
SINGLE .MACHINE TOTAL WEIGHTED TARDINESS

WITH RELEASE DATES

SINGLE MACHINE TOTAL WEIGHTED TARDINESS

WITH RELEASE DATES

By

WEI JING, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

© Copyright by Wei Jing, December 2009

MASTER OF SCIENCE (2009)
(Computational Engineering & Science)

McMaster University
Hamilton, Ontario

TITLE: Single Machine Total Weighted Tardiness
With Release Dates

AUTHOR: Wei Jing, B.Sc.

SUPERVISOR: Dr. George Steiner

NUMBER OF PAGES: x, 61.

11

Abstract

The single machine total weighted tardiness with release dates problem is

known to be strongly NP-hard. With a new lower bounding scheme and a new

upper bounding scheme, we get an efficient branch and bound algorithm. In

the paper, we first introduce the history of the problem and its computational

complexity. Second, the lower bounding schemes and the upper bounding

schemes are described in detail. We also present all the dominance rules used

in the branch and bound algorithm to solve the problem.

In the dominance rules part, we describe the labeling scheme and suggest

a data structure for a dominance rule.

Finally, we implement the branch and bound algorithm in C++ for the

problem with all the techniques introduced above. We present numerical re­

sults produced by the program. Using the same instance generating scheme

and the test instances from Dr. Jouglet, our results show that this branch

and bound method outperforms the previous approaches specialized for the

problem.

iii

Acknowledgments

The thesis was written under the guidance and with the help of my su­

pervisor, Prof. George Steiner. His valuable advices and extended knowledge

of the area helped me to do my best while working on the thesis. I am also

grateful to Dr. Jouglet for his generous help to my research. My special thanks

are to the members of the examination committee: Dr. Christopher Anand,

Dr. George Karakostas and Dr. George Steiner.

It would not be possible to complete this thesis without support and help

of all members of the School of Computational Engineering and Science. I

sincerely thank Laura for her generous assistance through out the development

of the project.

Finally, I am indebted to thank my parents and friends for their patience,

understanding and continuous support.

IV

Contents

List of Figures

List of Tables

Notations

1 Introduction

1.1 Problem Description

1.2 Computational Complexity.

1.3 Enumerative Algorithms

1.4 A Simple Example

1.5 Main Contributions

1.6 Outline of the Thesis

Vll

viii

ix

1

1

2

2

3

4

5

2 Lower Bounding Schemes

2.1 Lower bound I.

6

6

2.1.1 The Lagrangian Problem. 6

2.1.2 The Multiplier Adjustment Method 8

2.1.3 Implementation of Multiplier Adjustment Method 10

2.1.4 The Heuristic Decomposition Algorithm . . . 11

2.1.5 Computational Complexity of Lower Bound I 13

2.2 Lower Bound II ...

2.2.1 Job Splitting

v

13

14

2.2.2

2.2.3

Lower Bound From General Split

Implementation of Lower Bound II

16

18

3 Upper Bounding Schemes

3.1 Upper Bound I

3.1.1 Swap and Independent Dynasearch Swaps

3.1.2 Dynasearch for 111 L wjTj .

3.1.3 The Modified Dynasearch for 1hl L WiTi

3.1.4 Implementation of Upper Bound I .

3.2 Upper Bound II

3.2.1 Apparent Tardiness Cost Rule

21

21

21

24

25

28

30

30

4 Dominance Properties

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Preliminaries

Dominance Property From Visited Nodes.

4.2.1 The Red-Black Tree ...

4.2.2 The Red-Black Tree and The Dominance Property

Dominance Property By Release Date and Processing time

Dominance Property Fro~ll Local Optimality .

Dominance Properties From the Scheduled Partial Sequence

Dominance Properties Based on Unscheduled Jobs .

4.6.1 Dominance Properties By Interchange and Insertion .

4.6.2 Eight Cases of Interchange.

Some Other Dominance Rules

Applying Dominance Properties

31

31

33

33

35

37

37

39

39

40

42

43

46

5 Computational Results

6 Conclusions and Future Work

vi

48

56

List of Figures

4.1 Tree of the eight cases [21]

3.1 Independent dynasearch swaps. .

3.2 These swaps are not independent.

2.1

5.1

Idea of the heuristic decomposition algorithm.

Hardness of 40-job instances for 12 pairs of (a,{3).

Vll

12

23

23

44

52

List of Tables

1.1

4.1

Data for a 10-job instance ..

Eight cases of interchange [21]

4

43

5.1 Comparison of the new and old solver and percentage solved. 50

5.2 Percentage solved for hard pairs of (0,{3). 50

5.3 Comparison of the two lower bound schemes for 40-job instances. 51

5.4 Comparison of the two upper bound schemes for 40-job instances. 51

5.5 Results for 30-job instances. 53

5.6 Results for 35-job instances. 53

5.7 Results for 40-job instances. 54

5.8 Results for 45-job instances. 54

5.9 Results for 50-job instances. 55

5.10 Results for 60-job instances. 55

viii

Notations

N: = { 1 ,... , n} a set of jobs,

P{ the processing time of job j,

W{ the weight of job j,

r{ the release date of job j,

d{ the due date of job j,

C{ the completion time of job j on the machine,

L WjC{ the total weighted completion time for the set of jobs N,

T{ = max(O, Cj - dj) the tardiness of job j,

L wjTj : the total weighted tardiness for the set of jobs N,

(J: partial sequence for the set of jobs N,

C((J): the completion time of the last job in the partial sequence (J,

Cj((J): the completion time of job j in the partial sequence (J,

TvVT((J): the total weighted tardiness of the partial sequence (J,

IX

TtVTj (0-): the weighted tardiness of of job j in the partial sequence (J",

111 L WiCi: the single machine total weighted completion time problem,

llril L Wi C(the single machine total weighted completion time with release

dates problem,

111 L T(the single machine total tardiness problem,

Ihl LT(the single machine total tardiness with release dates problem,

111 L WiT(the single machine total weighted tardiness problem,

Ihl L WiTi: the single machine total weighted tardiness with release dates

problem,

EDD: Earliest Due Date,

TtV8PT: Weighted Shortest Processing Time,

8PT: Shortest Processing Time,

x

Chapter 1

Introduction

1.1 Problem Description

Lots of scheduling problems happen everyday in many production compa­

meso Those companies need to assign their limited equipments to different

operations in such a way that they can achieve their business goals with the

minimum cost. In the scheduling models, equipments are defined as machines

and operations are defined as jobs.

The scheduling problem addressed in this paper is the single machine

total weighted tardiness with release dates problem, denoted as Ihl2:= WiTi.

The problem can be described as follows: there is a set of jobs N = {I, ... , n}

to be processed on a single machine. The single machine can process only

one job at a time and begins to process jobs from time t = O. For any job

i E N, it can only be processed after its release date rio It needs a positive

processing time Pi to be processed uninterruptedly by the machine. When the

job is finished at time t on the machine, the completion time Ci of the job is

set to t. If the job can not finish before its due date di , i.e., Ci > di , then

this will cause a positive weighted tardiness: WiTi = Wi max(O, C i - di). The

objective for this problem is to find a job sequence or a job permutation of N

with the minimum total weighted tardiness 2:= WiTi.

1

M.Sc. Thesis - Wei ling McMaster - Computational Eng. 8 Sci.

1.2 Computational Complexity

Different scheduling models have different computational complexities.

Lawler [23] proposes a decomposition theorem for problem 1112: Ti and

points out that the problem can be decomposed to two subproblems with

the job which has the largest processing time in N. The two subproblems

can use the same decomposition method recursively. Thus the decomposition

theorem gives a pseudo-polynomial dynamic programming algorithm and this

algorithm takes O(n4 2:7=lPj) time. Du & Leung [15] show that problem

111 2: Ti is NP-hard in the ordinary sense.

For problem 1112: WiTi, Lawler [23] and Lenstra, Rinnooy Kan & Brucker

[25] show that this problem is NP-hard in the strong sense.

Because problem 1112: WiTi is a special case of problem Ihl2: WiTi,

problem llril2: WiTi is NP-Hard in the strong sense too.

1.3 Enumerative Algorithms

This problem has received less research attention. Akturk & Ozdemir [3] pro­

pose a branch and bound algorithm combined with some dominance properties

for it. Their algorithm can solve test instances with up to 15 jobs. After that,

Jouglet, Baptiste & Carlier [21] present a more efficient branch and bound

algorithm with new dominance properties. They can solve problems with up

to 30 jobs on a personal computer.

Branch and bound algorithm is a powerful enumerative method, which

can find the global optimal solutions for many combinatorial optimization

problems. This algorithm was proposed originally by Land and Doig [22].

For the scheduling problem, it is better to use a tree structure to present

the work flow of a branch and bound algorithm.

The branch and bound algorithm begins from the root node x, in which

2

M.Sc. Thesis - Wei ling McMaster - Computational Eng. fj Sci.

no job is sequenced, i.e., the scheduled partial sequence Lx = 0 and the un­

scheduled job set NIx = N. Then, for each job i E NIx, we branch to level I

with a new node Yi and set job i to the first position of the scheduled partial

sequence L yi ' If there is no release date or the maximum release date of the

unscheduled jobs is smaller than the completion time of the scheduled partial

sequence, jobs can be scheduled from right to left in a backward mode. Thus

in level I of the search tree, there are n branches with n new created nodes.

For each new node in level I of the tree, n - I branches can be created with a

second fixed job. Continuing this branching process, we get a fully expanded

search tree with n factorial leaves in level n. The best upper bound UB is

updated whenever the search tree expands to level n. It is easy to see that the

best upper bound UB equals the global optimum.

In our branch and bound algorithm, the bounding schemes and the dom­

inance rules are employed in the branching process. Every time a new node

Y of its parent is added into the search tree, we compute a lower bound LBy

for the new node. If the lower bound LBy is greater than the best known

upper bound UB, this new node Y is discarded without further branching

process. Otherwise, the node is kept in the search tree. We then apply sev­

eral dominance properties to filter out some jobs in the unscheduled job set

JYIy = N - {iii ELy} and decrease the possible branches from the new node

y.

The branch and bound algorithm will stop with an optimal sequence

after all the nodes have been eliminated.

1.4 A Simple Example

Suppose we have a 10-job instance as in Table 1.1 for problem 1hl~ WiTi' If

the initial scheduling sequence on the single machine is (1,2,3,4,5,6,7,8,9,10),

then the total weighted tardiness for this sequence is 1175. While the optimal

3

M.Sc. Thesis - Wei ling McMaster - Computational Eng. fj Sci.

Table 1.1: Data for a 10-job instance

1, 1 2 3 4 5 6 7 8 9 10

ri 4 11 16 9 34 21 31 5 7 33

Pi 6 4 2 10 10 9 9 8 6 5
di 39 48 31 30 62 49 40 15 16 44
Wi 4 6 3 10 5 2 9 2 10 7

sequence for this instance is (1,9,4,3,7,10,2,5,8,6) with a minimal total weighted

tardiness 2:= WiTi = 181.

1.5 Main Contributions

First, we find a new lower bound method for the problem. For problem

1112:= WiTi, Potts and Van Wassenhove [29] propose a quickly computed lower

bound, which is based on a multiplier adjustment method. We adapt this

method to problem 1lril2:= Wi~' We identify decomposed blocks of schedule

based on the release dates and apply the multiplier adjustment method [29]

to each block by relaxing the release dates of jobs in the block.

The second contribution is a new upper bound method for the problem.

For problem 1112:= Wi~, Congram et al. [12] propose the iterated dynasearch

algorithm, which searches in an exponential size neighborhood to find the

local optimal solution. We adapt this algorithm to problem 1hl2:= WiTi. Our

new upper bound method takes the same time complexity as their algorithm,

while the size of the neighborhood is usually smaller than theirs. Because of

the release dates, searching for the local optimal solution in the neighborhood

would require optimization by two competing criteria: the completion time

and the total weighted tardiness of a partial schedule. We present the new

dynamic programming heuristic, which finds good quality but not necessarily

optimal solution in the neighborhood.

4

M.Sc. Thesis - Wei ling McMaster - Computational Eng. fj Sci.

Finally, we suggest a data structure for an important dominance rule. In

[21], they use an hash table for the dominance rule. Our choice is a red-black

tree, which guarantees that read-only and insert operations take O(logn) time

in the worst case. It improves the performance of the enumerative algorithm

for most test instances.

1.6 Outline of the Thesis

In the current chapter, we outline the problem of single machine total weighted

tardiness with release dates. In addition, we introduce the computational

complexity for the problem. Then we describe current enumerative methods.

Chapter 2 contains the background of the two lower bound schemes in

our branch and bound method. The first lower bound scheme is based on

a multiplier adjustment method for problem III L- WiTi. The second lower

bound uses job splitting technique. Chapter 2 also contains all theoretical

results necessary for the implementation.

Chapter 3 is devoted to the different upper bound schemes we used in

the branch and bound method. Especially, we describe the new upper bound

scheme in detail. The new upper bound scheme is based on a swap neighbor­

hood heuristic method.

In Chapter 4, we present all the dominance rules in the branch and bound

method. We provide the necessary background, prove some properties of the

dominance rules and suggest a labeling scheme and the data structure.

Chapter 5 describes the generating scheme of the test instances and pro­

vides the computational results of the branch and bound algorithm. We give

detailed comparison and discussion in this chapter.

Finally, Chapter 6 contains concluding remarks and suggestions for fu­

ture work.

5

Chapter 2

Lower Bounding Schemes

In this chapter, we present the details of the two lower bounding schemes in

our branch and bound method.

2.1 Lower bound I

The first lower bound is based on the multiplier adjustment method proposed

by Potts and Van Wassenhove [29]. We review the method in the following

sections and then describe the new lower bounding scheme.

2.1.1 The Lagrangian Problem

We relax problem Ihl LWiTi to 111 LWjTj for the first lower bound calcula­

tion. Here we recall how they [29] relax problem 111 LWjTj to a Lagrangian

problem first.

Suppose there is a set of jobs N = {I, ... , n} to be processed on the single

machine. The tardiness of job i is defined as

From the definition of the tardiness ~, we know that

6

M.Sc. Thesis - Wei ling McMaster - Computational Eng. & Sci.

Then we can describe the problem 111 ~ wjTj as (P [29]):

n

mm LWiTi

i=l
(P) S.t. Ti ~ O,i = 1, ... ,n,

(2.1.1)

where the domain is all the possible permutations of job 1 to job n.

Their Lagrangian relaxation is then based on constraints (2.1.1). Con­

straints (2.1.1) can be transformed to

(2.1.2)

Suppose U = (Ul, ... , un) is a vector and subject to Ui ~ 0, i = 1, ... , n. It

is easy to see that constraints (2.1.2) can be transformed to

(2.1.3)

By adding constraints (2.1.3) to the objective of problem (P), we get the

Lagrangian problem (LR [29]):

L(u) = min~~=l[(Wi - Ui)~ + Ui(Ci - di)]

(LR)
s.t. T i ~ 0, Ui ~ 0, i = 1, ... , n

Even if we choose the nonnegative vector U arbitrarily, according to

Fisher and Geoffrion [16, 17], we know that the Lagrangian problem (LR)

gives a lower bound for problem (P). In [29], they point out that it is possi­

ble that L(u) = -(X) if there exists some i such that Ui > Wi. To avoid this

meaningless situation, they restrict the choice of vector u. Besides 0 ::; Ui for

every i, i = 1, ... , n, vector U is chosen subject to Ui ::; Wi, i = 1, ... , n. After

setting ~ = 0 for every i, i = 1, ... , n, by the weighted shortest processing time

rule [31], they point out that the jobs in weighted shortest processing time

order with the new weight Ui and the processing time Pi gives the solution of

7

M.Sc. Thesis - Wei ling McMaster - Computational Eng. 8 Sci.

the Lagrangian problem (LR). The question is then transferred to how to find

the value of vector U to make L(u) as large as possible. In section 2.1.2, we

introduce the multiplier adjustment method and give the detailed steps to find

the value of vector u.

2.1.2 The Multiplier Adjustment Method

To compute a lower bound for some single machine problems, Fisher [16]

uses the subgradient optimization technique to find the multipliers for the La­

grangean problems relaxed from the original problems. The subgradient opti­

mization is a pseudo-polynomial dynamic programming method. Van Wassen­

hove [33] proposes the multiplier adjustment method to replace the subgradient

optimization technique and applies it to some scheduling problems with better

results. In [29], a corresponding multiplier adjustment method is proposed for

problem 111 ,,£wjTj . Compared with the subgradient optimization technique,

this multiplier adjustment method is not necessarily optimal, but it can be

quickly computed in O(nlogn) time.

To find the value of vector u, an initial sequence by some heuristics is

needed. Suppose the initial heuristic sequence is renumbered as (1, ... , n) and

the completion time for job i in the sequence is Cr From section 2.1.1, we

know that vector u is chosen subject to Ui :s: Wi, i = 1, ... , n and the weighted

shortest processing time rule, i.e., UdPi ~ UHI!PiH, i = 1, ... , n - 1. To make

L(u) as large as possible, the Lagrangian problem (LR) can be transformed to

(LR(C*) [29]):

n

max L Ui(C; - di)
i=l

LR(C*) s.t. Ui/Pi ~ UHI!PHl, i = 1, ... , n - 1

8

(2.1.4)

(2.1.5)

M.Sc. Thesis - Wei ling McMaster - Computational Eng. & Sci.

By Lemma 2.1.1, they show that constraints (2.1.5) can be transformed

to [29]:

(2.1.6)

Lemma 2.1.1 [29]

The solution of problem LR(C*) stays same with constraints {2. 1. 6).

To find the solution of problem LR(C*), we first need a procedure to get

set V = {VI, ... ,vr }, where VI, ... ,Vr EN and can be computed as follows [29].

Procedure SV. [29]

Step 1. Suppose the initial heuristic sequence is renumbered as (1, ... , n).

Let Sj = ~{=IPi(Ct - di), for j = 1, ... , n. /*- 8 is an array -*/

Step 2. Let V = 0, k = 1, So = 0 and V = 0. j*- here we set va = 0,80 = 0

-*/

Step 3. If Sk > Sv, then set V = V U {k} and V = k; else set k = k + 1

and goto Step 5. j*- Based on the set V = {VI, ... ,Vk-I} we have found,

we select the smallest Vk, which needs to satisfy: Vk > Vk-I and 8Vk > 8Vk _
1

'

-*/

Step 4. Set k = k + 1.

Step 5. If k ::; n, then goto Step 3.

Step 6. Return set V, stop.

The following theorem shows how we use set V to solve problem LR(C*).

9

M.Sc. Thesis - Wei Jing McMaster - Computational Eng. fj Sci.

Theorem 2.1.2 [29]

The solution of problem LR(C*) is given by Ui = u; fori = 1, ... , n where

U; = u;+1 (Pi/Pi+1) i(jV,i=!=n (2.1.7)

* - i E V (2.1.8)u i = Wi

U~ = 0 ifn (j V (2.1.9)

In Theorem 2.1.2, if the initial heuristic sequence is given by weighted

shortest processing time order with the original weight Wi and the processing

time Pi, then Wi = Wi, i = 1, ... , n.

2.1.3 Implementation of Multiplier Adjustment Method

The multiplier adjustment method computes u; for i = 1, ... , n, which satisfies

(2.1.7)-(2.1.9). The input of the method is the unscheduled job set N. Instead

of sets, we use four arrays to store the necessary data. Following is the detailed

computing procedure.

Procedure MAM.

Step 1. Sort all jobs of N in weighted shortest processing time order and

renumber the sequence as (1, ... , n).

Step 2. Set Co = 0, va = 0, So = 0 and vVo = O. Let i = 1 and k = i - 1.

1*- c, V; S, ltV are arrays -*/

Step 3. If i > n, then goto Step 7. 1*- from Step 3 to Step 7, Procedure

sv. -*/

Step 5. If Si > Sk, then set Vi = i and k = i.

10

M.Sc. Thesis - Wei ling McMaster - Computational Eng. & Sci.

Step 6. Let Wi = Wi and i = i + 1, goto Step 3. j*- because the initial

order is WSPT, Wi = Wi -*/

Step 7. Let j = nand LB = O. If Vj = 0, then set vVj = 0; else let

LB = vVj(Cj - dj).

Step 8. Let j = j - 1. If j ~ 0, then goto Step 11. j*- from Step 8 to

Step 11, compute ui and LB -*/

Step 9. If Vj = 0, set vVj = VVj+l(Pj/Pj+l)'

Step 10. Set LB = LB + vVj(Cj - dj) and goto Step 8.

Step 11. return LB, stop.

It is clear that the multiplier adjustment method contains one sort­

ing step and two loops. The computational complexity of this method is

O(nlogn).

2.1.4 The Heuristic Decomposition Algorithm

In this section we propose the new lower bounding scheme. Suppose the un­

scheduled job set is N. The basic idea is: first, we sort all the unscheduled jobs

in nondecreasing release date order and renumber them as (1, ... , n). The jobs

are decomposed into different blocks. Then we compute the total weighted

tardiness or a lower bound of it for each block. In the last step, by adding the

contribution of each block together, we get the final lower bound for the whole

job set N. The idea of decomposition of jobs into blocks is not new, see [19].

By Figure 2.1, it is clear that this decomposition is based on the dish'i­

bution of the release dates.

Here we give the detailed steps of the decomposition algorithm.

11

M.Sc. Thesis - Wei ling McMaster - Computational Eng. 8 Sci.

Forn unscheduled jobs: 1,2, ... , n

block1

10SI]
rl~ r2~ r3~'" rfl

D D
block2 block3 block4

LB(blockl) + LB(block2) + LB(block3) + ... = fmallower bound

Figure 2.1: Idea of the heuristic decomposition algorithm.

Heuristic Decomposition Algorithm.

Step 1. Suppose the unscheduled job set is N. Sort all jobs of N in

nondecreasing release date order, renumber the sequence as (1, ... ,n) and

let S = {I, ... , n}.

Step 2. Set !'1 = rI, start the first block B I and set B I = 0.

Step 3. If S #- 0, suppose the current first job is j, j E S and current

block is Bp , set Bp = Bp U {j}; else goto Step 7.

Step 4. Set !'1 = !'1 +Pj and S = S - {j}.

Step 5. If S = 0, then goto Step 7.

Step 6. If rj+1 Z !'1, start a new block Bp+1, set Bp +1 = 0 and !'1 = rj+1'

Goto Step 3;

Step 7. Compute the lower bound LBp of each block Bp .

12

M.Sc. Thesis - Wei ling McMaster - Computational Eng. f:J Sci.

Step 8. Let the final lower bound LB = L LBp , return LB.

It is clear that the final lower bound generated by the heuristic decom­

position algorithm gives a lower bound for problem Ihl L WiTi.

The question is how we get the total weighted tardiness or the lower

bound for each block. According to the survey by Abdul-Razaq, Potts & Van

Wassenhove [1], the fastest algorithm for problem 111 L wjTj uses a quickly

computed lower bound method, which is based on a multiplier adjustment

method and takes O(nlogn) time, see [29]. For Lower Bound I, we choose this

method to compute LBp . In the previous sections, we have given a detailed

introduction to the multiplier adjustment method proposed by Potts & Van

Wassenhove [29].

2.1.5 Computational Complexity of Lower Bound I

Section 2.1.4 gives the detailed steps ofthe heuristic decomposition algorithm.

We have eight steps for the algorithm. The sort operation in Step 1 takes

O(nlogn) time. Step 2 takes 0(1) time. From Step 3 to Step 6, it will cost

O(n) time to find all blocks. Then in Step 7, for each block, we apply the

O(nlogn) multiplier adjustment method by Potts & Van Wassenhove [29]. It

is easy to see that the one block situation takes the largest time O(nlogn).

Step 8 takes no more than O(n) time. Finally, the time complexity of the

Heuristic Decomposition Algorithm is O(nlogn).

2.2 Lower Bound II

Similarly to [2], we get the second lower bound from the single machine total

weighted completion time problem with release dates. This lower bound is

based on the job splitting technique proposed by Belouadah, Posner & Potts

[5].

13

M.Sc. Thesis - Wei ling

2.2.1 Job Splitting

McMaster - Computational Eng. f3 Sci.

In [24], Lawler uses the job splitting technique to minimize total weighted

completion time with precedence constraints. The basic idea of job splitting

can be described as follows: suppose for any given sequence (J" of N, there

is a job i E (J", and if we split job i to two new jobs i l and i2 subject to

Pi = Pil + Piz, Wi = Wil + Wiz' then we get a new sequence (J"'. In the new

sequence (J"', job i l is required to be scheduled before job i 2 and there is no

other job scheduled between them. Suppose the weighted completion time of

(J" is WG((J"). Compared with the old sequence (J", the weighted completion

time of (J"' is vVG ((J"') = vVG((J") - PizwiI .

For the situation of splitting one job into more pieces, we first recall some

definitions from [5].

Definition 2.2.1 [5]

Let P denote the original total weighted completion time problem without

job splitting. Let PI be the identical problem to P, except that job i is split

into k pieces iI, ... , i k , where Pil + ... + Pik = Pi and Wil + ... + Wik = Wi. In

problem PI, these k new jobs are required to be contiguously sequenced in the

order (iI, ... , ik). Let N I = {I, ... ,i-I, iI, ... , ik, i + 1, ...n} denote the job set

of problem Pl.

In Definition 2.2.1, if the k pieces iI, ... , i k of job i are subject to

then this is a simple split [5].

If the k pieces iI, ... , i k of job i are not required to be contiguously se­

quenced, problem PI is further relaxed to P2 :

Definition 2.2.2 [5]

Let problem P2 be the identical problem to PI, except that the new jobs

iI, ... , i k are not required to be contiguously sequenced. But the k pieces iI, ... , i k

14

M.Sc. Thesis - Wei ling McMaster - Computational Eng. & Sci.

are required to be scheduled in consistent order, i.e., job i j - l must be sequenced

before job ij(j = 2, ... , k).

If there is no limitation on the weight of the k pieces iI, ... , ik of job i,

problem P2 can be further relaxed to P2':

Definition 2.2.3 [5]

Let problem P2' denote the same problem as problem P2, except that the

weight of k pieces iI, ... , i k defined as Wi/, ... , Wik' need to satisfy only Wil' +
... +Wik' = Wi·

Using the 2 job split iteratively, we can achieve the k job split. It is easy

to see the relation of the total weighted completion time between problem P

and PI:

Theorem 2.2.4 [27, 5]

For any given feasible sequence (J of problem P, if (JI is the corresponding

sequence for problem H, then

~iENwiCi((J) - ~iENl WiCi((JI) = CBRK,

where
(2.2.1)

By Definition 2.2.2, Theorem 2.2.5 shows that the optimal solution of

problem P2 gives a lower bound for the original problem P.

Theorem 2.2.5 [5]

If (J2* is an optimal sequence for P2, then

where (J* is an optimal sequence for problem P and (JI * is the corresponding

optimal sequence for Pl·

To get a better lower bound, based on Theorem 2.2.5, Belouadah et al.

propose the following result.

15

M.Sc. Thesis - Wei Jing

Theorem 2.2.6 [5]

McMaster - Computational Eng. fj Sci.

Suppose (}2* is an optimal sequence for problem P2, Q2* is an optimal

sequence for problem P2' and CBRK' is obtained from {2.2.1} by using Wih'

instead of Wih' If ~~=lWih' ::; ~~=l Wih for j=1, ... ,k, then

2.2.2 Lower Bound From General Split

In Definition 2.2.1, if the k pieces iI, ... , i k of job i are not subject to

then this is a general split [5].

In [5], the authors present a greedy heuristic for problems with paral­

lel chain precedence constraints. Then based on the heuristic, they give the

procedure for finding good general splits.

Heuristic H. [5]

Step 1. Let 8 = {I, ... ,n}. For each job i E 8, let Bi be the set of

predecessors and Ai be the set of successors. Let u = 0, t = 0 and

liVC = O.

Step 2. Let 8' = {iii E 8, Bi n 8 = 0}. If t < miniEs,{ri}, then set

t = miniEs,{ri}'

Step 3. Find job i E 8' such that Wi/Pi = maX1ES" { WZ/Pl}, 8" = {lll E

8', rl ::; t}. Let u = u+ 1, (}H(u) = i, t = t+Pi, CiH = t, liVC = liVC+Wit

and 8 = 8 - {i}. If 8 -I- 0, goto Step 2; else stop.

The following result shows under what condition, the Heuristic H can

give an optimal sequence for problems with parallel chain precedence con­

straints - precedence constraints which consist of several chains of otherwise

unrelated jobs.

16

M.Sc. Thesis - Wei ling McMaster - Computational Eng. fj Sci.

Theorem 2.2.7 [5]

Heuristic H generates an optimal sequence for a problem with parallel

chain precedence constraints if the following condition is satisfied throughout

the execution of Heuristic H: for each j t/. A with rj < Ci
H < Cj

H and

k E Aj U {j}, we have Pi/Wi "5:. Pk/Wk.

The conditions state that if a job i is processed before an available job

j, then job i must have a 'better' p/w ratio than job j or any of its successors.

The job splitting in the following procedure always ensures that all pieces

satisfy the conditions of Theorem 2.2.7.

Procedure SP. [5]

Step 1. For each job i E N, let Til = ri,Ph = Pi and wh = Wi. Let

S = {h, ... , nl}, u = 0, t = 0, vVC = 0 and CBRK = O.

Step 2. 1ft < miniEs{ri}, then let t = miniEs{ri}' Find job i E S such

that wi/Pi = maxlES'{WZ/Pl}, S' = {lll E S, rl "5:. t}, and set ik = i. If

there exists a job j E S such that rj < t +Pik and Wj/Pj > Wi)Pik' goto

Step 4.

Step 3. Letu=u+1,I7(u) =ik,t=t+Pik'Ca(u) =t,vVC= vVC +Wikt

and S = S - {i k}. If S = 0, goto Step 7; else goto Step 2.

Step 4. Find job j E S such that rj = minIEs'{rz}, S' = {lll E S, WZ/Pl >

Wi)Pik}. Split i k into two new jobs i' and i". Set ri' = ri" = ri,Pi' =

Step 5. If this is a simple split, then set Wi' = Pi'Wi/Pi and goto Step 6;

else let E I = {hlh E S - {ik},rh < rj} and E 2 = {O"(h)lh "5:. u,l7(h) =1= i j

for j = 1, ... ,k -l,Ca(h) > ri,Pa(h)/Wa(h) > Pill/WiJ. If E I = 0, set

PI = +00; else set PI = minhEEl {Ph/Wh}. If E 2 = 0, set P2 = Pi" /Wik;

else set P2 = maxhEE2{Ph/Wh}. Let Wi' = max{pi'/PI, Wik - Pi" / P2}.

17

M.Sc. Thesis - Wei ling McMaster - Computational Eng. {0 Sci.

Step 6. Let Wi" = Wik - Wi' and S = S U {i"} - {ik }. Rename if to

i k and i" to ik+l. Set u = u + 1, (J(u) = ik , t = rj, C(J"(u) = t, WC =

WC + Wikt, CBRK = CBRK + WikPik+l' goto Step 2.

Step 7. Compute LBsp = vVC + CBRK and stop.

By Theorem 2.2.8, they show that Procedure SP provides a better lower

bound if the split in step 5 is a general split.

Theorem 2.2.8 [5]

If LBss denote the lower bound generated by Procedure SP with simple

splits and LBGS denote the lower bound generated by Procedure SP with general

splits, then LBGS 2: LBss ·

The computational complexity of Procedure SP is given by the following

result.

Theorem 2.2.9 [5]

Procedure SP takes O(n log n) time with simple splits. Procedure SP takes

O(n 2
) time with general splits.

From Procedure SP, we get a lower bound for problem 1hl L WiTi'

Corollary 2.2.10 [2]

If LBsp is generated by Procedure SP, then LBsp - L~=l widi provides

a lower bound for problem 11ril L WiTi·

2.2.3 Implementation of Lower Bound II

Suppose the input of lower bound II is the set of unscheduled jobs N. In our

program, we use three arrays S, C and T to store necessary data to compute

the lower bound. In this implementation, only general splits are used. We get

E 1 from Sand E2 from T.

18

M.Sc. Thesis - Wei ling McMaster - Computational Eng. f3 Sci.

Following is the detailed computing procedure of lower bound II. A

dummy job 0 is needed. For job 0, we have ro = Wo = Po = do = O.

Implementation of Lower Bound II.

Step O. Sort all jobs of N in nondecreasing release date order, renumber

the sequence as (1, ... ,n) and let S = {I, ... ,n}.

Step 1. Let Co = 0 and To be the dummy job O. Set t = 0, WC = 0, sn =

n,tn = 0, liVD = 2:~=1 widi and CBRK = O. j*- C,T,S are arrays; C

and T are used to compute E2 ; T = {er(h)lh ::; u, er(h) =I ij,j = 1, ... , k - I}

and C = {Co-(h)lh::; u,er(h) =I ij,j = 1, ... ,k -I}; sn is an index of SIS last

member; tn is an index of T's last member -*/

Step 2. If sn = 0, goto Step 8. j*- if S is empty, return the final result

and stop -*/

Step 3. Let i = S1 . For each m E S, if rm < ri, then set i = m. If

t < ri, set t = rio For each m E S, if rm :::; t and wm/Pm > Wi/Pi, then

set i = m. Let ik = i and j = O. For each m E S, if rm < t + Pik and

wm/Pm > WiJPik' then let j = m and goto Step 5. j*- if S is not empty,

find job i (Si) and job j (Sj); same as Step 2 of Proc. SP -*/

Step 4. Set t = t + Pik' liVC = liVC + Wik' tn = tn + 1, Ttn = Sik and

Ctn = t. Let Sik = Ssn and sn = sn - 1. Goto Step 2. j*- if job j is not

found, then job i is processed without split; update S, C, T, liVC, sn and tn;

Sik = Ssn, sn = sn - 1 means S = S - {Sik}; tn = tn + 1, Ttn = Sik means

T = T U {Sik}; same as Step 3 of Proe. SP -*/

Step 5. For each m E S, if rm < rj and wm/Pm > Wik/Pik' then set

j = m. Let p' = rj - t,p" = Pik - pl. j*- find job j with the max w/p

and split ik to i' and i"; same as Step 4 of Proe. SP -*/

19

M.Sc. Thesis - Wei ling McMaster - Computational Eng. fj Sci.

Step 6. Let E I = 0. For each m E S, if m i= i k and rm < rj, then

set EI = EI U {m}. Let E2 = 0. For each mET, if Cm > rik and

Pm/wm > P"/Wik' then set E 2 = E 2 U {m}. If IEII = 0, set PI = +00;

else let PI = minhEEl{Ph/Wh}. If IE21 = 0, set P2 = P"/Wik; else let

P2 = maxhEE2{Ph/Wh}. Let w' = max{p'/PI,Wik - P"/P2}. j*- compute

EI, E2, Wi' and Wi"; same as Step 5 of Proc. SP -*/

Step 7. Let w" = Wik - w',t = rj, vVC = vVC + w' * t,CBRK

CBRK +w' *p", Wik = w" and Pik = p", goto Step 2. j*- update S, VVC

and CBRK; Wik = W",Pik = p" means S = S U {i"} - {id; same as Step 6

of Proc. SP -*/

Step 8. Let LBsp = vVC + CBRK and return LBsp - vVD.

20

Chapter 3

Upper Bounding Schemes

In this chapter, we present the details of the two upper bounding schemes

in our branch and bound method. The first upper bound scheme is based

on iterated dynasearch [12], a fast swap neighborhood heuristic 111ethod. The

second one is a dispatching rule [34].

3.1 Upper Bound I

The iterated dynasearch is proposed by Congram et al. [12] for problem

1112:: wjTj . This heuristic is a large neighborhood local search algorithm. The

iterated dynasearch is based on the idea of dynasearch by Potts et al. [28].

Using dynamic programming techniques, the iterated dynasearch algorithm

takes O(n3
) time to search in an exponential size neighborhood and find the

local optimal sequence for problem 1112:: wjTj . We propose a modified version

of this heuristic algorithm to get good upper bounds for problem 1h 12:: WiTi'

3.1.1 Swap and Independent Dynasearch Swaps

The domain for problem 111 -= wjTj is all the possible permutations of job set

N = {I, ... , n}. It is clear that the size of the solution space for a branch and

bound algorithm is n!.

Different from the branch and bound algorithm, an iterative improve-

21

M.Sc. Thesis - Wei ling McMaster - Computational Eng. 8 Sci.

ment local search algorithm searches for a near-optimal solution in a smaller

neighborhood. The main idea of these local search algorithms is to get a better

sequence by exchanging jobs in the initial given sequence. If a better sequence

is found, then the algorithm starts a new search based on the new sequence.

The algorithm will repeat the search until any job exchanging can not generate

a better sequence.

In [12], k-exchange neighborhood refers to all sequences that can be gen­

erated by exchanging k jobs from a given sequence.

Based on the definition of k-exchange neighborhood, we can define what

is a swap.

Definition 3.1.1 [12]

For a given sequence (J" of N, swap is a 2-exchange neighborhood and the

size of it is n(n - 1)/2.

In each iteration, a simple iterative improvement local search algorithm

searches for a better sequence in the 2-exchange neighborhood of the current

sequence. There are two types of search strategies: first-improve and best­

improve [12]. The first-improve local search algorithm searches for the first

better swap in each iteration, while the latter searches for the best swap.

Different from the simple iterative improvement local search algorithms,

dynasearch performs a series of swaps in the given sequence. The swaps must

be independent [12]. The search strategy of dynasearch is best - improve.

Here we recall the definition of independent dynasearch swap.

Definition 3.1.2 [12]

For a given sequence (J" of N, we choose m pairs of jobs to perform the

series of swaps. If for any two swaps (i,j) and (k,p) we have max(i,j) <

min(k,p) or min(i,j) > max(k,p), then the swaps are called independent dy­

nasearch swaps.

22

M.Sc. Thesis - Wei Jing McMaster - Computational Eng. f3 Sci.

max{i, j} < min{k,p}, independent

swap i,j swap k,p

,

... z ... j .. . k ... p ...

Figure 3.1: Independent dynasearch swaps.

max{i,j} > min{k,p}, not independent

i !

swap i .f:-iJ_' s_w_ap-+-ik_,p__~

i k j p

Figure 3.2: These swaps are not independent.

23

M.Sc. Thesis - Wei ling McMaster - Computational Eng. fj Sci.

Figure 3.1 and Figure 3.2 show whether the swaps are independent.

The neighborhood size of the independent dynasearch swaps is given by

the following result.

Lemma 3.1.3 [12]

The neighborhood size of the independent dynasearch swaps is 2n
-

1
- 1.

3.1.2 Dynasearch for 111 ~ wjTj

In this section, we recall how they [12] construct the dynamic programming

algorithm to find the independent dynasearch swaps for a given sequence.

Suppose the initial given sequence is 0" = (0"(1), ... ,O"(n)). The new se­

quence 0"' is built by the dynamic programming algorithm in a forward enu­

meration mode. In this algorithm, we build the new sequence from the 1 job

partial sequence to the n-job sequence. In each step, a new job is added after

the last job of the current partial sequence. Then the dynamic programming

algorithm enters into a new state and searches for the best independent dy­

nasearch swaps of the new partial sequence. Considering the situation when

no job is selected, it is easy to see that we have n + 1 states in the algorithm.

In [12], after searching for the best independent swaps with the partial se­

quence (0"(1), ... ,O"(k)), where k E {O, ... , n}, they define the new sequence to

be in state (k,O"), for k = 0, ... , n. The sequence in state (n,O") with the best

independent dynasearch swaps is the new sequence 0"' we want.

Suppose for i = O, ... ,k - 1, where k E {O, ... ,n}, we have found and

stored some information of state (i, 0"), such as the sequence O"i and the total

weighted tardiness TTtVT(O"i), where O"i is a permutation of the partial sequence

(0"(1), ... ,O"(i)) derived through the best independent dynasearch swaps for

these jobs. Then for state (k, 0"), finding O"k must rely on the information of

previous states from (0,0") to (k - 1,0"). Following is the detailed procedure

to find O"k and TTtVT(O"k)'

24

M.Sc. Thesis - Wei ling

Procedure SK. [12]

McMaster - Computational Eng. & Sci.

Step 1. Suppose we have found and stored (Ti and TliVT((Ti) for i =

0, "0' k - 1, for some k E {O, ... , n}.

Step 2. Let j = k - 1. Job (T(k) is directly added after (Tj and no need

to swap job (T(k) with other jobs in (Tj' Let (Tk = ((Tj, (T(k)) and compute

the total weighted tardiness TWT((Tk).

Step 3. Let j = j - 1.

Step 4. If j 2': 0, construct the sequence (T~ = ((Tj, dj + 1), dj +

2), ... , (T(k - 2), (T(k)), then swap job (T(k) and job (T(j + 1) in sequence

(T~; else goto Step 7.

Step 6. If TliVT((TU < TliVT((Tk), let (Tk = (T~. Goto Step 3.

Step 7. Return (Tk and TliVT((Tk). Stop.

Their dynamic programming algorithm can be described as one recursion

function with two initial conditions(G((Tk) [12]):

O,k = 0
Wa(l) max(O,Pa(l) - da(l)), k = 1

G((Tk-l) + Wa(k) max(O, I::~:i Pa(q) - da(k)),
minO<i<k-l{

mIll G((Ti) + Wa(k) max(O, I::~=l Pa(q) + Pa(k) - da(k))

+ I::~:~2 wa(j) max(O, I::~=lPa(q) + Pa(k) - Pa(i+l) - da(j))

+Wa(i+l) max(O, I::~=lPa(q) - da(Hl))}
(3.1.1)

For job set N, it is easy to see that (Tn and G((Tn) can be obtained from

the dynamic programming algorithm in O(n3) time.

3.1.3 The Modified Dynasearch for llril L: w/Ii

The idea of dynamic programming algorithm proposed by Congram et al. [12]

can be used for problem 1hl I:: WiTi too. The modified dynasearch takes the

25

M.Sc. Thesis - Wei ling McMaster - Computational Eng. /0 Sci.

same time complexity O(n3), while the size of the neighborhood is usually

smaller than 2n
-

1 - 1. In this section, we give detailed introduction to show

how we construct the modified dynasearch for problem 1jril E w/Ti .

Suppose the initial given sequence is <J = (<J(1), ... ,<J(n)). Similarly to the

original dynamic programming algorithm, see Section 3.1.2, the new sequence

<J' is built by the modified dynamic programming algorithm in a forward enu­

meration mode. In this modified algorithm, we build the new sequence from

the 1 job partial sequence to the n-job sequence. There are n + 1 states in the

modified algorithm too.

Different from the original dynasearch algorithm, in state k, k E 0,1, ... , n,

the modified dynasearch searches for the good independent swaps of the new

partial sequence (<J(1), ... ,<J(k)). The reason is that, for problem 11r il E wiTi,

different permutations of <Jk generate different completion time C(<Jk). To get

a good upper bound, we also need to consider the right shift of jobs after <Jk.

In state k, the order of the right shift sequence is fixed as (<J(k + 1), ... , <J(n)).

So the choice of sequence <Jk is possibly not the best. The search strategy of

the modified dynamic programming algorithm is not the best - improve. In a

word, the modified dynasearch searches for good but not the best independent

swaps in the neighborhood. That is the reason why the neighborhood size of

the modified dynasearch is usually smaller than 2n - 1 - 1.

Suppose for i = O, ... ,k -1, where k E {O, ... ,n}, we have found and

stored some information of state (i, <J), such as the sequence <Ji and the total

weighted tardiness TVVT(<Ji). Here <Ji is a permutation of the partial sequence

(<J(1) , ... , <J(i)) and contains the good independent swaps for those jobs. Then

in state (k, <J), finding <Jk relies not only on the information of previous states

from (0, <J) to (k -1, <J), but also the right shift of jobs after job <J(k). Follow­

ing is the detailed steps of the modified dynasearch.

26

M.Sc. Thesis - Wei ling

Procedure SMK. [12]

McMaster - Computational Eng. & Sci.

Step 1. Suppose we have found and stored CJi and TvVT(CJi) for i =

0, ... , k - 1, for some k E {O, ... , n}.

Step 2. Let j = k - 1. Let CJk = (CJj, CJ(k)), S = (CJk' CJ(k + 1), ... , CJ(n))

and compute the total weighted tardiness TVVT(S).

Step 3. Let j = j - 1.

Step 4. If j 2: 0, construct the sequence CJ~ = (CJj, eJ(j + 1), CJ(j +
2), ... , CJ(k - 2), CJ(k)), then swap job CJ(k) and job CJ(j + 1) in sequence

CJ~. Let S' = (CJ~, CJ(k + 1), ... , CJ(n)) and compute the total weighted

tardiness TvVT(S'); else goto Step 7.

Step 6. If TvVT(S') < TvVT(S), set CJk = CJ~. Goto Step 3.

Step 7. Return CJk and TvVT(CJk)' Stop.

Following is the implementation for the modified dynasearch in our pro­

gram. A dummy job 0 is needed. For job 0, we have ro = Wo = Po = do = O.

In the implementation, for any given partial sequence CJ of N, where ICJI :S n,

the total weighted tardiness of the partial sequence TvVT(CJ) can be computed

in O(n) time.

Implementation of The Modified Dynasearch.

Step 1. Suppose the initial given sequence is (eJ(0) ,CJ(l), ... ,CJ(n)). Let

TvVTo = 0, CJo = (CJ(O)), CJl = (CJ(O), CJ(l)) and TWT1 = TVVT(CJl)'

Step 2. Let TvVT2 =

. {TVVT(CJO, CJ(2) ,CJ(l), CJ(3) , ... ,CJ(n)),
mIn

TvVT(CJl, CJ(2) , eJ(3)) , ... , CJ(n))

and record the best partial sequence as CJ2.

27

M.Sc. Thesis - Wei ling McMaster - Computational Eng. 8 Sci.

Step 3. Let TvVT3 =

{

TltVT(CTO, CT(3), CT(2), CT(l), CT(4), ... ,CT(n)),
min TWT(CTl, CT(3), CT(2), CT(4), ... , CT(n)),

TWT(CT2, CT(3), CT(4), ... , CT(n))

and record the best partial sequence as CT3.

Step n. Let TvVTn =

TvVT(CTo, CT(n) ,CT(2), , CT(n - 1), CT(l)),
TvVT(CTl, CT(n) ,CT(3), , CT(n - 1), CT(2)),

mm
TvVT(CTn_2, CT(n), CT(n -1)),
TvVT(CTn-l, CT(n))

and record the best sequence as CTn. Return CTn and TWTn.

3.1.4 Implementation of Upper Bound I

In [12], their iterated dynasearch works as follows: the iterated dynasearch

starts from a given initial sequence. After each iteration, they perform some

prespecified type random swaps in the current new sequence and then start a

new dynasearch with the new sequence. The iterated dynasearch stops after

a total number of iterations. The number they choose is 100.

In our program, we don't perform any random swap in the new sequence

after each iteration. Following is the implementation of the first upper bound.

28

M.Sc. Thesis - Wei ling McMaster - Computational Eng. fj Sci.

Implementation of Upper Bound I.

Step O. Suppose the given initial sequence is renumbered as (1, ... , n).

Let S = (1, ... , n), S' = S, j = a and sort S' in non-decreasing release

date order. j*- 8,8',8" are arrays; 8 is used to contain the final sequence

-*/

Step 1. Set D = {TTtVT(S')} , K = 100, i = a and S" = S'. j*- D is a

set; 8' contains the temporary result -*/

Step 2. If i < K, set i = i + 1, apply the modified dynasearch to S"

and record the new solution sequence as S"; else goto Step 5. j*- apply

dynasearch to 8" and get a new sequence -*/

Step 3. If TWT(S") E D, goto Step 5; else set D = D U {TTtVT(S")}.

/*- if D contains TWT(8"), stop the iteration -*/

Step 4. If TTtVT(S') > TWT(S"), let S' = S". Goto Step 2. j*- if 8"

is better than 8', record it as 8' -*/

Step 5. Let j = j + 1. If TTtVT(S) > TTtVT(S'), let S = S'. j*- update

8-*/

Step 6. If j = 2, return Sand TTtVT(S). Stop. j*- if both orders are

done, stop -*/

Step 7. Sort S' in earliest due date order and goto Step 1. j*-loop for

the earliest due date order -*/

In the implementation, we apply the modified dynasearch to the sequence

in non-decreasing release date order first and then to the sequence in earliest

due date order separately. Using the two initial sequences makes the method

generate better results in most cases.

29

M.Sc. Thesis - Wei ling

3.2 Upper Bound II

McMaster - Computational Eng. & Sci.

3.2.1 Apparent Tardiness Cost Rule

There are many other heuristic algorithms for scheduling problems. Compared

with the modified dynasearch, they need less time but the solution is weaker in

most cases. In our program, we use the Apparent Tardiness Cost([34]) rule to

give an upper bound for each node in the search tree. The modified dynasearch

is only used for the root node in the search tree.

Under the Apparent Tardiness Cost rule, every time a job i E N is

processed by the single machine, the new job j is selected to be processed next

by an index function. Suppose the processed job set is N I and the completion

time of job i is t. Then job j is selected by the following function [34]:

I ()
Wj (max{d j - Pj - t, O})

HI t = max -exp K- .
jE{N-Nl} Pj P

Here K is a constant parameter and f5 is the average of the processing time

for the job set {N - Nr}. Similarly to [34], we choose K = 2 in our program.

30

Chapter 4

Dominance Properties

In this chapter, we present the necessary background for the dominance prop­

erties used in the branch and bound method. We suggest a labeling scheme

and the data structure. We then describe all the dominance properties and

prove some of them.

4.1 Preliminaries

In this section, we introduce the background of the dominance properties and

recall some definitions.

The framework of our depth first search is based on the branch and

bound algorithm in [21]. Their branch and bound algorithm relies on ILOG

CP optimizer, the ILOG constraint programming libraries. In the search tree

of their branch and bound algorithm, the node is generated by functions of

ILOG CP optimizer. At each node, there are two job sets of N: the scheduled

job set N1 and the unscheduled job set N 2 . For each job i E N1 U N 2 , we

have a constraint variable Gi , which is the completion time of job i. If the

unscheduled job set N 2 of the node is empty, that means we obtain a job

sequence of N and L~=lWi max(O, Gi - di) is the total weighted tardiness of

the sequence. The aim of the branch and bound algorithm is to find a job

sequence of N and the value of L~=l Wi max(O, Gi - di) is minimum.

31

M.Sc. Thesis - Wei ling McMaster - Computational Eng. 8 Sci.

In [21], they use the Edge - Finding [7] branching scheme. In this

scheme, the algorithm sequences the jobs one by one on the single machine.

At each node of the search tree, we choose a set of unscheduled jobs. Then

the algorithm generates a new branch with a new node for every job in the

selected job set. At each new node, one job from the selected job set is fixed in

the first (or last) unscheduled position. With the depth first search strategy,

their branch and bound algorithm sequences the jobs both from the left and

from the right. There are several job sets at each node of the search tree. We

recall them in the following definition.

Definition 4.1.1 [21]

At each node x in the search tree, let Lx be the scheduled partial sequence

in the left. Let R x be the scheduled partial sequence in the right. Let II/Ix be

the unscheduled job set, i. e., 1\IIx = N - Lx - R x . Let iI/IFx ~ 1\IIx denote the

job set such that every job y E 1\11Fx can be fixed immediately after the last job

of Lx· Let 1\11Lx ~ 1\IIx denote the job set such that every job y E 1\11Lx can be

fixed immediately before the first job of Rx·

In the algorithm from [21], every time a new node x is added into the

search tree, we filter some jobs out from 1\11Fx by some dominance properties.

Then the algorithm selects a job i from IYIFx and branches to a new node y,

in which job i is sequenced after Lx. We remove job i from lvlFx when we

backtrack from node y to node x. At node y, after filtering, if set]..I[Fy = 0 or

]..1[L y = 0, we backtrack from y to x. If there is only one job left in]..1[L y after

filtering, then this job is immediately sequenced before the first job of Ry.

In this chapter, we have an assumption ([21]): at each node x of the

search three, the release dates of jobs in]..I[x are adjusted according to the

completion time C(Lx). Suppose the completion time of Lx is C(Lx), then for

each job i E 1\IIx, we have ri = max(ri, C(Lx)).

Before we introduce all the dominance properties III our branch and

32

M.Sc. Thesis - Wei ling McMaster - Computational Eng. fj Sci.

bound algorithm, we recall some definitions.

Definition 4.1.2 [21]

For any two partial sequences 0"1 and 0"2 of N, if {iii E 0"1} = {jlj E 0"2}

and one of the following conditions is satisfied, then the partial sequence 0"1 is

said to be as good as 0"2.

1. If C(O"l) ::; C(0"2) and TTtVT(!71) ::; TTtVT(0"2)'

2. If C(O"l) > C(0"2) and TTtVT(O"l) + (max(C(O"l)' f) - max(C(0"2), f))

* LZEN-{iliE<TI} Wz ::; TTtVT(0"2), where f = min{ZEN-{iliE<Tl}} rz·

Based on Definition 4.1.2, we have the following definition of better se-

quence.

Definition 4.1.3 [21]

For any two partial sequences 0"1 and 0"2, if {iii E 0"1} = {jlj E 0"2} and

one of the following conditions is satisfied, then the partial sequence 0"1 is said

to be better than 0"2.

1. If 0"1 is as good as 0"2 and 0"2 is not as good as 0"1.

2. If 0"1 is as good as 0"2, 0"2 is as good as 0"1 and 0"1 is smaller than 0"2

by the lexicographic order.

Most of our dominance properties are based on Definition 4.1.3.

4.2 Dominance Property From Visited Nodes

In this section, we first introduce a data structure. Then we describe how we

use it within a dominance property.

4.2.1 The Red-Black Tree

The red-black tree is a type of height-balanced binary search tree, a data struc­

ture proposed by Guibas and Sedgewick [18].

33

M.Sc. Thesis - Wei Jing McMaster - Computational Eng. f3 Sci.

The binary tree is an acyclic connected graph such that each node has

zero or at most two children nodes. The node without a parent node is the

root node. Except the root node, each node has a parent node. Each node

contains a unique key, for example, an integer. Besides the key, each node

contains pointers pointing to its children and parent. If a node does not have

a child or the parent, the value of the corresponding pointer is NIL. A leaf

node has no children. The height of a binary tree refers to the size of the

longest path over all possible paths from the root node to a leaf node.

A binary search tree is a binary tree and every node in the tree is subject

to the following constraints:

• 1. All the keys of the left subtree for the node are less than the key of

the node.

• 2. All the keys of the right subtree for the node are greater than the

key of the node.

For a given set of integers H, it is clear that we can construct lots of

corresponding binary search trees. Among all those binary search trees, a

height-balanced binary search tree refers to the binary search tree with the

minimum height. It is easy to see that the height of a height-balanced binary

search tree for set H is bounded by 10g2(IHI).

A red-black tree is a binary search tree with the extra color property per

node and the tree is subject to the following constraints([14]):

• 1. Each node is either black or red.

• 2. The root node is black.

• 3. Each leaf node is black and doesn't contain a key.

• 4. For each red node, both children are black.

• 5. For each node, every path from the node to any of its descendant

leaves contains the same number of black nodes.

If a node is black, there is no restriction on the colors of its children.

34

M.Sc. Thesis - Wei ling McMaster - Computational Eng. CJ Sci.

There is no binding relation between the key and the color of any node. Be­

cause of the five constraints [14], a red-black tree is approximately height­

balanced. We have the following result about the height of a red-black tree.

Lemma 4.2.1 [14]

A red-black tree with n non-leaf nodes has height at most 2log2(n + 1).

Suppose a red-black tree contains n keys. For a given key, we can search

in the red-black tree to see whether it exists or not. The search begins at the

root node, pointed by a pointer variable p. We compare the given key with

the key of the node pointed by p. If they are equal, we stop the search. If

the given key is smaller (or greater), we set p to its left (or right) child and

continue the search recursively until either a leaf node is met or the given key

is found. The read-only operation doesn't modify the red-black tree.

If the red-black tree doesn't contain the key, we can create a new red node

with the given key and add it into the tree. The insert operation modifies the

tree and possibly makes it violate the five constraints. Extra work is needed to

restore the five constraints. First, we search in the tree to find the parent node

for the new red node by key comparison. Second, we repaint the colors and

change the pointers of the new node and some other nodes according to their

colors. In [14], they show that read-only and insert operations for a given key

in the red-black tree both take O(log2(n)) time. For the detailed procedures of

the operations, see [14].

4.2.2 The Red-Black Tree and The Dominance Prop­
erty

Problem 111 E WjTj is a special case of problem 111 E hj (Cj), where hj (Cj)

is a function of Cj for j = 1, ... , n. In [26], there is a dynamic programming

algorithm for problem 111 E hj(Cj). The dynamic programming algorithm can

35

M.Sc. Thesis - Wei Jing McMaster - Computational Eng. & Sci.

be described by a recursive function([26]):

V ({1, ... , n}) = { V ({j}) = ~j (Pj) , j = 1, .. :' n
V(J) = mmjo(V(l - {J}) + hjCL,kEJPk))

In this recursive function, J is a subset of N. To find V(N), we need to

compute all V(l). If III = k ::; n, then there are n!J(k!(n - k)!) subsets of

cardinality k. The number of all the subsets is 2n .

In [21], they use the no-good recording technique [35] as a dominance

property. The idea of this technique is similar to the above dynamic pro­

gramming algorithm. During the searching process of the branch and bound

method, every time a new node x is added into the search tree, for every

i E NJFx, we use the bit set of the scheduled partial sequence (Lx, i) to query

in the no-good list. Suppose there exists a visited node y in the no-good list

such that {klk E (Lx, in = {j!j ELy}. Node y contains data of the comple­

tion time C(Ly) and the weighted tardiness TVVT(Ly). Then we know which

partial sequence is better according to Definition 4.1.3. If L y is better, we re­

move i from NJFx ; otherwise, we add some information of the partial sequence

(Lx, i) into the no-good list.

In our branch and bound algorithm, the no-good list is a red-black tree,

see Section 4.2.1. We use the standard binary labeling scheme [30] for all the

feasible subsets. In the standard binary labeling scheme, the information of a

job set is stored in a bit array. In the bit array for a job set, if the value of bit

i, i E N is 1, then this means job i is in the job set, while 0 means not. For a

given feasible subset, we use its bit array as the key to perform read-only and

insert operations in the red-black tree.

Besides the unique bit array of a visited partial sequence (J, each node of

the red-black tree contains data of the completion time C((J) and the weighted

tardiness TWT((J). Because the maximum number of the bit arrays offeasible

subsets for the problem is 2n , the height of the red-black tree is bounded

by 2log2 (2n + 1). Considering the second condition of Definition 4.1.2, we

36

M.Sc. Thesis - Wei Jing McMaster - Computational Eng. 8 Sci.

maintain a list of pairs of (C(O"),TWT(O")) at each red-black tree node. In

most cases, it takes O(log2(2n
)) = O(n) time to perform the read-only and

insert operations in the red-black tree.

4.3 Dominance Property By Release Date and
Processing time

A sequence is active if it is impossible for us to find a new sequence by changing

the job order in the given sequence such that there is at least one job that

is finished earlier and no job is delayed. In [4, 13], they show that the set of

active sequences is dominant. vVe have the following result for the unscheduled

job set.

Theorem 4.3.1 [4, 13]

Given a new node x in the search tree, for any job k, k E Jl/Ix , if rk ~

min{iEMx}{ri +Pi}, then Jl/IFx = jYIFx - {k}.

This dominance property filters some jobs out from the unscheduled job

set based only on the release date and the processing time.

4.4 Dominance Property From Local Optimal­
ity

In [11, 9, 8, 10], Chu proposes a local optimality condition for a single machine

problem with only two adjacent jobs. The local optimality condition can be

applied to the total weighted tardiness problem as follows.

Theorem 4.4.1 [11, 21]

Suppose that in a single machine scheduling problem, there are two ad­

jacent jobs j and k to be processed by the machine at time t. It is optimal

to sequence job k after job j if and only if TvVTjk(t) ::; TWTkj(t), where

TvVTjk(t) = Wj max(O, max(rj, t) + Pj - dj) + Wk max(O, max(max(rj, t) +

37

M.Sc. Thesis - Wei ling McMaster - Computational Eng. f:j Sci.

Pj, ma:x:(rk' t)) + Pk - dk) and TWTkj(t) = Wk max(O, max(rk' t) + Pk - dk) +
Wj max(O, max(max(rk' t) + Pk, max(rj, t)) +Pj - dj).

Then in [21], the authors modify this result to find a dominant subset

for problem 11r il L WiTi'

Definition 4.4.2 [21]

A job sequence 0" is said to be LO-Active (Locally Optimal Active), if

every adjacent pair of jobs j and k (in which job j precedes k) satisfies at

least one of the following conditions:

1. max(rj, Cj - 1 (0")) < max(rk' Cj - 1 (0"))

2. TvVTjk (Cj_1(0")) :::; TvVTkj (Cj_1 (0")).

Theorem 4.4.3 [21]

If a sequence is optimal for problem 11ril L WiTi, it is LO-Active.

Based on Definition 4.4.2 and Theorem 4.4.3, we have the following re­

sults.

Definition 4.4.4 [21]

A job sequence 0" is said to be LOWS-Active (Locally Optimal Well Sorted

Active), if every adjacent pair of jobs j and k (in which job j precedes k)

satisfies at least one of the following conditions:

1. TvVTjk(o) < TvVTkj(o)

2. TvVTjk(o) = TVVTkj(o) and max(rj, 0) :::; max(rk' 0)

3. TvVTjk(o) > TvVnj(o) and max(rj, 0) < max(rk' 0)

where 0 = Cj - 1 (0").

Not all LOWS-Active sequences are optimal. In [21], the authors use the

following two results as local dominance properties in the branch and bound

algorithm.

Theorem 4.4.5 [21]

The subset of LOWS-Active sequences is dominant for problem 11ril L WiTi'

38

M.Sc. Thesis - Wei ling McMaster - Computational Eng. f3 Sci.

Theorem 4.4.6 [21]

Given a new node x in the search tree, suppose job j is the last job of

the partial sequence Lx. For every job k E lVIFx, k can be removed from lVIFx

if at least one of the following conditions is satisfied:

1. max(rk,5) < max(rj)5) and TVVTkj (5) :S: TvVTjk (5)

2. max(rk) 5) :S: max(rj) 5) and TVVTkj (5) < TvVTjk (5)

3. max(rk) 5) = max(rj, 5), TvVTkj (5) = TvVTjk (5) and j < k

where 5 = Cj-1(Lx)'

4.5 Dominance Properties From the Scheduled
Partial Sequence

Compared with the dominance rules introduced in the above sections) we have

a more general result.

Theorem 4.5.1 [21]

Given a new node x in the search tree with the scheduled partial sequence

Lx, for every job i E 1..1Fx, i can be removed from IV!Fx if there exists another

partial sequence Ly such that {klk E (Lx) in = {jlJ ELy} and Ly is better

than (Lx) i).

4.6 Dominance Properties Based on Unsched­
uled Jobs

In this section) we recall two important dominance properties based on job

interchange and insertion. The dominance properties introduced in this section

only take into account information for unscheduled jobs.

39

M.Sc. Thesis - Wei ling McMaster - Computational Eng. f3 Sci.

4.6.1 Dominance Properties By Interchange and Inser­
tion

Given any two jobs j and k in the unscheduled job set]I/[x, we recall under

which condition [21] job j dominates job k in the first unscheduled position.

For the situation of job interchange between j and k, we have the assumption:

Wj 2': Wk·

At a new node x, Lx is the partial sequence fixed in the left and R x is the

partial sequence scheduled in the right. Suppose a feasible partial sequence of

unscheduled job set]\.!{x is given by (k,Ax,j,Bx). Here Ax is the partial se­

quence between job k and j and B x is the partial sequence between job j and se­

quence R x. We get the full sequence (]" = (Lx, k, Ax, j, B x, R x). After exchang­

ing job k and job j in (]", we get the new sequence (]"' = (Lx,j,Ax,k,Bx,Rx).

Let TvVT((]") denote the total weighted tardiness of (]" and vVT(k) denote the

weighted tardiness of job k. If TvVT((]"') ::::: TvVT((]"), then job j dominates

job k in the first unfixed position. Thus, job k can be removed from JvIFx [21].

We can expand the total weighted tardiness of the two sequences (]" and

(]"' to:
TWT((]") = TvVT(Lx) + WT(k) + TWT(Ax)

+vVT(j) + TWT(Bx) + TvVT(Rx)

TvVT((]"') = TWT(Lx) + WT(j') + TvVT(A~)

+vVT(k') + TvVT(B~) + TvVT(R~)

Then TvVT((]") - TWT((]"') can be transformed to:

TvVT((]") - TvVT((]"') =

vVT(k) + WT(j) - (WT(j') + vVT(k')) + (4.6.1)

TWT(Ax) + TvVT(Bx) - (TvVT(A~) + TWT(B~)) + (4.6.2)

TvVT(Rx) - TvVT(R~) (4.6.3)

To get an estimation for TvVT((]") - TvVT((]"'), we first recall the following

definitions.

40

M.Sc. Thesis - Wei ling McMaster - Computational Eng. & Sci.

Definition 4.6.1 [21]

Let Sj ((J) denote the start time of job j in sequence (J and Sk((J') be the

start time of job k in sequence (J'. Let Ck((J) = rk + Pk denote the completion

time of job k in sequence (J and Cj((J') = Tj +Pj be the completion time of job

j in sequence (J'. Let (PI = Sk((J') - Sj((J) and cP2 be the maximum shift of job

set Ax U Ex in (J', i. e., cP2 = max(O, Cj((J') - Ck((J), Ck((J') - Cj((J)). Let cP3 be

the maximum shift of job set Rx in rJ', i.e., cP3 = max(O, Ck(rJ') - Cj(rJ)).

By the above definitions of cPl,cP2 and cP3 from [21], we get an estimation

for (4.6.1),(4.6.2) and (4.6.3) [21]:

(4.6.4)

where function <Pjk(s, cPl, cP2, cP3) is defined as [21]:

<Pjk(s, cPl, cP2, cP3) = Wj max(O, s +Pj - dj) - Wk max(O, s + cPl +Pk - dk)

(4.6.5)

It is easy to see that <Pjk(Sj((J), cPl, cP2, cP3) gives a lower bound estimation

for TvVT((J) - TvVT(rJ') by (4.6.4).

The following results show under what conditions, we can remove job k

from 1\11Fx .

Lemma 4.6.2 [21]

For given cP1> cP2 and cP3' <Pjk(s, cPl, cP2, cP3) is a function of s. If Wj 2': Wk,

<P jk is nondecreasing on [dj - Pj, +00] and obtains its global minimum at s =

dj - Pj·

Theorem 4.6.3 [21]

Given a new node x in the search tree, for any two jobs j, j E lY!x

and k, k E lYfFx , if Wj 2': Wk and ~jk(cPl' cP2, cP3) 2': 0, then job j domi-

41

M.Sc. Thesis - Wei ling McMaster - Computational Eng. & Sci.

nates job k in the first position after the scheduled partial sequence Lx, where

~jk((h,(h'¢3)= <l>jk(max(dj -pj,rk+Pk),¢1,¢2,¢3).

For the case of job insertion, we construct (J and (J' as follows

{

",~ (Lx, k, Ax, j, Ex, II,,;)

(J - (Lx, J, k, Ax, Ex, Rx)

With a same analysis as for interchange, we have the following result for

insertion.

Theorem 4.6.4 [21]

Given a new node x in the search tree, for any two jobs j, j E]'/[x and

k,k E 1VIFx, if<l>jk(rk+pk,rj+pj-rk-Pk,rj+pj-rk,max(O,rj-rk)) ~ 0, then

job j dominates job k in the first position after the scheduled partial sequence

4.6.2 Eight Cases of Interchange

In this section, we give all possible eight cases [21] to show how to compute

the values of ¢1, ¢2 and ¢3 introduced in the last section. For the detailed

discussion, see [21]. Figure 4.1 gives a tree of different conditions of the eight

cases. Table 4.1 shows values of ¢1, ¢2 and ¢3 for the eight cases.

Eight Cases.[21]

Case 1. If rj +Pj :s; rk +Pk and Pj < Pk, then ¢1 = 0, ¢2 = ¢3 = Pk - Pj·

Case 2. Ifrj+pj :s; rk+Pk,pj < Pk, rk+pj < maX{iEMx}{ri} < rk+pk, and

rj :s; rk, then ¢1 = maX{iEMx}{ri} - rk - Pk, ¢2 = ¢3 = maX{iEMx}{ri} -

Case 3. Ifrj+pj :s; rk+Pk,pj < Pk, rj :s; rk, and max{iEMx}{ri} < rk+pj,

then ¢1 = max(rj + Pj, maX{iEMx } {ri}) - rk - Pk, ¢2 = ¢3 = 0.

42

M.Sc. Thesis - Wei ling McMaster - Computational Eng. (0 Sci.

Table 4.1: Eight cases of interchange [21]

Case Values of (PI, (P2,¢3
1 ¢1 = 0, ¢2 = ¢3 = Pk - Pj
2 ¢1 = maX{iEMx}{ri} - rk - Pk, ¢2 = ¢3 = maX{iEMx}{ri} - rk - Pj
3 ¢1 = max(rj +Pj, maX{iEMx}{ri}) - rk - Pk, ¢2 = ¢3 = 0
4 ¢1 = max(rj +pj,maX{iEMx}{ri}) - rk - Pk,

¢2 = ¢3 = max(rj + pj,maX{iEMx}{ri}) - rk - Pj

5 ¢1 = ¢2 = ¢3 = 0
6 ¢1 = max(rj +Pj, maX{iEMx}{ri}) - rk - Pk, ¢2 = ¢3 = 0
7 ¢1 = rj +Pj - rk - Pk, ¢2 = ¢3 = rj - rk
8 ¢1 = rj +Pj - rk - Pk, ¢2 = rj +Pj - rk - Pk, ¢3 = max(O, rj - rk)

Case 4. If rj + Pj :::; rk + Pk,Pj < pk,maX{iEMx}{ri} < rk + Pk, and

rj > rk, then ¢1 = max(rj + Pj, max{iEMx}{rJ) - rk - Pk, ¢2 = ¢3 =

max(rj +pj,maX{iEMx}{ri}) - rk - Pj'

Case 6. If rj +Pj :::; rk +Pk,Pj ~ Pk and maX{iEMx}{ri} < rk +Pk, then

¢1 = max(rj +Pj, maX{iEMx}{ri}) - rk - Pk, ¢2 = ¢3 = O.

Case 7. If rj + Pj > rk + Pk,Pj < Pk, then ¢1 = rj + Pj - rk - Pk, ¢2 =

¢3 = rj - rk·

Case 8. If rj + Pj > rk + Pk,Pj ~ Pk, then ¢1 = rj + Pj - rk - Pk, ¢2 =

rj +Pj - rk - Pk and ¢3 = max(O, rj - rk)'

4.7 Some Other Dominance Rules

In this section, we give some other dominance rules for problem 1hl2:WiTi'

43

M.Sc. Thesis - Wei Jing McMaster - Computational Eng. & Sci.

.. max{rj};:: rk+Pk ': Case 1 1
{jE Mx}

max{rj} > rk+Pj HCase 21Pj< Pk ~ ~

~ rj ::> rk ~
{j E Mx}

max{rj} ::> rk+Pj.. max{rj} < rk+Pk .. HCase 31
{jE Mx}

{j E Mx}

rj+Pj::>.. ~
I

I Case 4 Irk+Pk rj > rk I

.. max{rj};:: rk+Pk : Case 5 I
{jE Mx}

+l Pj ;:: Pk ~ .. max{rj} < rk+Pk ,;: Case 6 1
{jE Mx}

i-+l Pj < Pk : ICase 71
... rj+P? f-

rk+Pk L-.j > I I Case 81Pj - Pk I

Figure 4.1: Tree of the eight cases [21]

44

M.Sc. Thesis - Wei Jing

Theorem 4.7.1 [9, 2]

McMaster - Computational Eng. & Sci.

Given a new node x in the search tree, for any two jobs j and k in NIx,

if Wj ?: Wk,Pj ?: Pk, rj +Pj :::; rk +Pk, and dj :::; dk, then job j dominates job k

in the first position after the scheduled partial sequence Lx.

Theorem 4.7.2 [9,2,6]

Given a new node x in the search tree, for any two jobs j and k in NIx,

job j dominates job k in the first position after the scheduled partial sequence

Lx if all the following conditions are satisfied: 1. rj :::; rk, dj :::; dk,Wj ?: Wk,

and rj + Pj :::; rk + Pk, 2. max(rj, rk) :::; miniEMx {ri + Pi}.

Theorem 4.7.3 [6]

Given a new node x in the search tree, for any jobs j E NIx and k E ~N[Fx,

if Wj ?: Wk, rj + Pj :::; rk + Pk and Wj(rk + Pk - rj - Pj) + WjPj - WkPk ?:

(Pk - Pj) L{IE{Mx-{j,k}URx}} WI, then job j dominates job k in the first position

after the scheduled partial sequence Lx.

Theorem 4.7.4 [6]

Given a new node x in the search tree, for any jobs j E NIx and k E

]l,I[Fx , if Wj ?: Wk, rj + Pj ?: rk + Pk, and WjPj - WkPk ?: (rj + Pj - rk ­

Pk) L{IEMxURx} WI + max(O,Pk - Pj) L{IEMx-{j,k}URx} WI, then job j dominates

job k in the first position after the scheduled partial sequence Lx.

Theorem 4.7.5 [6]

Given a new node x in the search tree, suppose the scheduled partial

sequence is Lx = (L~,k,y). For any job j in]l,I[Fx, if there are no inserted

idle times in sequences (j, y, k) and (k, y, j), then sequence (L~, j, y, k) is better

than sequence (L~, k, y, j) such that (rk +Pk - rj - Pj)(Wj + Wk + w y) + (Wj ­

Wk)(Pj + Pk + Py) + WkPj - WjPk ?: max(O, rj - rk) L{IEMx-{j}} WI·

45

M. S c. Thesis - Wei ling McMaster - Computational Eng. t'1 Sci.

Theorem 4.7.6 [10]

Given a new node x in the search tree, for any job j in NIFx, j can be

removed from NIFx if there exists a job k E Lx such that max(rj, Ck-1(Lx)) +
Pj ::; max(rk, Ck-1(Lx)) + Pk and max(rj, Ck-1(Lx)) - max(rk, Ck-1(Lx)) ::;

(Pj - Pk)(INlxl - 1).

Theorem 4.7.7 [10]

Given a new node x in the search tree, for any job j in NIFx, job j can

be removed from NIFx if there exists a job k E Lx such that Pj 2= Pk and

Pj - Pk 2= (max(rj, Ck-1(Lx))) + Pj - max(rk, Ck-1(Lx))) - Pk)(ILxl - i + 2),

where k = Lx(i), 1::; i ::; ILxl.

Actually, the above dominance rules are included in Theorem 4.5.1 and

Theorem 4.6.3. For the detailed proof of following results, see [20].

Proposition 4.7.8 [21]

Theorems from 4· 7.1 to 4.7.4 are included in Theorem 4·6.3.

Proposition 4.7.9 [21]

Theorems from 4.7.5 to 4.7.7 are included in Theorem 4.5.1.

4.8 Applying Dominance Properties

Every time a new node x is added into the search tree, the possible first job

set NIFx is equal to the unscheduled job set }Ylx ' Then we apply dominance

properties one by one to filter out as many jobs in NIFx as possible.

Theorem 4.3.1 is the first dominance rule [21] applied to }I,I[Fx ' If the

distribution of unscheduled jobs are not dense in release date, Theorem 4.3.1

can filter out most of them.

For every pair of jobs in the possible first job set }YIFx , we apply Theorem

4.6.3 and 4.6.4. By inserting and interchanging [21], we also generate the

46

M.Sc. Thesis - Wei ling McMaster - Computational Eng. fj Sci.

permutations of i and jobs in Lx. If there exists a better permutation of

(Lx, i), then i can be removed from]\.IIFx.

In [21], for every job i E]\.IIFx , they generate all permutations of last 5

jobs in Lx and i. If there exists a better permutation of the 6 jobs, then i can

be removed from]\.IIFx .

Finally, for each job i in]\.IIFx, we use the bit set of (Lx, i) to query

in the visited no-good list [21]. According to Theorem 4.5.1, if there exists

a visited partial sequence which is better than (Lx, i), we can remove i from

]\.IIFx; otherwise, we need to add some information into the no-good list for

future queries.

47

Chapter 5

Computational Results

In this chapter we provide the computational results for the branch and bound

algorithm. Our program is based on the solver from Jouglet et al. [21]. We

add the new lower bound and the new upper bound modules. We rewrite the

old lower bound and modify the dominance rules modules. Codes are written

in C++ and all computations are performed on a Windows PC with Intel

Core2Duo 2.40GHz processor and 1Gb RAM. All running times are reported

in seconds.

The generating scheme of the test instances is from [9]. Suppose the

input size of the problem is INI = n. For each job i E N, the processing

time Pi and the weight Wi are positive integers randomly chosen from [1,10].

The release date ri is an integer randomly chosen from [0, a 2: Pi], where a is a

float parameter from {O.O, 0.5,1.0, 1.5}. The due date di is an integer randomly

chosen from [(ri + Pi), (ri + Pi) + ,6 2: Pi], where ,6 is a float parameter from

{0.05, 0.25, 0.5}. There are 12 pairs of (a, ,6). For each pair of (a, ,6), ten

instances are generated randomly. For a INI = n jobs problem, we generate

120 test instances. Test sets are generated for n = 30,35,40,45,50,60. In

total, there are 720 test instances. For every test instance, we set up one hour

time limit for the program.

First, we report the computational results of the new solver and the old

48

M.Sc. Thesis - Wei ling McMaster - Computational Eng. & Sci.

solver in one table for instances with 30 jobs to 50 jobs. Table 5.1 reports the

total number and the percent of instances solved by the two solvers. For the

hardest instances, the new solver can handle up to 40 jobs in one hour time

limit, while this number for the old solver is 30. For the 50-job problem, the

old solver is able to solve 74.2% of all the test instances, and the percentage

of instances solved by the new solver is 92.5%.

Second, considering the maximum problem size of all instances solved

by the new solver is n = 40, we give the specialized computational results for

40-job problems. Figure 5.1 shows the distribution of solution times for the

instances of the 40-job problems. Source data are from Table 5.7 with the new

solver. By Figure 5.1, we know that instances from (0,0.5), (0.5,0.05), (0.5,0.25)

and (0.5,0.5) are hard to solve. And (a = 0.5, {3 = 0.5) is the hardest parame­

ter setting. Table 5.2 reports the percent of instances solved by the two solvers

for hard instances with the parameter sets of (0,0.5), (0.5,0.05), (0.5, 0.25) and

(0.5,0.5).

Table 5.3 gives the comparison of the two lower bound schemes for 40­

job instances. For each pair of (a, {3), we report the number of times LBI

is greater than LB2 , the number of times LB2 is greater than LBI and the

average difference. In most cases, the new lower bound scheme (LBI) brings

us a better lower bound. In Table 5.4, we report the number of times UBI is

smaller than UB 2 , the number of times UB 2 is smaller than UBI, the average

relative deviation (ARD) and the maximum relative deviation (MRD) of the

two upper bound schemes. If UB is the value given by an upper bound scheme

and OPT is the optimal value for a test instance, then the value of relative

deviation is (UB - OPT)/OPT.

Finally, for each set of the 120 test instances from 30-job problems to

50-job problems, we give the computational results of the two solvers in a

table. From Table 5.5 to 5.10, we report the number of unsolved instances,

49

M.Sc. Thesis - Wei ling McMaster - Computational Eng. & Sci.

Table 5.1: Comparison of the new and old solver and percentage solved.

New Old
n Solved Perc. Solved Perc.
30 120 100% 120 100%
35 120 100% 119 99.2%
40 120 100% 115 95.8%
45 118 98.3% 106 88.3%
5.0 115 95.8% 104 86.7%
60 111 92.5% 89 74.2%

Table 5.2: Percentage solved for hard pairs of (0'.,/3).

(0'.,/3) (0,0.5) (0.5,0.05) (0.5,0.25) (0.5,0.5)
n New Old New Old New Old New Old
30 100% 100% 100% 100% 100% 100% 100% 100%
35 100% 100% 100% 100% 100% 100% 100% 90%
40 100% 100% 100% 100% 100% 100% 100% 50%
45 100% 90% 100% 100% 100% 70% 80% 0%
50 100% 100% 100% 100% 100% 40% 50% 0%
60 100% 0% 100% 90% 100% 0% 10% 0%

the average and the maximmu running time for each pair of (0'.,/3). It can be

seen that the new solver is able to find the optimal schedule for more instances.

Furthermore, it requires substantially less time to solve most instances. It is

easy to see that the relation between the instance hardness and the pair of

(a, /3) is not linear. If a = 0 or a = 0.5, the hardness of instance increases

with /3. For large values of a and /3, because the distribution of the jobs is not

dense, test instances are easier to solve.

50

M.Sc. Thesis - Wei ling McMaster - Computational Eng. 8 Sci.

Table 5.3: Comparison of the two lower bound schemes for 40-job instances.

a (3 LBI > LB2 Avg.Diff. LB2 > LBI Avg.Diff.
0 0.05 486 33.7 7 11
0 0.25 14906 289.6 42 16.5
0 0.5 187051 977.3 720 42.3
0.5 0.05 32954 86.4 17410 90.7
0.5 0.25 363325 619.2 1013 54.3
0.5 0.5 12617816 252.2 304 37.9
1 0.05 29383 103.8 33299 98.0
1 0.25 42251 360.6 0 0
1 0.5 39 9.3 0 0
1.5 0.05 954 91.5 35 37.5
1.5 0.25 428 39.4 0 0
1.5 0.5 8 9 0 0

Table 5.4: Comparison of the two upper bound schemes for 40-job instances.

a (3 UBI < UB2 ARD l\IIRD UB2 < UBI ARD l\!IRD
0 0.05 9 0.00 0.00 0 0.00 0.00
0 0.25 10 0.00 0.00 0 0.01 0.02
0 0.5 9 0.01 0.02 1 0.02 0.04
0.5 0.05 8 0.11 0.31 2 0.13 0.29
0.5 0.25 9 0.06 0.18 1 0.20 0.49
0.5 0.5 6 0.55 3.62 4 0.57 1.49
1 0.05 3 0.67 1.33 7 0.36 0.94
1 0.25 7 13.06 125 3 9.87 53
1 0.5 1 9.92 39 5 6.09 27
1.5 0.05 0 6.57 16.10 10 0.96 2.49
1.5 0.25 3 17.98 147 2 1.17 10
1.5 0.5 0 1.73 17.3 1 0.03 0.3

ARD: the average relative deviation
MRD: the maximum relative deviation

51

M.Sc. Thesis - Wei Jing McMaster - Computational Eng. & Sci.

10
2

0'
Q)

~
Q)

E.,
~
D-
U

10'

Results for 40 jobs.
10

4 r-----,--,-----,--,-----,--,-----,--,-----,---r;::==:r::::==;-l

I==~:~.I
""I'I'

I '
I 'I ,

I '
I '
I '
I '
I '
I 'I ,

I 'I ,
I ,

I '

" \I ,

I '1\ I \
1\ f \

I , I \
I \ I \

I \ I \

/' \, / \
I \ I \

J \ / \

" \ //,// l ,

" '\ /' \" \/ \, ,, ,, ,, ,, ,, ,, ,
/ \

If \ _
,/ ------------""'"",

10.1 "-------'-----'-----'-----'------'----'-----'------'---------'-----'----=----'
(0,0.05) (0,0.25) (0,0.5) (0.5,0.05)(0.5,0.25) (0.5,0.5) (1,0.05) (1,0.25) (1,0.5) (1.5,0.05)(1.5,0.25) (1.5,0.5)

12 pairs of (alpha,beta)

Figure 5.1: Hardness of 40-job instances for 12 pairs of (0'., f3) .

Avg. : the average cpu time of the 10 instances for a pair of (0'., (3)
Max. : the maximum cpu time of the 10 instances for a pair of (0'., (3)

52

M.Sc. Thesis - Wei ling McMaster - Computational Eng. 8 Sci.

Table 5.5: Results for 30-job instances.

New Old
a f3 Avg. J'VIax. U Avg. J\,I[ax. U
0 0.05 0.1 0.1 - 0.1 0.1 -

0 0.25 0.2 0.6 - 1.2 3.0 -

0 0.5 1.0 4.4 - 10.6 31.8 -

0.5 0.05 0.2 0.3 - 0.5 1.0 -

0.5 0.25 1.1 5.8 - 24.0 108.2 -

0.5 0.5 14.0 40.7 - 65.9 201.4 -

1 0.05 0.1 0.4 - 0.2 0.5 -

1 0.25 0.1 0.2 - 0.1 0.2 -

1 0.5 0.1 0.1 - 0.1 0.1 -

1.5 0.05 0.1 0.2 - 0.1 0.1 -

1.5 0.25 0.1 0.1 - 0.1 0.1 -

1.5 0.5 0.1 0.1 - 0.1 0.1 -

U: the number of unsolved instances

Table 5.6: Results for 35-job instances.

New Old
a f3 Avg. J'VIax. U Avg. III[ax. U
0 0.05 0.1 0.1 - 0.1 0.2 -

0 0.25 0.4 1.1 - 5.6 21.0 -

0 0.5 2.2 4.7 - 151.3 869.1 -

0.5 0.05 0.4 0.9 - 2.4 8.6 -

0.5 0.25 6.6 21.6 - 155.4 395.2 -

0.5 0.5 53.7 208.8 - 774.4 3600 1
1 0.05 0.28 0.9 - 0.2 0.6 -

1 0.25 0.3 2.0 - 0.3 2.4 -

1 0.5 0.1 0.3 - 0.1 0.5 -

1.5 0.05 0.2 0.3 - 0.1 0.2 -

1.5 0.25 0.1 0.1 - 0.1 0.1 -

1.5 0.5 0.1 0.1 - 0.1 0.1 -

U: the number of unsolved instances

53

M.Sc. Thesis - Wei ling McMaster - Computational Eng. fj Sci.

Table 5.7: Results for 40-job instances.

New Old
ex {3 Avg. lVlax. U Avg. Max. U
0 0.05 0.1 0.2 - 0.2 0.4 -

0 0.25 0.7 2.7 - 11.1 74.0 -

0 0.5 10.1 54.3 - 263.1 903.6 -

0.5 0.05 1.6 3.8 - 7.3 17.5 -

0.5 0.25 7.3 13.7 - 565.6 3284.5 -

0.5 0.5 502.7 2604.8 - 2301.8 3600 5
1 0.05 2.6 9.9 - 3.7 14.4 -

1 0.25 2.0 8.5 - 2.7 12.6 -

1 0.5 0.2 0.5 - 0.1 0.5 -

1.5 0.05 0.2 0.4 - 0.1 0.1 -

1.5 0.25 0.2 0.5 - 0.1 0.5 -

1.5 0.5 0.1 0.1 - 0.1 0.1 -

U: the number of unsolved instances

Table 5.8: Results for 45-job instances.

New Old
ex {3 Avg. lVlax. U Avg.]..I[ax. U
0 0.05 0.1 0.2 - 0.3 0.8 -

0 0.25 1.5 3.7 - 61.3 152.0 -

0 0.5 14.6 37.9 - 1570.6 3600 1
0.5 0.05 1.8 5.1 - 13.7 67.3 -

0.5 0.25 25.9 54.8 - 1827.7 3600 3
0.5 0.5 1549.1 3600 2 3600 3600 10
1 0.05 1.8 4.1 - 2.0 6.1 -

1 0.25 1.0 3.3 - 0.7 3.1 -

1 0.5 0.2 0.3 - 0.1 1.0 -

1.5 0.05 0.3 0.4 - 0.1 0.2 -

1.5 0.25 0.2 0.5 - 0.1 0.3 -

1.5 0.5 0.1 0.2 - 0.1 0.1 -

U: the number of unsolved instances

54

M.Sc. Thesis - Wei ling McMaster - Computational Eng. f3 Sci.

Table 5.9: Results for 50-job instances.

New Old
ex {3 Avg. Jvlax. U Avg. Jvlax. U
0 0.05 0.1 0.2 - 0.3 0.6 -

0 0.25 2.9 9.1 - 101.7 330.4 -

0 0.5 56.6 197.9 - 1522.1 3227.9 -

0.5 0.05 4.5 18.1 - 19.7 67.4 -

0.5 0.25 73.7 142.1 - 3006.8 3600 6
0.5 0.5 2466.6 3600 5 3600 3600 10
1 0.05 1.9 4.5 - 2.4 6.5 -

1 0.25 2.1 13.7 - 2.6 21.2 -

1 0.5 0.2 0.4 - 0.1 0.1 -

1.5 0.05 0.5 0.7 - 0.1 0.3 -

1.5 0.25 0.3 0.4 - 0.1 0.1 -

1.5 0.5 0.2 0.3 - 0.1 0.1 -

U: the number of unsolved instances

Table 5.10: Results for 60-job instances.

New Old
ex {3 Avg. Jvlax. U Avg.]..I[ax. U
0 0.05 0.4 0.7 - 1.6 3.5 -

0 0.25 18.7 51.1 - 834.3 2189.8 -

0 0.5 570.2 1676.1 - 3600 3600 10
0.5 0.05 38.8 112.1 - 564.1 3600 1
0.5 0.25 1380.0 3457.6 - 3600 3600 10
0.5 0.5 3388.5 3600 9 3600 3600 10
1 0.05 29.1 148.9 - 50.2 330.2 -

1 0.25 59.6 564.0 - 93.8 798.6 -

1 0.5 0.6 0.9 - 0.1 0.3 -

1.5 0.05 1.6 2.3 - 0.5 1.6 -

1.5 0.25 0.7 1.0 - 0.1 0.2 -

1.5 0.5 0.5 0.6 - 0.1 0.1 -

U: the number of unsolved instances

55

Chapter 6

Conclusions and Future Work

In this paper, we introduce an efficient branch and bound algorithm for a

strongly NP-Hard problem. First, by utilizing the multiplier adjustment method,

we get a new lower bounding scheme. In particular, we show that the new

lower bounding scheme gives better lower bounds than the lower bounding

scheme from the weighted completion time problem in most cases. Secondly,

based on a modified local search heuristic, we get a better upper bounding

scheme at the root node of the search tree. In Section 4.2, we suggest a data

structure for an important dominance rule.

Numerical results show that utilization of the new lower bounding scheme

significantly decreases the computational time for difficult test instances. Work­

ing together with the lower bounding scheme from the weighted completion

problem, the new lower bounding scheme enables the branch and bound al­

gorithm to solve the hardest test instances with up to 40 jobs in one hour

time limit. Compared with the results of the old solver from Jouglet et al.

[21], our numerical results of the new solver show that the three new tech­

niques decrease computational time for most test instances and require less

computational resources.

There are a few issues that need further exploration for the single machine

scheduling problem. First, our enumerative algorithm is still a kind of branch

56

M.Sc. Thesis - Wei ling McMaster - Computational Eng. f3 Sci.

and bound method. It seems that the dynamic programming approach may

be an attractive alternative, see [32].

Secondly, we point out that both the new lower bounding scheme and

the lower bounding scheme from the total weighted completion time problem

can not be directly applied to other single machine scheduling problems.

We note that in [32], the authors propose an efficient enumerative algo­

rithm for the single machine total weighted tardiness problem without release

dates. This algorithm is based on the successive sublimation dynamic program­

ming [32] method with some improvements. They use state-space relaxation

[32] to get a lower bound. The lower bounding scheme is improved by the

dominance of two adjacent jobs. Combined with other improvements, their

algorithm can handle test instances with up to 300 jobs. Our next step is to

explore these ideas and test for the problem with release dates.

Finally, the ideas of the three new techniques can be applied to other

single machine scheduling problems with release dates. It will be interesting to

test and compare the three new techniques with other techniques for various

problems.

57

Bibliography

[1] T.S. Abdul-Razaq, C.N. Potts and L.N. Van Wassenhove. A survey of al­

gorithms for the single machine total weighted tardiness scheduling prob­

lem. Discrete Applied Mathematics, 26:235-253, 1990.

[2] M.S. Akturk and D. Ozdemir. An exact approach to minimizing total

weighted tardiness with release dates. IIE Transactions, 32:1091-1101,

2000.

[3] JVLS. Akturk and D. Ozdemir. A new dominance rule to minimize to­

tal weighted tardiness with unequal release dates. European Journal of

Operational Research, 135:394-412, 2001.

[4] KR. Baker. Introduction to Sequencing and Scheduling. JohnWiley and

Sons, 1974.

[5] H. Belouadah, M.E. Posner, and C.N. Potts. Scheduling with release dates

on a single machine to minimize total weighted completion time. Discrete

Applied Mathematics, 36:213-231, 1992.

[6] L. Bianco and S. Ricciardelli. Scheduling of a single machine to minimize

total weighted completion time subject to release dates. Naval Research

Logistics, 29:151-167, 1982.

[7] J. Carlier. Ordonnancements acontraintes disjonctives. RAIRO, 12:333­

351, 1978.

58

M.Sc. Thesis - Wei Jing McMaster - Computational Eng. & Sci.

[8] C. Chu. A Branch and Bound Algorithm to Minimize Total Flow Time

with Unequal Release Dates. Naval Research Logistics, 39:859-875, 1991.

[9] C. Chu. A Branch and Bound Algorithm to Minimize Total Tardiness

with Different Release Dates. Naval Research Logistics, 39:265-283, 1992.

[10] C. Chu. Efficient Heuristics to Minimize Total Flow Time with Release

Dates. Operations Research Letters, 12:321-330, 1992.

[11] C. Chu and M.C. Portmann. Some new efficient methods to solve the

1hl2:= T i scheduling problem. European Journal of Operational Research,

58:404-413, 1991.

[12] R.K. Congram, C.N. Potts and S.L. van de Velde. An iterated dynasearch

algorithm for the single machine total weighted tardiness scheduling prob­

lem. INFORMS Journal of Computing, 14:52-67,2002.

[13] R.W. Conway, W.C.Maxwell and L.W. Miller. Theory of Scheduling. Ad­

disonWesley, Reading, MA, 1967.

[14] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. Red-Black Trees.

Chapter 13 in Introduction to Algorithms, Second Edition, T.R. Cormen

et al. The MIT Press, Cambridge, MA, USA, 2001.

[15] J. Du and J.Y.T. Leung. Minimizing total tardiness on one processor is

np-hard. Mathematics of Operations Research, 15:483-495, 1990.

[16] M.L. Fisher. The Lagrangean Relaxation Method for Solving Integer Pro­

gramming Problems. Management Science, 27:1-18, 1981.

[17] A.M. Geoffrion. Lagrangean Relaxation for Integer Programming. Math.

Program. Study 2:82-114, 1974.

59

M.Sc. Thesis - Wei ling McMaster - Computational Eng. f3 Sci.

[18] L. Guibas and R. Sedgewick: A Dichromatic Framework for Balanced

Trees. FOCS 1978: 8-21.

[19] A. Hariri and C.N. Potts. An Algorithm for Single Machine Sequencing

with Release Dates to Minimize Total Weighted Completion Time. Dis­

crete Applied Mathematics, 5:99-109, 1983.

[20] A. Jouglet. Ordonnancer une Machine pour Minimiser la Somme des

Couts - The One Machine Total Cost Sequencing Problem. PhD thesis,

Universite de Technologie de Compiegne, Compiegne, France, 2002.

[21] A. Jouglet, P. Baptiste and J. Carlier. Branch-and-Bound Algorithms for

Total Weighted Tardiness. Chapter 13 in Handbook of Scheduling: Al­

gorithms, Models, and Performance Analysis, Joseph Y-T. Leung, CRC

Press, Boca Raton, FL, USA, 2004.

[22] A.H. Land and A.G. Doig, An Automatic Method for Solving Discrete

Programming Problems. Econometrica, 28:497-520, 1960.

[23] E.L. Lawler. A pseudo-polynomial algorithm for sequencing jobs to min­

imize total tardiness. Annals of Discrete Mathematics, 1:331-342, 1977.

[24] E.L. Lawler. Sequencing jobs to minimize total weighted completion time

subject to precedence constraints. Ann. Discrete Math. 2:75-90, 1978.

[25] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of ma­

chine scheduling problems. Ann. Discrete Math. 1:343-362, 1977.

[26] M. Pinedo Deterministic and Stochastic Dynamic Programming. Ap­

pendix B in Scheduling: Theory, Algorithms, and Systems, M. Pinedo,

Prentice-Hall, 2008.

[27] lVLE. Posner. Minimizing weighted completion times with deadlines. Oper.

Res. 33:562-574, 1985.

60

M.Sc. Thesis - Wei Jing McMaster - Computational Eng. 8 Sci.

[28] C.N. Potts and S.L. van de Velde. Dynasearch - iterative local improve­

ment by dynamic programming. Part I: the traveling salesman problem.

Technical report, University of Twente, 1995.

[29] C.N. Potts, L.N. Van Wassenhove. A branch and bound algorithm for the

total weighted tardiness problem. Operations Research 33:363-377, 1985.

[30] L. Schrage and K.R. Baker. Dynamic Programming Solution of Sequenc­

ing Problems with Precedence Constraints. Opns. Res. 26, 444-449, 1978.

[31] W.E. Smith. Various Optimizers for Single-Stage Production. Naval Res.

Logist. Quart. 3:59-66, 1956.

[32] S. Tanaka, S. Fujikuma and M. Araki, An Exact Algorithm for Single

Machine Scheduling without Machine Idle Time, Journal of Scheduling.

DOl: 10.1007/s10951-008-0093-5, 2008

[33] L.N. Van Vassenhove. Special-Purpose Algorithms for One-Machine Se­

quencing Problems with Single and Composite Objectives. Ph.D. thesis,

Katholieke Universiteit Leuven. 1979.

[34] A.P.J. Vepsalainen and T.E. Morton. Priority Rules for Job Shops with

Weighted Tardiness Costs. Management Science. 33:1035-1047, 1987.

[35] G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfac­

tion problems. AAAI94, Seattle,WA, U.S., 307C312, 1994.

61

