
JING WANG

AN FPTAS FOR THE SINGLE MACHINE
MINIMUM TOTAL WEIGHTED TARDINESS

PROBLEM
WITH

A FIXED NUMBER OF DISTINCT DUE DATES

BY
JING WANG, B.Sc., M.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the degree

Master of Applied Science

McMaster University

©Copyright by Jing Wang, May 2009

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

MASTER OF APPLIED SCIENCE (2009) McMaster University, Hamilton, Ontario

TITLE: An FPTAS for the Single Machine Minimum Total Weighted Tardiness
Problem With a Fixed Number of Distinct Due Dates

AUTHOR: Jing Wang, M.Sc.(Wilfrid Laurier University)

SUPERVISOR: professor George Karakostas

NUMBER OF PAGES: x, 68

ii

Abstract

This thesis provides a Fully Polynomial Time Approximation Scheme (FPTAS) for the

minimum total weighted tardiness (TWT) problem with a constant number ofdistinct due

dates.

Given a sequence of jobs on a single machine, each with a weight, processing time,

and a due date, the tardiness of a job is the amount of time that its completion time goes

beyond its due date. The TWT problem is to find a schedule of the given jobs such that

the total weighted tardiness is minimized. This problem is NP-hard even when the number

of distinct due dates is fixed. In this thesis, we present a dynamic programming algorithm

for the TWT problem with a constant number of distinct due dates first and then adopt a

rounding scheme to obtain an FPTAS.

Three major points that we make in this algoritlun are: we observe a series of struc

tural properties of optimal schedules so that we shrink the state space of the DP; we make

use of preemption (i.e. allowing the processing of a job to be interrupted and restarted

later) for the design of the DP; the rounding scheme that we adopt guarantees that a factor

1 + E of the optimal solution is generated and the algorithm runs within a polynomial time

of the problem size.

III

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

IV

Acknowledgements

I gratefully acknowledge professor George Karakostas for his advice, supervision, and cru

cial support, which rnade him a backbone of this research and so to this thesis. His in

volvement with his creativity and patience has greatly triggered my enthusiasm in doing

research. I am sure that I will benefit from his advice in my future academic life.

I wish to express my wann and sincere thanks to professor Antoine Deza, professor

Ned Nedialkov and professor Sanzheng Qiao. I believe one ofthe main gains of this master

programm was taking their courses and gaining their advices. I would also thank for profes

sor Franya Franek and professor Tamas Terlaky for their suggestions and encouragement.

I would like to express my deep appreciation to professor Tim Davidson and professor

Michael Soltys who give me a lot of valuable suggestions on improving my thesis.

Many thanks go in particular to my friends Xiaoxi Ma, Jiaping Zhu, Feng Xie, Bingzhou

Zheng, Shefali Kulkarni, Bahareh Mansouri and so on. They are helpful and supportive

friends. I have had a great time with them.

At last, I would like to thank my families: , my parents in China, my husband and my

mentor professor Michael J. Best. Without their supports, I would not be able to success

fully complete this master's program. Particularly, I would like to give my utmost gratitude

to professor Michael 1. Best. He is always there to give me SUppOltS and encouragement

whenever I need. His father-like guide helps me and Lujing in both work and life aspects.

We are lucky to have him in our lives.

v

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

Vi

Contents

1 Introduction

1.1 The TWT problem and the motivation

1.2 Previous Work

1.2.1 Branch-and-bound

1.2.2 Dynamic programming method

1.2.3 Other heuristics

1.2,4 Approximation algorithms

1.3 Our Work and Thesis Outline

2 Approximation Scheme and Some Scheduling Problems

2.1 Overview of approximation algorithms

2.1.1 Basic concepts

2.2 Basic results in single machine scheduling .

1

1

3

4

6

8

10

11

17

18

18

20

3 FPTAS for the Single Machine TWT Problem with Common Due Date 25

3.1 Construct a stop due date problem

3.2 DP for the stop due date problem.

3.3 Inserting the straddler back

3,4 Rounding scheme

VB

25

26

27

28

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

4 FPTAS for Single Machine TWT Problem with a Fixed Number of Distinct Due Dates 31

4.1 A stop due dates problem 31

4.2 Structural properties of an optimal schedule 34

4.3 A dynamic programming algorithm to find an abstract schedule. 37

4.4 Producing an optimal schedule 45

4.5 The FPTAS 50

4.5.1 The algorithm and the complexity 51

4.5.2 Proof of near optimality 53

5 Conclusions and future work

VIn

61

List of Figures

4.1 Inserting a job as tardy. . ..

4.2 Inserting a job as early. . . .

IX

33

33

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

x

Chapter 1

Introduction

With the objective of minimizing (maximizing) one or more than one perfonnance mea

sures, Scheduling is the allocation of scarce resources to various activities [Leung2004].

Scheduling problems are very complicated since they are generally operated in multi

machine environments. Practically, these multi-machine problems are usually decomposed

into subproblems which are operated in single machines. If the single machine schedul

ing problem is solved, the result can be used to understand and provide the basis for the

solution of more complicated problems. Also the results can help us model both single

machine and multi-machine environments problems [Pinedo1995]. In this thesis, we are

particularly interested in the problem of minimizing the total weighted tardiness (TWT) on

a single machine.

1.1 The TWT problem and the motivation

First of all, let's review the definition of the TWT problem. In a single machine environ

ment, we are given n jobs. Each job is indexed as 1,2, ... , n. Assume that all the n jobs

are ready at time 0 for processing on a machine without interruption. For each job Jj where

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

j = 1,2, ... , n, there is a weight for the delay penalty, denoted as Wj > 0. The weight

measures how important the job is. There is a processing time Pj which is assumed to be a

positive integer since it can be normalized anyway. There also is a due date dj which stands

for the point in time by which the processing ofjob J j is due to be completed.

With the assumption that only one job can be processed at a time on the single ma

chine, every arrangement of the order of the n jobs identifies one scheduling. In a given

scheduling (in other words, a processing order), each job has a time at which processing

that job is finished. As a convention, this time is defined as the completion-time Cj of this

job. For each job, the amount of time by which the completion time of this job exceeds

its due date is called the lateness L j . Mathematically it is formulated as L j := Cj - dj .

Obviously when a job is completed before its due date, then the lateness is negative, while

if a job is processed after it is due date, then the lateness is positive. Further, the tardiness

of a job is defined as the lateness of this job if it fails to meet its due date, or zero other

wise. It is fOlIDulated as Tj := max{O, L j }. Tardiness is a measure ofcomparing the actual

completion-time with the desired completion-time (i.e., its due date) [Conway1967]. When

a job's tardiness is positive, this job is called a tardy job.. Each tardy job J j is associated

with a weighted tardiness wjTj where Wj is the delay penalty per unit of tardiness. In this
n

thesis, we study the minimization of total weighted tardiness (TWT), i.e., min{L wjTj },

j=l

when the number of distinct due dates is constant.

The TWT problem attracts the attention ofboth the industry and academic researchers.

This problem on a single machine is fundamentally important within a network of op

erations in industrial fields, for example, the semiconductor wafer fabrication industry,

heat treatment operations in the aircraft industry, the large steel casting industry and so

on [Kanet2007]. If those operations can be sequenced effectively, the overall facility per

formance will be improved significantly [Mathirajan2006]. The TWT problem has received

much attention not only because it is meaningful in practice, but also because it can be

2

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

used to test the newly designed scheduling techniques or algorithms for efficiency or ac

curacy purposes [Kellerer2006]. Some scheduling problems are either special cases of the

TWT problem or closely related to it. For example, when all the weights are assumed

to be 1, then minimizing TWT becomes minimizing the total tardiness; if we know some

jobs are tardy then minimizing the total weighted tardiness of these jobs is the same as

minimizing the total weighted completion time. All these problems are known to be NP

hard [Du1990] [Rinnooy Kan1976] [Lawler1977] [Yuan1992]. If the TWT problem can be

solved, then a series of related problems can be solved too.

In literature, there are only a few results involving arbitrary due dates and arbitrmy

weights that have been reported because of the hardness of the problem. So far, only

some special cases of the TWT problem have been intensively researched [Cheng2005],

for instance, when all the jobs have a COlmnon due date [Kahlbacher1993] [Kellerer2006]

[Lawler1977]; on the equal-slack due date model, i.e., dj = Pj + q, where q is a given con

stant [Cheng2005] [Oguz1994] [Qi1998]; on the processing-pIus-wait model [Cheng2005],

when all jobs are assumed to have the same weight; when all the jobs have the same pro

cessing time; when the maximum weight is bounded polynomially, and so on. In this thesis,

we focus on a model where a constant number of distinct due dates are assigned to all the

jobs.

1.2 Previous Work

Although, for arbitrary positive weights, the minimum TWT problem is known to be

strongly NP-hard, various aspects of solving the minimum TWT problem and its variants

have attracted considerable attention from researchers. Therefore, we present some oftheir

results first. There are numerous results, but we can only cite a limited number of them

here. With the purpose of making the introduction clearer, we classify these works in the

3

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

following four categories.

1.2.1 Branch-and-bound

The branch-and-bound method was firstly applied to solve the TWT problem by Elmaghraby

[Elmaghraby1968]. The paper showed the advantage ofbranch-and-bound method over the

dynamic programming method on efficiency. Because of the inapplicability of the algo

rithm given by Elmaghraby on the computer, Shwimer [ShwimerI972] proposed a branch

and-bound algorithm for the TWT problem which is applicable on a computer. Since then,

the application of branch and bound on the TWT problem has been widely explored. Pi

card et al. [Picard1978] observed that the time-dependent traveling salesman problem can

be considered as the TWT problem. They used the method of finding shortest paths in a

network with sub-gradient optimization and the method of branch and bound enumeration

to solve the TWT problem and gave computational results.

The sub-gradient optimization technique is well known for calculating the lower bound

of the optimal solution. Potts and Van Wassenhove [Potts1985] proposed a even faster one

which is called the multiplier adjustment method to compute the lower bound ofthe optimal

solution. By combining checking for some dynamic programming dominance properties,

Potts et. al. proposed a branch and bound algorithm for the TWT problem. Compared to

all previous algorithms that can solve the TWT problem with at most 20 jobs, the compu

tational results of this algorithm show a big advantage. However, because of the difficulty

of the TWT problem itself, this algorithm still can not work efficiently or runs into severe

trouble when the problem size goes above 50 [Congram2002].

Dominance rules were first developed by Emmons [Emmons1969]. They were es-
n

tablished for the minimizing total tardiness problem, i.e., min{LTj}, to restrict the size
j=l

of the search and find optimal solutions. By using those dominance rules, Rachamadugu

4

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

[Rachamadugu1987] showed a proposition that states a local dominance property among

adjacent jobs in an optimal schedule. This kind ofprecedence relationship has been already

tested by Potts et al. [Potts1985] in their branch-and-bound algorithm. With this property,

the first job in an optimal schedule can be determined without solving the TWT prob

lem. Most importantly this proposition can identify the weighted shortest processing time

(WSPT) relationship among adjacent tardy jobs. The WSPT rule is important throughout

the whole thesis, so we emphasize it here.

In [Potts1985], Potts et al. tried to formulate the TWT problem as a Lagrangian prob

lem and then decomposed it into two subproblems. The algorithm that they proposed the

use ofthe Lagrangian dual solution value as a lower bound on the TWT problem. However,

Hoogeveen et al. [Hoogeveen1995] found a stronger lower bound by refonnulating the La

grangian problem. More specifically, they introduced a vector of slack variables to the

Lagrangian problem such that a modified slack variable problem with equality constraints

was fonnulated, and they tested that an improved lower bound on the optimal solution was

obtained by the new algorithm.

However, the lower bound on the optimal solution was still not practical to use be

cause of the extensive computation the algorithm needs. Therefore, Akturk and Yildirim

[Akturk1998] developed a new lower bounding scheme which introduced a new domi

nance rule that can guarantee a sufficient condition for a local optimum for the TWT

problem. This new dominance rule is a generalization of the rules in [Emmons1969]

and [Rinnooy Kan1976]. It considers the time dependent orderings between any pair of

jobs and hence finds tighter lower and upper bounds. The use of this new dominance rule

can reduce the number of alternatives for finding the optimal solution. These computa

tional experiments show that this dominance rule can greatly improve the lower bound of

the optimal solution.

Babu et al. [Babu2004] perfonned a Lagrangian decomposition on a 0-1 time indexed

5

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

formulation and then used the optimal value of the duality problem as a lower bound. They

designed a Lagrangian heuristic which provides an upper bound on the calculated solution.

Using the above lower and upper bounds, they gave a branch-and-bound algorithm. In their

algorithm, in order to reduce the job domain, they presented a collection of dominance and

elimination rules which helps them to find a trade-off between a tighter lower bound and

the time needed for the enumeration process. The computational experiments show that

this algorithm works very efficiently on the instances of 40 to 50 jobs.

The short coming of branch-and-bound is that it needs a great amount of computa

tional time.

1.2.2 Dynamic programming method

A velY early dynamic programming algorithm for sequencing problems with precedence

constraints was given by Schrage [SchrageI978]. Unlike Emmons who proposed domi

nance lUles, Schrage et al. considered precedence constraints which are either from prac

tical considerations or from the characteristics of an optimal sequence, with the same pur

pose, that is, to reduce the number ofsequences to be considered. Based on the enumeration

of all feasible subsets of tasks, they presented a method to assign an easily computed label

to each feasible subset. These labels actually provide physical addresses to store the subset

information. As a result, a compact computer implementation of dynamic programming

algorithms can be applied to many scheduling problems, including the TWT problem.

Arkin and Roundy [Arkin1991] considered a special model of the TWT problem

where the weight of each job is proportional to its processing time. They proposed a

pseudo-polynomial time algorithm for solving this special case and gave a bound on a

ratio which is used to measure the deviation from optimality. On the other side, Yano and

Kim [Yano1991] developed an optimal procedure that uses dominance properties to reduce

6

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

the number ofsequences and constructs good initial sequences. Computational experiments

show that the heuristic solutions are greatly improved when a pairwise interchange proce

dure is used. Szwarc and Liu [Szwar1993] claimed that their two stage decomposition

process can solve this problem completely or reduce the problem into smaller subprob

lems. Working with cluster decomposition method, their algorithm can solve 150 out of

320 tested problems completely.

Huegler et al. [Huegler1997] proposed a dynamic programming based heuristic. Us

ing the same method as in [Potts 1991] to generate random problems, they perfonned a great

amount of testing to compare their new heuristic to other classic heuristics. In these tests,

the new method requires less computation time than others, especially for large size prob

lems, although the solution quality is not as good as the ones obtained by other heuristics

for some test problems.

A big improvement in greatly reducing the complexity has been made recently by

Congram [Congram2002]. He proposed the idea of dynasearch, a new neighborhood

search technique, which overcomes the limited searching ability of traditional descent al

gorithms. Instead of using lexicographic search, dynasearch uses dynamic programming in

local search. It allows multi-moves in each iteration and explores exponential size neigh

borhoods in polynomial time, and hence it dramatically decreases the computation time.

Also since it performs a sufficiently large number of random moves from local minimum,

dynasearch stands a much better chance to find a better solution than other techniques.

Although this method can generate exact solutions, it is restricted by computer storage

requirements, especially when the number ofjobs is more than 50.

7

Master Thesis - Jing Wang ~ McMaster - Computational Engineering and Science

1.2.3 Other heuristics

Although the first attempts at solving the TWT problem used branch-and-bound, dynamic

programming methods, or their combinations based on implicit enumeration techniques, a

large number ofother heuristics have also been researched. In literature, the main heuristics

techniques are: construction techniques and interchange techniques. More specifically, the

construction method builds sequences by fixing a job at each step, while the interchange

method, like the name suggests, starts with an existing sequence and continues to inter

change parts of the sequence. Typically, heuristic methods for the TWT problem are tested

on randomly generated problems [Huegler1997].

Potts [Potts1991] presented a collection of heuristics, from simple to complex ones.

Through a large set of test problems, they compared the proposed heuristics to interchange

and simulated annealing methods. Their tests show that the straightforward interchange

method perfOlIDs better than other heuristics and simulated annealing methods for the TWT

problem.

Nevertheless, after testing many search techniques, such as tabu search, simulated

annealing, descent, threshold search and genetic algorithms using binary coding schemes,

Crauwel et al. [CrauwelsI998] found that permutation methods were more likely to pro

duce an optimal solution than binary-based methods, but binary-based methods consis

tently generated good quality solutions whereas permutation-based methods did not. Their

computational results also showed that tabu search gave the best overall results in terms of

the solution quality and computation time [Sen2003].

There is another heuristic technique that has been widely studied, called the meta

heuristic method. It is formally defined as an iterative generation process which guides

and modifies the operations of subordinate heuristics by combining intelligently different

concepts for exploring and exploiting the search space to efficiently produce high quality

8

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

solutions. Learning strategies are used to structure information in order to find efficiently

near-optimal solutions [OsmanI996]. Meta-heuristic algorithms are approximate and usu

ally non-deterministic.

Madureira [Madureira1999] used the idea of "exchanging jobs which are not apart

more than a given number of positions" and perfonned a great deal of testing on evaluat

ing several kinds of heuristic methods. The computational results illustrate the robustness

and flexibility of the meta-heuristic procedures. Based on the Ant Colony Optimization

(ACO) meta-heuristic, Besten et al. [Besten2000] presented an algorithm which is claimed

to generate good solutions for the TWT problem. A powerful local search algorithm, can

didate lists and a heterogeneous ant colony are considered as the three key elements for the

development of this effective ACO algorithm.

Borgulya [Borgulya2002] described a three-stage cluster-based evolutionary algo

rithm for the TWT problem. It is a combination of construction heuristics, local search and

meta-heuristics. In the first stage, the local optimal solutions are estimated by grouping. In

the second stage, the accuracy of results is improved by a local search procedure. Then,

in the laststage, the estimations are further refined. This algorithm finds the best-known

solution within an acceptable time limit comparing with other heuristic methods.

Liu et al. [Liu2003] proposed a genetic algorithm for the TWT problem which uses the

natural permutation representation ofa chromosome, the combination ofheuristic dispatch

ing rules and random methods to create the initial population, position-based crossover and

order-based mutation operators, and the selection of the best members of the population

during generations. All these techniques make the genetic algorithm to be perfonned better

than decent methods in obtaining good solutions.

9

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

1.2.4 Approximation algorithms

Heuristics may generate reasonably close or even optimal solutions but this is not guaran

teed. They provide a basic idea for approximation algorithms . With certain degree of loss

in optimality, approximation algorithms can compute the near optimal solution very effi

ciently. The difference between approximate algorithm and heuristic is that approximate al

gorithm produces solutions with a worst case performance guarantee in both computational

time and solution quality. Nowadays, not only branch-and-bound, dynamic programming

and heuristic algorithms are intensively researched, but also approximation algorithms are

receiving increasing attention for solving combinatorial optimization problems.

In particular, researchers have applied approximation algorithms to solve the TWT

problem. With the assumption that the weights of jobs are agreeable, i.e, Pi < Pj implies

Wi > Wj, Lawler [Lawler1977] developed a "pseudo-polynomial" time dynamic program

ming algorithm for the TWT problem. When the weights of all the jobs are the same,

Lawler [LawlerI982] gave a fully polynomial time approximation scheme (FPTAS) which

is a modification of his pseudo-polynomial dynamic programming algorithm. When the

due dates are assumed to be linear functions of their processing times and the tardiness

weights are assumed to be proportional to their processing times, Cheng et aL [Cheng2005]

provided a polynomial-time n - I-approximation algorithm. When the due dates are as

sumed to have equal slacks, i.e. di = Pi + q where q is a constant, they constructed an

FPTAS.

For arbitrary weights and arbitrary due dates, however, frustratingly little is known on

the approximability ofTWT. When all the jobs are assumed to have the same due date, Fathi

and Nuttle [Fathi1990] discussed the performance offour polynomially bounded heuristics.

The fourth heuristics gave an approximation algorithm with an approximation ratio of 2.

Then Kellerer and Strusevich [Kellerer2006] give an FPTAS for this case.

10

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

For the case ofa fixed number ofdue dates, Kolliopoulos and Steiner [Kolliopoulos2006]

developed a pseudo-polynomial dynamic programming algorithm whose complexity de

pends on the total processing time. Assuming that the maximum job weight is bounded

by a polynomial of n, where n is the number of given jobs, they treated the problem as a

bin packing problem, allowed preemption for the early jobs, modified the above algorithm

and adapted Lawler's [Lawler1982] rounding scheme so that they generated an FPTAS.

Moreover, when the due dates are assumed to be concentrated around small values, and

the maximum processing time is bounded by a polynomial of n, they developed a quasi

polynomial algorithm.

1.3 Our Work and Thesis Outline

In this thesis, we develop an FPTAS for the TWT problem with a fixed number of distinct

due dates. Most of the results of this thesis appear in [Karakostas2009]. Briefly speaking,

we design a pseudo-polynomial algorithm first and then apply a rounding scheme to obtain

the desired approximation scheme. This work is greatly inspired by [Kellerer2006], but

introduces a number of new ideas for this problem.

To understand our algorithm, a key idea is to "think backwards". Suppose that we

know which sequence is optimal and observe the properties that it has. Assume that evelY

straddler (the job starting before or on a due date and completing after a due date) is only

straddling one due date. It is easy to see that the straddlers are either early (finishes before

its own due date) or tardy (finishes after its own due date). We note that early straddlers are

always surrounded by early jobs and the order of early straddlers and early jobs with the

same due date can be arbitraty. On the other hand, tardy straddlers are always followed by

tardy jobs. This indicates that we should distinguish tardy straddlers from all other jobs.

In reality, we do not know which sequence is optimal. How do we lmow that which due

11

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

dates correspond to tardy straddlers in the optimal sequence? Which jobs should be the

tardy straddlers? A very useful and accurate technique, although not efficient, is exhaustive

enumeration (or guessing). So from now on, we say that we "have guessed" the tardy

straddlers.

We continue our "think backwards" process on the optimal schedule. All the tardy

straddlers divide the time horizon into several super-intervals. We notice that in each super

interval all the tardy jobs must be processed before all the early jobs since only the tardy

ones contribute to the objective value. It has been proved that for these tardy jobs, the

WSPT order minimizes the total weighted tardiness. So the tardy jobs in each super-interval

must be in WSPT order. This compels us to sort the input jobs at the beginning in WSPT

order in our algorithm. We do not sort the tardy jobs after inserting them because we

do not want to keep record of which job goes where, since this will make the algorithm

exponential anyway no matter how we round up variables later. Instead, we need only to

record which jobs are early and which are tardy.

Next we consider the placement of the jobs including the tardy straddlers. Kolliopou

los and Steiner [Kolliopoulos2006] place the straddlers by guessing their positions at the

beginning of their algorithm. But we follow Kellerer's FPTAS which inserts them after

insetting the other jobs. But we do not know how to insert the rest of the jobs, how do we

know where to place the straddlers? So we continue to "think backwards". In the optimal

sequence, we remove tardy straddlers one-by-one starting from the last one. It is easy to

see that the last tardy straddler is on the last due date. After removing it, there is a hole

crossing the last due date. Push the whole job block in the last super-interval backward

up to the last due date. We notice that all the jobs are still tardy, although each of them

sees a decrement of its tardiness by the same amount. Then we move on to the next tardy

straddler and do the same thing. Again, we find that no placement (early or tardy) of the

other jobs is violated. We keep doing this until we remove the earliest tardy straddler.

12

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

Now we are left with a partial schedule which has only n - IV1 jobs. Note that the

placement of these jobs are exactly the same as their placement in the optimal sequence.

What has changed is only the tardiness of each tardy job. This partial schedule will be

refereed to as an "abstract schedule". This partial schedule is an extension of the"stop due

date problem" in [Kolliopoulos2006]. We follow Kellerer et al. [Kellerer2006] to construct

a "stop due date"-like problem for the non-straddling jobs. But the situation we have now

is much more complicated than the one in [Kellerer2006]. For example, if a job is tardy, it

can be tardy in many super-intervals. We note that there are actually many nice properties

in the optimal sequence. For example, in each super-interval, if there are tardy jobs, they

must gather in the first interval, where interval is the time between two consecutive due

dates. Ifajob is early, it only goes to one super-interval which contains the due date of this

job.

Now suppose that we do not know the partial schedule which gives us an optimal

schedule in the end. We have to try all possible placements in order to find it. It is easy to

decide where ajob should go, but we must also check whether there is room for it. In order

to check this, we come up with sufficient feasibility conditions. If a job is to be inserted as

tardy, then the insertion should not cause any previously inserted early job tardy. If a job

is to be inserted early, then there must be enough room before its due date in celiain super

interval. Since we are going to use a rounding scheme in the FPTAS, we have to make

sure that those conditions are satisfied. When the straddlers are inserted back, they should

not tum any early job into tardy and they should not push any tardy job beyond the first

interval in any super-interval. Once all these conditions are satisfied, a job can be placed

safely. More specifically, we place a tardy job after the last tardy one in a super-interval

(the first one starting from the due date); we place an early job anywhere before its due

date.

Note that the feasibility conditions must also hold for the FPTAS, where we use pre-

13

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

emption. Preemption is to allow the interruption of the processing of a job at any point in

time and the placing of a different job on the machine instead. When a preempted job is

afterwards put back on the machine, it only needs the machine for its remaining processing

time. Preemption is needed because our dynamic programming algorithm uses enumera

tion and hence its complexity is exponential on the size of the input. To reduce the running

time, we round up the total processing time of tardy jobs with common due date in each

super-intervals. One consequence of this rounding is that some jobs which are tardy in op

timal sequences can not be inserted in that super-interval anymore and some jobs already

early in that super-interval become tardy. However, following [Kellerer2006], we notice

that for each due date, the total processing time of tardy and early jobs with that due date

is fixed, which means that when we round up the total processing time of the tardy jobs

of a common due date, the total processing time of the early jobs with the same due date

is actually rounded down by the same amount. Therefore, if we allow preemption for the

tardy jobs, we can use the space saved from the early jobs. Since preemption is allowed,

we revise the feasibility conditions so that we are still able to find a near optimal solution.

We emphasize that in order to make complexity polynomial in the problem size, we

have to consider a reduced the number ofvalues of the variables by rounding up. However,

we can not reduce them arbitrarily. We have to confine our output within a neighborhood

of the optimal value. Ultimately, it is the feasibility conditions that help us to achieve this

goal. Applying this FPTAS to the TWT problem with one common due date, it is easy to

see that the algorithm in [Kellerer2006] is a special case of our algorithm. We develop a

fully polynomial time approximation scheme for the TWT problem with a constant number

of distinct due dates. But the algorithm does not run in fully polynomial time necessarily

for the TWT problem with an arbitrary number of distinct due dates. When the number of

distinct due dates is arbitrary, then the complexity is exponential.

To summarize, the procedure of our FPTAS works as following: order the input n

14

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

J.obs in weighted shortest processing time order, i.e. Pi < E£ < ... < Pm; guess K
WI - W2 - - Wm

number of tardy straddlers (exhaustive enumeration of the due dates and jobs) where the

tardy straddler is defined as the job starting before its due date but finishes after the same

or a different due date; the guessed K due dates partition the time line into K + 1 super

intervals (defined as the space between two consecutive tardy straddlers); for each set of

guessed tardy straddlers, we apply the following dynamic prograImning algorithm for the

non-straddling jobs:

• For each job, guess it as either early or tardy by selecting the proper super-interval.

If it is inserted as early, then it is inserted non-preemptively and explicitly. If it is in

serted as tardy, then it can be inserted preemptively. But the job is left "floating" from

its completion time backwards. To place the job successfully, we have to check cer

tain feasibility conditions. If a placement can be done, we apply a rounding scheme

(given in Chapter 4) to the new calculation of the state variables, it corresponds to a

DP feasible transition from a state to another.

When all the non-straddling jobs are inserted, we inselt the tardy straddlers into the correct

positions preemptively, for similar reasons as for the tardy non-straddling jobs.

The remainder ofthis thesis is organized as follows. In Chapter 2, basic background

of approximation algorithms and some related scheduling problems will be introduced. In

Chapter 3, we introduce the key ideas of [Kellerer2006] which are clUcial for our work.

Chapter 4 is the main result ofthis thesis, the solution ofthe TWT problem with a constant

number of due dates by an FPTAS. Then in the last chapter, we give a smmnary of the

whole thesis and possible future work.

15

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

16

Chapter 2

Approximation Scheme and Some

Scheduling Problems

Through the introduction in chapter 1, we saw that approximation algorithms can be used

to solve NP-hard scheduling problems. Here if a algorithm finds a solution within the

approximation guarantee, then we say that we "solve" the problem. In this chapter we

are going to introduce some basic concepts of approximation algorithms. On the other

hand, some basic scheduling problems are related to each other. If an optimal schedule for

one problem can be found, it may help us to find an optimal schedule for another related

problem. For this purpose, we introduce some elementary results of the optimality of some

scheduling problems.

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

2.1 Overview of approximation algorithms

2.1.1 Basic concepts

Many natural optimization problems, including those arising in important application areas,

are NP-hard. Therefore, under the widely believed conjecture that P =I=- NP, their exact

solution is prohibitively time consuming. If we do not require the exact value, and there

is an efficient algorithm that can produce a provably good solution, then that may also

be satisfying. This is the idea of approximation algorithms, that is, generate provably

near-optimal solutions efficiently in terms of complexity. Since the 1970s, approximation

algorithms have become more prominent as the tool for the generation of near optimal

solutions for NP-hard optimization problems.

In the following paragraphs, we will quote the exact mathematical definitions of the

main concepts in the area ofapproximation algorithms. Details can be found in [Vazirani2001].

An optimization problem is specified by a set I of inputs, a set S(I) of feasible solutions

for every input I E I, and an objective function f that specifies for every feasible solution

s in S(I) an objective value f (s). We assume that all feasible solutions have non-negative

objective values. We denote the optimal objective value for input I by OPT(I) and denote

the size ofan instance I by III, i.e., the number ofbits used in writing down I in some fixed

encoding. The TWT problem that we are dealing with is NP-hard, therefore it is unlikely

to be able to find the exact optimal solution within time polynomial in III-

Polynomial time approximation schemes

Let P be a minimization problem. Let p ?: 1. An algorithm A is called a p-approximation

algorithm for problem P, iffor every instance I, it returns a feasible solution with objective

18

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

value j (8) such that

Ij(8) - OPT(I) I ~ p . OPT(I)

The value p is called the performance guarantee or the worst case ratio of the approximation

algorithm.

Definition 1 A Polynomial Time Approximation Scheme (PTAS) for a problem P is a

collection of 1+c approximation algorithms A(c), one for each constant f > 0, whose time

complexity is polynomial in the input size.

Pseudo-Polynomial time approximation schemes

Recall that an algorithm is said to run in polynomial time if its running time is polynomial

in the size of the instance III, the number of bits needed to write I.

Definition 2 Pseudo-Polynomial Time is polynomial time where integers in the input

string are given in unary representation rather than in binary.

Fully polynomial time approximation schemes

Definition 3 A Fully Polynomial Time Approximation Scheme (FPTAS) for problem P

is a PTAS whose time complexity is polynomial in the input size and ~.

With respect to worst case approximation, an FPTAS is the strongest possible result that

we can hope to derive for an NP-hard problem. The only difference between FPTAS and

PTAS is the requiremen.t on polynomial time in ~.

In order to establish the approximation guarantee, the output of the approximation

algorithm needs to be compared with the optimal objective value. However, we do not know

the optimal objective value, or how to find the optimum in polynomial time. Therefore, the

basic problem is to establish the approximation guarantee. The general strategy in the

19

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

area of approximation algorithms is to find a lower bound for the optimal solution of the

minimization problem and relate the approximation algorithm output to the lower bound.

In Chapters 3 and Chapter 4, we will see how such a lower bound can be chosen for the

approximation algorithm for the TWT problem.

In our problem, the size of the problem is the number of inputs, which includes the

number of the jobs n, each job's weight wand processing time p. To find an optimal

schedule of the TWT problem, one needs to evaluate n! sequences if enumeration is used.

Dynamic programming is another option in this case. Even though the computational de

mands of dynamic programming grow at an exponential rate with the increase of the prob

lem size, this method is typically more efficient than complete enumeration. It considers

certain sequences indirectly while enumeration evaluates all the sequences explicitly. Dy

namic programming can find the optimal, but it may still need exponential time. Therefore

we have to think of an approximation algorithm which uses dynamic programming, but

limits its enumeration (i.e. number of states) to polynomial.

2.2 Basic results in single machine scheduling

The optimal schedule ofsome scheduling problems has a special structure. For instance, the

optimal sequence for the Minimum Mean Flow-time problem follows the Shortest Process

ing Time (SPT) rule; the optimal sequence for the Minimum Total Weighted Completion

time problem is in the Weighted Shortest Processing Time (WSPT) rule; and the optimal

sequence for the Maximum Tardiness problem follows the Earliest Due Date (EDD) rule.

These will be described below. In these cases, knowledge of an optimum pairwise job

ordering allows the optimal schedule to be constructed with a simple sOlting mechanism.

These results can be used directly to find the solution of some practical scheduling prob

lems in certain situations. Also, they can be used to understand the optimal schedule for

20

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

other more complicated scheduling problems, such as the Minimum TWT problem.

In this section, we mainly introduce two rules: EDD and WSPT. We only introduce

these two because an optimal schedule for the TWT problem is constructed from a com

bination of EDD and WSPT. For purpose of completion, we include the proofs together

with the lemmas. For more details, one is referred to [Baker1974] and [Pinedo1995]. The

maximum job lateness problem is defined as

(2.1)

where Lj is the amount of time by which the completion time of job Jj exceeds its due

date. The maximum job tardiness is defined as

(2.2)

where Tj is the lateness of job Jj if it fails to meet its due date, or zero otherwise. The

minimum total weighted completion time is defined as

(2.3)

where Cj is the completion time ofjob Jj .

Earliest due date rule

Definition 4 The Earliest Due Date (EDD) rule is to order the jobs in earliest due date

order, that is, d1 :::; d2 :::; .•. :::; dn .

We have the following:

21

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

Lemma 1 The maximumjob lateness (Lmax) and the maximum job tardiness (Tmax) are

minimized by EDD sequencing.

Proof. (from [Bakerl974]) We employ the method of adjacent pairwise interchange. Con

sider a sequence S that is not the EDD sequence. That is, somewhere in S there must exist a

pair of adjacent jobs, i and j, with j following i, such that due date di > dj . Now construct

a new sequence, S', in which jobs i and j are interchanged and all other jobs complete at

the same time as in S. Then

Li(S) = tB +Pi - di , Lj(S') = tB

Lj(S) = tB +Pi +Pj - dj , Li(S') = tB +Pj +Pi - di

from which it follows that Lj(S) > Li(S) and Lj(S) > Lj(S') where tB is the point of

time where the set ofjobs preceding job i and job j is complete. Hence

Let L + max{Lklk E A or k E B} and notice that L is the same under both Sand S'.

Then

In other words the interchange ofjobs i and j does not increase the value of L max , and may

actually reduce it. A similar argument will establish that EDD minimizes Tmax , beginning

22

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

with the inequality

Tmax(S) = max{O, Lmax(S)} ~ max{O, Lmax(S')} = Tmax(S').

o

Weighted shortest processing time rule

Definition 5 The Weighted Shortest Processing Time (WSPT) rule is to order the jobs so

that the first job has the shortest processing time per unit of weight, the second processed

the next shortest processing time per unit ofweight, and so on, that is, ~~ S ~~ S ... s ~:'

where Pi and Wi are the processing time and weight ofjob i, \11 SiS n.

We have the following lemma:

Lemma 2 The WSPT rule is optimal for the single machine minimum total weighted

completion time problem, as defined in (2.3).

Proof. (from [Bakerl974]) By contradiction. Suppose a schedule S, that is not WSPT,

is optimal. In this schedule there m.ust be at least two adjacent jobs, say job j followed

by job k, such that ;; < ;:. Assume job j starts its processing at time t. Perfonn a

so-called adjacent pairwise interchange on job j and k. Call the new schedule S'. While

under the original schedule S job j stmis its processing at time t and is followed by job

k, under the new schedule S' job k stmis its processing at time t and is followed by job j.

All other jobs remain in their original position. The total weighted completion time of the

jobs processed before jobs j and k is not affected by the interchange. Neither is the total

weighted completion time of the jobs processed after jobs j and k. Thus the difference in

the values of the objectives under schedules Sand S' is due only to jobs j and k. Under S

the total weighted completion time ofjobs j and k is (t +Pj)Wj + (t + Pj + Pk)Wk while

23

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

under 8' it is (t +Pk)Wk + (t +Pk +Pj)Wj. It is easily verified that if ;; < ;: the sum of

the two weighted completion times under 8' is strictly less than under 8. This contradicts

the optimality of 8 and completes the proof of the theorem.

24

o

Chapter 3

FPTAS for the Single Machine TWT

Problem with Common Due Date

Kellerer and Strusevich [Kellerer2006] proposed an FPTAS for the single machine TWT

problem with a common due date. We will use some oftheir ideas to develop an FPTAS for

the TWT problem with a constant number of distinct due dates. In this chapter, we present

briefly their work.

3.1 Construct a stop due date problem

With the one due date assumption, for n jobs, there must be one job straddling the due date,

the so called straddler, that starts before or on the due date and completes after it. Kellerer

et al. [Kellerer2006] guess the straddler at the beginning of their algorithm. Instead of

inserting the straddler by guessing the starting time like [Kolliopoulos2006] do, they insert

first the n - 1 non-straddling jobs. In this section, we present "a stop due date problem"

which is constructed for the non-straddling jobs. Note that, whenever there is a guessed

straddler, there is a stop due date problem associated with it.

25

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

It is easy to see that any non-straddling job finishing before the due date is early and

any non-straddling job starting after the due date is tardy. Therefore, the due date separates

all non-straddlingjobs into two categories: early and tardy jobs. The stop due date problem

is constructed by processing jobs as follows:

1. all the non-straddling jobs are ordered by the WSPT rule and are placed in the time

line one by one;

2. the first early job starts from time zero and the first tardy job starts from the due date;

3. all early jobs are processed as a block without intermediate idle time and completed

by the due date;

4. all tardy jobs are processed as a block without intermediate idle time.

The goal of this problem is to find the minimum total weighted tardiness of the remaining

Tn := n - 1 jobs for each chosen straddler.

3.2 DP for the stop due date problem

For the stop due date problem, the total weighted tardiness is calculated by Zm = 'Lt'j:l Wj'Tj.

It is easy to see that only the tardy jobs are counted for the calculation of the total weighted

tardiness. It has been proved in [Kolliopoulos2006] that the WSPT rule minimizes the total

weighted tardiness of a set of tardy jobs. To minimize the total weighted tardiness for the

stop due date problem, it is important to decide whichjobs are scheduled as tardy. There

fore, a Boolean decision variable Xj is defined for each job Jj, where Xj = 1 ifjob j is tardy

and Xj = 0 otherwise. Then the total weighted tardiness for a feasible schedule for the stop

due date problem is given by Zm = 'Lt'j:l Wj ('Lt{=1 PiXi)Xj' Here "feasible" means that

the total processing time of the early jobs is no more than d, i.e., 'Lt'j:l Pj(1- Xj) ::::; d.

26

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

k

Define k as the number ofjobs scheduled so far; Yk := LPjXj is the total processing
j=1

time of the tardy jobs among the first k jobs; W j := l":~=1WjXj is the total weight ofthese

jobs; Zk = l":~=1 Wj(l":{=IPiXi)Xj is the current value of the objective function.

After the decisions have been made for the first k jobs, the state of the dynamic pro

gramming is defined as (k, Zk, Yk, W k). We say that all the states with the same k are

"from stage k". Then the transition from a state (k, Zk, Yk, TVk) in a stage to any state

(k + 1, Zk+l, Yk+l, W k+l) in the next stage is defined as follows:

1. ifthe next job Jk+l in the WSPT order is decided to be early, and feasibility condition

Ak - Yk :S d where Ak = l":~=1 Pj, then Yk+1 = Yb W k+1 = TVb and Zk+1 = Zk;

2. if it is decided to be tardy, then Yk+1 = Yk + Pk+I, Wk+1 = TVk + Wk+I, and Zk+1 =

Zk +WkYk+1

The initial state is defined as (0,0,0,0).

The DP above generates a collection ofstates after considering all n -1 jobs. Between

the initial state anyone of the states in the last stage, if there is a connected path connects

them, then it must be a feasible path, since every state in this path is calculated only when

a job a feasibly inserted. Here a connected path means that, for all the n - 1 states (one

from each stage) on this path, there is a transition for any two consecutive states. The

corresponding schedule is called a feasible schedule. This DP generates all the feasible

paths for each stop due date problem.

3.3 Inserting the straddler back

Recall that before applying DP to the stop due date problem, we have guessed a straddler.

Now it is time for it to be scheduled back into each of the feasible schedules. More specif

ically, the straddler is processed starting from the completion time of the last early job in

27

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

the time line. To make the insertion successfully, the tardy block has to be pushed forward.

It is easy to calculate the amount ofprocessing time by which the tardy block is pushed. It

is x = Am - Ym +Ps - d, where Ps is the processing time of the straddler. The tardiness of

all the tardy jobs are actually increased by a mount of x. Since the tardiness ofthe straddler

is also x, we compute the total weighted tardiness for the TWT problem with common due

date as Z = Zm + WsX + Wmx. For each stop due date problem, we can find a schedule

which gives the minimum Z. After considering all the stop due date problems (one for

each possible straddler), we find an optimal schedule for the TWT problem with common

due date.

Note that for each stop due date problem, all the feasible schedules should be consid

ered when the straddler is inserted back. It is wrong to only consider the feasible schedule

which gives the minimum total weighted tardiness for the stop due date problem. This can

be easily seen from the fonnulation Z = Zm + WsX + Wmx. A minimum Zm does not

mean a minimum Z because of the (ws + Wm)x part.

3.4 Rounding scheme

In the worst case, the dynamic programming above generates 8(2n
) states which is way

too inefficient when the problem size is relatively large. The goal ofthe rounding scheme is

to reduce the number of states in each stage so that eventually there are only a polynomial

number of states generated. In order to reduce the number of states, it is necessary to

reduce the number of values that each variable takes. On the other side, we do not want

to lose too much accuracy. Therefore, we show that the complexity is a polynomial of the

problem size, and at the same time, the solution is bounded by a factor of 1 + (. of the

optimal solution. Here 1 + E is the approximation ratio. To do this, [Kellerer2006] defines

the following rounding scheme:

28

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

1. use the objective value of a heuristic schedule for the original problem as an upper

bound, denoted by zUb. This value is of approximation ratio 2;

2. for any c > 0, define Zlb = 1/2zub and 8 = ~~:;

3. for each Zk :s; ZUb, round it up to the next multiple of 8;

4. for each Wk , round it up to the nearest power of T := (1 + l/c)l/rn;

5. sort all the N distinct weights in decreasing order, then we have zub < Zllb <
W,,(l) W,,(2)

... <~ where 1f(i) is the decreasing order of the distinct weights. Split interval
W,,(N)

[0 ZUb] h I h h [ZUb] [ZUb ZUb],-- at t ese va ues. T en we ave h = 0, --, 12 = --, -- , ... ,
W,,(n) w rr {1) W,,(l) W,,(2)

IN = [znb , znb]. Further divide each interval Ii where 1 < i < N into sub-
W,,(N· 1) W.,..(N) - -

intervals of length _b_. Denote the sub-interval by I
J
": where r is its index;

w.,..(j)

6. for each combination of states (having the same value of Zk and VVk) and a subin-

terval Ij, detennine the smallest and largest values of Yk. We only save two states

(k,Zk,Yk',in, Wk) and (k,Zk,Y'kwx , TVk).

In this algorithm, the most important pali is the feasibility conditions, i.e., A k- Yk :s; d

for all 1 :s; k :s; m. We know that in any feasible schedule for the stop due date problem,

all tardy jobs are scheduled in the interval [d,oo] and all early jobs are scheduled in the

interval [0, el]. There is always enough space in interval [el,oo] for placing tardy jobs. But

for the early jobs, we have to check if the empty space left from placing the previous early

jobs in interval [0, el] is enough for placing another early job. The empty space left from

placing early job among the first k jobs is d - (A k - Yk). Here [Kellerer2006] uses that the

total processing time of the first k jobs is the sum of the total processing time of the early

jobs among the first k jobs plus the total processing time of the tardy jobs among the first

k jobs.

29

Master Thesis ~ Jing Wang - McMaster - Computational Engineering and Science

In the FPTAS, Yk is always rounded up, therefore the corresponding total processing

time of the early jobs among the first k jobs ek is rounded down. Therefore, every time Yk

is rounded up, the empty space left to the k-th job (d - ek) is increased. Therefore, if a job

is early in an optimal schedule, the FPTAS can also place it as early. Since there is always

plenty space for tardy jobs, if a job is tardy in an optimal schedule, the FPTAS can place it

as tardy. This eventually guarantees that we would not lose more than a factor 1 + f. of the

optimal, where 1 + f. is the approximation ratio.

30

Chapter 4

FPTAS for Single Machine TWT

Problem with a Fixed Number of

Distinct Due Dates

In this chapter, we define a stop due dates problem and further define an abstract problem

by analyzing the structural properties of an optimal schedule for the TWT problem with

a constant number of distinct due dates. We give a dynamic programming algorithm for

the abstract problem and then convert it into an FPTAS by adopting the rounding scheme

in [Kellerer2006].

4.1 A stop due dates problem

In this section, we consider the TWT problem with a constant number K of distinct due

dates. Sort them in increasing order, i.e., ch < d2 < .,. < d/(. Jobs with the same

due date can be grouped into one class and hence there are totally K job classes. This

chain of due dates partitions the time horizon into K + 1 intervals. We define artificial due

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

dates do = 0 and df(+l = 00. Then the intervals can be represented as Ii = [di- 1 , di) where

1 :s; 'i :s; K +1. As defined in the common due date case, a job processed before or on a due

date but completed after it (or a different due date) is called a straddler. When a straddler

finishes after a different due date, we say this straddler spans more than one due dates. For

ease of exposition, we will assume that there is an optimal schedule with distinct straddlers

for every due date, that is, there are K distinct straddlers 5 1 ,52 , ... ,5f(corresponding to

due dates d1 , d2 , ... , dJ(respectively. Later in this chapter, we will explain how to modify

the algorithms to deal with the case of some straddlers crossing more than one due date.

It has been proved in [Kolliopoulos2006] that, in any optimal schedule, the non

straddling tardy jobs scheduled consecutively in any interval Ii (i > 1) must appear in

WSPT order. Therefore, we order the given n jobs in WSPT order at the beginning and

later on we place jobs in this order one by one. As in [Kellerer2006], we guess K strad

dlers. "Guess" means exhaustive enumeration. For the remaining m = n - K jobs, still in

WSPT order, we define a stop due dates problem. In this problem, in each interval Ii the

first tardy job (ifthere is one) starts at the first due date. The block containing early jobs

stmts after the tardy block (if there is one) and completes before or at the second due date

of this interval. Both early and tardy blocks are consecutive.

The early block in any interval is scheduled after the tardy block due to the argument

in [Kolliopoulos2006], that is, in an optimal schedule, all the early jobs in each interval

are scheduled after all the tardy jobs (if there are any). Note that if tardy and early blocks

already exist in an interval and another job is to be placed as tardy in this interval, we need

to move the early block forward so that this tardy job can be inserted right after the tardy

block, as the figure 4.1 shows. If a job is to be placed as early in an interval, we simply

place it right after the last early job, as the figure 4.2 shows.

We define the following quantities which are very important throughout this chapter:

32

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

I cur1ent J
1r--t-ar-dY-r·....·....~---

d_{i-l) dJ

Figure 4.1: Inserting a job as tardy.

I current I
____-e-a-rly-I _

dJ

Figure 4.2: Inserting a job as early.

1. Yki
-

l)t,l S t < i S K + 1, 1 S k S m: the total processing time of the tardy jobs

among the first k jobs that belong to class Ct and are processed in h

2. W~i-l)t, 1 S t < i S K + 1,1 S k S m: the total weight of the jobs in the previous

item.

3. At, 1 S t S K, 1 S k S m: the total processing time of the class Ct jobs among the

first k jobs. We can calculate these quantities in advance.

4. eii -
l)t,l SiS t S K + 1, 1 S k S m: the total processing time of the early jobs

among the first k jobs that belong to class Ct and are in h

It is obvious that all the jobs in the first interval h = [do, dl], are early. To make our

discussion clearer, we define a series of artificial quantities y~t, where 1 S t S K and

1 S k S m. They are the total processing times of tardy jobs of class Ct in interval h

among the first k assigned jobs. Then y~t = 0, 'II 1 S t S K and 1 S k S m. It is easy to

observe that for any 1 S k S m before deadline elt> all the Ct jobs are early, and after elt

all the Ct jobs are tardy, while the total processing time of this class is equal to that of the

33

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

early jobs plus that of the late jobs. Therefore, we have

total processing

time of the

total processing time of

the tardy Cdobs +

total processing time of

the early Cdobs

Cdobs fromIt+1toIK+l
Mathematically, it can be represented as

K t

A~ = Ly~t + Le't/
u=t u=l

(4.1)

Then we observe some properties of the optimal schedule by giving lemmas without

proofs, since the proofs are similar to the ones for the lemmas given in the next section.

Lemma 3 In the optimal sequence, for any 1 ::; i ::; J{, if straddler Si is tardy, then for

any 1 ::; l ::; i and any i + 1 ::; u ::; J{, we have e~u = 0, in other words, there is no Cu jobs

early in interval II.

Lemma 4 In the optimal sequence, for any 1 ::; i ::; J{ - 1, if straddler Si is early, then

ykU = 0 for all 1 ::; 'u::; i, in other words, there is no tardy jobs in I i+1'

4.2 Structural properties of an optimal schedule

Previously we defined a stop due date problem for the n - J{ non-straddling jobs. In

this section we are going to make same observations on the structural properties of an

optimal schedule for the original problem. (From now on, "original problem" will denote

. the TWT problem with a constant number of distinct due dates.) In any optimal schedule,
n

the machine has clearly no idle time. Hence we can assume that LPj > dK , since
j=l

otherwise dK can be set to 00 and we have a TWT problem with J{ - 1 due dates.

We observe that, in any schedule, each straddler is either early or tardy. Assume

34

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

there are .M tardy straddlers in an optimal schedule, where 1 :s: iI/I :s: K. We define an

artificial straddler So straddling artificial due date do defined in last section with WSo =

PSo = O. Ifwe define So as tardy, the indexes of all the tardy straddlers can be numbered

as io,i1 , ... ,iM . The corresponding due dates are denoted as dio,dill ... ,diM' Define

iM +1 = 00. For any two consecutive tardy indexes iu , iu+1' where 0 :s: u :s: lVI, the

segment between two due dates di" and di,,+l is defined as a super-interval. We denote it

as Gi"i,,+!. Note that between due dates diu and di,,+l there is no other tardy straddler. The

super-interval Gi"iu+l consists of intervals h,+l' h,+2, ... ,h,+!. If iU+1 = 'iu + 1, then

Gi"i,,+l == 1u+1' Since SK is tardy, the last super-interval is GK ,K+1 = h<+1'

With the definition of super-intervals, we have the following results:

Lemma 5 In an optimal schedule, for any tardy straddler Sin (iu is the index of tardy

straddler) with 1 :s: u S; lVI, for any 1 S; q :s: iu and iu. + 1 :s: b :s: K, we have ekb = O.

Proof Suppose that for some 1 :s: (j :s: iu and iu + 1 :s: b :s: K, ef) > O. This implies that

there are some Cr, jobs which are early in the interval 1q. Therefore, by exchanging some

of the tardy part of Silt with some or part of these Cr, jobs will reduce the total tardiness,

since the tardiness of Silt is reduced and the Cr, jobs used in the exchange are still early.

This is a contradiction of optimality. o

This lemma tells us that, in an optimal sequence, for any class Cb, all the super

intervals before the one where due date db lies do not have early Cb jobs.

Lemma 6 In an optimal schedule and for any 1 :s: i :s: K - 1, if Si is early, then for any

1 :s: 'tt:S: i + 1, we have yki
+1)u = 0, i.e. there are no late jobs in interval 1i +1.

Proof Suppose that there exist 1 S; i :s: K - 1 and 1 :s: b :s: i + 1, such that Si is early,

while Yki
+1)b > O. This implies that there are some Cr, jobs which are late in 1i+1. Then

exchanging part of Si with some or part of these Cr, jobs will reduce their total tardiness

35

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

and Si is still early.This is a contradiction of optimality. o
A direct consequence of Lemma 6 and the definition of a super-interval is the follow-

mg.

Lemma 7 (Bracketing Lemma for early jobs) Let 1 ::; u ::; lvI. In an optimal schedule

only jobs from classes Ct , with iu - 1 < t ::; i u can be assigned as early in the super-interval

G· .'lu-l'lu·

Lelmna 7 implies that the only non-zero y's are the ones that correspond to the first interval

of each super-interval. Therefore, from now on we will use only the values Ykut for any

1 ::; 'U ::; M, 1 ::; t ::; i u and 1 ::; k ::; m. The above lemmas and discussion imply that for

every 1 ::; k ::; m and for every 1 ::; t ::; K, such that is - 1 < t ::; is for some 1 ::; s ::; lvI,

we have
M t

At _ """' illt + """' qtk - L.JYk ~ ek
J.L=s q=i"-l+1

lfwe further observe the early straddlers, we find that

(4.3)

Lemma 8 In an optimal schedule and in any super-interval [i'll' iu+1), where 1 ::; u ::; lvI,

for every iu < i < 'iu+1 (if there is any), if Si E Ct, then i < t ::; iU+l must hold.

Proof It is easy to see that i < t since Si is early. We only need to prove that t ::; i u+1' If

not, then there exist i u ::; i ::; iu+l and Si E Ct while t > i u+1. Exchanging part of Si with

Siu+l' we can have less tardiness for Siu+l and Si is still early. This is a contradiction ofthe

optimality. o

Lemma 8 tells us that we can treat the early straddlers as other early non-straddling

jobs. Therefore, tardy straddlers are going to be of particular interest in our algorithm.

Since we do not know the tardy straddlers exactly in the optimal schedule, we have to guess

them. By guessing we mean the exhaustive enumeration of all possibilities. It includes:

36

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

guessing the number M S K of tardy straddlers; guessing due dates positions where the

tardy straddlers will go; and then guessing jobs as the straddlers (with repetition in the

general case where a job can be straddler of more than one due dates) which produces a

polynomial number ofpossibilities since K is a constant. Let m = n - AI{ be the number of

the remaining jobs which are ordered according to their weighted shortest processing times

(WSPT). With some abuse oftenninology, we will call these jobs non-straddling, although

some of them are the early straddlers.

4.3 A dynamic programming algorithm to find an abstract

schedule

In this section, we are going to give a dynamic programming algorithm which finds an

abstract schedule for the m = n - NI non-straddling jobs. An abstract schedule is defined

as an assignment of the m non-straddling jobs to the super-intervals so that the following

conditions are satisfied:

1. early jobs are feasibly and non-preemptively packed within their assigned super

interval;

2. there is enough empty space so that tardy jobs that are completed in their assigned

super-interval can be preemptively packed;

3. there is enough empty space so that the NI tardy straddlers can be preemptively

packed.

An explanation of the abstract schedule is: all the early jobs are placed non-preemptively

but the tardy ones are placed preemptively. Here preemption means the scheduler is allowed

to interrupt the processing of a job at any point in time and put a different job on the

37

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

machine instead. Specifically the assignments ofthe tardy jobs are recorded but their actual

processes can take place anywhere before the super-intervals assigned. As a result, in an

abstract schedule, any tardy job is floating around or before the super-interval that it is

assigned, although it is recorded to be finished in that super-interval. An abstract k schedule

is an abstract schedule for the first k :::; m non-straddling jobs.

For the specific allocation of the jobs in each super-interval GiU-liu' we are going to

follow the following rules:

1. all the tardy jobs (ifthere are any) are placed consecutively in WSPT order as a block

within the first interval of this super-interval;

2. all the early jobs (ifthere are any) are placed consecutively in EDD order as a block

following the tardy block (ifthere is any), before due date diu.

The dynamic programming (DP) guesses NI straddlers. Extending the DP in [Kellerer2006],

the states of our DP store the following values for a partial schedule of the first k out of m

non-straddling jobs:

(4.4)

where Zk is the total weighted tardiness ofthe k scheduled jobs. Note that some of the Ykuj ,

vV~lIj may not exist if in < j and the weight values vv~uj will be needed when the tardy

straddlers will be re-inserted at the end. Recall that the k jobs are in WSPT order.

As in [Kellerer2006], to prove that the generated solution is bounded by 1 + E of the

optimal value, we need to find a lower bound Zlb for all the ZkS. The property of this

lower bound is that twice of it will give an 'upper bound to Zk. To make that happen,

we start with an obvious lower bound, for instance 1. Then we run the algorithm with

znb = 2X for all x = 0,1, ... , UP with UP being a trivial upper bound of OPT, e.g.,

38

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

UP = 10g(n2wmaxPmax) = O(logn+logwmax +logPmax).

The algorithm starts with an initial state (0,0,0,0, ... ,0,0, ... 0,0). The state-to

state transition from state (4.4) corresponds to the inseltion of the k + l-thjob into a super

interval ofthe partial abstract schedule ofthe previous k jobs. Such a transition corresponds

to the choice of inserting this job in a super-interval, and must be feasible. The feasibility

conditions described in detail below require that there is enough empty space to insert the

new job in the selected super-interval (non-preemptively as an early job and preemptively

as a tardy job), and there is still enough empty space for the re-inseltion of the straddlers.

Note that the combination of the class C t of the inseltedjob and the super-interval Gin Ii"

chosen for it by the transition determines whether this job is early or tardy: ift > i'll-I, job

Jk+l is early; otherwise it is tardy.

The calculation of the empty space in any super-interval is not intuitive. The actual

total processing time of the early jobs in this super-interval can be easily computed. But

the actual processing time of the tardy jobs in this super-interval is not obvious because

parts of them are preempted to the prefix before this super-interval. In addition, the look

like empty space in this super-interval might be occupied by parts of the tardy jobs from

future super-intervals. Therefore, we need to define the empty space by considering all

these concerns.

Assume now we are considering the empty space in a prefix, i.e., a pmtial schedule in

interval [do, dl) .

• Lgl
, 1 :::; l :::; K, 1 :::; k :::; m: the total empty space from do to dl minus the space

taken by the jobs whose class indexes are less than or equal to l among the first k

jobs.

39

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

Based on this definition, in the prefix Jot, there are only up to Cl jobs involved. The

total processing time of the Cl , C2 , ... , Cl jobs in this prefix is L~=l At. Then we have

i=lj=u b=lj=l b=l

ij 1 u-l ij M 1 1

L e
qb + L L e

qb + L Lyijb + L Lyijb = L At
j=l q=ij-l+l b=q q=iu-l+l b=q

where

Then L~l can be computed from the information at hand as follows:

(4.5)LOl
k d,- (~ ,J+1~ c,b +,~t+l~ e,b) -~t, yijb

d,- (tAt -~tyijb -~tyijb)-~tyijb (4.6)

1 M 1

dl - LAt + LLyijb (4.7)
i=l j=u b=l

Recall that there are 1\11 tardy straddlers {Siu }t~l overall and each straddler has pro

cessing time Piu ' Assume that the k + 1-th job Jk+l E Ct , and consider inserting it into

super-interval Giu- tiu ' Note that Lemma 3 implies that to even consider such a placement

t :::; i'l must hold. Then three feasibility conditions must all be satisfied by a DP transition

from state (4.4) with first variable k to state with first variable k + 1:

Condition 11ft:::; iu - l , i.e., Jk+l is tardy

la if Lgl - L~iu-l 2': Pk+l holds, tIl S.t. iu- l < l :::; iu'

lb if 1a does not hold, check if Lgl > Pk+l holds'il, S.t. iu- l < l :::; iu'

40

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

Ie check if L~ij > PHI holds Vj, s.t. 1£ < j :s; Jill.

Condition 2 If iu - I < t :s; iv., i.e., Jk+1 is early

2a check if Lgl - L~i" I 2: PHI holds, Vl s.t. t :s; l :s; iu '

2b if 2a does not hold, then check if

1 'f ,\,i,,-I i"-IV < LOi"-I. h 1 'f d d (,\,l '\'l qV) >
. I L..v=1 Yk _ k . C eC(I 1 - i,,-I - L..q=i,,-I+I L..v=q ek _ Pk+1

and Lgl 2: PHI holds, 'Ill, S.t. t :s; l :s; i u ;

2e check if L~ij > PHI holds Vj, S.t. u < j :s; JvI.

Condition 3 Check if L~~I 2: L~:i Pi" holds, VU, S.t. 1 < u :s; .!vI and Vj S.t. i v.-1 <

j :s; i u '

Condition (3) will ensure that there is always enough empty space to fit the straddlers in

the final schedule. Condition (Ia) and (2a) are satisfied when there is enough space to fit

Jk+1 as tardy or early in a non-preemptive schedule. We will prove that for a preemptive

schedule, Conditions (2b) , (2e) are enough to guarantee that early jobs can always be

inserted non-preemptively, and even if Condition (ta) does not hold, as long as Condition

(Ib) and (Ie) are satisfied we are able to insert tardy jobs preemptively. But we will use

the fact that Conditions (Ia), (2a) and (3) are enough for the constmction of an optimal

DP algorithm which produces an optimal non-preemptive schedule in the analysis of our

FPTAS.

There is a another concise way of expressing Condition (2b) as shown in Lemma 9

below. We define the empty space in interval h'-Il where iv- I < l :s; in as: the empty

space in interval h'-Il without considering the early jobs which fall into this interval and

the class indexes are strictly greater than l. With the infonnation from state (4.4) we have

41

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

L (iu-tl 1 '- d _ d· [,\,i"-l (i"-l)V '\'1 '\'1 qV] B b" l' .
k .- I lu 1 - uv=l Yk + uq=iu-1+1 uv=q ek · Ysu stltutmg equa 1tles

(4.3), we have

Li
u-

11 = d - d· -k I Z,,-l (4.8)

Then we have the following result:

·Lemma 9 Condition (2b) can be replaced by the following: check whether d1 - diu_ 1

(l:~=i"_l+!l:~,=q e't + max{l:~';:11 y~U-1V - L~i"-l, O}) 2:: Pk+1 holds, 'Ill, S.t. t :::; 1 :::; i u '

Proof. If"i~11 Yk
iu

-
1V

:::; L k
Oi

u-1, then it is obviousthatcheckingd1-di _1-(,\,1_. +1,\,1_ eq
k
v+uv- U Uq-lu-1 uv_q

max{l:~';:11y~U-1V - L~iu-1, O}) 2:: Pk+1 'Ill, S.t. t :::; 1 :::; iuo is equivalent to checking

clz - di"_l - (l:~=iu-1+1l:~=q er) 2:: Pk+1. If l:~;:11 y~U-1V 2:: L~iu-\ then inequality

1 d (,\,1 '\'1 qv + {,\,iu- 1 iu-1V L Oiu-1 O}) > . . I t
C1- iu-1 - uq=i"-l+l uv=q ek max uv=l Yk - k , _ Pk+1 1S eqmva en

to d1 - diu_ 1 - (l:~=iu 1+1l:~=q er + l:~:-11 y~U-1V - L~iu-1) 2:: Pk+1. By exchanging the

. . f h t h L Oiu-1 d d (,\,1 '\'1 qv ,\,iu-1 iU- 1v) >posItIons 0 t e erms we ave k + 1- ill 1- uq=iu-1+! uv=q ek +uv=l Yk _

Pk+!. By the definition (4.8), we have L~iu 1 + L~U 11 = L~l 2:: Pk+1 for all t :::; 1 :::; iu ' An

interpretation ofthese inequalities is that all the C1jobs which are early in the super-interval

Gill_1iu are still early after inserting the new early job Jk+1 . o

The new state (k + 1, Zk+1,' ..) after the feasible insertion of the (k + 1)-thjob Jk+1

of class Ct in super-interval Giu-liu is computed as follows:

1. J k+1 is early: set y~'i1 = Yk
uj

, W~~l = Hf~uj for alII < u < lVI, 1 :::; j < ~u'

Calculate Zk+I = Zk.

2. J k+1 is tardy: set y1:~1 = Yk"t + Pk+1, W~~l = vv~ut + Wk+!. While for all

1 :::; j :::; iu and j =f t, set Yk'i1 = Yk
uj

, W~~l = w~uj. Calculate Zk+! =

Zk + wk+!(l:~'~·i1 Yk,,-l
V + Pk+! + di"_l - dt). Note that we reject the insertion

42

o

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

if Zk+l > ZUb, and if at some point we determine that this inequality is true for all

possible insertions of Jk+l then we reject zub, we replace it with a new zub := 2Z?lb

and start the algorithm from scratch.

In the abstract schedule, the tardy jobs must complete in their respective super-interval

but their processing can take place anywhere before their completion time. The following

lemma shows that the tardy jobs can be preemptively inserted.

Lemma 10 Let u ~ M, 1 ~ k ~ m. If L~ij ~ 0, Vj s.t. 1 ~ j ~ 'Lt, then there is enough

actual empty space to pack preemptively the tardy jobs that have so far been assigned to

the first u super-intervals.

Proof. For a super-interval Gi"_li", we have Lt
lij = L~ij - L~(ij-l) based on the defi

nitions (4.8) and (4.5). When the quantity Lt
lij is non-negative, it is equal to the empty

space in [dij_ l , dij) plus the space potentially needed in [dij_ l , dij) by pieces of preempted

tardy jobs with completion time after dij . It conesponds to a super-interval with an ex

cess of space which can be used to accommodate preempted parts of jobs that complete

in the future super-intervals. When the quantity Lt
lij is negative, it equals the excess

space potentially needed by the preempted tardy jobs with completion time in [dij_ l , dij).

It corresponds to a super-interval with an excess portion of tardy jobs which needs to be

preempted towards the past. Since L~ih = L~L=l Lt
lij

, if L~ih ~ 0, Vh S.t. 1 ~ h ~ u,

then L~ih is the net empty space for accommodating preemptions from jobs that complete

after dij once all tardy jobs assigned in [do, dij) have been packed.

The above lemma states that the empty space in prefix JOi" for all 1 ~ u ~ 1\IJ is the

actual free space. In the following lemmas, we show how to feasibly pack the early and

tardy jobs in the partial abstract schedule.

43

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

Lemma 11 Assume state (4.4) corresponds to an abstract k-schedule. Condition (2) and

(3) imply that job Jk+1 is packed non-preemptively as early in the intervals Ii"_l +1, ... , h"

so that we obtain an abstract k + 1 schedule. Moreover all early jobs complete as close to

their due date as possible.

Proof. We claim that if Condition (2a) holds, then job JH1 can be feasibly inserted into

interval Li"_lt. Since Li"_lt = L%t - L~i"-l ~ PHI holds, this means that excluding

previously inserted early jobs in this interval whose job class indexes are greater than t,

there is enough space for job Jk+1 . We check the feasibility for the excluded early jobs

after they are pushed fOlward. We check the jobs according to the increasing order of their

class indexes. For any t < l :s; i'll' since L i" lZ = L%Z - L~i"-l ~ PHI, this means that even

if some class Cz jobs are pushed forward because of the insertion of Jk+1, they will not be

pushed beyond their due date dz• Also because of the insertion of Jk+1, the early Cz jobs

are pushed close to their due dates dz.

If Condition (2a) does not hold, that is, anyone of the early jobs in the abstract k

schedule in super-interval Gi"_li" becomes tardy because of the insertion ofjob Jk+1, then

we consider to move pa11s of the tardy jobs in this super-interval backwards so that job

Jk+1 can be feasibly inserted. Therefore, Condition (2b) needs to be checked. Because

. . . v O' •
of Lemma 10, If L:~'::Il y~"-l :s; Lkz"-l, then this means that the actual empty space be-

fore diu- l is enough for moving all the tardy jobs in super-interval Gi"_li" to the past. If

,,\",i,,-l yi"-lV < LOi"-l this nieans that there is only LOi"-l _ ,,\",i,,-l yi"_lV processing time
L....v=1 k - k ' k L....v=1 k

of the tardy jobs in super-interval Gi"_li" can be moved backwards without affecting the

the jobs feasibly assigned before di"_l' After parts or all the tardy jobs in super-interval

Gi"_li" are moved to the past, the inseI1ion of the Jk+1 will not affect the rest of the tardy

jobs (if there are any) since it is inserted after the tardy block. Similar to the argument in

previous paragraph, the early jobs with class indexes greater than t will not be influenced.

44

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

Since Condition (3) must hold, space for straddlers is preserved. Since Condition (2e)

holds (i.e., L~~l :2: 0 Vj, S.t. u < j :s; M), by Lemma 8, all the jobs assigned after din are

not affected. 0

Lemma 12 Assume state (4.4) corresponds to an abstract k-schedule. Conditions (1) and

(3) imply that one can assign job Jk+1 to complete as tardy in the super-interval Gi"~li", so

that we obtain an abstract k + I-schedule.

Proof. If Condition (la) holds, then there is enough space to place job Jk+l in interval

h'-l,i"-l+l non-preemptively by pushing the early jobs in super-interval Gi"_Ii,, forward.

As argued in Lemma 11, those early jobs will not be pushed beyond their own due dates. If

Condition (la) does not hold, Condition (lb) can guarantee that Jk+1 can be preemptively

inserted. We know that L~l = L~i"-l + L~'-ll and by Lemma 8, L~in-l is the actual empty

space before diul ' Therefore, if L~l :2: Pk+l Vl S.t. iu - 1 < l :s; i,,, thenjob Jk+l can use the

actual free space in prefix IOi"_l plus the empty space in interval h'-l,i"-l+l by pushing the

early jobs with class indexes greater than t forward. The argument for pushing early jobs

is similar to the one in Lemma 11. By Lemma 10, we know that the jobs assigned before

diu_1 are not affected. At the same time, Condition (Ie) guarantees that the jobs after din

will not be affected and Condition (3) guarantees that space for straddlers is preserved. 0

4.4 Producing an optimal schedule

When preemption is allowed, the jobs are allocated by the dynamic programming according

to the following procedure:

1. the early jobs are placed in their super-interval non-preemptively and as close to their

due date as possible;

45

1, 2, ... , K, and

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

2. the tardy jobs in the last interval I K,K+1 are scheduled in that interval non-preemptively

in WSPT order;

3. for'LL = lVI,]\,11 -1, ... , 1 look at the tardy jobs with completion times in Gi,,_liu ' i.e.,

in interval I i ,,_I,iu _I+l in WSPT order. While there is empty space in this interval,

fit in it as much processing time as possible of the job currently under consideration.

If at some point there is no more empty space, the rest of the processing times of

these tardy jobs will become preempted pieces to be fitted somewhere in [do, diu-I)'

Then, we fill as much of the remaining empty space in Giu Ii" as possible using

preempted pieces belonging to preempted tardy jobs in [diu, dK] in WSPT order (al

though the particular order does not matter). When we run out of either empty space

or preempted pieces, we move to the next 1L := 1L - 1.

Note that the above process does not change the quantities L~, j

therefore Condition (3) continues to hold.

Next we are going to place the tardy straddlers to complete the schedule. The follow-

ing lemma shows how to place the straddlers.

Lemma 13 The placement of the tardy straddlers can be done so that the following

properties are maintained:

1. straddler Si" completes at or after diu and before diu+!' for all'LL = 1,2, ... ,A1 - 1;

2. the prefix of the schedule that contains all straddlers processing time is contiguous,

i.e., there are no "holes" of empty space in it.

Proof. We are going to prove this lemma constructively by placing the tardy straddlers one

by one. Since Condition (3) holds for 1L = A1, j = iM = K, we have L?:/1 2: 2:~~~1 PSih'

By Lemma 10, this means there is enough actual empty space before diM = dJ(for placing

46

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

straddlers Sil' Si2' ' . , ,SiM I' Suppose all the tardy straddlers other than SiM are already

inserted and there is no hole between do and the completion time of the last job before diM'

Since Condition (3) holds for all prefixes, up to now, no violation happens for any job or

straddler. We are placing straddler SiM '

Since all the jobs are going to be placed consecutively, we know that there is L~~M

2.:~-;:1 PSih space left before diu' If L~M - 2.:~~-;:1 PSih :::;: PSiM , then use the extra empty

space (L~M - 2.:~~-;:1 PSiJ to fit (L~~M - 2.:~:-;:1 PSiJ units ofpsiM' and fit the remaining

PSiM - (L~M ~ 2.:~;~-;:1 PSiJ units right after diM' At the same time shift the whole tardy

block after diM towards the future by the same amount of units. If L~M - 2.:;~~-;:1 PSi" 2::

PSiM ' then start the straddler Silll at the time diM - (L~~M - 2.:~~-;:1 PSi" - PSiM) and set the

completion time at diM' After the insertion of SiM' ifthere is any empty space left before

diM' then just leave it as it is.

Then we place the second straddler SiM-I' Again, assume that straddlers Sil' , , , ,SiM-2

have been placed consecutively with other jobs before diM I' Recall that SiM starts at

d (LOi . ",M-l) Th ~ h "diM - m M - L.Jh=l PSih - PSiAl ' erelore, we ave two cases to conSl er:

• if in interval IiM_1,iM_I+l, early jobs with class indexes greater than i M - 1 + 1 can

be moved after diM_I+! without causing any violation (i.e., early job becomes tardy),

then there are no preempted pieces oftardy jobs completing after d iM_ 1 in [do, diM_I)'

since these pieces could only have come from the tardy jobs in GiM-liM' but then it

is impossible for that empty space to exist. In this case, because Condition (3) holds

and by Lemma 10, we know that before d iM _1 there are L~~M-I - 2.:~~-;:2 PSi" units

of empty space;

• if in interval IiM_1,iM_I+l, there is no early job which can be moved forward (or after

d iM_ I+!), then there are possible preempted tardy jobs before diAl-I' In this case,

LOiM- 1 > LO(iM-1+l) S' C d't' (3)h ld h LO(iM-I+l) ",M-2 >
m _ m . mce on 1 IOn 0 s, we ave m - L.Jh=l PSi"

47

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

",M-l ",M-2 h
L.Jh=l PSih - L.Jh=l PSih = PSi III l' By Lemma 10, t e empty space before diMnl is

the actual empty space.

In anyone of the cases above, straddler SiM_l starts at the time L?:;'M-l - L~12 PSih . It

1 ' h d ('fLaiM-I> ",M-l) ft d b ",M-lcomp etes elt er at iM-l 1 m _ L.Jh=l PSih or a er iM-l y amount L.Jh=l PSih -

L~~M-l. Continue this procedure until all the straddlers are placed correctly. 0

We will need property (2) in the calculation of the total tardiness ofthe final schedule

below and in our FPTAS. It may force us to preempt straddlers: for example, suppose

that the empty space in [do, d1) is much bigger than L~~lPSi
h

; then our schedule will use

L~~lPSih units at the beginning of that empty space to process Sjll ' . , , SjA-I' while setting

their completion times at d j1 , , , . , djM respectively.

After placing all m non-straddling jobs, the dynamic programming will produce a

collection of states with their first variable equal to m. Since all these states are feasible,

Lemma 13 implies that we can re-insert the straddlers at their correct position without

causing early jobs to be tardy and affecting the placement in intervals of the tardy non

straddling jobs, thus creating a number of candidate complete schedules. Let {liu}~l be

the tardiness ofthe M tardy straddlers. Define the part of Siu that completed after due date

u

'- {O '" LOiu}Xiu ,- Inax 'L..-tPSih - m

h=l

(4.9)

Assume Sin E Ct with t :::; iu , we have

liu = Xi" + di" - d t , Vu = 1, ... ,J\!I

and the total weighted tardiness of candidate schedule is

!vI M i"

Z = Zm +L WiuTiu+L(L W~~j)Xiu
u=l u=l j=l

48

(4.10)

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

The algorithm outputs a schedule with minimum Z by tracing back the feasible transitions,

starting from the state that has the Zrn which produced the minimum Z.

Theorem I The dynamic programming algorithm above produces an optimal schedule.

Proof. We prove that our dynamic programming algorithm contains a schedule which is

the same as an optimal non-preemptive schedule, that is, if a job in an optimal schedule

is early in some super-interval, then our DP also finds it early in that super-interval; if a

job in an optimal schedule is tardy in some super-interval, then our DP also finds it tardy

preemptively in that super-interval.

Take any optimal non-preemptive schedule (which we already know that exists) and

remove the straddlers, say there are K of them. For the rest m = n - K non-straddling

jobs in that schedule, we prove that they satisfy the feasibility conditions of our DP by

induction. For job J1, Conditions (Ia), (2a) and (3) hold obviously since it is inserted non

preemptively. Assume up to the placement ofjob Jk , Conditions (Ia), (2a) and (3) hold.

We show that they also hold for the placement ofjob Jk+1 in the super-interval prescribed

by the optimal schedule.

It is clear that Condition (3) is true for the whole sequence (since the straddlers were

correctly placed in the schedule).

Assume job Jk+1 E Ct is inselted early in Gi"_li" in the optimal schedule. Since jobs

J1 , ... , Jk are inserted non-preemptively, for any t ::::; l ::::; ill , the total processing time of

the tardy jobs and early jobs with class indexes less than or equal to l placed in interval

h'-ll is 2:.:~:~l y~"-lV + 2:.:~=i,,+1 2:.:~=i1t+l e%v. Since job Jk+l is non-preemptively placed

in super-interval GilL Ii" (more specifically in interval h, it because t ::::; l), we have that

ilL-l v=i,,+1 v

L y~" lV + L L e%V +Pk+l ::::; dl - dill _ l

v=l q=i,,+l

49

(4.11)

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

By the definitions ofL~l and L~i" 1, inequality (4.11) can be written as L~l- L~iu.1 :2: Pk+I,

Vl s.t. t :::; l :::; i.,. Therefore Condition (2a) holds for the placement ofjob Jk+ I • Similarly

we can show that Condition (ta) holds when job Jk+I is tardy in its super-interval in the

optimal schedule.

Therefore there is a path in the DP transition diagram that corresponds to the place

ment of jobs according to the given optimal non-preemptive schedule, hence the final

schedule produced by the algorithm has optimal tardiness. D

If we do not allow preemption, then the proof of the above theorem goes through

without checking for Conditions (tc), (2c), since they are satisfied trivially by the optimal

non-preemptive schedule.

Corollary t The non-preemptive DP algorithm with feasible transitions restricted to only

those that satisfy Conditions (ta), (2a) and (3) still produces an optimal non-preemptive

schedule.

For the proof of the approximation ratio guarantee below, we will compare the solution

produced by our FPTAS to the optimal schedule of the corollary.

4.5 The FPTAS

The transfonnation of the pseudo-polynomial algorithm into an FPTAS follows closely

Algorithm Eps in [Kellerer2006] . In the following we use the term DP to refer to the

entire process, since the running time of the dynamic programming part dominates the

total running time.

50

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

4.5.1 The algorithm and the complexity

For any f > 0, we guess an upper-bound (as discussed in previous section) zub such that

Zlb := Z;b :s; OPT :s; zub. Define c5 = E:4~' Consider a state

of the exact dynamic programming.

From this state, we will deduce the states

used by the FPTAS dynamic progrmmning as follow:

• Round variable Zk to the next multiple of O. Hence Zk takes at most z;'" = O(~)

number of distinct values.

• For alII :s; u :s; NI, round w~"j to the nearest power of (1 + C/2)1/Tn so that at most

log(1+c/2)1/rn W = 0 (n log TiV) number of distinct values are considered, where Hi

is the total weight of the n jobs;

• The rounding of Yk"j for all 1 :s; 1/, :s; JvI is more complicated than the above rules.

Assume there are N distinct weight values among the non-straddling jobs and SOli

them in decreasing order WTI(l) > W TI (2) > ... > WTI(N)' It is easy to see that

any Yk" j is bounded by Z"b . Define a division of the time interval [O,~] as
W,,(N) W,,(N)

{Hil := [~, Z"b] }i>'=l' In tum, for each interval Hil, we divide it into subinter-
W,,(i.'-l) W,,(i.')

vals {iiIj' (i)}J~tl of length 0i = iw 0_/ for alII :s; k :s; m, 1 :s; i :s; J(and 1 :s; j :s; i.
,,(,)

~-~

Here xf = r1IJ,,(i/) 0;""(i1-1) 1is the number of subintervals, although the length of the

last subinterval may be less than (li. For each state (k, Zk, y~ll , lIV~I1 , ... ,y~MJ(, l;f!~MJ(),

51

Master Thesis - ling Wang -McMaster - Computational Engineering and Science

the dynamic programming applies O(K) transitions to generate new states (k +

1, Zk+l, Y~~l' l¥~~l" '" y~~i(, vv~~t} For the set of states which have the same

values of Zk+1, W~~l' ' , , , livi~f, we round Yk1l in the following way: group all the

Yk'~l values that fall into the same subinterval Hiljl together and keep only the small

est and the largest values in this group, say Yk1~taX and yk,~~nin. We emphasize that

these two values correspond to the actual processing times of two sets of tardy jobs,

and therefore none of these two values is greater than A{+l' Hence from the group

of states generated by the DP transition, we produce and store states with at most two

1 t 't' i"j th t' (k+1 Z ill Will i"j'''in iMJ(WiMJ()va ues a POSI IOn Yk+l' a IS, ,k+l, Yk+l' k+l' . , , ,Yk+l . , . 'Yk+l' k+l

d (k + 1 Z ill lXTh l injmax iMJ(T;viJl.IJ()
an ~ ,k+l, Yk+l' 'v k+l" , , ,Yk+l , ' .. Yk+l , v k+l .

Lemma 14 The algorithm runs in time O(Cln log W log p)8(J(2).

Proof. In the worst case.M = K, for each of the J((I~+l) positions ofYk'il' we have at most

, znb W,,(l) 'l:h (znb znb) W,,(i)'/,-- . + '/, '- -- - -- --
W,,(l) Ii 2-2 W,,(iJ W,,(i-1) 8

Oe~2)

((
2) K(K+1)) " f b' 1 h h b'distinct subintervals, or 0 7~ 2 comblllatlOns 0 su lllterva s. W en t e com ma-

h K(K+1) b f " .f'. i j, '
tion of the subintervals is fixed, we ave 2-2- num er 0 comblllatlOns lor Yk':U s, smce

there are only two choices for each of them, the maximum and minimum values. There-
, 1 .. J(2 K(K+1) K(K+1»)

fore, for the same values of Zk+l, W~~l" , , ,W~~l we save 0((:)-2-2-2- =

O(C K(I;+I) nJ((J(+1») number of states. Taking into account the other variables of the state

and the initial guessing for the tardy straddlers and upper-bounds, the overall complexity

o

52

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

k = 0,1, ... ,m fonn an optimal sequence of transitions in the dynamic programming that

produces an optimal schedule without preemption. In the next section, we are going to show

that our rounding algorithm finds a sequence of states (k, Zk, yt11 , VV~ll , ... ,y~I J(, Ttl/fM J()

with k = 0,1, ... ,m whose transitions from one state to the next match exactly the job

placement decisions of the optimal schedule generated by the DP. We can prove this be

cause we take advantage of the preemption of the tardy jobs. Although our algorithm

overestimates the space needed by the tardy jobs by rounding up variables y's, the cone

sponding space of the early jobs (of the same job class) actually is decreased since the total

space of the early and tardy jobs of the same class does not change. By allowing preemp

tion on tardy jobs, we can place the overestimated processing time of the tardy jobs in the

places of the early jobs whose total processing time is reduced by an equal amount (this

amount of space may be divided into several super-intervals though).

4.5.2 Proof of near optimality

We are going to show that among the schedules that generated by the rounding algorithm,

an optimal schedule is included and a schedule (might be different from the previous one)

which produces an objective value bounded by (1 + f.) 0 PT is also included.

Lemma 15 Our rounding algorithm contains a sequence of transitions that is the same as

an optimal sequence of transition found by exact the DP. Here "the same" means identical

job placements.

Proof Another way to present this lemma is that for anyone of the m jobs (in WSPT

order), if its placement is feasible in an optimal schedule, then it can also be feasibly found

by our rounding algorithm. We prove this lemma by way of induction. If a placement of

the first job 11 is feasible fOf the exact DP, then it is obvious that this job is feasible for

53

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

our rounding algorithm. Assume that up to job Jk our rounding algorithm finds identical

placements as the exact DP does in an optimal sequence. We look into the placement ofjob

Jk+I • Suppose that Jk+I E Ct and its placement is in super-interval GiU_liu in the optimal

schedule. There are two cases to consider according to the optimal placement:

C 1 J . IS' J . l' t <. d L 01* LOiu 1 *ase : k+lIS ear y. mce k+I IS ear y ,'/,u-l < _ '/,u an k - k - ~ Pk+I

holds in the optimal schedule, Vl S.t. t S l S i u ' Therefore we have Lgl* ~ Lg1*

L~iu-l * ~ Pk+I. Additionally, it is trivial to see that Lg[~ L~iu* ~ Pk+I holds vi, S.t.

iu < i s K. In our algorithm, if Lg1 - L~iu-l ~ Pk+I holds, Vl S.t. t S l S iu , then

condition (2a) is satisfied. Otherwise, we need to check the two cases of condition

(2b):

1 if,\,iu- l 'yiu lV < LOiu 1: since ,\,1.. '\'1 eqv is rounded down we have. Dv=I k - k Dq=Z"-l+I DV=q k '

d - l· - (,\,1 '\'1 qV) > d _ d. _ (,\,1 '\'1 qv*) >
I GZu-l Dq=i"-l+1 DV=q ek - I Zu-l Dq=iu- l +1 DV=q ek -

L01* _ LOiu-l* > .
k k - Pk+l,

2. if ~~'~Il ykU
-

1V ~ L~iu-l: since Lg1 ~ Lg1*, we have Lg1 ~ Pk+I. Also, since

L~ij* ~ Pk+I holds Vj, s.t. 'U < j ~ lvI, we have L~ij ~ L~ij* ~ Pk+I.

Additionally, Condition (2c) is satisfied, because L~ij ~ L~ij* ~ Pk+I for all 'U <

j S lvI. Hence Jk+1 can be placed early in super-interval Giu-liu by the rounding

algorithm. (Note that, for the exact DP, we know that the empty space in the prefix

super-interval is increasing, that is, L~is S L~ij if 1 S s S j S lvI. But this does not

hold in FPTAS because ofpreemption. However we have the property that Lg
1 ~ Lg

1
*

Vl, S.t. 1 ~ l ~ K.)

Case 2: Jk+I is tardy Since Jk+ I is tardy, t S i u - I and Lg1* - L~iu-l* ~ Pk+I holds, Vl S.t.

t S l S i
1
!. Therefore we have Lg1* ~ Lg1* - L~iu-l* ~ Pk+I. In addition, it is trivial

to see that Lg[~ L~iu* ~ Pk+I holds vi, S.t. iu < i s K. In the rounding algorithm,

54

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

if L~l - L~iu 1 ~ Pk+l holds, 'til S.t. t ::; l ::; i1/.' then the proof is trivial. Othelwise

h L Ol > LOl* > L Ol* LOiu-l* > wl . l <. F rth Iwe ave k _ k _ k - k _ Pk+l v , s.t. 211.-1 < _ 2u . U er we lave

L~ij ~ L~ij* ~ pk+lholds 'tIj, s.t. u < j ::; Al. Hence Condition (1e) is satisfied.

Jk+l can be placed tardy by the rounding algorithm.

o

In the rest ofthe thesis, we work with these two special sequences and their transitions.

We observe that L~* ~ L~:iPs;h' 'tIj,1.l S.t. 1 < u ::; Al and iu- 1 < j ::; i" from

Condition (3), which is satisfied by the optimal DP. Moveover, L~~ ~ L~~.* 'til S.t. 1 ::;

l ::; K (as proved in Lemma 15). Hence L~ ~ L~:i PSi", 'tIj, u S.t. 1 < u ::; 111 and

iu - 1 < j ::; iu , i.e., Condition (3) is satisfied by the last state produced by our algorithm in

the sequence of transitions we study, and therefore we can feasibly complete the schedule

produced in this way with the insertion of the tardy straddlers. We prove the approximation

ratio guarantee for the schedule produced by our algorithm, by proving this guarantee when

the special transition sequence above is followed. We emphasize that our algorithm may

not output the schedule corresponding to that sequence, since its approximate estimation

ofthe total tardiness may lead it to picking another one, with a smaller estimate ofthe total

tardiness. For each 1 ::; k ::; m and 1 ::; u ::; Al, define B;u(k) := max{Wh I k ::; h ::;

m, y~,j =J:- 0, 1 ::; j ::; iu } and if no job is tardy in super-interval Gill- ti", set B7" (k) := O.

Lemma 16 For evelY 1 ::; k ::; m, 1 ::; u ::; Al and 1 ::; j ::; 'iv. ::; K, we have

(4.12)

(4.14)

55

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

Proof We are going to prove this lelmna by induction. Essentially the proof is the same

as the one of lelllina 1 given in [Kellerer2006], but we include it here for completeness.

Assume that Jk+1 E Ct with 1 ~ t ~ K and is to be inserted in super-interval Giuiu+l'

If Jk+l is early, then Zk+l = Zk; if it is tardy, then Zk+l = Zk + Wk+l(L:~:1 Yk
uj

* +
Pk+l + diu - dt). Define function <pi,Aylut) = ylut + Pk+l if Jk+1 is tardy in Giuiu+! and

,I.. (yiut) = yiut otherwise Denote the rounded value of ,I.. (yiut) as yiut<P2"t k k' <P2ut k k+l'

For k = 1, the proof is trivial by the description of the ways of rounding. Assume

that the lelllina is true for k = 8 < m and we are going to show that the lemma is true for

k = 8 + 1. If in the optimal sequence, y:U:; = y~ut* + Ps+l i=- a , then Js+1 is tardy in

Gin'iu+l and hence B7" (8 + 1) > O. Assume B7" (8 + 1) = W v where v 2': 8+ 1, we have

B~ (8 + l)yiut* = 'W yiut* < W yiut* < zub since yiut* is increasing with the increase of
"u s+1 v s+1 - v v - k

k. Then we have y:U:; ~ B~ ~~:1)' This implies that y~U:; belongs to some subinterval of
'1.11

8
length at most iuB;" (s+I)'

We have shown in Lelllina 15 that whatever the exact DP does to job Js+1 in an optimal

schedule, our rounding algorithm can find the same placement, so we have

. . t . t . t 6 . 6a< -I.. (2ut) _ 2u * _ 2u _ 2u * < < ---,--------:-
- 'V2ut Ys Ys+l - Ys Ys - iuB;',(8) - iuB;', (8 + 1)

since B7" (8) 2': B;', (8 + 1). Therefore <Piut (y~ut) and y~U:; are either in the same subinterval'

or in two consecutive subintervals. lfthe first case is true, the largest value in that interval

is picked as the rounded value y~U:l; if the second is true, the smallest value in the next

subinterval is picked as the rounded value. Thus we have the result (4.14).

Now we are back to prove (4.12). If Js+1 is inserted early, the result is trivial. If it is

56

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

tardy, We have

Zs+l < Zs + Ws+l(L~:l y~1tj + +Ps+l + eli1t - elt) + 8

< Z; + 2s8 + WS+l(L~'~l(y~1tj' + i"Bil~(S+l)) +Ps+l + elilL - elt) + 8

Z; + WS+l(L~'~l y~1tj'Ps+l + elilL - elt) + iuWS+li1tBil~(S+l) +8+ 2s8

< Z;+l + 2(s + 1)6

where the first inequality takes into account the increase of Zs+l by at most 8 due to its

rounding and the last inequality is due to the optimal DP transition for Js+1' o

The following theorem proves that the proposed polynomial algorithm is an FPTAS.

Its proof is an extension ofthe proof of Lemma 2 in [Kellerer2006], and we include it here

for completeness purposes.

Theorem 2 Assume that the exact DP finds a chain of states which gives an optimal

function value Z* after inserting the straddlers back. Then for any f > 0, the rounding

algorithm outputs a schedule with objective value Z satisfying Z ~ (1 + f)Z*.

Proof To show that function value generated by the rounding algorithm is of ratio 1+f, we

need firstly to show that W~j* ~ H/~~j ~ (1 + ~)TtV;~~,j*, where 1 ~ 'it ~ Ai, 1 ~ j ~ i u '

Since the rounding of all these W's are the same, we can just prove anyone of them.

To prove the above inequality, we need to show that H/~1tj ~ (1 + ~)k/(m}T;fI~j* by

induction on 1 ~ k ~ m. For k = 1, it is trivial. Assume the inequality holds for k, we

check the truth of the inequality for k + 1. If job Jk+l is inserted early, then the result is

also trivial since the values of HI's remain the same; if inserted tardy, then TiV~1tj + Wk+l is

57

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

rounded to ltVt:;!l' by the definition of rounding, we have

wt:t!l < (TtVtuj +wk+l)(l + ~)l/rn

< [Wtuj*(l + ~)k/rn + wk+l](l + ~)l/rn

< ltVt'ti*(l + ~)(k+l)/rn + wk+l(l + ~)(k+l)/rn

(ltVt,d* + Wk+l)(l + ~)(k+l)/rn

ltVi"j* (1 + ~)(k+l)/rnk+l 2

When k + 1 = m we have TiVi"j* < W iuj < (1 + ~)Wi"j*., rn - rn - 2 rn

Let Zrn be the function value of the feasible sequence found by the algorithm before
u

inselting straddlers. Recall from (4.9) that x~ := max{O, "'Ps*. - LOiu*}. Since LOiu* is
'l.u L..-t 'l.h m m

h=l
rounded up, x:" is rounded down or becomes O. Therefore we have

",,111 () ",,111 ""i" i lZm + Du=l Wi" Xi" + di" - dt + Du=l (Dl=l ltV~'):Ciu

< Zm + 2:~~1 Wi" (X:" + diu - dt) + 2:~~1(2:1~1 W~l)X:u

< Z;l + 2mb + 2:~~l Wi"(X:,, + diu - dt) + (1 + ~) 2:~~l (2:1~1 W~l*)X:u

< Z'~l + ~Zlb + L:~~1 Wi"(X:,, + di" - dt) + L:~~1 (l:1~1 ltV~l*)x:u

+f. ",,111 (""i" ltVi"l*)X~
2 Du=l Dl=l rn 1"

< Z* + f.Z* + f.Z*2 2

(1 + c)Z*
(4.16)

o

The algorithm can be easily extended to the cases where some straddler spans more

than two due dates. If there is one straddler which spans over more than two due dates and

it is early, then our algorithm can place it correctly because it is treated as an early job. If

there is more than one tardy straddler that cross more than two due dates, then our algorithm

58

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

will apply exhaustive enumeration on the tardy straddlers. For example, assume there is

one straddler which crosses more than two due dates, denoted as 8s1'on ' Then the algorithm

guesses the number of consecutive due dates which cOlTespond to straddler 8S1'01,; then it

guesses the due dates positions for 8s1'on ; thirdly it guesses a job as 8s1'an . If there are

more than one such kind of straddlers, then we need to guess the number of such kind of

straddlers and for each of them apply the guessing above.

59

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

60

Chapter 5

Conclusions and future work

In this thesis, we solve the total weighted tardiness problem with a fixed number of distinct

due dates by giving a fully polynomial time approximation scheme (FPTAS).

We observe that only the placement of tardy straddlers is critical. Therefore the time

intervals between consecutive tardy straddlers fonn the basic "super-interval" units on the

time horizon. By exhaustively enumerating the jobs and due dates, we can guess the tardy

straddlers but we place them only when all the non-straddling jobs are placed on the time

line. For the each of the non-straddling jobs, we can guess its placement as either early or

tardy. Depending on its due date, if a job is decided to be tardy, it can be placed in any

super-interval that after its due date. If this job is decided to be early, then it can only be

scheduled in one of super-intervals that before its due date. This helps to shrink the state

space ofthe dynamic program. In each super-interval, if there are tardy jobs, the first tardy

job starts from the left most due date; otherwise the first early job stmts from there.

When it comes down to the algorithm for non-straddling job, it is perfonned in two

stages. Firstly, via the dynamic progrmmning with preemption, we compute an assignment

of the job completion times to the time horizon where only a subset of the jobs is explicitly

packed and the rest are left "floating" from their completion time backwards (preempted).

Master Thesis - ling Wang - McMaster - Computational Engineering and Science

Secondly, applying the rounding schemes to the newly calculated value of each variable

and we store only a polynomial number of states. Since all the feasible conditions make

the algorithm only produce feasible schedules, for each of them, we insert the straddlers

back one by one. To insert each straddler, we need to push the job block in its right hand

super-interval toward right such that the straddler can be exactly inserted. If up to some

straddler, it can be inserted without pushing the job block at all, then we simply disregard

that feasible schedule.

Two crucial propelties that both the algorithm in [Kellerer2006] and algorithm in

[Karakostas2009] have can be summarized as the following: first of all, the step-by-step

mimicking of the optimal chain of computation is crucial for bounding the approximation

enor, although the schedule we output may be sub-optimal due to the rounded estimation of

weighted tardiness; second of all, the rounding scheme produces values which conespond

to actual schedules. One big advantage of our algorithm over Kellerer's is the implementa

tion of "preemption" which makes our extension from one due date to a constant number

due dates possible. Additionally, observing the structural properties of an optimal schedule

plays a very critical role in helping us find the FPTAS.

To complete this thesis, it is necessary to indicate that the approximability of the

total weighted tardiness problem with arbitrary number of distinct due dates remains open.

Therefore, a future work is to design an FPTAS (if there is) for the TWT problem with

arbitrary number of distinct due dates.

62

Bibliography

[Abdul-Razacq1990] T.S. Abdul-Razacq, C.N. Potts, L.N. Van Wassenhove, "A survey

of algorithms for the single machine total weighted tardiness scheduling problem."

Discrete Applied Mathematics, 26 (1990) 235-253.

[Arkin1991] E.M. Arkin, R.O. Roundy, "Weighted tardiness scheduling on parallel ma

chines with proportional weights." Operaitons Research, 39 (1991) 64-81.

[Akturk1998] M.S. Akturk, M.B. Yildirim "A new lower bounding scheme for the total

weighted tardiness problem." Computers and Operations Research, 25 (1998) 265

278.

[Babu2004] P. Babu, L. Peridy, E. Pinson, "A branch and bound algorithm to minimize

total weighted tardiness on a single processor." Annals ojOperations Research, 129

(2004) 33-46.

[Baker1974] KR. Baker, "Introduction to Sequencing and Scheduling." Wiley, NY, 1974.

[Besten2000] M.L. den Besten, T. Stiitzle, M. Dorigo, "An ant colony optimization appli

cation to the single machine total weighted tardiness problem." Abstract Proceedings

jor ANTS' 2000: From Ant Colonies to Arttficial Ants: Second International Work

shop on Ant Algorithms, Bmssels, Belgium, September (2000) 39-42.

63

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

[Borgulya2002] 1. Borgulya, "A cluster-based evolutionary algorithm for the single ma

chine total weighted tardiness-shceduling problem." Journal ofComputing and Infor

mation Technology, 10 (2002) 211-217.

[Cheng2005] T.CE. Cheng, C.T. Ng, J.1. Yuan and Z.h. Liu, "Single machine scheduling

to minimize total weighted tardiness." European Journal Operations Research, 165

(2005) 423-443.

[Congra1ll2002] R.K. Congram, CN. Potts, S.L. van de Velde, "An iterated dynaserch

algorithms for the single-machine total weighted tardiness scheduling problem." IN

FORMS Journal on Computing, 14 (2002) 52-67.

[ConwayI967] RW. Conway, W.L. Maxwell and L.W. Miller, "Theory of Scheduling."

Addison-Wesley Publishing Co., MA, 1967.

[Crauwels1998] H.AJ. Crauwels, C.N. Potts, L.N. Van Wassenhove, "Local searchheuris

tics for the single machine total weighted tardiness scheduling problem." INFORMS

Journal on Computing, 10 (1998) 341-350.

[Du1990] 1. Du and 1.y.-T. Leung, "Minimizing total tardiness on one machine is NP

hard." Mathematics ofOperations Resarch, 15 (3) (1990) 483-495.

[Elmaghraby1968] S.E. Elmaghraby, "The one machine sequencing problem with delay

costs." Journal ofIndustrial Engineering, 19 (1968) 105-108.

[Emmons1969] H. Emmons, "One-maching sequencing to minimize certain functions of

job tardiness." Operations Research, 17 (1969) 701-715.

[Fathi1990] Y. Fathi, H. W. L. Nuttle, "Heuristics for the COllinon due date weighted tar

diness problem." lIE Transactions, 22 (3) (1990) 215-225.

64

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

[Hoogeveen1995] lA. Hoogeveen, S.L. Van de Ve1de, "Stronger Lagrangian bounds by

use of slack variables: Applications to machine scheduling problems." Mathematical

Programming, 70 (1995) 173-190.

[Huegler1997] P.A. Huegler, F.J. Vasko, "A perfonnance comparison of heuristics for the

total weighted tardiness problem." Computers & Industrial Engineering, 32 (1997)

753-767.

[Kahlbacher1993] H.G. Kahlbacher, "Scheduling with monotonous earliness and tardiness

penalties." European Journal ofOperational Research, 64 (1993) 258-277.

[Rinnooy Kan1975] A.H.G. Rinnooy Kan, B.J. Lageweg, lK. Lenstra, "Minimizing total

costs in one machine schedulling. " Operation Research, 23 (1975) 908:927.

[Kanet2007] J.J. Kanet, "New precedence theorems for one-machine weighted tardiness."

Mathematics ofOperations Research, 32(2007) 579-588.

[Karakostas2009] G. Karakostas, S.G. Kolliopoulos, l Wang, "An FPTAS for the min

imum total weighted tardiness problem with a fixed number of distinct due dates."

Accepted by The 15th International Computing and Combinatorics conference (CO

COON'2009 Niagara Falls) .

[Kellerer2006] H. Kellerer and v.A. Stmsevich, "A fully polynomial approximation

scheme for the single machine weighted total tardiness problem with a common due

date." Theoretical Computer Science, 369 (2006) 230-238.

[Kolliopoulos2006] S.G. Kolliopoulos and G. Steiner, "Approximation algorithms for min

imizing the total weighted tardiness on a single machine." Theoretical Computer Sci

ence, 355 (3) (2006) 261-273.

65

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

[Lawler1977] E.L. Lawler, "A pseudopolynomial algorithm for sequencing jobs to mini

mize total tardiness." Annals ofDiscrete Mathematics, 1, (1977) 331-342.

[Lawler1982] E.L. Lawler, "A fully polynomial approximation scheme for the total tardi

ness problem." Operations Research Letters, 1, (1982)207-208.

[Leung2004] J.Y-T. Leung, "Handbook of Scheduling: Algorithms, Models and Perfor

mance Analysis." Chapman & Hall/CRC, 2004.

[Liu2003] N. Liu, M.A. Abdelrahman, S. Ramaswamy, "A genetic algorithm for the sin

gle machine total weighted tardiness problem." Porceedings ofthe 35th Southeastern

Symposium on System Theory, 2003, 16-18 (2003) 34-38.

[Madureira1999] A.M. Madureira, "Meta-heuristics for the single-machine scheduling to

tal weighted tardiness problem." Proceedings ofthe 1999 IEEE International Sympo

sium on Assembly and Task Planning, Porto, Portugal, (1999) 405-410.

[Mathirajan2006] M. Mathirajan, A.I. Sivakumar, "Minimizing total weighted tardiness

on heterogeneous batch processing machines with incompatible job families." The

International Journal ofAdvanced Manufacturing Technology, 28 (2006) 1038-1047.

[Oguz1994] C. Oguz, C. Dincer, "Single machine earliness-tardiness scheduling problems

using the equal-slack rule." Journal of the Operational Research Society, 45 (1994)

589-594.

[OsmanI996] I.H. Osman, G. Laporte, "Metaheuristics: a bibliography." Annals ofOper

ations Research, 63 (1996) 513-623.

[Picard1978] lC. Picard, M. Queyranne, "The time-dependent traveling salesman problem

and its application to the tardiness problem in one-machine scheduling." Operations

Research, 26 (1)(1978)86-110.

66

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

[Pinedo1995] M.L. Pinedo, "Scheduling: Theory, Algorithms, and Systems." Prentice

Hall, Upper Saddle River, NJ, 1995.

[Potts1985] C.N. Potts and L.N. Van Wassenhove, "A branch and bound algorithm for the

total weighted tardiness problem. " Operations Research, 33 (1985) 363-377.

[Potts 1991] C.N. Potts and L.N. Van Wassenhove, "Single machine tardiness sequencing

heuristics." lIE Transactions, 23 (1991) 346-354.

[Qi1998] X.T. Qi, F.S. Tu, "Scheduling a single machine to minimize earliness penalties

subject to the SLK due-date determination method." European Journal ofOperational

Research, 105 (1998) 502-508.

[Rachamadugu1987] R.MV Rachamadugu, "A note on weighted tardiness problem." Op

erations Research, 35 (1987) 450-452.

[Rinnooy Kan1976] A.H.G. Rinnooy Kan, "Machine sequencing problem: classification,

complexity and computation." Nijhoff, The Hague, 1976.

[SchrageI978] L. Schrage, K.R. Baker, "Dynamic programming solution of sequencing

problem with precedence constraints." Operations Research, 26 (1978) 444-449.

[Sen2003] T. Sen, J.M. Sulek, P. Dileepan, "Static scheduling research to minimize

weighted and unweighted tardiness: a state-of-the-art survey." International Journal

ofProduction Economics, 83 (2003) 1-12.

[Shwimer1972] 1. Shwimer, "On the n-job, one-machine, sequence-independent schedul

ing problem with tardiness penalties: a branch-bound solution," Management Science,

18 (6) (1972) B-301-B-313.

[Szwar1993] W. Szwarc, J.J. Liu, "Weighted tardiness single machine scheduling with

proportional weights." Management Science, 39 (1993) 626-632.

67

Master Thesis - Jing Wang - McMaster - Computational Engineering and Science

[Vazirani2001] v.v. Vazirani, "Approximation Algorithms." Springer Verlag, Berlin, 2001.

[Yano1991] C.A. Yano, YD. Kim, "Algorithms for a class of single-machine weighted

tardiness and earliness problems. " European Journal of Operational Research, 52

(1991) 167-178.

[Yuan1992] 1. Yuan, "The NP-hardness of the single machine common due date weighted

tardiness problem." Systems Science and Mathematical Sciences, 5 (1992) 328-333.

68

