronous 

case. Thus our fo cus is on the general rate pairs , or more precisely, rate pairs on the 

dominant face of the rate region. 

3.1 Review of Previous Work on S-SW Coding 

Previous works on the synchronous Slepian-Wolf (S-SVV) code design mostly focus on 

the corner points of the rate region [10, 11 , 12 , 13], with only a few exceptions [14][15]. 
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The code design at the corner points is reasonably well understood , particularly with 

the recent development [16], where it was shown that when encoding yn with side 

information xn at the decoder , the error probability of any single linear coset code is 

exactly the decoding error probability of the same channel code on a corresponding 

channel under optimal decoding or belief propagation decoding. Thus the linear 

Slepian-Wolf code design problem at a corner point can be conveniently converted 

into the code design problem for a specific channel. Though this connection was 

mentioned in earlier works [17, 18], it was made precise in [16] for general (non­

symmetric non-binary) sources. 

The code design for the S-SW problem can not be applied directly to the asyn­

chronous case. One may wonder if the information-theoretic coding scheme given in 

[7] can be used for such a purpose, however, it unfortunately requires optimization of 

the auxiliary random variable and complex joint typicality encoding usually seen in 

quantization modules, thus not convenient for practical code design. The usual time­

sharing approach to achieve general rate pairs in S-SW coding also does not apply in 

the asynchronous setting. In [19], an information-theoretic scheme based on source 

splitting was given to overcome this difficulty due to asynchronism, by introducing 

common randomness at one encoder and the decoder. However , common randomness 

is not desirable in practical systems and should be avoided if possible. 

It is clear that a new coding approach is needed for the A-SW code design, and 

since Slepian-\iVolf coding is well understood for the corner points of the rate region , it 

is also desirable to utilize these existing results. Indeed , in this thesis we first present 

an information-theoretic scheme based on source spli tting, which does not require 

common randomness (or the construction of a threshold function which operates on 

multiple source symbols as a super-letter [15]). Then based on this coding scheme, we 

utilize the source-channel correspondence result in [16] to design good LDPC codes. 

Experimental results confirm the effectiveness of the proposed design. 

13 
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It should be clarified at this point that the asynchronism here only refers to the 

mismat ch in the block code boundaries of the two encoders, but not the timing mis-

match in the sampling process . When sampling a continuous process , such timing 

inaccuracy may incur uncertainty in the probability distribution PXY , and this prob­

lem is usually considered in the framework of universal Slepian-Wolf compression 

[8][9], thus is beyond the scope of this work. 

3.2 A New Source Splitting Scheme for A-SW Cod-
. lng 

In this section, we first briefly explain the difficulty of using time-sharing in the 

asynchronous setting and then review how source splitting together with common 

randomness can be used to overcome this difficulty, as proposed in [19]. Then a 

new information- theoretic scheme based on source splitt ing is proposed , which does 

not require common randomness. An overview of the proposed LDPC design in the 

context of this new scheme will be subsequently discussed . 

3.2.1 Time-sharing and Source Splitting With Common Ran-

domness 

It is easy to see that a simple time-sharing can be used to achieve any general rate 

pair in the achievable rate region for the S-SW" problem. Essent ially we only need 

to use the following two kinds of coding alternately: 1) first encode X directly, then 

encode Y with X as decoder side information , and 2) first encode Y directly, then 

encode X with Y as decoder side information. \!\Then the first kind of code is used 

with a proportion p , and the second is used with proport ion 1 - p , it is clear that the 

14 
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following rate pair is achieved. 

Rl = pH(X) + (1 - p)H(XIY) , R2 = pH(YIX) + (1 - p)H(Y). (3.1 ) 

An example makes clear the difficulty of using this approach in the asynchronous 

setting. Let us assume p = 0.5 and the two kinds of codes used in timesharing both 

are of length-no Thus in the synchronous setting, the first kind of code is used in 

the even block, i.e., the (2m)-th block, and the second kind of code is used in the 

odd block, i. e. , the (2m + 1)-th block. Now consider the asynchronous setting, and 

let dx = ~n and dy = 0, which are unknown to the encoders but known to the joint 

decoder. When the original time-sharing codes are used, it is clear that at the first 

half of the even blocks, source Y is encoded assuming X at the decoder , yet the source 

X is also encoded assuming Y at the decoder. This clearly results in decoder failure. 

Another way to see this is that in this portion, the sources are encoded with sum rate 

H (YIX) + H(XIY) , which is less than H(X, Y), and thus it is impossible to ensure 

reliable communication ; see Figure 3. 1 for an illustration. 

n samples encoded n samples encoded n samples encoded ...... 
at rate H(X) at rate H(XIY) at rate H(X) ...... 

A A A 
( ,( ,( , 

X: . .. . . . 
I I I I 

...... 

~dx= 'h n ~ 

Y: ...... (2k)-th block (2k+ I )-th block (2k+2)-th block . ..... 
, 

.J' .J' .J 
V Y V 

•••.•• n samples encoded n samples encoded n samples encoded ...... 
at rate H(YIX) at rate H(Y) at rate H(YIX) 

Figure 3. 1: The difficulty of time-sharing in the asynchronous setting. 

To overcome this difficulty, common randomness was introduced in [19] such t hat 
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source split t ing can be applied. Let {T( t )}t=l" oo be a binary discrete memoryless 

process distributed in {O, I} such that at each time instance, Pr[T(t ) = 1] = P; 

it is independent of the sources (X, Y ). Let this process be available at both the 

encoder observing X and the decoder. Without loss of generality, let us assume 

X = {I , 2, ... , IXI}. Now define two new sources 

Z=X·T, VII = X· (1 - T). (3.2) 

In other words, {Z(t)h=l" oo is {X(t)}t=l " oo with certain position assigned to zero , 

while {VII(t)h=l ,.,oo is {X(t)h=l"oo with the complement positions assigned to zero. 

Thus the source X is split into two sources Z and H/ . 

With these two new sources, the original problem is transformed into Slepian-Wolf 

coding of sources (Z, VII) and Y. The encoding can now be performed in a sequential 

order as fo llows: 

1. Encode t he source Z conditioned on T; 

2. Encode source Y assuming Z at the decoder; 

3. Encode VII assuming (Z, Y) at the decoder. 

The rates at the two encoders are 

Rl = H (ZIT) + H (VIIIZ, Y), R2 = H(YIZ). (3.3) 

Observe that 

RJ + R2 = H(ZIT) + H (VVIZ, Y) + H(YIZ) = H(X, YIT) = H(X, Y). (3.4) 

The rate pair in Eq. (3.3) is on the dominant face of the achievable rate region. By 

varying p from 0 to 1, all the rate pairs on the dominant face can be achieved, at 

least for the S-S\¥ case. 

16 



M.A.Sc: Zhibin Sun iVIcMaster - Electrical and Computer Engineering 

A moment of thought should convince the readers that by applying the above 

block codes consecutively, the coding scheme can also be used in the asynchronous 

case without any change. Although this scheme can indeed achieve all rate pairs in 

the A-SW setting, it requires common randomness at one encoder and the decoder , 

which is not desirable in practice. Next we propose a new scheme which does not 

require this common randomness. 

3.2.2 A New Source Splitting Scheme Without Common Ran­

domness 

From the source split t ing scheme with common randomness afore-given , we can make 

the following two observations: 

1. In the second coding step , for each length-n block of source Y , there are ap­

proximately p . n source X samples available at the decoder ; furthermore, the 

exact positions of these X samples are known at the decoder. 

2. Though the random sequence T(t) can potentially split X(t) at each time in­

stance into two random variables Z (t) and W (t) , the overall effect is in fact to 

split the length-n source X sequence in the time domain , such that the first 

item above can be made t rue. 

Based on these two observations , we propose the following information-theoretic 

scheme, which does not require common randomness . Instead of the random sequence 

T(t ), let us consider a deterministic one 

l t J 11 - dx = 1, ... , k 
(3 .5) 

otherwise 
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where l·Jn is modulo-n operation. In other words, the first k posit ions in a block 

aligned with the length-n source X block are assigned 1, while the remaining n - k 

positions are assigned o. After we apply the first coding step in the original source 

splitting scheme, a partial X sequence is available at the decoder. Such a choice of 

T(t) indeed approximately satisfies the first observation discussed above, regardless 

the exact value of dx ; see Figure 3.2 for an illustration. At this point , the second 

coding step in the original source splitting scheme still can not be directly applied , 

since now there is no explicit source Z to simplify the coding module. 

'vVe can now focus on the second coding step of encoding source Y using a length-n 

block code, where k out of n of the corresponding X source samples are available at 

the decoder, whose positions are unknown to the encoder , but known to t he decoder. 

These k positions of source X samples can be from a single length-n source X coding 

block , or two separate length-n source X coding blocks, which are illustrated in Figure 

3.2(a) and Figure 3.2(b), respectively. 

The following (random) coding scheme for the second step is the key difference 

between the one in [19] and the one proposed in this work. For convenience, let us 

denote the set of positions (indexed) within this length-n block for which source X 

samples are available at the decoder as A , where A ~ {1 ,2, . .. ,n}. Consequently 

the set of the remaining positions within this block is denoted as A C. 

• Random binning: each of yn sequence is uniformly and independently assigned 

to one of 2T1R2 bin indices; 

• Encoding: the encoder sends the bin index of the Y source sequence; 

• Decoding: if the known length- k source X sequence from A is 51-typical, we 

then find a length-n source Y sequence in the corresponding bin , such that the 

following two typicality condit ions hold (i) the length- k vector by collecting the 

Y samples at the positions corresponding to A is jointly 51-typical with the 
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(a) 
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rate (1-p)H(Y)+pH(YIX) 

~ 

I I 

I (i+1 )-th block (i+2)-th block 

1.k samples 3. (n-k) 
encoded at samples 
rate H(X) encoded at 

rate H(XIY) 

(b) 

k samples 
encoded at 
rate H(X) 

Figure 3.2: Illustration of the new scheme without common randomness 

known length- k X sequence, and (ii ) t he length- (n - k) vector by collecting t he 

Y samples at t he positions corresponding to AC is 52-typical by itself. 

In t he above procedure, we have used the (weak) typicality defini t ion in [36] (pp. 

51 and pp . 384-385). It is easier to bound the decoding error if we view a single 

length-n source Y sequence as the combination of a length-k and a lcngth- ( n - k) 

sequence. When both k and n - k are sufficient ly large , it is clear that with high 

probabili ty, t he original source sequence yn indeed satisfy t he two typicality conditions 

with high probability; we shall denote the probability of such error event that a source 

sequence fails one of t he two conditions as P~ . We only need to bound the probability 

t hat another Y sequence is decoded instead of the correct one. By the well-known 
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propert ies of the typical sequences (see [36] pp. 51-53 and pp. 385-387), we see there 

are less than 2 k(fl (Y [X)+20J) length-k source Y sequences that are joint ly 51-typical 

with the known 51-typical length-k source X , and there are less than 2 (n-k)( fl (Y )+o2) 

52- typical length- (n - k) source Y sequences. Thus the decoding error in this step is 

bounded by 

(3. 6) 

where the last term 51 accounts for the error event that the known X sample sequence 

at the decoder is in fact not typical. Thus if we choose sufficient ly small 51 and 52, 

as long as 

n -k k 
R2 > --H(Y ) + -H(Y IX ) ~ (1 - p)H (Y ) + pH(Y IX ), 

n n 

where p = ~, t he decoding error vanishes as n ---t 00 . This solves the second step 

in the source splitting scheme without any common randomness. It should be noted 

that the scheme inherent ly requires both k and n - k to be large . 

For the third coding step , the decoding may have to wait until the next Y block 

is decoded ; see Figure 3. 2(a) for an illustration. Nevertheless, it is not difficult to see 

that the third coding step in the original source splitt ing scheme can be used without 

much change. Thus we only need 

k n-k 
Rl > -H(X) + --H(XIY) ~ pH(X) + (1 - p) H (XIY). (3 .7) 

n n 

where p = ~ . For sufficiently large n, by adjusting k, all rate pair on the dominant 

face of the Slepian-'Wolf rate region can be effectively approached. 

vVe have shown that for a fixed set A, there indeed exists a sequence of codes 

that can approach the Slepian-vVolf limit . However , one key requirement in the A­

S\N problem is that a single code has to guarantee small error probabili ty for all the 
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possible cyclic shifts of A induced by the asynchronism. By refining the probability 

bound for decoding error given above, we can indeed show that such a sequence of 

codes exists . However instead of proving this more technical result here, in Theorem 

3.1 we provide an even stronger and relevant result that linear codes under the same 

source splitting paradigm can achieve the A-SW limit. Appendix A shows the proof 

of this theorem. This serves as a more rigorous proof, as well as the theoretical basis 

for designing t he LDPC codes, which are indeed linear. 

Theorem 3.1. There exists a sequence of linear codes with mte approaching pH(YIX)+ 

(1 - p)H(Y)) indexed by the code length n) with unifOT-mly diminishing error proba­

bility for the above problem of source coding with partial decoder side informat ion fo r 

all cyclic shift s. 

The following two observations are now worth noting. Firstly, the position of T(t ) 

being 1 does not need to be the first k positions. In fact, any pattern can be used 

with k positions assigned 1, as long as the pattern is repeated for all the blocks. More 

specifically, for kin = k'ln' where k' and n' are coprime of each other, we can choose 

T(t) to be a sequence alternating between k' ones, and n' -k' zeros. In the simulations 

given in Section 3.4, this kind of T(t) sequences will always be assumed. Secondly 

the proposed scheme has the advantage that decoding errors do not propagate across 

blocks, because a single encoding (and decoding) step is essentially isolated to two 

consecutive blocks. The overall decoding procedure restarts when the first decoding 

step is used in each cycle. 

3.2.3 Overview of the LDPC Design 

In each step of the proposed source splitting scheme, with a given LDPC code, the 

encoding and decoding procedure is well known (see [13]) , and t hus we only need to 
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focus on finding good codes. The overall code design consists of finding the fo llowing 

three codes. 

1. A lossless code for encoding length-k source X sequences. This is a well under­

stood module, and any good lossless compression algorithm can be used. 

2. An LDPC code of rate approximately pH(Y!X ) + (1 - p)H(Y) to encode the 

length-n source Y block, with length-k source X samples at the decoder, the 

positions of which are unknown to the encoder but known to the decoder. This 

step is discussed in more details in Section 3.3. 

3. An LDPC code of rate approximately H (X !Y ) to encode the rest n - k samples 

in the source X block, with Y block as side information at the decoder. This 

step is similar , and in fact simpler than the second step. Vie also discuss this 

design step using the result of [16] in Section 3.3. 

3.3 Equivalent Channel Model and Code Design 

in the A-SW Setting 

LDPC codes in conjunction with belief propagation has shown extremely good per­

formance in channel coding, which can in fact approach the capacity of many classes 

of channels [31]. The application of LDPC codes to the Slepian-Wolf problem was 

first suggested in [32] and further investigated in [13]. These results on S-SW coding 

mostly focus on the case that the (symmetric) source X and Y can be understood as 

connected by a symmetric channel, and sources with general distribution structure 

were largely overlooked . 

Recently, a link between Slepian-\ iVolf coding and channel coding, referred to 

as source-channel correspondence, has been established in [16]. Through this link , 
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coding for a com er point of the Slepian-Wolf rate region, i. e., the problem of source 

coding with decoder side information , can be transformed to a channel coding problem 

with the same error probability; consequently, given an arbitrary source Y and side 

information X , capacity-achieving LDPC codes for the equivalent channel can be 

designed using existing algorithms, which also approach the Slepian-Wolf limit of the 

source. The proof is briefly reviewed in the appendix B. In this section, we discuss 

the code design problems of step two and step three in our source splitting scheme 

using this link. 

3.3.1 Source Coding With Decoder Side Information 

Vve now briefly review the source-channel correspondence result in [16]. This will 

provide an explicit code design for the third step in the splitting scheme, i. e, encoding 

a block of X samples with the corresponding side information Y block at the decoder. 

For notational simplicity, let us only consider the special setting when the source 

X is in certain finite field , but this requirement is by no means necessary; see [16]. Let 

the two sources in the alphabets (X ,y ) be distributed as QXY, where X is a certain 

finite field and Y = {I, 2, ... , J}. The equivalent channel [16] with input U in the 

alphabet X and output V = [VI, V2] is depicted in Figure 3.3, where VI = U EB X and 

V2 = Y , with the addition EB in the finite field X. Here U is independent of X and 
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u ~ I channel l ·V 

n 
X 

~ 
U ·CD ·V 1 

Y .~ 
2 

Figure 3.3: The equivalent channel for source coding with decoder side information . 

Y . The mutual information between the input U and output V of this channel is 

J(U; V ) H (V) - H (V!U) 

H (U EEl X , Y ) - H (U EEl X, Y!U) 

< H(U EEl X) + H(Y ) - H(X, Y!U) 

< H (U EEl X) + H (Y) - H (X , Y) 

< H (U EEl X) - H (X!Y) 

< log !X ! - H (X!Y) (3 .8) 

It is clear that the capacity of the channel is achieved when U has a uniform distl'i­

bution [16], resulting in 

C = log !X ! - H (X!Y) . (3.9) 
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Moreover , when linear codes are used , the decoding error probability of the channel 

coding problem and that of the source coding with decoder side information problem 

are exactly the same, under maximum likelihook decoder and belief propagation de­

coding. Because we have H(X !Y ) = log !X ! - C , if we can design the LDPC code to 

approach the capacity of this channel, then the same code can be used to approach 

the Slepian-Wolf limit , with the same elTor probability. 

T he density evolution algori thm developed in [33] can be used to design the par­

ity check matrix for a given channel; more precisely, the degree distribut ion of the 

variable nodes and the check nodes in the factor graph [31] can be designed this way. 

An improved density evolut ion based algorithm, called discretized density evolution 

[34], was further developed in order t o reduce the design complexity. Thus given a 

source and its side information structure, we can first transform the problem into 

an equivalent channel coding problem, then use the algorithm in [34] to design good 

LDPC code. This will yield good codes for the original source coding problem. We 

give a design example using this method in Section 3.4. 

3.3.2 Source Coding With Partial Decoder Side Information 

In the previous subsection , we see that the source-channel correspondence result [16] 

can be used to aid the design of LDPC code for the third step in the splitting scheme. 

For t he second step , this method does not directly apply because only a part ial side 

informat ion sequence is available for the length-n source block. 

To apply the source-channel correspondence result [16], an explicit single-letter 

probabili ty structure between t he source and the side information needs to be found. 

For this purpose, we return to the original source splitting scheme with common ran­

domness. As we have discussed , the deterministic sequence T(t) in fact ap proximates 

the effect of the randomized one. Due to this reason , we shall use the split source 
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Z(t) defined in (3 .2) to replace the length-k partial side information sequence, the 

positions of which are unknown to the encoder. 

Now assume the alphabet is given by X = {1 , 2, ... , IXI}, then the joint distribu­

tion QyZ is clearly 

Qyz(Y ,x) = p' Qyx(Y ,x), Qyz(Y,O) = (1 - p) . Qy(y). (3.10) 

With this explicit distribution between the source Y and the side information Z, we 

can now again first apply the transform to the equivalent channel, then use the design 

algorithm in [34] to find good LDPC codes. This is t urned into an almost identical 

design problem as that for the third step , with the only difference being the insertion 

of erasure symbol 0 into the original problem. In Section 3.4, we give a detailed 

example on the design of such codes. 

3.4 D esign Examples and Numerical R esults 

In this section , we give several code design examples and results. We start with the 

third and the second steps in the splitting scheme, then the overall performance is 

discussed. To be more concrete , we focus on the distribution QXY 

0.45 x = 1, Y = 1 

0.05 x= 1,y=2 
QXY(x , y) = (3 .11 ) 

0.09 x = 2, Y = 1 

0.41 x = 2, y = 2, 

however , the design method is general and can be applied on any joint distributions. 

Note that we have chosen the alphabet {1 , 2} instead of the usual binary field {O , 1} 

to be consistent with the discussion in the previous section . This source distribution 
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can not be modeled as a binary symmetric channel and thus using codes designed 

for binary symmetric channels is not suitable. 

3.4.1 Example of Source Coding With Decoder Side Infor-

mation 

vVe first consider the design for the third step in our splitting scheme, i. e., design 

LDPC code to encode X with side information Y based on the equivalent channel 

model shown in Figure 3.3. 

The initial log-likelihood ration (LLR) messages log ;ulVt:~ :vi and their associated 
Uill 'U- v 

probabilities need to be determined in order to apply the discretized density evolution 

(DE) [34] [35] algorithm which is introduced in the appendix C. Using the equivalent 

channel given in Section 3.3.1, it is straightforward to verify that these LLRs and 

associated probabilities are as follows , assuming an all-zero codeword (the calculation 

procedure is shown in the appendix D): 

PU lv (1 lv ) log --'------
Puwo(2I v ) 

log 5 for v = (1,1) with prob. 0.45 

log '~1 for v = (1,2) with prob. 0.05 

log t for v = (2 , 1) with prob. 0.09 

log 451 for v = (2,2) with prob. 0.41 

Several good degree distributions with code rates 0.6 , 0.602 , 0.604, 0.607, 0.609 , 

0. 610, 0.61 2 0.614 are obtained by setting the maximum variable node degree to 

be 20 , 6(el- 1 - el) = 0.001 and 6. /\ = 0.0005 , vvhere 6(el-1 - el) and 6.'\ are the 

parameters involved in the linear programming setting of [35]. As an example. the 
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degree distribution of code rate 0.614 is given below: 

,\(x)=0.213389x + 0.173764x2 + 0.063x3 + 0.063x4 

+0.056087x5 + 0.036943x6 + 0.37x 7 + 0.42x 8 + 0.314816x19 

p( x) =x6 

In the simulation of each code, source sequences of length 108 are generated by the 

joint distribution shown in (3.11). Each sequence is divided into 500 blocks with block 

length n = 2 x 105 bits. Each block is decoded with the belief propagation algorithm, 

for which the number of iteration is limited to 150. The same belief propagation 

algorithm is also used in simulat ions discussed in later sections. 

Figure 3.4 shows the performance of these Slepian-Wolf codes under two testing 

scenarios. In the first test , all the testing source sequences are E-jointly-typical blocks 

with E = 0.001 [36], and in the second test the testing source sequences are randomly 

generated by the joint distribution in (3.11) so that they can be either typical or 

atypical. Apparently, we expect the first test to yield better results than the second 

one, since the codes are specifically designed for the given distribution. In Figure 3.4, 

we see that the gap to the Slepian-Wolf limit of 0.57921 is 0.03 bit in the first test 

and 0.035 bit for the second. These results are comparable to the 0.033 and 0.06 bit 

gap for results on the symmetric sources using the LDPC codes in [13] [14], with 

code length 105 , bit enor rate (BER) less than 10- 5 and similar decoding algorithms; 

recall that the source distribution in (3.11) can not be modeled as connected by a 

symmetric channel , and thus it is expected to be more difficult to code. 
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Figure 3.4: The performances of 8 irregular LDPC codes of length 2 x 105 , with side 

information Y at the decoder. 

3.4.2 Example of Source Coding With Partial Decoder Side 

Information 

VVe now consider the second step in our source splitting scheme, and fo cus on encoding 

for the mid-point on the dominant face of the Slepian-V/olf region , i.e , p = 0.5. We 

need to design code for source Y with the (randomized) partial side information Z 
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at the decoder , whose joint distribution is 

0.27 y = 1, z = 0 

0.225 y = 1, z = 1 

0.045 
Qyz(y, z) = 

y=l,z=2 

0.23 y = 2, z = 0 

0.025 y = 2, Z = 1 

0.205 y = 2, Z = 2 

The initial (LLR) messages and their associated probabilities are as shown below: 

log Puw (1l v) = 
Puw(2Iv) 

log(;i) for v = (1, 0) with prob. 0.27 

log(9) for v = (1, 1) with prob. 0.225 

logC91) for v=( 1,2) with prob. 0.045 

log(;~) for v = (2,0) with prob. 0.23 

log( i) for v = (2, 1) with prob. 0.025 

log(~l) for v = (2,2) with prob. 0.205 

Under the same assumption and the same parameters setting as the previous ex-

ample, we apply the discretized density evolution algorithm [34] [35] , and find several 

LDPC codes of rates 0.806,0.808 , 0.810 , 0.814 , 0.816, respectively. The Slepian-Wolf 

limit is 0.7850, and thus these codes are less than 0.031 bit away from this lower 

bound. As an example, the degree distribution of code rate 0.816 is given below: 

/\(x) = 0.394235x + 0.212846x2 + 0.01lx3 + 0.092328x4 

+0.078893x5 + 0.210698x14 

pCr:)=0 .lx2 + 0.9X 3 
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Figure 3.5: The performances of 6 irregular LDPC codes of length 2 x 105 , with 

partial X side information at the decoder. 

Since p = 0.5 , we can choose the pattern of T(t) to be a sequence alternating 

between one and zero, and subsequently "ve can assume dx = 0 without loss of gen­

erality. By doing so, for a single fixed code, all the odd dy values induce exactly 

the same error probability, and all the even dy values induce exactly the same error 

probability. Thus we only need to perform the simulation for the two cases dy = 0 

and dy = 1. 

The performance of these codes is shown 111 Figure 3.5 , where the code length 
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IS agam 2 x 105 , and source sequences of length 108 are generated by the given 

joint probability without removing the atypical blocks. Results of the same code for 

both dy = 0 and dy = 1 are shown in Table 3.1 , for three different codes with rates 

0.812 , 0.814, 0.816, respectively. It can be seen that for each code the enor probability 

is consistent between the two dy delay values, implying the effectiveness of this coding 

step in the asynchronous setting. 

R2 dy BER 

0.812 0 7.01 x 10- 5 

1 6.12 X 10- 5 

0.814 0 3.13 x 10-5 

1 4.21 X 10-5 

0.816 0 0.98 x 10- 6 

1 1.17 X 10-5 

Table 3.1: Performances of different codes under various dy with p = 0.5. 

3.4.3 Overall Code Performance 

We are now ready to evaluate the overall code performance in the A-S'vV setting. It is 

clear that by using variable-length codes, the first coding step in the source splitting 

scheme can achieve zero error with a negligible rate increase over H(X ) compared 

to the latter two steps , and thus we shall omit the en or probability and assume the 

rate is simply H(X) in the first step when calculating the overall rates and error 

probability. 
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The block length n is fixed at 3 x 105 for all simulat ion in this subsection and as 

such the length of code used in the third step is in fact (1 - P )n. Each source sequence 

of length 3 x 108 is generated , and the error probability is averaged over both X and 

Y sequences, and thus the BER may be smaller than the corresponding ones shown 

in Table. 3.1 . 

For p = ~ , in order to drive the overall error probability smaller , we choose a 

slightly larger rate in the third coding step than the ones given in Section 3.4.1. vVe 

again assume d.1: = 0, and recall for this case we only need to t est the cases dy = 0 

and dy = 1. Using the same design method we also find codes for the rate pairs 

associated with time sharing parameter p = ~ and p = ~ , respectively. The resulting 

performances of these codes are summarized in Table 3.3 , where we again assumed 

dx = O. The degree distributions in the second encoding step (rate 0.8902) and the 

third encoding step (rate 0.6185) for the case p = ~ are: 

and 

/\ (X) = 0.480869x + 0.206888x2 + 0.010614x 3 

+0 .070857x4 + 0.094407x5 + 0.136366x14 

p(x)=0.75x2 + 0.25x3 

A(X) = 0.213124x + 0.170764x2 + 0.06X3 + 0.06X4 

+0.053352x5 + 0.039944x6 + 0.4X7 + 0.45x8 + 0.317816x 19 

p( x) = x6. 

The degree distributions in the second encoding step (rate 0.746) and the third 

encoding step (rate 0.623) for the case p = ~ are: 

A(X) = 0.356665x + 0. 248526x2 + 0.028x3 + 0.027575x4 

+0.173207x5 + 0.0286 11 x6 + 0.072795x 15 + 0.064621 x 16 

3 4 p(x)=O .7x +0.3J;. 
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and 

>.( x) = 0.212855x + 0.167764x2 + 0.057x3 + 0.057x4 

+0.050621 x 5 + 0.042944x6 + 0.43x 7 + 0.48x8 + 0.320816x 19 

p(x) =x6 

Encoding rates in step 1, 2, 3 dy BER 

0.5 , 0.8 12 , 0.311 (p = 1/ 2) 0 3.61 x 10- 5 

1 3.21 X 10- 5 

0.5 , 0.814, 0.311 (p = 1/ 2) 0 l.72 x 10- 5 

1 2.26 X 10- 5 

0.5 , 0. 816, 0.311 (p = 1/ 2) 0 6.41 x 10- 6 

1 7.35 X 10- 6 

0.33, 0. 8902 , 0.412 (p = 1/3 ) 0 9.79 x 10- 6 

1 l.00 X 10- 5 

2 1.01 X 10- 5 

0.67, 0.746, 0.208 (p = 2/3) 0 2.81 x 10- 6 

1 4. 83 X 10- 6 

2 2. 87 X 10- 6 

Table 3.2: Overall code performance operating under different ely for , p = 1/ 2, p = 1/ 3 

and p = 2/3, respectively. 

To quantify the coding efficiency without the asynchronous requirement , we in­

clude the performances for dy = 0 in Table 3.2. The desired rate pair on the domi­

nant face of the Slepian-';\101f region is shown together with the actual code rate pair 

(Rl' R2 ) from the design in Table 3.3. The average BER is kept below 10- 5 and the 

gap is measured in terms of the Euclidean distance. These results are roughly on t he 
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same order as the best known designs [37] for symmetric sources to achieve general 

S-SW rate pairs, where by using IRA code with block length 105 , a gap of 0.039 to 

the Slepian-Wolf limit is reported. Thus the design proposed in this work can achieve 

satisfactory performance in the S-SW setting, even it is in fact designed for the more 

general A-SW setting. 

p Target rates Actual rates Gap BER 

1 (0 .7195 , 0.8551) (0.7457, 0. 8902) 0.044 6.88 x 10- 6 
3 

1 (0 .7896 , 0.7850) (0.8108, 0.8162) 0.038 9.96 x 10- 6 
2 

2 (0 .8597, 0.7148) (0.8743, 0.7460) 0.034 3.50 x 10- 6 
3 

Table 3.3: Results in terms of distance to the Slepian-Wolf limit. 
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Chapter 4 

Lossy Source Coding for General 

Source Using LDG M Codes 

Inspired by the success of LDPC codes and belief propagation algorithm in ap­

proaching the Shannon capacity, similar techniques have been proposed for lossy 

source coding. In particular , LDGM codes in conjunction with variants of message­

passing algorithms have shown the potential to approach t he rate-distortion bound 

[21, 22 , 23 , 24 , 25 , 26 , 27]. In this Chapter, we propose a multi-level coding scheme 

based on LDGM codes and SP algorithm. This scheme works for the lossy source 

coding problem with arbitrary source distribution and distortion measure. 

4.1 Extend the Existing Method to Non-uniform 

Sources 

All recent researches of lossy source coding are almost exclusively focused on uniformly 

distributed sources. It is worth not ing that the extension to sources with general 

distributions is not straightforward. Indeed , the existing LDGM codes based methods, 
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when directly applied to non-uniform sources , often incur significant performance 

degradation. Figure 4.1 plots the rate-distortion bound for a binary source with the 

Hamming distortion measure as well as the empirical rate-distortion curve achieved 

by the algorithm given in [22]. It is easy to see from Figure 4.1 (b) that the gap 

between the two curves is quite significant . The simulation results indicate that the 

gap gets larger as the source distribution becomes more biased. 

- R(O) .. Empincal dlslortlon 

08 .. 
07 .. 

oo 06 .. 
05 ... 

04 .. 
03 .. 
0.2 

0 005 01 015 02 025 

(a) Px (0) =0.5 

.. Empirical distortion 
09 .. -R(O) 

08 .. 
07 .. 
06 .. 

Il: 05 

0.4 

03 

02 

0. 1 ~~ 
0 

0 002 004 006 OOS 01 012 014 016 018 02 

(b) Px (0)=0.2 

Figure 4.1: Performance degradation for non-uniform sources . 

The gap bet-ween the empirical performance and the theoretical limit can be 
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roughly explained as follows. Given a source distribution Px on X and a distor­

tion measure dC, .) : X x X ---+ [0, dmax ], the rate-distortion function is given by 

(4.1 ) 

where the minimization is over all possible test channels P XIX subject to the constraint 

JEd(X,X) ::; D. Let P; lx be the test channel that achieves the minimum in (4. 1) 

and P; be the output distribution induced by Px and P;lx' The rate-distortion 

theory indicates that to achieve the rate-distortion bound, one has to use a codebook 

whose dominant codeword type is approximately P;. Note that except for certain 

special cases (say, uniform sources with the Hamming distortion measure) , P; is 

not a uniform distribution. In contrast, for most commonly used random linear 

code ensembles, the maximum of the expected weight enumerator is at the point 

corresponding to the uniform distribution. The mismatch between the optimal output 

distribution and the dominant weight of linear codes suggests that linear codes are 

in general suboptimal for lossy source coding in terms of rate-distortion tradeoff. 

To circumvent the aforementioned problem while sti ll maintaining the linear code 

structure, we propose a multilevel coding scheme, which is based on the idea of 

approximating the optimal output distribution P; by a uniform distribution over a 

(possibly) larger alphabet [28] . 

4.2 Multilevel Ceo ding 

4.2.1 Basic Coding Scheme 

The key idea of our proposed schemes is to approximate the optimal output distri­

bution P; by a uniform distribution over a (possibly) larger alphabet [28] . Sup­

pose the source symbol X is a random variable over G F( q) with distribution Px 
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and the optimal output distribution optimized by the rate distortion function is 

P *-' (0) = no P*-' (1) = nJ ... P*-' (q - 1) = n,,-:-J Since the denominators of the x 2" X 2' , , X 2' . , 

optimal output distribution is 2i, we construct i independent, uniformly distributed 

binary random variables Y1 , Y2 , ... , Ii. Then we define a deterministic mapping 

f : GPi( 2) ---7 GF(q) such that f(Y1 , Y2 ,··. , Ii) = 0 if the decimal value of the binary 

expression YIY2 · . · Yi is less than or equal to no , and f(Yl , Y2, ... , Ii) = k if the deci­

mal value of the binary expression YlY2 ... Yi is greater than =~:~ nj but less than or 

equal to =~=o nj, where 1 ::; k ::; q - 1. Let X = f(Yl ", , , Ii). It is clear that the 

induced distribution of source reconstruction X is exactly the optimal output distri­

bution. Now associate Yl , Y2 , ... , Ii with i linear codes Cl , C2 , .. . , Ci respectively, 

Since Yl , Y2 , . .. , }'i are uniformly distributed , the dominant type of codewords (uni­

form distribution) in all linear codes can get efficiently used . Apparently, the role of 

the deterministic mapping fe) is to convert a mismatched codebook to a codebook 

whose dominant type is consistent with the optimal output distribution. 

The multilevel coding scheme based on the previous discussed idea [39] can be 

described as follows. Suppose we approximate the optimal output distribution by the 

uniform distribution over GFi (2) through a deterministic mapping. In this scheme, 

we construct i LDGIVI codes with the same length n . The rate for each code can 

be arbitrary as long as the sum-rate equals the desired code rate. In the factor 

graph representation, each LDGl\Il code has the same number of check nodes and 

a certain number of variable nodes. We also introduce a new kind of nodes called 

network nodes to establish links among different LDGM codes by performing the 

deterministic mapping. The number of network nodes is equal to the code length m. 

Each network node is connected to i corresponding check nodes of the same index, 

The idea is illustrated in Figure 4.2. In this example, a binary output distribution 

Pi( with p .. :·dO) = 0.25 is approximated by two uniformly distributed binary random 

variables Yl , Y2. 
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Source Nodes 
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Check Nodes 

Variable Nodes 
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(a) Code const ruct ion 
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---I.~ 0 

• 1 
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Figure 4.2: Approximating a binary output distribution with Px(O) = 0.25 by two 

uniformly distributed binary random variables. 

4.2.2 A More Generalized Coding Scheme 

In the aforementioned coding scheme, we have i LDGM codes with length m each , 

and all the codes are separated from each other in the message-passing routines. 

To achieve the best performance, we have to optimize the rate allocation among 

different linear codes, which is not an easy job. Moreover , i LDGM codes need to be 

generated and encoding over i separate LDGM codes is more complex. An alternat ive 

approach is to use a single linear code of extended length which can overcome the 

above difficulties. The underlying idea, i.e., approximating the non-uniform output 

distribution by a uniform distribution through deterministic mapping, remains the 

same. 

In this scheme, instead of constructing i LDGM codes wit h same code length n to 

represent Y1 , Y2 , ... , Yi respectively, we construct one LDGM code of length i x nand 

t he code rate equal to RdesiTe/i where RdesiTe is the number of the bits used to store 

the compressed source data divided by the number of the source bits. In the factor 

graph representation , we divide all the check nodes into i groups with n consecutive 

check nodes in each group. Network node k (k ::; n) connects to source node k and 

the k-th check nodes in each of i groups. The reconstructed symbol will be obtained 
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at the network node by mapping the adj acent check nodes based on the optimal 

output distribution. Since variable nodes are used to store the compressed bits, the 

information rate equals to the number of variable nodes, i x n x R desire/i = n x R desire, 

divided by the number of source nodes, n , which is still Rdesir e' 

Figure 4.3 shows an example of the new scheme with i = 2. Here we use a single 

LDGM code with twice the length of the source sequence. Although the rate of this 

LDGM code is one half of the desired rate, the actua1 rate of this encoding scheme is 

still the desired rate. The deterministic mapping is the same as the example shown 

in Figure 4.2. 

Source Nodes 

Network Nodes 

Figure 4.3: Using a single LDGM code of extended length. 

Actually, this new coding scheme can be viewed as a generalization of the previous 

one. This generalization not only simplifies the code construction, but also improves 

t he performance. Simulation results show that the coding scheme using single LDGlVI 

code of extended length always outperforms the coding scheme using multiple LDGM 

codes [39]. T herefore. in the fo llowing sections of this paper, we only discuss the 

generalized coding scheme. 
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4 .2.3 Finding the Optimal Output Distribution 

As we discussed above , the deterministic mapping is defin ed according to the optimal 

output distribution P~ , which can be calculated as fo llows. Given the rate-distortion 

theorem 

R(D) = min J(X ; X) 
P~~ I X 

(4.2) 

we minimize J(X ; X ) over all possible test channels Px1x subj ect to the constraints 

JE d(X , X) ::::; D and P~ must be a multiple of -ft . T he second const raint is introduced 

because we use i binary random variables to approximate the P~. After the optimal 

Px 1x is found , P~ is induced by Px and Px1x ' Apparently, Px1x varies at different 

distortion requirements which results in different code rates . T he optimal distribu­

tions of three different sources and distortion measures are calculated and shown in 

the fo llowing section. 

4.3 Message Passing Algorithm 

After constructing the factor graph , the remaining problem is to find an efficient 

algorithm to map the source sequences to the codewords. To solve this problem , 

we propose a message-passing algorithm, which is inspired by the powerful survey 

propagation algorithm [29 , 30] . 

Let the check nodes and variable nodes be denoted as {C 1 , C2 , .. . } and {Vi , V2 , . . . }. 

Assume the source sequence is {Xl , X2 , . . . } and each source symbol is drawn from 

the source alphabet X = {O, 1,' " ,(1 ,1'1 - I )} by a given distribut ion. Denote the 

source nodes and the network nodes by {Sl , S2 , . .. } and {Nl ' N2, . . . } respectively. 

The source nodes store the source sequence that need to be compressed and the out­

pu t sequence X " \-\'ill be constructed at the network nodes by mapping the values of 
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adj acent check nodes . Let Ac( k) be the set of check nodes connected to the variable 

node k and B v (j) be the set of variable nodes connected to the check node j . The 

messages from the variable node k to check node j consists of three components: 

MP, C ' i\!I \!jl c . and M\~ -4C' denoting the probabilities that vari able node k forces 
Vk---+ J k--+ J k J 

check node j to be 0, 1 or free state respectively. The message from the check node j 

to variable node k also consists of three components: MSj -4 \fk ' M6j -4 \fk and MCj -4\fk 

denoting the probabilities that check node j forces variable node k to be 0, 1 or free 

state respectively. The message from source node l to the network node l consists of 

IX I components: NI~l' Ml l, . . . M~~XI- l ) denoting the probabilities that source node l 

forces network node l to be 0, 1, .. . ,( IX I-1) respectively. The message from network 

node 1 to the l-th check node in q-th group consists of two components: AI~q and 
1 

M~q denoting the probabilities that network node l forces l-th check node in q-th 
1 

group to be 0, 1 respectively. 

The message-passing routine runs as follows: 

Step 1. Each check node sends message to the adj acent variable nodes and net­

work node. The init ial message sent in the first iteration is (0.5 , 0. 5, 0). 

Step 2. Each network node and variable node calculate the message to be passed 

to the adj acent check nodes based on the message they received , then send t he mes­

sage back to the check nodes . 

Step 3. Check nodes receive the messages from network nodes and variable nodes. 

Calculate the new message to be sent out and check whether this new message con­

verge with the message sent in the previous iteration or not . If the messages converge 

at all check nodes or the number of iteration reaches the maximum value (i. e. 100) , 

then go to step 4. otherwise go to step 1. 
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Step 4. Calculate the marginal distribution (using the message equations from 

variable node to check node but without the exclusion of Cj in Ac(k) in the prod­

uct operation) of each variable node. Find those variable nodes whose bias value is 

greater than a certain threshold (i.e . IP(O) - P(l)1 is greater than a certain value) 

and fix the value of these variables accordingly. If there is no variable node whose 

bias value is greater than the threshold then we fix the value of the variable node 

whose bias value is the largest. 

Step 5. Remove the variable nodes whose value are fixed from the factor graph. 

Check whether all the variable nodes are fixed or not, if all the variable nodes are 

fixed then go to step 6, otherwise go to step l. 

Step 6. Calculate the value of each check node ("XOR" of all the adjacent vari­

able node values). At each network node, construct the decoded symbol using the 

adjacent check node values according to the deterministic mapping. 

The message calculation equations of variable nodes and check nodes are shown in 

Figure 4.4. The message vector in any direction on any edge needs to be normalized 

so that the sum is equal to one since it represents the probability. c is the value of 

check node Cj ("XOR" of all the adjacent variable nodes value) . 6 and WS Oll are the 

parameters that can be adjusted. 

However , the equations for messages from source nodes to network nodes depend 

on the source alphabet size , number of check node groups i and the specific determin-

istic mapping being used. The messages passed from network node l to its adjacent 

check nodes consist two components , M~i and J./[~i that represent the probabilities 
I I 

of the network node l force the destination check node to be 0 or 1, respectively. 

These two components are calculated by marginalizing the probability of the l-th 

44 



M.A.Sc: Zhibin Sun l\/lcMaster - Electrical and Computer Engineering 

Variable node to check node 

M~,~c, = II (1 - Mb,~ v,.) - II (1 - Mb,~v, - Mg,~ v,) 
lEA,,(h:)\{C,} lEAcU:)\{CJ } 

M0k~C, = II (1 - Mg,~vJ - II (1 - Mb,~ v, - Mg,~v,.) 
lEA,,(k)\{Cj } IE A ,Jk)\{Cj } 

M~,._c, = II (1 - !vIb,---> Vk - Mg,--->v.) 
lEA,(k)\{CJ } 

Check node Lo vari a ble node 

MgJ~v, = ~ [(M~'--->Cj + Mfv,--->c) II (M~~cj + M~~c) 
- l EBv(j)\{ Vd 

+ (M~,--->cJ - Mfv,--->c) II ( JI,1~ --->cJ - M~ --->c)] 
lEB.,(j)\ {vd 

Mbj _v, = ~ [(M~'~Cj + Mfv,--->c) II (M~ ~Cj + M0,~c) 
l EBv(j)\ {Vd 

- (M~,~cj - Mfv,--->cj ) II (M~ --->Cj - M~ _cj ) ] 
l EB .,(i)\{ Vd 

Check node to network node 

MgJ- N , = ~ [ II (M~,~cJ + 1\I[0,_c) + II (M~,~CJ - M0,--->c)] 
- I.EB.,(j) lEB,,(j) 

(4.3) 

(4.4) 

MbJ--->N i = ~ [ II (M~,_Cj + M0,--->c) - II (M~,--->cJ - 1\I[0,~c)] (4. 5) 
- lEBv(j) I.EB.,(j) 

MC_N = 1 - lIIg--->N - Mb--->N 
J t J 1. J t 

*If a ll Vl E Bv(j) a re Rxed , t hen 

MgJ _ N , = [(1 - c) exp(c5) + cexp ( -c5)]/(exp(c5) + exp ( -c5) + Wsou ) 

MbJ ~N, = [cexp(c5) + (1 - c) exp( -c5)]/(exp (c5) + exp ( -c5) + W SOl£) 

MCj--->Ni = Hlsou/(ex p(c5 ) +exp(- c5 ) + Hlsou) 

Figure 4.4: Survey propagation equations of check node and variable node. 
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Source node to network node 

I\lJ~, = exp(-y)/(exp(-y) + L am exp( -,)) 
mEX:m#x/ 

(4. 7) 
M~, = 0'1,; exp( -,)/(exp(-y) + L am exp( -,)) 

mEX:m#x, 

Network node to check node 

i 

M~" = L (M~, IT MY'" ) , Ct--+I'h 
(Y j , .. ,Y;):Y,,=O m=l:m#q 

i 
(4 .8) 

M~,,= , L (M~, IT MY'" ) 
C/'t--+NI. k = f(Y], ... , Y,:) 

(Y j , .. ,Y;):Y,,=l m= l :m#q 

Figure 4.5: survey propagation equations of source node and network node. 

check node being 0 or 1 in i-th group given the message from l-th source node and 

the messages from l-th check node in other groups that are also connected to network 

node l. The marginalization can be done by traversing all the deterministic mapping 

cases. Therefore, the equations of these two messages vary from case to case. The 

general forms of calculation equations are shown in Figure 4.5. The message vector 

also needs to be normalized for the same reason as the equations in Figure 4.4. Ctk 

and r are the parameters that control the strength of the impact of source symbols on 

the reconstructed symbols at network nodes, and they need to be adjusted in order to 

keep good performance of the algorithm at different coding rates. Xl is the l-th source 

symbol and k EX. f(Y1 , ' " ,Ii) is the deterministic mapping function of i binary 

random variable and Ym is the value of rn-th random variable. N1cY;;>; ' T denotes the 
I -->"1 

probability that the value of l-th check node in the rn-th group to be Ym . 

To verify the effectiveness of the proposed multilevel coding scheme and the mes­

sage passing algorithm for different sources and distortion measures , we consider the 

following three cases: non-uniform binary source with hamming distance, uniform 

ternary source with hamming distance and uniform ternary source with non-hamming 
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distance. 

4.3.1 Non-Uniform Binary Source with Hamming Distance 

Given a non-uniform binary source X = {O, 1} and we want to approximate it with 

i uniform binary random variables. The distortion is measured using the hamming 

distance, i.e. the distance between two bits is 0 if they are identical and 1 otherwise. 

Based on the general form equation (Eq. (4.7)), the message from source node 1 to 

network node 1 are derived and shown as follows: 

M~I (( 1 - Xl) exp(r) + aXI exp( -,)) /( exp(r) + a exp( -,) + Wsou ) 

NIll (Xl exp(r) + a( l - Xl) exp( - , ) )/( exp(r) + a exp( -,) + W sou ) 

where Xl is the I-t h source symbol. , and a are the control parameters that can be 

adjusted . 

We consider the binary source with distribution Px(O) = 0.25 , and use 4 binary 

variables to approximate the output distribution. Apply Eq. (4.2) , we find the 

optimal output distributions P~ among different rate regions and show them in Table 

4.1. Suppose the encoding rate is chosen to be 0.4 bit /symbol , according to Table.4.1 , 

the optimal output distribution is P~(O) = 136 and P~(l) = ~~. The deterministic 

mapping is shown in Figure 4.6. 

The messages from network node 1 to t he I-th check node in i-th group are com­

posed of two probabili ties denoted as (MNO i, j\1N1 i) ' (MeOi~N' M el i \1) denotes the 
1 I I I I---;} l 

message from the l-th check node in i-th group to network node I. The message from 

source node 1 to network node 1 is (M~I' M},J The message passed from the 1-th 

network node to t he adjacent check node in i-th group is calculated based on t he 

deterministic mapping. According to Eq. (4.8) and Figure 4.6 , the message passed 

from the I- t h network node to the I-th check node in 1st group is derived by setting 
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Rate region ( P; (0) , P; ( 1 ) ) 

0.479 - 1.000 (4 12) 
16 ' 16 

0.228 - 0.478 (3 13) 
16 ' 16 

0.096 - 0.227 (2 14) 
16 ' 16 

0.000 - 0.095 ( 1 15 ) 
16 ' 16 

Table 4.1: The optimal output distribution P; at different rates for a non-uniform 

binary source with P(O) = 0.25. 

q = 1 and i = 4. Eq. (4.9) shows the explicit form of this message , where M~l and 
I 

.fI1[~l need to be normalized after calculation . 
I 
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Figure 4.6: The deterministic mapping for optima.! output distribution P;(O) 

and P;(l ) = ~~. 

JVINOj =JV1sO x M e02 N x i\l1e03 N x M e04 N +NI~ x M e02 N x NIe03 'T x Mel 4 N 
I 1 1--> I 1 --> I. 1--> 1 I 1--> I l-->nl 1--> I 

.l 
16 

+ M~ x M eo 2 N X JI/[e13 N x M eo 4 N + M J x ivleo 2 N X M e13 N x M el 4 N 
I 1--> 1 1--> I (--> I I 1--> I 1--> I 1--> I 

+ N1J1 X Mbl-->Nl X N1gf-->Nl X N1gt-->N1 + MJ1 X Mb1-->Nl X A1gf -->Nl X M bt--+Nl 

+ NIsI x M e12 N x M e13 N x N1eo 4 N + NIJ X N1e12 'T x A1eI 3 v x Mel 4 N 
I I --> I 1 --> I I --> I I. 1-->"1 1 -->J I I --> I 

l\1 ~T l = M SI X M e02 'T x Me03 N x M e04 N + MJ X M e02 N x M e03 N x M e14 N 
"1 I I-->nl 1 --> I 1--> 1 I 1--> I 1--> I 1--> I 

+ M J1 X M g1-->N1 X l\1bf -->Nl X M g1i-->Nl + M J1 X M g1-->N1 X M br-->Nl x Mbt-->Nl 

+ M ll X JU b1-->NI X M gP-->Nl 

+ M J X l\Ie1 2 N x M e13 N 
I 1--> I 1--> I 

(4.9 ) 
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4.3.2 Uniform Ternary Source with Hamming Distance 

Given a ternary source X = {O, 1, 2} with uniform distribution Px(O) = Px (1) 

Px (2) = ~, we want to approximate the output distribution with i binary random 

variables. The distortion is measured using the hamming distance , i.e. the distance 

between two symbol is 0 if they are identical and 1 otherwise. Since source alphabet is 

ternary (I X I = 3), the message passed from source node l to network node l has three 

components: M~l ' NI~1 and Mll· Based on Eq. (4.7), we set ak = a if k =1= Xl because 

the distances from Xl to any value of k are the same, then the message equations from 

source node l to network node l are derived as follows: 

M~l exph)/(exph) + 2a exp( - I )), k = Xl 

M~l a exp( -,)/(exph) + 2a exp( - I)), k =1= Xl 

where Xl is the l-th source symbol. , and a are the control parameters that can be 

adjusted . 

Note that , since the input is uniformly distributed , according to the rate distortion 

function , the optimal output is also uniformly distributed for any rate. This implies 

that we need to map i binary random variables to one ternary variable uniformly, 

which is apparently not possible. Therefore , we have to approximate the uniform 

ternary distribution. For example, suppose we use 4 random variables to approximate. 

We map the first 5 combinations to X = 0, the next 5 combinations to X = 1 and 

the rest 6 combinations to X = 2. We denote this mapping as (5 ,5,6) and it is 

shown in Figure 4.7. The massage sent from network node l to the l-th check node 

in i-th group is calculated by finding the marginal distribution of Yi based on the 

deterministic mapping. According to Eq. (4.8)and Figure 4.7, the message passed 

from the l-th network node to the l-th check node in 1st group is derived by setting 

q = 1 and i = 4. Eq. (4. 10) shovvs the explicit form of this message , where M~l and 
I 

j111~1 need to be normalized after calculation. 
I 
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Y1 Y2 YJ ~ X 
0 0 0 0 

} 
0 0 0 

0 0 0 0 
0 0 

a 0 0 

a a 

} 
0 0 

a 
0 0 

0 0 

0 

) 
0 

0 0 
2 

0 

0 

Figure 4.7: The deterministic mapping for optimal output distribution P.-k(O) ~ 
16 ' 

P.-k(1) = 156 and P.-k(2) = 166' 

+ Mso X JVIeo2 N x M el 3 N 
, , ...... 1 I ...... 1 x Meo 4 1\' + M2 x Meo 2 N X Mel 3 N X Mel 4 N , ...... 1 , , ...... 1 I ...... 1 I ...... 1 

+ iVIso X M el 2 N x Meo3 N 
, , ...... 1 I ...... 1 X Meo 4 N + M~ X Mel 2 N X Meo] N X Mel 4 N 

I ...... 1 1 1 --> , I...... , I...... 1 

+ M~ X iVIe12 N x Mel ] N x iVIeo4 1\' + M~ X Me12 N x Me13 N x Me14 N 1 I...... , ,--> 1 I...... , 1 ,...... , ,...... , I...... 1 

iVINl 1 =J..!Sl X j\Ieo 2 N X Meo] N X Meo 4 N + Msl X iVIeo 2 N X Meo 3 N X Mel 4 N 
1 1 , ...... 1 I ...... 1 I ...... 1 , I ...... , I ...... 1 I ...... 1 

+ lIf~, x Meo 2 N X Mel 3 N X Meo 4 N + M~ x Meo 2 1"1 X Mel 3 N X iVIe14 N 
l. ~ l l-----+- l l~ I I [---'I- I l---'io { l----4 l 

+ lIf~, X life 1 2 N X lIfeo 3 N X Meo 4 N + M~ X NIe1 2 N X Meo 3 N X Mel 4 N 
I ...... 1 I ...... 1 I ...... 1 1 I ...... 1 I ...... 1 I ...... 1 

(4.10) 
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4.3.3 Uniform Ternary Source with Non-Hamming Distance 

Given a ternary source X = {O , 1, 2} with uniform distribution Px(O) = Px(l) = 

Px(2) = ~, we want to approximate the output distribution with i binary random 

variables. The distortion is measured using a non-hamming distance which is the 

absolute value of the symbol difference. Precisely, the distance is 0 if two symbols are 

identical , the distance between 0 and 1 is 1, and the distance between 0 and 2 is 2. 

Since only the distortion measure is changed from the ternary hamming case, the 

messages passed from source node to network node still contains three components: 

.M~l ' j\!IJt and M§t ' but with different the message equations. Based on Eq. (4.7), we 

let exk be ex and (3 if the distance between k and Xl is 1 and 2 respectively, such that ex 

and (3 control the different impact of the source symbol on the reconstructed symbol 

at the network node to be distance 1 apart and distance 2 apart. Since we encourage 

the reconstructed value having small distortion with the source value , ex is always set 

to be larger than (3. The message equations are derived and shown as follows: 

M~l expb)/(expb) + (ex + (3) exp( -,,)) , k = Xl 

NI~1 exexp(- ,,)/(expb)+ (ex + (3) exp(-,, )) , Ik-Xli = 1 

M~, (3 exp( - ,,)/(expb) + (ex + (3) exp( - ,, )) , Ik - xII = 2 

where X l is the l-th source symbol. " , ex and (3 are the control parameters that can 

be adjusted. 

VVe use 4 binary variables to approximate the output distribution. Apply Eq. 

(4.2) , we found the optimal output distributions P; among different rate regions and 

shown in Table 4.2. 

Suppose the encoding rate is chosen to be 0.4 bit / symbol , according to Table 4.2, 

the optimal output distribution is P;(O) = 1~ ' P;(l) = 186 and P;(2) = 146' The 

deterministic mapping is shown in Figure 4.8 . The massage sent from network node 
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rate region (JJ;(0) ,JJ;(1) ,JJ;(2)) 

0.43 - 1.58 (5 6 5) 
16 ' 16' 16 

0.22 - 0.43 (4 8 4) 
16 ' 16 ' 16 

0.13 - 0.22 (3103) 
16' 16' 16 

o - 0.13 (2 12 2) 
16 ' 16 ' 16 

Table 4.2: The optimal output distribution JJ; along the rate distortion curve 

to the adjacent check node in i-th group is calculated based on the deterministic 

mapping using the similar marginalizing method in the previous two cases. According 

to Eq. (4.8) and Figure 4.8 , the message passed from the l-th network node to the 

l-th check node in 1st group is derived by setting q = 1 and i = 4. Eq. (4. 11) shows 

the explicit form of this message, where NI~l and 1I1~1 need to be normalized after 
I. 1 

calculation. 

+ 1115° X Me02 N x Me13 N x Me04 N + Mso X Me02 1\T x 1I1el3 N x Mel 4 N 
1 {-4{ {-4 { { -4{ { 1. -4 1. {-4 { { -4{ 

+ Ml x Meo 2 N X Mel l N x Meo 4 N + Ml x Meo 2 N X 1I1el3 N x Mel 4 1\T 
1 {~I {~I {-4{ { 1-41 {-41 {-4{ 

+ M~I X jllel 2-->N x Meo 3 N x Nleo 4 N + M~ X Me12 N x Meo 3 N X Mel 4 1\T 
II {-4{ {-4{ I ,-41 ,-41 ,-41 

+ M~ X Mel 2 1\T X Mel 3 N X Meo 4 1\T + NI~ X Mel 2 N X Mel 3 N X Mel" N 
I I ----" l I ---40 l I ---+ l I I -4- l I ---+ l l ---+ I 

(4.11 ) 
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Figure 4.8: The deterministic mapping for optimal output distribution P;(O) 4 

16 ' 

P; (1) = 186 and P; (2) = 1~' 
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4.4 Simulation Result 

We examined the performance of the multilevel coding scheme for the three cases 

described in the previous section . The algorithms are implemented in C. The de­

gree distribution of LDGM codes are obtained from the LPDCopt website [40] and 

optimized for the AWG N channel. 

The simulation results are shown in Figure 4.9 ,4. 10,4. 11. vVe test the performances 

of the LDGM codes with our encoding algorithm under two different setting of block 

length, 1000 and 10000 respectively. The optimal output distribution is approximated 

using 4 random variables. Therefore, the length of the LDGM codes used in all the test 

cases is 4000 or 40000. The damping method is used in the message passing algorithm 

if the messages do not converge after 30 iterations. The decimation threshold is 

set to 0.9 and the number of iteration is 100 used in the encoding algorithm. For 

each simulation case 1000 source sequences are tested , and the simulation result are 

obtained by averaging over these 1000 source sequences . The resulting distortions 

are close to the theoretical lower bound in all these three cases, thus , validate our 

encoding scheme. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

In this thesis, we have briefly discussed LDPC and LDGl\II codes as well as their asso­

ciated message passing a1gorithms. After that we present the applications of these two 

kinds of codes in two source coding problems. First, we introduced a new information­

theoretic scheme based on source splitting for the asynchronous Slepian-\lVolf problem. 

Combined with the source-channel correspondence result , the proposed LDPC design 

leads to promising performance which is validated by simulations. The advantage of 

the proposed method is that it does not require common randomness and super-letter 

construction, and it can utilize existing code design results for the corner points of 

S-SVI problem. Second, we introduce a new multilevel coding scheme and message 

passing algorithm using LDGiVl codes based on the idea of approximating the optimal 

output distribution indicated by the rate-distortion theory with a uniform distribu­

tion over a (possibly) larger alphabet . The simulation results show the advantage of 

this proposed scheme; specifically, we can approach the rate-distortion bound closely 

even if the source alphabet is non-binary and the distribution is non-uniform. This 
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can not be accomplished using the previous LDGM codes based algorithm. 

5.2 Future Work 

Following this thesis, we can extend our work along several directions. vVhenever an 

implementation contains any of two aforementioned problems as a building block, our 

coding scheme and codes design method can be directly applied. For example, our 

works can be extended in the implementat ion of Wyner-Ziv coding problem which is a 

problem of lossy source coding with side information. The optimal coding scheme for 

vVyner-Ziv problem is that doing the quantization (lossy source coding) of the source 

and side information firstly and doing the lossless coding of the quantized source 

with the quantized side information (Slepian-Wolf coding) secondly. Therefore, by 

combining our presented two applications in this thesis, we can implement the Wyner­

Ziv coding for arbitrary sources. Moreover, following the same way, we also can 

implement the Berger-Tung coding problem in which we consider lossy source coding 

of correlated sources. 

60 



Appendix A 

Proof of the sufficiency of linear 

codes in the A-SW setting 

In this appendix , we prove the sufficiency of linear codes in the A-SIN setting. Since 

the sufficiency for t he first and third steps is well known, we only need to focus on 

the second step, more precisely as follows: encoding a length-n source Y sequence, 

where k = np out of n of t he corresponding X side information samples are available 

at the decoder, whose positions (the non-erased pattern within a block due to shifts 

of a given T( t)) are unknown to t he encoder , but known to the decoder. vVe have the 

following theorem. 

Theorem A.I. There exists a sequence of linear codes with rate approaching pH (YIX)+ 

(1 - p)H(Y), indexed by the code length n, with uniformly diminishing error proba­

bility for the above problem of source coding with partial decoder side 'information for 

all cyclic shifts. 

vVe prove this theorem using the method of types [8], and particularly the tech­

niques in [38]. The type of a sequence x" E X" is t he distribution Px on X by 

6 1 
Px(a) = - N(alx '1 ) for every a E X , 

n 
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where N(alxn) is the number of occurrences of symbol a in the sequence xn . Denote 

the set of types for length-n sequences in the alphabet X as Pn( X). The set of length­

n sequences of type P will be denoted as Tp. Similar concepts can be defined for 

conditional types , but are omitted here for brevity. We need the following elementary 

results in [8]. 

Lemma A.I. The number of d~fferent types of sequences in xn is less than (n+ 1)1<1:'1, 

i.e. , IPn(X )1 ::; (n + 1) IXI . 

Lemma A.2. For any type Px of sequences in x n, I T~~\, I ::; 2nJ-J(Px ). Similarly, for 

any conditional type Py1X of sequences in y n, ITpyl)xn)1 ::; 2nJ-J(Py1x ) for any xn 

of the consistent type. Here we use the notation H (PYlx) to denote the conditional 

entropy of the given joint type. 

Let Q be an arbitrary distribution on X and Qn be the corresponding product 

distribution on x n. We have the following simple identity [38], 

(A.l) 

for any Px E Pn( X ) and xn E Tp,\" 

Proof of Theore'm A .1. Consider the source sequence yn and the side information 

Xk. Divide y n into two parts with length k and n - k, respectively, the first of which 

is aligned with the known side information sequence X k vVe associate the first part 

with a generic random variable Yl and the second part with a generic random variable 

Y2· It is understood that the sequence associated "vi th Yl is of length k while the 

sequence associated with Y2 is of length n - k. 

Let us consider constructing linear encoding function f ( .) using a n x l parity 

check matrix with entries independently and uniformly selected from y, where y is 

assumed to be a finite field. For each joint type pair 

(A.2) 
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we also write the sub- type associated with (Y1 ,X) as PyIX , and write the sub-type 

associated with Y2 also as Py2 . 

For each joint type pair in (A.2), let Nj(PYlfclx , PY2f'2) denote the number of se­

quences (yk1" , x\ y;,-k) with (y~, Xk) E Tj{ . and y~-k E T;-k, such that for some 
) IX Y2 

(y~, y;,-k) -# (y~, y~-k) with y~y~xk E T} _ and P n - k -n-k E T;,-k , and further-
YII'lX Y2 Y2 1'21'2 

more, the relation f(y~y;'-k ) = f (Y~y;'-k) holds. Due to the random construction of 

the linear function fC) , it is straightforward to see that for two distinct sequences, 

we have 

(A.3) 

It follows that for any joint type pair in (A .2), we have 

lEN(P - P - ) ~ IT.k I IT.n-kI2kH(PYIIYIX)2(n-k)H(P)'2I Y2)I Y I- l 
j YI YlX , Y2 Y2 - PYIX PY2 (A.4) 

~ IIT.k II T.n-kI 2kH(Pj'l lx) x 2(n-k)H(PY2 )I Y I-1 
- P)'lX PY2 ' (A.5) 

where in (a) we have used Lemma A.2, and (b) is due to conditioning reduces entropy. 

By applying Markov's inequality and defining R = ~ log IYI, we have 

(A.6) 

As afore-mentioned, there are at most a total of n side information erasure patterns 

(within the cyclic group), and the number of types are bounded by Lemma A.I , thus 

probability of the event Eo , that for some type pair and some side information erasure 

pattern the condition in the brace of (A.6) is satisfied , is bounded by 

(A.7) 

which is strictly less than one for sufficiently large n , by choosing cl71 appropriately 

such cln -+ 0 as n -+ 00; such a sequence of cln indeed exists by the cl-convention in [8] 
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(p . 34) . It is thus seen that there exists f e) such that for sufficiently large n 

(A.8) 

for all joint type pairs in (A.2 ) and all possible erasure pat terns. By observing 

(A.9) 

we may write without loss of generality that 

(A .I0 ) 

vVe shall use the linear code f e) with the above property (A.I0) as the encoding 

function. The decoder now chooses (fJt,fJ;,-k) such that ~H(Pijj l x) + n~k H (pY2) is 

minimized. The decoding error probability can be bounded as 

(a) 
p < '"' N (P - P - )2- k[D(PyjxIIQyx)+ H(P\ojx) ] 

e - ~ f Yj )' IX , Y2Y2 

x 2-(n-k)[D(PY2 1IQy )+ H(PY2)] (A.ll ) 

~ L 2- nIR- * H (P\-'I IX) - n ~ k H(Py) - 8n l+ 

X 2-kD(PY1X II Qy X )2-(n-k)D(Py2 1IQy) (A. 12) 

(A.13) 

where (a) is by (A.I ) and by taking summation over joint type pairs in (A.2) such 

that 

k n- k k n-k 
- H (Py IX) + --H (P)? ) ::; - H (Py1 Ix ) + --H (PyJ , 
n j n 2 n n 

(A.14) 

because only this case may lead to a decoding en or; in (b) we used (A.I0) and Lemma 

A. 2; in (c) we define 

[I k 71 - k 1+ k n - k 1 E1 = min R - -H(P)? IX) - --H(P)?) - 6n + -D(PY1XIIQyx) + --D(Py2 1IQy) , 
n I n 2 n n 

(A.1 5) 
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and the minimization is over the joint type pairs in (A.2 ) such t hat (A.14) holds. By 

choosing R such that 

k n-k 
R >-H(Y !X ) + --H(Y) , 

n n 
(A.16) 

it is clear that E1 is bounded below from zero when n is sufficiently large, which 

completes t he proof. o 
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Appendix B 

Proof of the channel 

correspondence to the Slepian-Wolf 

problem with side information 

X and Y are two correlated sources with joint distribution PXy (x, y) in the alphabet 

X and y. We assume the X is in GF(K ) and Y = {I , 2, .. . , J}. The linear code we 

will be using is in G F (K ), and is specified by the parity check matrix H.. From the 

given distribution PXy , we construct a channel of one input U with U = X , and two 

outpu ts V = [VI , 1/21 with Vi = X and V2 = y , such that 

(B.1) 

where the addi t ion is in GF( K ). The distribution of the noise W is given by 

(B. 2) 

for any (a, b) E X x y. 

The encoder of the S-VV codes forms the syndrome by sm = H mxn . xll , and the 

decoder notes the syndrome S171 and y71 such that it tries to decode X71. The goal now 
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is to find the decoding error using such a scheme. 

Let us consider the channel coding problem with afore given channel. vVe can 

form the syndrome at the decoder by using 

let us use syndrome decoding in this case, and the problem becomes finding the most 

likely noise component W{\ given its syndrome and the second component l/V~' . Such 

a decoding algorithm can be formed that for each pail' of (W{\ W~'), a decoded wI' is 

chosen. An enor occurs if W~' =1= wr. 
Notice that for any pair of (x", y71) , we know the syndrome of xn , and the second 

component y71. Then we can run the syndrome decoding algorithm for the channel 

coding. An errol' occurs if in =1= xn. Since the joint distribution PXy(xn, yn) is the 

same as Pw (x", yn) as specified , the probability of error is the same as follows 

(.1;11 ,y") (wj,w;') 

where l eTT is the indicator function t hat an error occurs for this specific pair if using 

syndrome decoding algorithm. It shows that the en or probability using this code 

on Slepian-Violf problem is exactly the same as in the channel coding problem if 

syndrome decoding is used. Thus , a good channel coding algorithm is also good in 

the Slepian-\ iVolf setting . 

Now we shall show that t he capacity of this channel is achieved by the uniform 

distri bu tion. 

J(U; VI , V2 ) = H (Vl' 112 ) - H (Wl' vV2 ) = H (Wl + UIW2 ) - H (W I IW2 ) 

= H (Wl + UIW2 ) - H (XIY) :::; log lUI - H (XIY). (B.5) 

if U is a uniform distribution , then 
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Thus, H (WI + UIW2 ) = log lUI and subsequently 

C = max I (U; VI , \12) = log lUI - H (X IY ) 
Pu 

(B.7) 

Now it is clear that the rate of the Slepian-vVolf code with a capacity achieving code 

for the afore given channel is log lUI - C = H (X IY ). 
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Appendix C 

Discretized density evolution 

algorithm and linear programming 

The expected behavior of belief propagation when used to decode LDPC codes can be 

analyzed by tracing the density function of the messages under the tree assumption 

of the codes construction. This idea is well captured and presented formally in an 

algorithm called "density evolution" (DE) algorithm [31][33]. This algorit hm gives 

an expectation of the performance of LDPC codes used in channel coding problem. 

U rbanke et at. [34] developed an improved algorithm called" discretized density evolu­

tion" (discretized DE)algorithm. The discretized DE algorithm shares the same idea 

of DE algori thm , however, reduces the computational complexity. In the fo llowing 

we will briefly discuss the discretized DE algorithm. 

The degree polynomials /\(x) and p(x) (see section 2.1.1) are given to specify 

a random ensemble of irregular LDPC codes . In discretized DE algorithm, all the 

messages are quantized into the closest level with the quantization interval 8.. . 

Based on the messages calculating equations (see Eq(2.4) and Eq(2.5)), the prob­

abili ty mass function (pmf) of message from variable node to check node , Pv, is 
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calculated by 

( r;o dv- l ) Pv = PuO * '.(Y Pu (C. 1) 

where PuO is the pmf of the message from the observation bit that associated with 

the variable node. This pmf, PuO , is the inpu t to this algorithm and calculated by the 

given channel parameters . The pmfs given in section 3.4 are puos . Pu denotes the pmf 

of the message from check node to variable node. * and ® dv- l denote the discrete 

convolution and dv - 1 times discrete convolution respectively. 

The pmf Pu is calculated by 

(C.2) 

where R is a complicated operation on Pv' 

Combining wit h the degree polynomials ),(x) and p(x), the discretized DE formula 

is 

(C.3) 

where l is the number of iteration and the init ial value of Pu is that the probabili ty 

of u = 0 is 1. 

The algori thm is run by assuming the code sent is an all zero codeword. Thus , it 

will stop when the probability of message u larger than 0 is lor a number sufficiently 

close to 1 after several iterations. Then, the code specified by the degree polynomials 

), (x) and p( x) is expected to have good performance when transmitting through this 

channel. The details of the algorithm can be found in [34]. The discretized DE is 

an algorithm to test the performance of a pair of degree distributions. Then how 

to design the degree distributions that have a good performance under the test of 

discretized DE is described in [35] using linear programming. 

This linear programming based method is used to optimize the node degree dis­

t ributions iteratively. Initially, we choose the node degree distributions represented 
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by A(X) and p(x) that result the code rate lower than the desired rate or the capacity 

of the channel. Then run the linear programming to modify the degree distributions 

and increase the code rate according to the following constraints : 

• the new A(X) must be a distribution so that A(l) = 1 and Ai ~ 0 for 2 :s; i :s; dv . 

• the new A(X) has not significantly difference from the old one. 

• the new A(X) must produce smaller probability of error than the old one. 

Combining these two recursive methods , given the channel characteristics, we can 

design the good node degree distributions following the aforementioned procedure. 
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Appendix D 

Calculate the channel transition 

probability in the dual channel 

model 

Suppose X and Yare two joint distributed sources with X = Y = {O , l} and joint 

distribution PXy(x , y) , we calculate the probability PuJV(ulv) in the channel model 

shown in Figure 3.3 of Chapter 3 as follows: 

Since Pu(u = 0) = 0.5 

PUv(u = 0, (VI = 0, V2 = 0)) 
PV((VI = 0, V2 = 0)) 

Pu(u = 0) . PV1U((Vl = 0, V2 = O)lu = 0) 
Pv ( (Vj = 0, V2 = 0)) 

0.5· PV1U((Vl = 0,V2 = O)lu = 0) 
PV((VI = 0, V2 = 0)) 
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Since U is given, we know that Vl = x EB 'U and V2 = y. Therefore ,x = Vl EB 'U and 

y = V2. we have: 

So that 

Since Vl and V2 are independent and PV1 (Vl = 0) = 0.5 , we have: 

PV1 (Vl = 0) . PV2 (V2 = 0) 

0.5· PV2 (V2 = 0) 

Now plug Eq.(D.3) and Eq.(D.4) into Eq.(D.2) , we have: 

0.5· PX\?(x = 0, Y = 0) 
0.5· PV2 (V2 = 0) 

PXy( x = O,y = 0) 
Py(y = 0) 

(D.3) 

(D.4) 

(D .5) 

Given the joint probability PXy(x , y) ,we can find Py(y) by marginalizing over X. 

Py(y) = L PXy(x , y) (D.6) 
xE X 

Finally we find that PUIl'( 'U = OI (Vl = 0 , V2 = 0)) = PX IY(x = Oly = 0). Using the 

same procedure , we can derive all the possible probability PUIV ('UI (Vl' V2))' 
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