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Abstract

Molecular imaging is an exciting and relatively new technology that has found widespread
use in the diagnosis and observation of various diseases. More recently, molecular imag-
ing has penetrated areas such as drug development in order to facilitate the observation
and analysis of the effects of newly developed drugs. The amounts of data in drug
development experiments may be very large due to the fact that they contain both spa-
tial and temporal information of medical images. Imaging techniques can facilitate the
analysis of large amounts of data by automating information extraction and providing
meaningful results.

The focus of the project concerning this thesis is to create a temporal and spatial
atlas of an animal by utilizing and integrating data from images of different modalities.
More specifically, the application treated in the thesis makes use of ventilation and
perfusion data from CT and SPECT scans in order to aid in the observation of the
effects of newly developed drugs in the treatment of lung diseases. T'his thesis describes
the segmentation and registration techniques used in detail and how these were utilized
to align and combine ventilation and perfusion data from both CT and SPECT scans.
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Chapter 1

Automated Alignment of
Pulmonary SPECT Data: An
Introduction

Molecular Iimaging is a relatively new technology that has found widespread use in the
medical and pharmaceutical industries. This type of technology can provide very useful
information on a subject and can help in delivering a more precise diagnosis. A precise
diagnosis, however, does not always imply that the subject will always be provided the
best treatment as there may exist more than one drug or therapy for the same symptom.
In order to select the best treatment in terms of medication, where ideally the healing
process is “short” and the side effects are minimal, it is indispensable that one should
observe the short and long term effects of various drugs or therapies, especially when
these are in the development stages. T'he observation of the effects of a specific treatment
involves, however, a periodic “health check” which in some cases may involve scanning
the subject over the period of the treatment using different devices such as a C'T, SPECT
or PET scanner as necessary. Periodic scans of the subject can provide temporal as well
as spatial information about the subject thereby creating a better idea of the progress
of the treatment.

When dealing with data acquired over a period of time then it is inevitable that
corrections should be made to subsequent scans in order to facilitate the observation of
differences in the subject. There are a number of reasons why corrections need to be
made:

e It is not possible to place the subject in the same exact position in every scan
e There may be different machine artifacts over time

e Other artifacts are introduced by motion such as breathing, heart-beats or invol-
untary motions

e The subject may exhibit physiological differences over the period of treatment

This thesis, as will be seen in the following sections, deals with certain aspects of motion
artifacts created by the placement of the subject in the scanning machine.

1.1 Problem Description and Motivation

The overall objective of the project this thesis is a part of is to enable the observation
of the effects of a treatment on a subject over a period of time. As mentioned before,
periodic scans of a subject during treatment can help in observing the effects of the
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treatment over time. In this specific project the choice was to use a combined CT-
SPECT scanner. Computed Tomography (CT) and Single Photon Emission Computed
Tomography (SPECT) are described in more detail in later sections, but for now it is
not imperative to have thorough knowledge of these.

The project this thesis is a part of deals with the observation of the effects of
treatments on the lungs of a subject and specifically abnormal densities of air and blood
within the lungs. These can provide information on the symptom being experienced and
observe its development during the period of treatment.

In order to track air flow in the lungs a ventilation contrast agent is inhaled and
its diffusion is tracked using a SPECT scanner. In a similar way, a perfusion contrast
agent is injected in the blood stream then its diffusion through the lungs is observed using
the same scanning machine [23, 29]. The air and blood diffusion data, fused together,
provides information about healthy and unhealthy volumes in the lungs [23, 29, 33].
Figure 1.1 provides a 2D visualization of the aforementioned.

unhealthy liealthy

Figure 1.1: Visualization of the diffusion of the perfusion contrast agent (top-left), ventilation
contrast agent (top-right) and fused data (bottom).

The fusion of the ventilation and perfusion SPECT data and its interpretation
is outside the scope of the project treated in this thesis. The problem treated in this
thesis deals with aligning the ventilation and perfusion data so that it is ready for fusion
and interpretation.

At first, the alignment of the two types of imaging data may seem like a trivial
task, however, there are great challenges when trying to automatically align ventilation
and perfusion SPECT data. Since SPECT data provides information only on the diffu-
sion of a contrast agent it may not be possible to fuse the data due to large structural
differences between data samples. In Figure 1.1 the areas highlighted in red and blue
are the only areas that appear in the separate SPECT data and they do not provide any
information related to the real shape of the lungs. This means that if these two data
samples were to be registered based only on the image intensities (in this case detected
counts) the result may be meaningless for diagnosis. In order to register SPECT data,
CT data taken at the same time using a combined SPECT-CT scanner can be used. The
SPECT-CT scanner pre-aligns the SPECT and CT data since these are acquired only



Master Thesis - Alvin Thsani - Computing and Software

2 minutes apart. CT data, unlike SPECT, is not based on the diffusion of a contrast
agent but rather on the densities of the tissues of the subject and therefore has more
structural consistency (see Figures 1.2, 1.3). By registering the Ventilation C'I' (Ver)
data to the Perfusion CT data (Pcr) a transformation can be found which aligns the
Per to the Vep. The transformation found is then applied to the Ventilation SPECT

(Vsp) to correctly align it to and Perfusion SPECT (Psp).

Figure 1.2: Typical coronal slice of CT showing (a) body of subject, (b) couch, (¢) water
cylinder and (d) muzzle holder.

If the C'T data samples corresponding to the ventilation and perfusion SPECT
data are registered using the entire data then the results may still be meaningless from a
clinical perspective due to the fact that the CT" data may also have structural differences
such as the different position of the limbs or head in between scans. It is possible,
however, to use parts of the C'T' data in order to achieve the desired alignment. CT
data can be registered based only on information including and surrounding the lungs,
heart, ribs and chest and back muscles. This area of the body will be referred to here
as the Region-of-Interest (ROI). The ROI is important because it removes focus from
other areas of the body that may indeed obstruct proper registration between Ve and
Por.

In summary, the process for the alignment of the SPECT" data is the following:

e Given pre-aligned Vor-Vsp and Por-Pgp pairs

Find the region of interest in the Por
e Register the region of interest of Pcr to Vor
e Take the resulting transformation and apply it to Psp to align it to Vsp

To the best knowledge of the author, this process is unique, however, there exist alter-
natives to completing each task in the process. The alternative methods are treated in
more detail in a later section.

1.2 Materials

The material for this project was provided by Dr. Troy Farncombe and the McMaster
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(c) (d)

Figure 1.3: Coronal slice of (a) Vsp, (b) Psp, (¢) Ver and (d) Por.

Centre for Preclinical Imaging. The samples provided were those of a mouse taken
over a period of six weeks with a total of 24 samples. For each week two pairs of
pre-aligned data were provided, namely Vop, Vsp and Por, Psp at a resolution of
256 x 256 x 256 voxels. The total metric space included at this resolution in each sample
is (58.88 x 58.88 x 58.88)mm?>.

1.3 Thesis Structure

The rest of the thesis is structured as follows.

In Section 1.4, a brief introduction to Computed Tomography (CT) and Single
Photon Emission Computed Tomography (SPECT) is presented in order to provide
some background on the data used.

Section 1.5 will introduce an alignment process by which the desired alignment
between the Psp and Vsp data is achieved. Each step of the proposed alignment process
is then discussed in more detail.

In Chapter 2, the theoretical background on existing methodologies of registra-
tion and segmentation is presented. The actual implementation of one of the segmenta-
tion methods discussed will also be presented.

Chapter 3 will describe why not all the methods in Chapter 2 could not be used
“out of the box” for the project concerning this thesis and how they were modified to
fit the project-specific problem.

In Chapter 4, experimental results will be presented in detail for synthetic as
well as real-life examples.

Chapter 5 will discuss the segmentation and registration methods used in terms
of efficiency, advantages and disadvantages and suggest some further improvements and
draw some conclusions on the work completed in this thesis.
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1.4 A Brief Introduction to CT and SPECT

In order to have a clearer understanding of some parts of the alignment process pre-
sented in Section 1.5, it is beneficial to have some very basic background knowledge
of Computed Tomography (CT) and Single Photon Emission Computed Tomography
(SPECT). In the following sections a brief introduction to the CT and SPECT scanners
is presented along with some information about the data produced.

1.4.1 A Brief Introduction to CT

Computed Tomography (CT) is a medical imaging method that uses a series of 2D
X-ray projections in order to create 3D data [13, 55]. A CT scanner, as shown in Fig-
ure 1.4, has two main components, the detector and the X-ray source situated opposite
to the detector. These are connected to a computer which controls the operation, the
acquisition and the storage of data.

Figure 1.4: Diagram of a CT scanner showing the detector (blue), the X-ray source (red) and
the subject (gray) in the center.

The source and detector rotate around a central axis by a step of # degrees every
7 seconds acquiring an X-ray projection of the subject inside the scanner at each step.
The detector consists of a sensing surface composed of Cesium Iodide which scintillates
when hit by the radiation thereby creating a flash of light which can be detected by the
underlying sensor.

The process by which the 2D projections are combined into 3D data is known
as tomographic reconstruction. Based on the theory of tomographic reconstruction,
initially developed by Johann Radon, if there were an infinite amount of 2D projections
the original object can be perfectly reconstructed in 3D [26].

The important point about the data produced by the CT scanner is that it
measures tissue density expressed in Hounsfield units (HU). Each tissue in the body
exhibits a particular range of intensity values which may or may not overlap with other
tissues. Windowing is one quick method to narrow focus to a specific range of intensity
values. For instance, by windowing values ranging between -500HU and -100HU one is
able to narrow focus on the lungs, however, this runs the risk of showing other tissues
which lie in the same intensity range.

1.4.2 A Brief Introduction to SPECT

In some cases CT data does not provide enough information about the condition of the
subject. For instance, CT data does not emphasize on patterns of air flow and blood
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flow in the lungs which can be indicative of diseases. For such cases, different imaging
techniques need to be employed.

Single Photon Emission Computed Tomography (SPECT) is another imaging
technique used in nuclear medicine. The idea of SPECT is the same as that of CT
where a detector is rotated on a central axis around the body of a subject, but instead
of measuring the attenuation of rays coming from an X-ray source, it detects radiation
levels from a radio-labeled contrast agent injected in the body of the subject by counting
the number of photons hitting the sensor. Different from CT, SPECT does not measure
tissue density but rather the diffusion of a contrast agent through the body and therefore
SPECT data has more structural variation then CT data. The choice of the contrast
agent depends on the organ of focus. For instance, for a lung perfusion scan of a mouse,
the contrast agent used is Tc-99m labeled macro-aggregate albumin. This contrast agent
“gets stuck” in small arterioles in the lungs thereby depicting blood flow. On the other
hand, for a ventilation scan the contrast agent used is Tc-99m Technegas. When the
compound is heated, the fumes of this contrast agent are inhaled by the subject and the
smoke sticks to the lungs thereby showing ventilation.

Figure 1.5: Diagram of a SPECT scanner showing the contrast agent (green) in the subject
(gray) in the center.

The detector of the SPECT scanner is similar to that of the CT scanner. How-
ever, the detector is composed of two main components, the collimator and the sensing
surface. The collimator is a layer which is situated on top of the sensing surface. The
purpose of the collimator is to block the sensing surface from detecting rays that are
not perpendicular to the detector. Without the collimator the detector would detect
rays that may not come from the source and through the body of the subject thereby
providing inaccurate projections. Figure 1.6 shows the layers of the detector. The
data is reconstructed by combining the 2D projections acquired using tomographic re-
construction and the intensity values are represented as reconstructed counts per unit
time.

Collimator

Iodide Crystal

Sensors

Figure 1.6: Cross-section of SPECT detector surface. Rays approzimately perpendicular to
the detector are sensed while others are blocked by the collimator.
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1.5 Alignment Process Breakdown

The objective of the project concerning this thesis is to find a way of aligning the Psp
and Vgp data by using the corresponding Pep and Ve data since CT data has more
structural consistency than SPECT data. However, objects and body parts in the C'T
data such as the couch, the water cylinder (used to calibrate Hounsfield Units for CT),
the muzzle holder, the position of the arms, legs and lower body (see Figure 1.2) may
obstruct the proper registration of the chest between the Pop and Ver data. In order to
register the C'T' data correctly the focus must be narrowed down to the chest in the Pep
data which in the context of this thesis is known as the region of interest. Therefore,
proper registration of the ventilation and perfusion CT is achieved by aligning the region
of interest of the Pop data with the Vg data.

An alignment process that aligns the Pop and Vep data as required is described
by following three steps:

1. Find an initial guess for the ROI on the Pcr data based on the Psp data
2. Refine the initial guess based on the Pcr data alone
3. Register the ROI of Pryp data to the Vep data

Figure 1.7 provides a conceptual map of the overall process. In the following sections
each step is described in detail.

1.5.1 Finding an Initial Guess for the Region-of-Interest

At this stage an initial guess for the region of interest is needed. In order to obtain
a “good” initial guess the Psp data can be used. The Psp data typically shows the
highest concentration of the contrast agent inside the lungs. There may be cases where
the contrast agent used for lung perfusion SPEC'T scans spreads to the bladder, however,
this is not very common and can be easily masked off. Given the above information, the
assumption is that the largest concentration of the contrast agent in perfusion SPECT
is within the lungs (Figure 1.3-b). Based on this assumption unless there is a prior
misalignment between the Psp-Pep data pair, the initial ROT found from the Psp data
will lead to a volume that is within or very close to the lungs in the Pop data.

For the first step of the alignment process, the approach is to fit an ellipsoid to
a windowed version of the Psp data. The windowing is chosen to remove small non-zero
values outside of the lungs. The ellipsoid-fitting is done is such a way that the smallest
ellipsoid enclosing the windowed Psp data is found. This ellipsoid is indicative of the
approximate region where the lungs are situated in the Pop data. Figure 1.8 shows a
typical result of the initial ROIL.

The initial guess is described by an ellipsoid because the shape of the ROIT is
not important at this stage and an ellipsoid is easy to handle.

In the next step, presented in the following section, the ROI must be refined as
it may still include regions in the Prp data that may obstruct correct alignment.

1.5.2 Refining the Region-of-Interest

The initial guess obtained in the step described in the previous section may still contain
organs or objects which might obstruct proper alignment. The reason for the initial
guess containing these “foreign” objects is because it may be larger than the lungs.
For instance. in subjects with no lung perfusion problems, the contrast agent spreads
throughout the entire volume of the lungs and therefore the ellipse enclosing the win-
dowed data in the Psp might be larger than the lungs. This means that the initial
region of interest in the Por data might contain part of the arms or other objects that
are in close proximity to the chest. On the other hand. if the initial region of interest is
too small then there may not be enough information in the region of interest to register

~3
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(a)

Figure 1.8: A typical result of (a) the initial ROI on the Psp data and (b) on the Pcr data.

the data reliably. An assumption that can be made about the initial region of interest
is that the ellipsoid is very close to or within the lungs.

In order to remove any existing “foreign” objects from inside the region of in-
terest the ellipsoid is evolved to the shape of the lungs using a segmentation method.
The segmentation method used is known as active contours using a level-set formula-
tion [31, 37, 38, 47-50]. The thorough mathematical details will be discussed in later
chapters, but the underlying concept is presented here.

Given 3D data, a so-called level-set function ¢ : R* — R is used to describe the
contour I', which in turn is used to describe the shape of the lungs, as its intersection
with the 3D plane I' = {¢ = 0}. Initially, I is the contour of the ellipsoid found in
the initial guess presented in the previous section. The function ¢ must then evolve
according to some predefined criteria in order for I' to enclose some volumes of interest
in the body of the subject. There are many approaches to define how the function o
evolves. Some of these approaches include:

e Directly defining partial differential equations, such as that of curvature flow using
the heat equation [37]

e Using an optimization setting [2, 18, 31, 37, 38, 44, 47-50, 53, 54]

In the project treated in this thesis an optimization approach was chosen.

The purpose of this step is to evolve an initial guess in such a way that the
volume it encloses approximately matches the volume of the lungs, see Figure 1.9.

Once this step is complete another ellipsoid is fit on the segmented volume. The
reason for this is that, even if the lungs are perfectly segmented, still more information
about the surrounding tissues, such as the ribs, is needed because they have a rigid
structure. While other organs such as the heart and the lungs may move within the
chest during a scan due to heartbeat and breathing, the ribs are more rigid and help
when finding a rigid transformation to align the Por and Vep data.

The purpose of this step is to find an ellipsoidal region that is more accurate
than the initial. The desired result is to find a refined region of interest that is close to
the surface of the lungs. For instance,

o If the initial ellipsoid is too large then after the segmentation step, the ellipsoid
should be smaller according to the size of the lungs in the Py data.

e Analogically, if the initial guess is too small then after this step the ellipsoid should
have grown.

In the next section, the incorporation of the result from this step as well as the
registration process are described.
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evolve

(a) (b)

Figure 1.9: The evolution from (a) the initial guess in the Pcr data into (b) the segmented
volume in the Pcr data.

1.5.3 Registration and Alignment

As a final step, the refined ellipsoidal ROI is used as a weight on the Po7 data. In other
words, the Pop data is spatially filtered in such a way that the only regions containing
information about the subject are enclosed in the refined ROI.

Finally, the ROI of the Pcr data is registered to the Vo data. The registration
in this specific project is multilevel [11, 22]. Multi-level registration involves registering
the template (Pc7-ROI) and reference (Vor) data at multiple resolutions starting with
the lowest desired resolution and incrementing it to the highest desired level. At lower
resolutions, the data retains such properties as shape, orientation and relative position
but loses detail. This means that at lower resolutions the registration is faster and less
prone to finding local minima. As the resolution is increased the minimizers found at
lower resolutions are used as the initial guess and refined.

For the project concerning this thesis, the registration currently deals only
with rigid transformations. Other transformations, such as affine and elastic, will be
implemented in the future. Furthermore, it is assumed that the relative position and
shape of the organs inside the rib-cage remains unchanged due to the fact that the rib-
cage has a rigid structure. The registration finds the transformation that minimizes the
Lo-norm of the distance between the ROI of the Por and Vor data.

Figure 1.10 shows a typical pair of Pcp-Ver data before and after registration.
Since the registration is based only on data inside the region of interest of the Por, it
is expected that the two data are aligned correctly in the chest area.

As a final sub-step, the resulting transformation of the Por data to Vo data
is applied to the Psp data in order to align this with the corresponding Vsp data.

1.6 Alternative Approaches

To the best knowledge of the author, there are no other fully automated processes that
try to achieve alignment between different measurements of SPECT data in the same
way. Each individual step of the aforementioned process, however, may be potentially
substituted by alternative segmentation and registration methodologies.

In the following sections, some alternative approaches to segmentation and reg-
istration are presented and compared to the current approach.

10
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(b) (d)

Figure 1.10: Owverlapped Pcr (red) and Ver (gray) shown (a) before registration with (b)
closeup of the ROI and (c¢) after the registration with (d) closeup of the ROL

1.6.1 Segmentation

Segmentation methods aim to partition an image into separate regions according to
some criteria. For instance, when building an atlas of the human body the aim may be
to partition the image into separate regions showing different organs or tissues. In other
situations, it may be necessary to focus on a specific organ or object therefore a single
region containing the object of interest is needed.

There are many methods that can be used in image processing for segmenta-
tion [7] some of which are briefly described in the following paragraphs and are compared
in terms of the objective of this part of the project.

Histogram based methods use a histogram of the image in order to find clusters in
an image. The intensity of values or color can be used as the measure. Simple
histogram methods may not be able to isolate an organ of interest such as the
lungs due to the fact that the lungs and other parts of the body may have similar
intensity values. However, more advanced methods using also active contours
methods such as that proposed in [51] may provide a closer result to the one
expected for the project of this thesis. Methods such as that proposed in [51] may
be considered for future research in the segmentation of the lungs.

Edge Detection methods accentuate the edges in an image. The edges in the image
are typically detected by the sharp transitions in color or intensity between dif-
ferent objects [19]. The edges detected can then be used in another segmentation
method to find the boundaries of an object of interest. However, an object of
interest can also be isolated without using edges therefore edge detection methods

11
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were not used in the project of this thesis.

Region Growing methods such as the seeded region growing method can isolate an
organ of interest as required. The idea is to pick pixels from an organ of interest,
for example, then expand the region defined based on the intensity values of the
neighboring pixels. The downside of this method is that the input provided by
the first step is an ellipsoidal region which may include other organs or air from
outside the body of the subject. Using this region as a seed may have undesired
effects such as the inclusion of organs that are not the lungs or other objects.

Model-based Segmentation methods work under the assumption that organs have
a repetitive structure and geometry, therefore a probabilistic model can be used
to describe the variation of the shape of the organ and then impose constraints on
the segmentation using this model as prior [8]. Some approaches in model-based
segmentation require training samples. In the application of this thesis training is
being avoided due to the fact that it is time consuming, in an off-line sense, costly
and the models of statistical inference between the probabilistic model and actual
data may be very complex. Other model-based segmentation approaches do not
require training samples which is more desirable for the application in this thesis.
however, automatically finding a statistical or deterministic model to describe the
lungs in different subjects may be a very complex task. Provided the assumption
that the initial guess is within or closely enclosing the lungs, it seems more natural
to refine the initial guess based on the image.

Multi-Scale Segmentation methods segment an image in scale-space. This means
that during the process of segmentation the scale of the image varies incrementally
from coarse details to finer details. From a recent number of tests of the currently
implemented segmentation method in multi-scale, it seems that the results are
promising and this is definitely a path that will be followed in the very near
future.

1.6.2 Registration

Image registration methods aim to find a reasonable transformation between two images
in order to make the images more similar to one another. A reasonable transformation is
problem specific and may include rigid, affine, elastic or other transformations. Likewise,
the similarity measurement is also problem specific. For instance, the project in this
thesis uses the energy of the difference image as a measurement of similarity between
the Vor and Por data. An alternative way to measure similarity is by using feature-
based methods. Typically, feature-based methods either require user input to draw
corresponding features (not desirable for the application treated in this thesis) or find
corresponding features automatically. Since the Vor and Por data are of the same
modality, the intensity-based registration was chosen over the feature-based one.

The current approach of registration deals only with rigid transformations since
it works under the assumption that the rib-cage has a fairly rigid structure. However,
elastic and affine transformations are not being ruled out since there may be situations
for which a rigid transformation may not be sufficient to properly align the data. So
far, the restriction to rigid transformations has worked for the data used for the project
treated in this thesis.

Multi-level and multi-scale registration are two registration methods that are
effective in avoiding local minima. Multi-level registration consists of using multiple
resolutions to align images, while multi-scale registration consists of using a single res-
olution at multiple scales. These methods will be explained in more detail in a later
chapter.

In the application treated here, multi-level registration was the registration
method of choice since it avoids local minima and improves computation time. Local
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minima are avoided by using coarser resolutions which retain only the main features
such as shape, location and orientation. The minimizers found at each stage are used
as the starting guess at a finer level and refined until the maximum desired resolution
is reached. Computation time is improved due to the usage of lower resolutions.

13
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Chapter 2

Background on Existing
Methods of Segmentation and
Registration

This chapter will focus on existing methods of registration and segmentation. These
methods have theoretical and practical importance since this project is heavily based
on them. The notation and some of the functions presented here are inherited by later
chapters where these methods have been extended in order to fit the specific needs of
this project.

Due to the fact that segmentation has evolved significantly in the last twenty
vears the description of it will be laid out chronologically. First, the early work of
Mumford and Shah [10] will be described due to its importance in posing the problem
of segmentation and de-noising. Later, a regularization to the Mumford-Shah problem
proposed by Osher and Sethian [47], known as the level-set formulation, will be intro-
duced along with state of the art segmentation methods that use this formulation to
solve special cases of the Mumford-Shah problem such as those proposed by Chan and
Vese [49, 50]. The Chan and Vese methods proposed in [49, 50] will be discussed in finer
detail as these are the basis of the segmentation method developed in the project of this
thesis.

Section 2.2 will provide some background on existing registration methods. This
section begins with an overview of image registration [3, 21, 35] using an optimization
approach followed by a description of single, multi-scale and multi-level registration in
order to provide an idea of the tools used in this thesis.

2.1 Segmentation Methods

2.1.1 The Basic Concept of Segmentation

The basic idea of segmentation is to be able to partition the domain Q@ ¢ R? of an image
u : ©Q — R into a finite number of open subsets X;, for i € {1,2,....n}, where the
following conditions based on [10] hold

Uz,
0
9]

(2.1)

MMM

i
i
i

The partitioning of the domain into subsets is based on some predefined criteria
which are problem dependent. For instance, in some cases it may be necessary to
partition the domain of an image into separate objects with sharp boundaries between
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them. In other cases, it may be necessary to extract a single object from an image
depending on its shape, location, size or measured value.
A boundary I' divides the image into open subsets ¥; and is defined as

r=()Zinq.

—
(3]
o

~—

In other words, I' is the union of the boundaries of subsets ¥; inside €.

With this definition of I' it is possible to enforce constraints on it based on
internal factors, such as length or curvature, and external factors, such as the underlying
data [31, 39, 50, 53, 54]. One way to impose a certain shape on I is to use an optimization
approach where an objective functional can be constructed that regularizes and penalizes
its behaviour. An objective functional can have internal energies FE;, and external
energies F,,; as shown below.

E(F) e Ezn(r) + Eoui(r)' (23)

In order to find the curve I'* that minimizes (2.3) the steepest descent method can be
used where the evolution of I' is defined by —V FE at each step.

In the following sections only most influential methodologies pertinent to the
project in this thesis will be discussed.

2.1.2 The Mumford-Shah Approach to Segmentation

In this section some of the work of Mumford and Shah in [10] will be discussed. The
functionals described in this section are of importance due to the fact that they are
introductory to the work described in [47, 49, 50] which are treated in the following
sections.

In [10], an image is considered to be a projection of a 3D world into an observer
point P where g(p) represents the intensity of light reaching P in the direction p. When
these rays of light are projected onto a plane . then the intensity of light incidental
to the plane can be represented by g(x,y). The light reflected from the surfaces S; of
objects O; is projected on the plane € and divides the plane Q into open subsets ¥;.
Objects that overlap will create subsets ¥; that share a common boundary I', also known
as an edge, where the image is considered to be discontinuous. Other discontinuities
may be introduced by surface orientation, such as the surfaces of a cube, markings on
the surface of the object and shadows. The assumption is that the image g(x.y) is
piece-wise smooth and it can be modelled by a set of smooth functions f; defined on
disjoint regions ¥; covering Q2. However, this model is not entirely accurate due to the
following:

e lextured objects, such as carpets, or fragmented objects, such as a canopy of
leaves, define more complicated images

e Shadows create discontinuities which are not real, due to the penumbra
e Surface markings may come in misleading forms

e Partially transparent objects and reflecting objects also define more complicated
images

e 'T'he measurement of g may contain noise
In summary, the domain of the image ¢ is to be decomposed in such a way that
e the image g varies smoothly within each ¥;. and

e is discontinuous over the boundary I' between different ¥;.
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From an approximation theory point of view, the problem seeks ways to define
and compute optimal approzimations of a general function g(x, y) by a piece-wise smooth
function f(z,y), where each f; defined on ¥; is differentiable. Given this definition then
the optimal approximation is defined as the minimizer of the following functional

BUT) = [ (7= gdudy+ [ |[VSIPdady+ vir| (2.4)
Q O\l

Here, f is a differentiable function on | J;, which is allowed to be discontinuous over I,

and |T'| represents the total length of the arcs making up I'. In this functional, the first

term asks that f approximate g, the second term asks that f vary as little as possible

in each ¥; and the third term asks that the boundaries between different regions that

make up I" be as small as possible.

Dropping any of the three terms in (2.4) would lead to the following results.
Without the first term then f =0 and I' = 0; without the second term then f = g and
' = 0; without the third term I' can be a fine grid of N horizontal and vertical lines.
composing N2 square regions, where f is the average value of g in each X;. If I’ covers
the entire set Q, I' = €, the second term drops and f = g.

Loosely speaking, a minimizer (f*,1"*) of the functional in (2.4) is a cartoon
of the actual image g. In f* edges are drawn sharply and precisely and the objects
surrounded by the edges are smooth and without texture. It is obvious that f* no
longer retains the amount of detail of g, but still contains many of its essential features.

It was not known whether the problem of minimizing (2.4) was well-posed, but
Mumford and Shah conjectured this to be true. The problem was proven to be well-
posed only later by Maso, Morel and Solimini in [15]. Mumford and Shah conjectured
that for all continuous functions g, £ has a minimum in the set of all pairs (f,T'), with
[ differentiable on each ¥; and I' a finite set of singular points joined by a finite set of
C1-arcs.

Functional (2.4) had been previously introduced in [45] for functions g and f
on a lattice and studied in [1, 25], however, Mumford and Shah introduced this for a
plane domain €.

A restriction on the functional in (2.4) is to use piece-wise constant functions
f such that f = a; on each open set ¥;. This means that the second term in (2.4)
drops out since the gradient is zero. Dividing both sides by u the following functional
is obtained

E1.0) =3 [ (9 adedy + . (25)
This functional is minimized in the ,\rariables a; by setting

a; = meany, (g) = /z: gd.rdy/ area(X;). (2.6)
Therefore, the functional to be minimized is Iin fact the following

Ey(T) = Z/ (g — meany, g)*dvdy + 1|1 (2.7)
—Ja,

As shown in [10] by Mumford and Shah, if I is fixed then the f which minimizes £
in (2.4) tends to a piece-wise constant limit when y — 0 and therefore Ey in (2.7) is the
natural limit functional of £. In addition, the problem of minimizing E is proven to be
well-posed: for any continuous function g, there exists a I' made up of a finite number
of singular points joined by a finite set of C%-arcs in which Fj attains a minimum [10].

2.1.3 Chan-Vese Approach to Solving the Mumford-Shah Prob-
lem

In the last section a brief description of the Mumford-Shah problem was laid out along
with the functionals proposed by them in order to address the problem of segmentation.
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Note that Mumford and Shah did not impose special conditions on the nature of I itself.
T introduces discontinuities where it passes and singular points wherever it “crosses”
with itself. The generalization of I' complicates the problem.

A regularization on I', known as the level-set formulation was first introduced
by Osher and Sethian in [47] and has been used quite extensively since [50]. This for-
mulation simplifies a number of the special cases considered by Mumford and Shah [10].
In [47] the curve T' C Q C R? is defined as the zero level-set of a function ¢ : R4*! — R
(see Figure 2.1), therefore

I' = {x|¢(x) = 0}. (2.8)

Q

Figure 2.1: Conceptual diagram showing the zero level-set I of the function ¢ in 3D.

This formulation allows for cusps and corners as dictated by automatic topo-
logical changes.

Assuming a single level-set functional and I lying entirely within the domain €,
then a natural question arises with regards to indicating what lies “inside” and “outside”
the curve I'. It is then useful to define an indicator function that facilitates this.

One indicator function that can facilitate the identification of different regions
is the Heaviside function defined as

1 ifz>0
H(z)'{o ifz<0 - (2.9)

The actual Heaviside function used in this thesis is based on [50, 56].

H(z) = % (1 + %arctan (g)) (2.10)

where € is a small positive number. As will be seen in the following material, it is
necessary to have a differentiable Heaviside function that is why (2.10) is used.

For simplicity, from this point on, all integrals over the domain Q will be as-
sumed to be over x and y, therefore the following notation will be used unless otherwise

stated:
/q=/q(w,y)dwdy
Q Q

A simplified approach to the Mumford-Shah functional in (2.4) was proposed
by Chan and Vese in [49]. The idea is to partition the image into two regions separated
by a boundary I". The regions fi, fo are defined as

_ fi ife>0

g—{ fr if6<0 (2.11)

where f; and fo are C! functions on {¢ > 0} and {¢ < 0} respectively. The image g
can be constructed by combining f; and fa. This is known as the two phase model [49].
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Using the above setting a simplified version of (2.4) can be written as follows

E(f1s fa, 9) / VAPHS / 1 — glPH (6 (2.12)

u/prfz! (1 -H(¢))+/Qlf2—gl"(1 )
PR [) H'(8)|V4|

In this functional the first two terms ask that f; approximate g inside the curve I while
keeping as “flat” as possible; the second two terms ask the same of fs, but for the region
outside I'; the last term asks that I' should have the smallest possible length. These
conditions closely resemble the conditions stated by Mumford and Shah for (2.4) with
an additional limitation imposed on the number of regions that compose the image.
The last term in equation (2.12) was obtained as follows. The length of the

curve I, as defined in [27], is
ri= [ Iva@|

With some simple manipulations and considering that 0 < H(z) in (2.10) then

IVH(0)l| = [|H'(¢)Vel| = H'(9)[|V4]|.

Il

+

Therefore,
= [ 19l = [ #@)vel.
Q 0

In order to minimize (2.12) the steepest descent method was used. In the
following sections the computation of —VE and the necessary conditions are described
step by step. First, the first variation with respect to ¢ is computed. This is followed
by a first variation on f; and f>. Finally, a summary of the computed gradient and the
necessary conditions is provided.

Computing the First Variation of £ With Respect to ¢

In order to minimize functional (2.12) a variational approach is taken. Let f; and fs be
fixed, then

y(t)

Il

E(f1, f2, 6+ ) = /Q VAPH G+ 1) + /2 \fy — gl2H( + t)

+

ﬂ/n IV Al (1 _H(OHL’)H/QIfz—gI?(l _H(6 + 1)

-+

z// H'(¢ + t0)|Vo + tV
)

and

Y (t) u/ le}IQH’(,o’+w)w+/ |fi —gI*H' (6 + t¥)v
Q Q

y/Q IVfl*(1 — H'(6 + 1)) + [2 If2 —gl?(1 — H'(6 + t¥)¥)

Vo +tVy
Vo + tVi|

-+

+ u/H”(o+tu)|!Vo+t\7L_'||—l—z//H’(o) V.
S Q

In order to find the descent at ¢ then set ¢ = 0

V() = / VAP H (6)6 + / i — g2 H!(6)¢
+ou / IV Fal2(1 - H(6)e) + /2 2 — (1 - H'(6)0)
- u/“ H”(O)HV(D'IIjLI//2 H’(O)Hg—Z“VL
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The last term is this equation does not describe the variation in terms of the perturbation
¢» directly, but rather in terms of the change in perturbation V. Using integration by
parts [17] the following form can be reached.

YO = g /” VAP0 + [ 7= gPH 0w

Il

+ K /“ IV£|?2(1 — H' (o)¢) + [2 If2 — 921 — H'(8)¥) (2.13)
# 5] ‘V—O =\ / . VO h
o faren(maa) - [ rov (e

where 7 is the normal to the boundary 9€2. In order to find the solution ¢ then 4/(0) = 0.
Chan and Vese have assumed in their formulation that ¢ does not vary with
respect to the normal of the boundary of the domain and therefore the boundary term

furror (e )

in equation (2.13) vanishes since

o] Yo\ |

This is known as the natural boundary condition [4, 28]. The natural boundary condition
on J€) means that the curve I' will intersect with the boundary of © perpendicularly.
The physical equivalent would be a soap bubble adhering to a surface. Once the soap
bubble touches the surface, the adhesiveness caused by the intermolecular forces will
make the bubble stick to the surface. The bubble will ultimately take the shape of a
hemisphere with its boundaries perpendicular to the surface.

Using the above boundary conditions (2.13) can be written as

YO = dpB(fi, fard) = p / VA 2H (8)0 + / |2 — gPH'(0)¢

_.‘...

H /”]V.fllz(l = H/(O)L')+[2 !f_) ‘“9!2(1 —HI(O)L‘) (215)

In order to conclude that 4'(0) = 0, then for any perturbation

Vo 2 i 2 2
H'(9) ["V : (—> ~1fi=gP = VAP +1fo—g* + Il|vf2|“} =0.
IIVell
The descent direction for ¢ is parameterized using an artificial “time” ¢ > 0 as o(x,1)
where 0(x.0) = ¢p(x).
o Vo

2@ [rv () = 1ol = WIS Ve o VEE] (210

Computing the First Variation of £ With Respect to f; and f>

So far the flow of ¢ was found, but in order to follow the steepest descent the flow
of (2.12), the necessary conditions for f; and f; must be computed also. Fixing ¢ and
2 and following a similar approach as above

ol = B+ tonfo d) = /S;mewlx‘zﬂ(on /2 i + tsy — g2 H(6)

-+

;:[2|V.f212(1 —H(O))+/)ifz—ylz(1 ~ H(&))

- zl/H’(o)IV’o}.
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Then

V() = / (Vi +1tVs1)Vsi H / (fr +ts1 —g)s1H(9)
In order to find the descent at f; then ¢t = 0, therefore
YO = [ (RT) H@)+ [ (=g
Let y = {¢ > 0} and dx = {¢ = 0}, then the above equation can be written as
O =u [ (95,50 + [ (o)

The first term in the last equation does not describe the variation in terms of the
perturbation s;, but using integration by parts [17] with the following substitutions

u=Vfi v/ = Vs
(2.17)
u = Af; e
then 7/(0) can be written as
YO =u [ sV [ At [ (-9 (218)
ax X X
where 77 is the normal to the boundary Ox.
Let s; = 0 in a neighborhood ¢ at the boundary I'. Then
/ 51 (Vf1, ) =0
ax
Since 4/(0) = 0 then
—#/ Afisy +/ (fi—g)s1=0
X Xe
which implies
—puAfisi+fi—g=0
Letting ¢ — 0 and relaxing s; to be any smooth perturbation then
E“EE,(_ / Af131+/ (fi—g)s )I—#/Af131+/(f1“9)31=0
X X
Since this is valid in the entire y, then it remains that
/ S1 (Vfl., ﬁ) =
ax
for any variation s; and so
(Vfi,m) =0
Then +/(0) can be written as
VO = d (1. f2.0) = [ (i =g)si=n [ Afisi =0
X Jx
Letting 7/(0) = 0 then for any perturbation s;, f; can be solved as follows.
(1-pA)fi=g (2.19)
The variation and necessary condition for f; is found by the same analogy as f;.
(1-pA)fa=g (2.20)
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Summary of the Gradient Flow and Necessary Conditions

The gradient of the functional in (2.12) is described by

dy ([, f2,0)

I

u/WVﬁFHT®¢+ Ifo — g’ H'()¥
Q

+ H/“ IV fao|2(1 - H'()¢) + /n Ifa — gI2(1 — H'(6)0)

- lyfmwﬁ<%%%>u (2.21)
/X (i~ ghor — 1 / Afisy

/) (f2—g)s2 —p A fasa

Q\x N\x

dst(flszs(b)

Il

dseE(f1~ﬁ2~o>

where y = {¢ > 0} and sy, s» and ¢ are the perturbations on fi, fo and ¢ respectively.
With =V E = 0, the above equations lead to the following necessary conditions.

9 _ s e Vo N iy 2 12 2 12
S~ W@ (5 = 1h =~ WVAP + = o + iV

fi = g+uAf (2.22)
f2 = g+pAfs

In the next section the algorithm by which the minimizer is found using the
system in (2.22) is described.

Algorithm

The standard steps to solve the Euler-Lagrange equations in (2.22) are described below.
Assuming a time-discretization of ¢(t,x) as o(n7,x), where 7 is the time-step and n a
finite positive integer representing the iteration number then let (¢)", (f1)™ and (f2)" the
respective function at iteration n. Some of the steps in the algorithm will be elaborated
upon later.

1. Let n = 0 be the initial level-set function ¢"
2. Calculate (f;)™ on {¢ > 0} and (f2)™ on {¢ < 0} using (2.19) and (2.20)

3. Extend by C! functions (f1)" on {@ < 0} and (f2)" on {¢ > 0} in a small
neighborhood near the {¢ = 0}

4. Solve (2.16) to obtain ¢"*!

5. Re-initialize 0™ to the signed distance function to the curve. This is done only
near the zero level-set [32]

The discretization scheme will be explained in a later section, but for now the algorithm
is presented to give an idea of the typical steps in the evolution of ¢, fi and fs.

In the third step, the extension of f; and f5 is necessary since, in practice, these
have to be computed near a narrow band on the boundary, but neither is defined across
the boundary. There are a number of options to perform this extension the details of
which are described in [36, 40, 41, 43, 52].

In step five, the re-initialization of the function ¢ is important due to the fact
that the level-set function develops shocks, a very sharp or flat shape during evolution
(see Figure 2.1.3), which can make further computations inaccurate [5]. The effect of
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(a) Initial ¢ (b) ¢ with shock

Figure 2.2: The (a) initial ¢ develops (b) shocks during evolution.

shocks can be removed using re-initialization. For instance, ¢ can be re-initialized using
the signed distance function at its zero level-set as described in [16, 32]:

¥, = sign(é(t))(1 — |VY|)
¥(0,-) = ¢(0,-) (2.23)

Here, ¢(t,-) is ¢ at time t. The new ¢(t,-) will be 1, such that 1 is obtained at the
steady-state of (2.23). The solution of ¥(t,-) will have the same zero level-set as ¢(t, )
and away from the contour |V)| converges to 1.

The method proposed by Chan and Vese [49] on the first functional proposed by
Mumford and Shah [10] is effective for de-noising signals as well as segmentation. The
drawback of this model is the continuity conditions over the boundary I'. This adds
some difficulty to implementation due to the fact that some special cases have to be
considered for the calculation of the gradient on the boundary. As shown in Figure 2.3
not all neighboring points of a point are inside the same region therefore assumptions
must be made when solving the problem in a discrete setting.

This approach to segmentation, however, is more complex than needed for the
purpose of the project of this thesis since it both segments and de-noises the image. The
purpose of the segmentation step for this project is to extract a single organ, namely
the lungs, from the body of a subject without retaining additional information about
the measured values in the image so no de-noising is required.

Figure 2.3: Visualization of the curve I' passing in a grid showing points a, b and ¢ on the
boundary with a different number of neighboring points lying outside their region.

A simplified approach proposed in [50] by Chan and Vese partitions the domain

of the image according to the average values inside and outside the curve I'. This is a
restriction on the approach just discussed where f; = a; and fa = as.
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2.1.4 Chan-Vese Approach to Segmentation

In this section a reduced case of the functional treated so far proposed by Chan and
Vese [50] will be discussed. The basic idea of this approach is to separate components
in an image into background and foreground. Specifically, all regions enclosed by the
curve [ are part of the foreground and the rest is background.

Many approaches to segmentation make use of the edges in the image [31, 37,
53, 54]. In the Mumford-Shah model the image g is assumed to be smooth due to
the fact that direct use of |Vg| is made. Other methods try to relax this assumption
by introducing an edge detector that makes use of a smoothing operator, such as the
following
B 1

1+ |[Vag(a, )P’

where V,g(z,y) = V|G, (2,y) = g(a,y)]. G, *g produces a smoother version of g since
this is typically the convolution of an image g with a Gaussian function G, (z,y) =
o~ 1/2e~1e*+¥?1/47 \where ¢ > 0 is the spread. The resulting image 7(|Vg|) is positive in
homogeneous regions and close to zero at the edges.

The purpose of an edge detector is to have the curve evolution stop at the points
where 7 is zero. However, this is true only for the highest edges in g. Other edges in g
that may indeed be of interest to the problem may have values away from zero in 7 and
therefore the curve might not stop there. Furthermore, when an image contains a lot of
noise the Gaussian smoothing applied to the image should be stronger and this means
that sharp edges are smoothed as well.

n(IVg(z,y)]) p>1 (2.24)

Problem Statement

The functional constructed by Chan and Vese in [50] will be the focus of this section.
This functional closely resembles a reduced case of the functional (2.7) where the domain
Q is partitioned only in two regions ¥,,; and ¥;, outside and inside [" respectively.

The model is the following. Assume that the image g is formed by two regions
of approximately piece-wise constant intensities with values g,,; and g¢;, and that the
object to be detected is represented by the value g;,, with a boundary I'y separating it
from the other value. Then ¢ is approximately the same to g;, inside I'y and to g,u
outside I'y. Letting the region inside I be denoted by y then the fitting term then can
be expressed as

18]

25)

EO)+E0) = [ lo-aP+ [ lg-al (
(a4 —“out
where I' is any variable curve, and the constants ¢; and ¢s that depend on I' represent
the average value of g inside and outside ' respectively. For the image just described
the curve [y is the minimizer. This explanation is depicted below in Figure 2.4.

Using the level-set formulation, assuming a single level-set function ¢ then the
full form of the Chan-Vese functional is the following

Il

15((?1 €9, _O)

7 [) H'(0)|Vol (2.26)

F 1// H{(o)
Q
A / i — e1[2H(6)
Q

-

+ ,\2/ lu — eaf?(1 — H(0))
Q

where the first term represents the length of the curve, the second term represents
the area inside the curve or {¢ > 0} and the last two are the data-fitting terms with
parameters y, v, Ay and Ao greater than zero.
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Figure 2.4: Typical cases of the data-fitting term depending on the position of the curve,
see [50].

The minimizer of the functional in (2.27) can be found using a variational
approach as done before. By fixing ¢ the analytical solutions to ¢; and ¢y are found as

" _ an(‘b)g

1(9) = THG) (2.27)
_ Jo(1-H(9))g

() = T1-HG) (2.28)

Here ¢; turns out to be the average value of the image ¢ inside the curve I' and cs the
average value outside the curve I'. Analogically, a first variation on @ can be taken.
obtaining the following flow.

% = H'(¢) [;zv . (_lg_:;l) —v—=Mlu—c1]? + Asfu — czlz] (2.29)

The minimizer (¢}, ¢35, ™) can be found by solving the Euler-Lagrange equations
in (2.27), (2.28) and (2.29).

Discretization

In this section, the discretization of the Chan-Vese approach in [50] will be treated in
detail. The discretization of this approach is of importance since the same discretization
is used in the segmentation approach developed in the project of this thesis.

The system can be discretized and solved numerically as proposed in [12, 14, 46].
Given that the data in this project is 3D then the following discretization will assume
3D data, however, the visualizations will be in 2D for simplicity.

First, let the discretization in “time” be o(n7,x) = ¢" and

9o o't —o"

g 8 (2.30)
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where 7 is the time step and n is a finite positive integer representing the iteration
number. The constants defined in (2.27) and (2.28) can then be written as

f =ci(o"),  f =cao") (2.31)
and (2.29) can be written as
O"+1 _ on . Von+l . L
——*;““':H'(@’) pv - N2l —v=Xlg— P+ Aalg — B (2.32)

The next step is to discretize the image, the level-set function and the gradient and diver-
gence operators in (2.32). In this context, the values in the image and level-set function
are cell-centered [22], therefore cell g; ;1 centered at (z;,y;, zx) has value g(z;,y;. 1)
Analogically, ¢; ;1 = o(x;, y;, 21) with centre (2;,y;, 21).

In order to discretize the gradient and divergence operators in (2.32) the fol-
lowing difference operators are used.

1 =1 0 0
1o 1 =1 ... 0

8+ - _l__ ) ERm~Lm (233)
0 0 1 -1

75 == _(a+)TERm.m—l (2.34)

where h is the discretization of the domain € according to the resolution of the data. The
difference operators above calculate the staggered (forward and backward) difference in
the direction applied in order to avoid boundary assumptions. As shown in Figure 2.5
below, if the image has size m in direction 1, after applying 8% the difference obtained
in that direction will be of size m — 1.

g > >
B B>
> B

Figure 2.5: Original grid of image (gray) with location of calculated forward difference values
(red triangles) in dirvection 1.

Additionally, there are two averaging operators A and A that for the most part
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A is similar to A7, but differ in two elements as shown below

2 0 ... 0
" 1 1 s:a ©
A = A € Rmm-1 (2.35)
0 1 1
0 0 2
1 1 0 0
) 1o 1 1 0
4 = 3 e Rm-1m (2.36)
0 ... 0 1 1

These two operators are used in combination with the difference operators. fi, when
applied after 9%, assumes that the slope extends over the boundary of Q linearly and
computes the slope by averaging at the cell centers. A brings the cell-centered difference
to the location of the staggered difference of the other direction. The combination of
these two operators facilitates the computation of the magnitude of the gradient as
will be explained later. In order to have a better idea of the purpose of the averaging
operators assume that the staggered difference of ¢ was computed in direction 1 as shown
in Figure 2.5. In order to calculate an approximated difference in direction 2 that fits
direction 1, then the staggered difference % can be taken in the second direction and
averaged to fit the same grid as that of 8 applied in direction 1. Figure 2.6 provides a
visual aid to the above explanation.

SR ! S S | T~ S —

Figure 2.6: Original grid of ¢ (gray) with location of calculated forward difference values
in direction 2 (blue triangles) with assumed difference on boundary (green) showing the path
by which the combined averaging operators compute and relocate the staggered difference to
direction 1 (red triangles).

Letting a_vectorized version of the image g and the level-set function ¢ be
denoted by g and ¢ respectively one may use the following difference operators on g and
o.

oF =I®I®d+ € Rkntin(-1)
OF —1®9+®I e Rknlk(n-1)) (2.37)
a+ =0t RI®RI € R(knl.(k—l)nl)
where ® is the Kronecker product, I is the identity matrix and &, n and [ are the sizes
of the data in the directions 3, 2 and 1 respectively. The operator 8; computes the
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staggered difference in the direction d. To fit to § and & the averaging operators are
extended as follows.

A1<2 o I@.A_ ® ./4 = R(k(n—l)l.kn(l~l))
Az =ABIQA € RG—Dnalkni-1))

Aoy = IeA® A e Rknl-1)kn-1)) .
Ays=AQI® A € RGE-Dinkl(n-1)) (2.38)
Ay = A1 A ¢ Rknl=1).(k=1)nl)
A:LQ ot /i ® A ®I € R(k(n—l)l.(k—l)nl)

The purpose of the operator Ay, 4, is to “relocate” the calculated difference in direction
d; to the position of the difference in direction ds. For instance, the location of the
values computed by As 107 ¢ is the same as those computed by i?; ¢. The purpose
of the averaging operators becomes clearer when looking at the following difference
operators combined in the calculation of the magnitude of the gradient as follows:

D12 = A1 205
Oy = A1.307

o1 = A?.lafL

Doy = Az 305 (2.39)

D31 = Asa07
D30 = Ay 2075

With these averaging operators the magnitude of the gradient of ¢ can be calculated as

G1(6) = /(07 0)° + (9120)? + (91 50)?
G2(6) = \/(0210)* + (8] 9)? + (2.40)? (2.40)
Giy(0) = \/(95.10)? + (05,2002 + (8] 0)2.

Each one of the above is an approximation of |V¢|. G4(¢) calculates the difference in
dimension d exactly, but in the other dimensions the difference is approximated due to
assumptions over the boundary of the domain €.

Finally, the divergence operator can be approximated by an operator A(¢) of
the following form.

3

3 | | ;
A(o) = g7 = o == T __ + !
A(0) ; CEGT ;w,) R (2.41)

where 1/G;(¢) is a square matrix in which the values in the main diagonal are those of
G;(¢) inverted. This discretization of the divergence operator was suggested in [46, 50].
At this point equation (2.32) can be written as

O’hLl —o" 2 2
= H'(¢") [nA(&")e" ™ — v = Ailg — eI |* + dalg — &5I7] (2.42)

7
Using some mathematical manipulations the following form is obtained.
(I—7uH' (6™ A(6™)o" ! = @™ + 7H'(0")[v — Mg — 71> + Xalg — B7]  (2.43)

Equation (2.43) can be solved iteratively using the steps described below.
Letting the iteration step be denoted by n, then the principal steps of the
algorithm are the following.
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1. Initialize the level-set function ¢ = ¢y at n = 0.
2. Compute c¢;(¢") and c2(@") by (2.27) and (2.28).
3. Solve (2.43) to obtain ¢"*1.

4. Optional Step: Re-initialize ¢ on a small neighborhood of I' to the signed dis-
tance function as shown in (2.23).

5. Check if solution is stationary by using termination criteria as described in [34]
on (¢,c1,¢2), E and VE. If solution is not stationary, n = n + 1 and repeat from
step 2.

This last method proposed by Chan and Vese in [50] deals with the partitioning
of an image into two possible regions with distinct constant values. Assumptions need
only to be made about the continuity of ¢ on the boundary 99.

Since this problem is also a special case of the second Mumford-Shah functional
in (2.7) for i € {1,2} then it is well-posed. This was proven initially by Mumford and
Shah in [10] for smooth images and later in [20] for more general data.

To summarize, in this section a brief overview on some of the most influential
methods for segmentation was described. The Chan-Vese methods proposed in [49,
50] were described in more detail in terms of the variational approach to solving the
minimization problem and discretization.

2.2 Registration Methods

In this section a quick overview of the registration method used for this project will be
discussed. Since this is not the subject of focus and also due to the fact the registration
software in the FAIR framework [22] was used “out of the box” the thorough details of
the representation of the images, the interpolations and the transformations will not be
discussed. The actual objective functions used for the registration of the ellipsoids and
of the template and reference images are discussed later in section 3.2.

2.2.1 The Basic Concept of Registration

In general, the problem in image registration is the following: Given an image 7 called
a template and an image R called a reference where 7,R : Q € RY — R?, find a suitable
transformation y : © — R? such that the transformed 7 is similar to the image R. This
can be written as an optimization problem where a joint functional such as the following
must be minimized.

Jly) = DTy}, R] + aSly — y™] (2.44)

Here, Tly] = 7T (y(zx)) is the transformed template image, D is the image similarity
measure and & measures the reasonability of the transform.

One way to measure the similarity of images is to measure the sum of squared
differences or the energy of the difference image. In a continuous setting

1
]

DITly), R] /Q (T(y(@)) - R(x))*dz (2.45)
Since non-rigid registration is an ill-posed problem [21, 30], regularization is necessary.
The transformation reasonability term in (2.44) regularizes the problem. There is a
number of choices for measuring the reasonability of the transformation y [21, 22], but
these are not discussed here due to the fact that, for this project. y is restricted to rigid
transformations, therefore the joint functional (2.44) simplifies to

Jly) = D[T[y], R]. (2.46)
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The transformation y is parameterized by a set of parameters w as y(w,z) that restrict
the transformation to rotation and translation and therefore the registration becomes
parameterized. As will be seen in Section 3.2, the distance measure used in this project
is the sum of squared differences as proposed in (2.45).

In FAIR, image registration is facilitated by the built-in Gauss-Newton method
with Armijo line-search (GNA). The GNA method need only be provided with the
objective function, the gradient and the Hessian. The termination criteria are handled
internally using the default parameters which can be overridden if necessary.

2.2.2 Multi-Level Registration

The FAIR framework allows for different of types of registration including multi-level,
multi-scale or fixed grid. In the case of fixed grid, the registration is done at a single
resolution without any modifications, however, this is not a recommended strategy [21,
22] due to the fact that the minimization algorithm may find a local minimum. In order
to get an idea of why a fixed grid is not recommended, one can think of the images of
two hands at a fine scale rotating on top of each other. When two fingers are on top
of each other, a local minimum is found. However, the global minimum is found only
when all five fingers are on top of each other.

Multi-scale and multi-level strategies are more effective in avoiding local minima
due to the fact that registration starts by using very coarse details, such as position,
orientation and size, and continues using incrementally finer details. Figure 2.9 shows
the differences between multi-scale and multi-level strategies in the same image with
different levels of coarseness. Figure 2.7 shows three typical joint functionals at different
coarseness levels.

\.7('031'5(-

jﬁn(‘

Figure 2.7: Functionals at different levels of coarseness. Using the starting point shown, the
minimizer of Jeoarsest 1S @ good starting guess for Jeoarse and in turn the minimizer of the last
one is a good starting guess for Jane. Using the multi-level or multi-scale strategy local minima
in Jne can be avoided.

In multi-scale registration an image is registered in multiple scales therefore a
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35

25+

Figure 2.8: Spline approxzimation with varying (smoothness) parameter 0, 6 = 0 (solid line),
6 = 1 (dashed). 8 = 10 (dashed dotted), 6 = 100 (dotted). The parameter 6 is a weighting
factor controlling the smoothness of interpolating function. Ezample produced using function
E3MSsplinelInterpolationiD from the FAIR Framework [22].

scale-space representation of the image is needed. One method to obtain the scale-space
representation of an image is to use a parameter which controls the smoothness of an
interpolating function. In this thesis, this parameter will be referred to as the scale-
space parameter. Figure 2.8 shows a 1D example of a set of points interpolated using a
varying scale-space parameter 6. Multi-scale registration is typically performed starting
with a coarse scale or a large scale-space parameter and then gradually decreasing the
scale-space parameter in order to register the image at finer scales.

In multi-level registration an image is registered in multiple resolutions. Reg-
istration is performed starting from the lowest desired resolution then increasing the
resolution in order to register the image at finer levels. Figure 2.9 shows the differences
between multi-scale and multi-level strategies in the same image at different levels of
coarseness.

While both multi-scale and multi-level registration are effective in evading local
minima, the multi-level strategy was chosen for the project-specific application. In order
to perform registration using a multi-level approach as shown in Figure 2.7 the algorithm
shown in 2.1 is used.

Algorithm 2.1 Pseudocode used for multi-level registration, see [22].
T,R at [max
for ! = Lin to lmax do
transfer images to level [
register 77 to Ry: find transformation y;
use y; in the next level
end for

To summarize, the multi-level registration approach is chosen for this project
because

e it focuses on essential minima,
e the starting value in consecutive levels is an educated guess towards the minimizer
e and reduces computation time.

To conclude, this chapter has provided an overview of the base theory behind
the segmentation used in this project as well as an overview of the multi-level registra-
tion approach supported by the FAIR framework. More details about registration and
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segmentation using the level-set approach can be found in [6, 10, 21, 22, 24, 47-50]. In
the next chapter the details pertaining to the registration and segmentation used in this
project will be presented along with a quick overview of the termination criteria used
for the segmentation method.
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Multi-Scale Multi-Level

(a) 6 = 10! (e) 16 x 16 pixels

(f) 32 x 32 pixels

(g) 64 x 64 pixels

(d) 6 =102 (h) 128 x 128 pixels

Figure 2.9: Coronal slice of a mouse shown in different scales (Figure 2.9(a)-2.9(d)), using
a varying scale-space parameter 0. and different levels (Figure 2.9(e)-2.9(h)), using multiple

resolutions.
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Chapter 3

Project-Specific Methods for
Segmentation and Registration

This chapter will focus on the project-specific objective functions and functionals used
in registration and segmentation respectively. First, the focus will be on the modifi-
cation of the Chan-Vese objective functional for segmentation [50] to meet the needs
of the project-specific application. Following this, the objective functions used in the
registration of the ellipsoids with the Pgp data and the segmented data along with the
objective functions used for the ROI-based data registration will be discussed. Finally,
an overview of the termination criteria for the segmentation and registration will be
presented.

3.1 The Modification of the Chan-Vese Functional for
Segmentation

In this section, the project specific segmentation method will be discussed in detail start-
ing with the ideas behind the construction of the objective functional. The discretization
scheme, the algorithm used to satisfy the necessary conditions and the termination cri-
teria used to check for stationarity on the segmentation algorithm will follow. The
section concludes with a description of a number of alternative of objective functionals
developed in the course of the thesis project

3.1.1 Problem Statement and Model

When the Chan-Vese functional was tried on the project data it did not provide the
expected result “out of the box™ even though the initial guess is proximal to the excepted
result as shown in Figures 3.1(a)-3.1(c). Even with some fine-tuning of the parameters
v, . Ay and A the results were not satisfactory. For instance the parameters can be
tuned for the initial guess in Figure 3.1(c), however this same set of parameters would
not work for the initial guesses in Figures 3.1(a) and 3.1(b). As can be seen in Figure
3.1 the Chan-Vese segmentation method segments the entire image, but does not focus
on a specific region as is required in the application of this thesis.

The first condition for the objective functional in this project is that, using the
same set of parameters, example cases such as those shown in Figures 3.1(a) to 3.1(c)
should segment the lungs. In other words, if the guess is larger, approximate or smaller to
the volume of the lungs the resulting segmentation should show a “good™ approximation
of the lungs.

In order to achieve a good segmentation on the lungs some information about
the underlying data can be used.
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(b)

(d) (e) ()

Figure 3.1: Typical initial guesses 3.1(a)-3.1(c) and results 3.1(d)-3.1(f) of the Chan-Vese
segmentation method with segmented area shown in red. The parameters were set as suggested
in [50]: p=0.1-255%, v =0, \1 =1 and X2 = 1.

1. One can use the fact that the underlying data is C'T and therefore provides infor-
mation about tissue density in Hounsfield units. By observing the data samples
provided by Dr. Farncombe and the McMaster Centre for Preclinical Imaging, the
lungs of the mouse range between —500HU and —100HU, so a rough approxima-
tion of the average value in the lungs in a CT scan would be —300HU. In humans
the typical range of intensity values in the lungs is larger (see Table 2.2 in [9]).

2. In real-life experiments the subject exhibits high Hounsfield values around the
lungs, typically greater than 200HU, due to the hard tissue of the ribs [9]. This
leads to the conclusion that in most subjects there is a high gradient between the
inner part of the chest and the ribs.

3. The tidal volume of the lungs of the subject can be estimated by observation or
by using statistical data [42].

From these three pieces of information the first and third were crucial in providing the

expected result.
The most successful objective functional so far has been the following.

vo- [ H(d))‘+/\ [lo-aPue @

E(¢) = /Q H'($)IVé| +v

where V|, is a constant representing the approximate estimate of the volume of the lungs
and cp is a constant representing the average Hounsfield Unit value in the lungs. The
parameters j, v and A are positive scalars which are chosen empirically. The first term
in equation (3.1) asks that the curve I' = {¢ = 0} be as short as possible; the second
term asks that the volume inside {¢ = 0} be as close as possible to the volume V,
defined by the user; the third term asks that the region of g inside the curve I' be as
close as possible to the user estimated average Hounsfield unit value ¢y in the lungs.
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An outline of the other objective functionals constructed will be presented in
the next section in order to give an idea of the reasoning behind them. The main
difference between the functional (3.1) and the other functionals is that the first makes
use of two pieces of information based on the properties of CT data and the properties
of the subject itself while the others are an attempt at generalizing the segmentation by
using only the properties of the C'I' data.

The synthetic and practical experiments as well as the fine-tuning of the param-
eters carried out to test functional (3.1) will be discussed in Chapter 4 in more detail.
In this chapter the focus remains on the functional (3.1).

In this thesis the problem of finding a minimizer for (3.1) is assumed to be well-
posed since a rigorous proof is beyond the scope of this thesis. It is also assumed that g
is measurable and square integrable. Furthermore, the problem is not convex since the
solution depends on the starting guess ¢y. However, in the project of this thesis effort
was put to make the initial guess ¢ vary as little as possible.

In order to find the evolution of ¢ the same variational approach employed by
Mumford-Shah and Chan-Vese is used along with the same boundary assumptions. The
necessary condition for ¢ is

o - Vel) Vo - [, H (o)

VLJ“J;I H(C)‘)
[Vo—[, H(¢*)
undefined. For this reason a small constant 3 > 0 is introduced and (3.2) is modified to

do ., (Vo u Vo foHle) ’
a =1 [“ v (wg) * Vo- T H@[+5 9 “"'} -

Note that if the minimizer ¢* satisfies Vo = [;, H(¢*) then the fraction is

One may suggest that using a slightly modified functional from that proposed in (3.1)
such as

; 2
E(6) = [ H'(6)|Ve| + v +A /Q 9—col?H(G) (3.4

V(,f/S;H(o)

similar results may be obtained without the need for a regularizer 3. In fact, the objec-
tive functional (3.4) does obtain similar results with some fine-tuning on the parameters,
however, not as much time was spent in fine-tuning the parameters of (3.4). A compar-
ison of the results obtained with (3.1) and (3.4) is outside the scope of this thesis due
to time limitations, but will be considered for future research.

3.1.2 Discretization, Implementation and Termination Criteria
for Segmentation

Discretization

The same discretization as in the Chan-Vese approach was used for (3.3). Letting
the divergence operator in (3.3) be denoted by A(¢) using the definition in (2.41) the
following is obtained.

Vo — [, H(6")
Vo= [, H(o")|+ 3

On+l —on

= H'(o" {,4..4(0")0"“ +v ~ Alg— c0|‘2] (3.5)

where ¢" = o(n7,x). Using some mathematical manipulations this last equation can
be written as

Vo Jy HEe")
Vo= Jo Hom)|+8

- prH' (6™ A(6")] " = 6" + TH' (o) [ - Ag - cnlg} ;

(3.6)
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Segmentation Algorithm

To solve equation (3.6) the following algorithm is used.
1. Set OU = Q.
2. Solve equation (3.6).

3. Check if solution is stationary using criteria described in the next section. If not
n =n+ 1 and repeat the last step.

Termination Criteria for Segmentation

This section will provide an overview of the termination conditions used in this project
for the segmentation step.

Generally, given a function F, the problem is to find z* that is a good approx-
imation of the minimizer z* [34]. In order to find a good approximation of 2*, one may
want a desired accuracy in ¥ and in F¥ = F(2F). If a problem is well-behaved there is
an established relationship between desired accuracy in 2% and the desired accuracy in
F* ., as shown in Section 8.2.2.1 of [34], however if the problem is ill-conditioned it might
happen that while F* is a good approximation to F'(x*), 2* is not a good approximation
of z*. For this reason a user-specified parameter £ can be used to enforce accuracy on
both 2% and F*.

Assuming that the desired accuracy of the solution F(z*) to F* has to be up
to p digits then by setting £ = 1077 a measure of absolute accuracy can be defined as

¢* = ¢+ [F¥) (3.7)
A sensible set of termination criteria are the following:
Cl. |F*-1 — F¥ < @*.
C2. |z — ¥l < VE(1 + [l2*|]2)-

C3. |[7*||x < VE( + |F*|), where 4* is the gradient of the function F at point z*.

Conditions C1 and C2 are designed to test whether the sequence {z*} is converging.
while condition C3 tests the for necessary optimality condition [|y(2*)|| = 0. For well-
scaled problems. the satisfaction of condition C1 automatically implies the satisfaction
of condition C2, however, for ill-conditioned problems condition C2 forces the algorithm
to find a better solution.

As stated in [34], the choice for the usage of /€ in condition C2 is due to the
fact that using & might be an overly stringent condition. Furthermore, in condition C3
the Lo norm can be used, but when it comes to a very large number of variables it
is better to use the infinity norm due to the fact that it is a less stringent condition
provided that condition C1 and C2 should be satisfied at the same time.

Conditions C1 to C3 are unsatisfactory if the initial point 2¥ is in such a close
neighbourhood of the solution and that no further progress can be made, or if an iterate
2 lands by chance very close to the solution. In this case, an additional condition on
the gradient must be satisfied.

C4. H”?‘k”x < €4

where €4 is a very small number greater than the machine epsilon €,y.
Finally, a condition that guarantees termination in a finite number of iterations
must be enforced.

C5. k < K, where k is the current iteration number and K is the maximum number
of iterations allowed.
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Although this condition may be satisfied before the algorithm has found a reasonable
solution, it is important to have it, since for all practical purposes the algorithm should
terminate in a finite amount of time.

In order to terminate the algorithm the following logical condition must be
satisfied.

(C1 and C2 and C3) or C4 or C5 (3.8)

For segmentation step in the project of this thesis the aforementioned parame-
ters are set as £ = 1077, ¢4 = 107" and K = 50. The functional (3.1) is discretized as
follows

E(6") = pY hi-hy-hy- H’(@k)\/Al(a;*@k)? + Az (05 9F)2 + A3(0F oF)2
Szh
+ v[Vo=> hi-hy-hy- H(@Y) (3.9)
Qh
+ A D hycha by |lg = ool |[H(6F)
Qh

where H is the Heaviside function, Q" is the discretized domain Q and h; is the dis-
cretization which in this case is 1.84mm/voxel-edge in each direction considering the
resolution 32 x 32 x 32 voxels and metric space (58.88 x 58.88 x 58.88)mm?*. In (3.9),
A; is an averaging operator acting along direction i that brings the staggered difference
in direction ¢ back to the centre of the cell defined as

Al =II® A & Rk‘n(l+1).knl

A; =18 AQI e Rkr+\Lknl —
A= AQI®I e Rk+nlknl

where k., n and [ represent the size in cells of the data in each direction. Here, E(¢*)
substitutes F* in conditions C1 and C3.
Condition C2 can be checked by substituting the discretized ¢* for z* as

ll6" " = 612 < VEQ +116"]]2)

Condition C3 and C4 are both based on the gradient 4*. These conditions can

e
be checked using the right hand side of equation (3.5) therefore,

Vu—fn H(Ok) -
|Vu = j;zH(Ok)% + 3

= H'(6%) |nA(e*)oF +v Mg —eof?] . (3.11)

In summary, using
0% = €(1 + |E(o%))) (3.12)
the termination conditions for segmentation can be checked by
Cl. |E(¢*Y) — E(6")| < 6*.
C2. ||o*F 1 — oF|la < VE(L + [[6*]]2).

C3. |7l < VE(1 +

E(o")))
C4. H’:’kl}x < €4

with 4% as defined in (3.11).
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3.1.3 Alternative Objective Functional Trials for Segmentation

The objective of this section is to provide an idea of the reasoning used to construct of
the objective functionals for lung segmentation.

As mentioned before, the functional (3.1) makes use of information from a
property of the lungs exhibited in the CT data as well as a property of the subject itself.
However, attempts were made to make use of only the average intensity value of the
lungs in the CT data.

As mentioned in Section 3.1.1, there is a large change in values, from an average
of —=300HU in the inner part of the lung to > 200HU on the ribs. This leads to the
conclusion that there is a high gradient on the border of the lungs and ribs. This means
that one may make use of Vg in order to attract the contour, therefore

E(¢) = u [2 H(@IVol+v [ H(@) - A [2 Vgl2H'(6) + Ao / 19— co?H(6)

The first two terms in this functional try to minimize area of and volume inside {¢ = 0}
respectively. The third term aims to attract the contour towards high gradients in the
image. The last term aims to minimize the difference between the image ¢ and ¢y in
{6 > 0}. This is not possible to implement because the third term produces

JZEECT
Q

when the first variation is taken. 'T'he reason this cannot be used is because, unlike

the regularized H' which resembles the properties of H when integrated, H" does not

produce an H' that resembles the properties of the Dirac delta function when integrated.
A modification of the above functional is the following

E($) = /Q H'($)|Ve] +v /Q H(8) - M /Q IVg2H () + Ao /2 19— co?H ()

While this is very similar to the last one, it tries to maximize the gradient in {¢ > 0}
which means that the curve {¢ = 0} will try to include into the foreground all areas
with high gradient. This was done with the intention of putting a high emphasis on the
length penalty term, by choosing a large p2. This method was deemed ineffective due to
the fact that it does not work for all cases as shown in Figures 3.1(a)-3.1(c).

Another choice based on the last functional is the assumption that the curve
resulting from the segmentation should be close to the initial curve. This condition is
based on the assumption of proximity of the initial guess to the lungs.

B = u /Q H'(@)|Vé| + v / (H(6) - H(gv))?

Q
S /Q IVgl2H(6) + Ao /Q lg = col2H ()

Here, ¢ is the initial level-set function. This functional, however, has the same draw-
backs as the one before and was not effective in achieving the desired result.

Another attempt was to extend the existing Chan-Vese approach using the fact
that the initial guess is in close proximity to the expected result. This leads to the
construction of the following functional.

E@) = a / H'(6)|V] + v / H(9) + A / 19— e (B)2H(9)
52. Q Q
+ A /Q 19— ea2()2(1 = H(6)) + A / lg— col?H(6)

This functional makes use of the constant ¢; as a user input for the average value of
the Iungs, but also of ¢1(¢) and ¢2(9) as defined in (2.27) and (2.28) respectively. The
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reasoning is to use the user’s knowledge about the lungs of the subject as well as to use
the underlying data in order to refine the region of interest. This was not very successful
due to the fact the result was not the one desired for cases such as that as shown in
Figure 3.1(a), where regions exhibiting values of —300HU outside the lungs were also
segmented.

A slightly modified version of the last functional which accounts for the fact
that intensity values in the lungs may vary between —500HU and —100HU was also
tried, however, this did not prove to be successful for all the three cases shown in
Figures 3.1(a)-3.1(c).

Blo) = u [ w@Nel+v [ Ho)+x [ lo-al@PHE)
+ % [ lo= @@ - HE)+ [ lo-alHE)
+ [ lg=alH(e)
where ¢, = —500 and ¢, = —100. The first two terms minimize the area of and volume

inside {¢ = 0}. Terms 3 and 4 make use of the values in the underlying data. The last
two terms try to force the curve {¢ = 0} to include regions in the data with intensity
values between the user-provided values ¢, and ¢.

Alternatively, one may want to include values =300 HU and exclude values such
as —1000HU (the intensity of air).

Fi# = » /IH’(O)!VOHV AH(o)Hl /)lg—cl(o)li’lf(o)
5 3 /Q 19— e2(6)P(1 - H(@)) + s /“ 9 — cal?H(0)
" /\;,/ng—cbigu—mm)

This functional tries to include values close to ¢, = —300HU in {¢ > 0} and values
close to ¢, = —1000HU in {¢ < 0}. Approximate results to using the Chan-Vese
functional (2.27) are obtained.

Each of these functionals took an amount of time to be tested since the pa-
rameters need to be fine-tuned in order to ensure whether the model can produce the
desired result.

3.2 Objective Functions for Ellipsoid Fitting and Reg-
istration

In this section the objective function used for ellipsoid fitting to find the initial and final
guess of the region of interest (ROI) will be described in detail. Following, will be a
description of how the ROI-weighted Pop data is registered /aligned to the Ve data.

3.2.1 Ellipsoid Fitting

As mentioned in the Introduction the first step to obtaining an initial guess for the ROI
is to register an ellipse to a windowed version of the Psp data. The reason for this is
that it is assumed that the Psp and Per data are pre-aligned and therefore the regions
of the lungs appearing in the Psp data are indicative of the location of the lungs in the
Per data.
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Before going into the details of the objective function, the function used to
describe the ellipsoid will be discussed. The function

1 R<0.5
Wwe)={ —<=CR 1 05<R<1 (3.13)
0 R>1

defines a smooth ellipsoid with 0 < W (w,z) < 1 where w = [wy, wa, w3, wy, ws, ws] T with
the first three parameters as the radii of the ellipsoid in direction i and the last three
parameters as the spatial position of the ellipsoid along direction . Furthermore,

R =/} + 73 +73 (3.14)

with

iy = T2 (3.15)

Figure 3.2 provides a visualization of the structure of the ellipsoid in one and two
dimensions.

+

(a) (b)

Figure 3.2: Visualization of the ellipsoid function W in (a) one and (b) two dimensions.

As mentioned in section 2.2, the FAIR Framework uses the Gauss-Newton
method with Armijo line-search therefore it is necessary to compute the gradient of (3.13)
with respect to w.

( _ wsin(2rR)#} ]
wiR
_ ﬂsin(?ﬂ'R)i‘g

w2 R
m sin(27rR)1"‘§
R

_ﬁsin%%ﬂ'R)ﬁ 05<R<1
W (w,z) = --sin?%fR)f (3.16)

s 2
- w2 R

7 sin(2wR) 73
L - w:jR .

0 otherwise

The objective function for the registration of the ellipse to some data u is defined
as follows

F(w) = ||w? + w2 + w32 + a/ u(z)(1 — W(w,z))dz (3.17)
Q
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where a > 0.The first term aims to minimize the three radii of the ellipsoid while the
second term aims to exclude as much data as possible from the reverse ellipsoid therefore
including as much data as possible inside the ellipsoid. The gradient of function (3.17)
is
Wi
w2
VF(w) = 2 s 2)VW (w, z)dx 3.18
(.u) = m 0 F= /QOU(.L) (w,lf) ZL. (¢ ¥ )
0
0

The Hessian matrix has been approximated by

7{'

HE(w) = s—5—a—F7—
W)= T A

(3.19)
where I is the identity matrix.

Equations (3.17), (3.18) and (3.19) are then used in Gauss-Newton method of
the FAIR framework in order to find the optimal size and position of the ellipsoid that
includes the data u.

In the project treated in this thesis the ellipsoid fitting is performed in two steps
of the alignment process. First to find the initial guess ¢y on a windowed version of the
Psp data, therefore u in (3.17) becomes

1 if Psp > 300

3.2
0 if Psp <300 (8.20)

u = windowed Psp = {

then to find the refined region of interest using the segmented Pop data, therefore

1 in {O}'inal = 0}

9
0 in{@fina <0} 8-21)

u = segmented Pop = {

In this section the mathematical description of the smooth ellipsoid as well as

the objective functions used to optimize its size and position were presented. Further

details to the Gauss-Newton method with Armijo line-search used in the FAIR Frame-

work can be found in [22]. In the next section the region-of-interest based registration
is discussed.

3.2.2 Region-of-Interest Based Registration

In this section the objective function used to register the template data 7, or Pop, and
the reference data R, or Ve, will be discussed. At this stage only rigid transformations
are considered to align the data. In order to register the data based on the region-of-
interest, the final ellipsoid resulting from step 3 of the process shown in Figure 1.7 is
used as a “weight” or spatial filter on the template data 7. The ROI-weighted template
data is obtained as

TW(2) = T(2)W(wept, %) (3.22)

where wgp is the set of parameters of the refined ROIL

The objective functional used in the following
JW) = DTV [y(v).R] = %/ (TY (y(v.2)) — R(x))?dx (3.23)

Q

where y is the transformation and v = [V, s, V5, V. 15, 1/;;]T are the parameters of the

rigid transformation, with the first three being the angle of rotation around axis i and
the last three being the translation along axis i € {1,2,3}.
By discretizing (3.23) the following objective function is obtained

1 : .
Jw) =5 hi-hy bl T, (y(v) = Rall® (3.24)

QOh
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where 7,V and R}, represent the cell-centered discretization of TYW and R respectively.
The h; is the metric size of the cell in direction i € {1,2,3} and Q" represents the cells
of the discretized domain Q.

In order to use (3.24) in the FAIR framework the gradient and Hessian are
computed as follows

Vi(yw)) = hihaohs||TY (y(v)) — RulldT" (y)dy(v) (3.25)
HJ(y(v)) hyhahs (AT (y)dy(v))T (dT" (y)dy(v)) (3.26)

where dT" (z) = d’T(J;)W (wopt, x) with Ii’(w,,pt, x) being a diagonal matrix with values
W (wopt, x) in the main diagonal and

Il

T (yr) 02T (1) 03T (y1)
dT = : .
T (yn) AT (yn) 037 (yn)

where d7 € R4 with d being the number of dimensions, d; the difference operator
along dimension 7 and 7 (y;.) the value of 7 at cell y;, and finally

do,y1 Op,y1 Opyr Oay1 Oyt dayn
dy(v) = : : : : : :
601 Yn 802 Yn 803 Yn ad; Yn adg Yn adg Yn

The equations in (3.24), (3.25) and (3.26) can now be used with the Gauss-
Newton method of the FAIR Framework in order to find the parameters v of the rigid
transformation y.

So far, the project-specific methods of segmentation and registration were de-
scribed. In the next chapter, some experimental results including both synthetic and
practical examples will be presented. The synthetic examples concern only the segmen-
tation piece in order to provide some idea of the “preciseness” of the segmentation step
while the real-life examples, provided by Dr. Troy Farncombe and the McMaster Centre
for Preclinical Imaging, test the overall preciseness of the alignment process.
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Chapter 4

Testing the Segmentation and
Alignment Processes

In this chapter, the experiments carried out for the segmentation and alignment process
will be discussed. Section 4.1 will show some typical experiments on synthetic data
that was designed to test whether the model can extract the desired object from a 2D
image. In this same section, the tests carried out on 2D slices of the data provided by
the McMaster Centre for Preclinical himaging for some typical initial guesses will also
be shown. In section 4.2 the testing carried out on the whole alignment process will be
shown along with the results of the alignment for the six weeks of data provided.

4.1 Segmentation Experiments

Segmentation experiments were carried out on 2D and 3D samples of synthetic and real-
life data. However in this section, for ease of visualization, only experiments carried out
on 2D data will be shown. The experiments in this section include the segmentation of

e synthetic data mimicking a cross-sectional slice of the chest of the mouse,

e synthetic data to observe the inclusion of regions with approximate value to the
region of interest and

e a coronal slice of a mouse.

Two typical images constructed for the purpose of testing segmentation are the
images shown in Figure 4.1. Figure 4.1(a) shows two circles in the middle surrounded by
a circle with high intensity values which in turn is surrounded by low intensity values.
This is done to simulate the lungs in the body with surrounding air in a cross-sectional
slice. Figure 4.1(b) shows three squares with three different intensity values. This image
was created to observe how the curve evolves according to (3.1) when there are objects
in the vicinity of the object of interest that have similar intensity values. The resolution
of the images is 128 x 128 pixels and the metric space Q is (10 x 10)mm?.

For the image in 4.1(a), the objective is to extract the area in the centre of the
image with value 102 therefore ¢y = 102. The area of this piece is about one half of
the domain Q therefore Vi, = 50mm?. Figures 4.2(a)-4.2(h) show some initial guesses
along with some typical results. The parameters were found empirically and set to
o= 052552 X = 10, v = 10° with time-step 7 = 0.78 for all of the initial guesses
shown.

Figures 4.3(a)-4.3(h) show the segmentation results on the image in 4.1(a) with
some added noise. The noise is normally distributed with mean 0 and standard deviation
100. The parameter g = 255% was the only one changed in this case.
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(2) (b)

Figure 4.1: Images with resolution 128 x 128 and metric size (10 x 10)ymm? used to test the
segmentation method. The numbers on the images represent the intensily values of each distinct
Tegion.

By visual inspection it seems that the segmentation is working fairly well for
the test image in 4.1(a) with and without noise. For larger amounts of noise, this
segmentation method does not work as well. A workaround is to regularize the image
using tools in the FAIR Framework [22], such as increasing the scale-space parameter,
in order to minimize the noise after which segmentation can be performed.

The next step is to test segmentation on Figure 4.1(b) in order to see what is
segmented when regions close to the region of interest exhibit the same intensity values.
Figures 4.4(a)-4.4(h) show some typical initial guesses and results. The area is set to
Vi = 31.25mm? and ¢y = 133. The parameter ;1 was switched back to 0.5 - 2552,

As can be seen from Figures 4.4(a)-4.4(h) the object of interest is segmented,
but due to the high emphasis on the penalty on the curvature a region not having the
value ¢y is included as well. This occurs in real-life data also, where the lungs are
segmented along with most of the heart. For the real-life data used in the project this
has not posed a problem due to the fact that the heart is expected to be included in the
refined ellipsoidal ROL.

The synthetic experiments so far have shown promising results. The next step
is to test the segmentation method in a 2D slice of the data provided by Dr. Troy
Farncombe and the McMaster Centre for Preclinical Imaging. The data, that is initially
256 x 256 % 256 voxels, is first reduced to 128 x 128 x 128 voxels by averaging neighboring
values in each direction, then it is further reduced to 128 x 128 pixels by extracting the
7274 coronal slice. The reduction in resolution is done mainly to reduce computation
time for experiments. The metric space of the image is (58.88 x 58.88)mm?. The exper-
iments run on this particular slice are shown in Figures 4.5(a)-4.5(h). The parameters
used for this experiment are p = 0.5 - 2552, v = 10°, A = 1 with time-step 7 = 0.046.
The average value of the lungs is set to ¢g = —300 and the area of the lungs is set to
Vi = 7Tlmm?. The time-step was chosen small in order for the curve to expand more
“conservatively” and not include other areas with average value around —300HU such
as fat and excess skin in the arms of the mouse. If the time step is increased by a factor
of 2 or more the segmented region flows outside the lungs, therefore to have the desired
segmentation the time-step must be small.

The initial guesses shown in Figure 4.5 are chosen in such as way that they
resemble the initial guesses produced by the first step of the alignment process. Typical
cases include large, medium and small initial guesses and, as it seems from the results
in 4.5, the refined region of interest includes the lungs satisfactorily.

The important features of the parameters in the above experiments are the
following.
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Initial Guess Resulting Segmentation

(d)

(8 : (h)

Figure 4.2: Typical initial guesses (left) and their respective results (right) for image 4.1(a).
The area in red represents the segmented region {¢ > 0}. For all initial guesses on the left the
segmented area approrimates the region of interest.
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Initial Guess Resulting Segmentation

Figure 4.3: Typical initial guesses (left) and their respective results (right) for image 4.1(a)
with added normally distributed noise. The area in red represents the segmented region {¢ > 0}.

Even with a certain amount of noise in the image, approzimate results to those in Figure 4.2
are obtained.
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Initial Guess Resulting Segmentation

(e) (6]

() (h)

Figure 4.4: Typical initial guesses (left) and their respective results (right) for image 4.1(b).
The area in red represents the segmented region {¢ > 0}. For all initial guesses on the left the
region of interest is included in the segmented area.
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Initial Guess Resulting Segmentation

(8 ; (h)

Figure 4.5: Typical initial guesses (left) and their respective results (right) for coronal slices
of laboratory data. The area in red represents the segmented region {¢ > 0}. For all initial
guesses on the left the segmented region approzimates the lungs.
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e The parameters pu and v were not modified for any of the experiments therefore
when it comes to segmenting data over a number of weeks since the user need
not correct the parameters for each week. In fact, as will be seen in section 4.2,
the parameters are kept the same for all the six weeks of data provided by the
McMaster Centre for Preclinical Imaging.

e The time-step has to be small when it comes to real data due to the fact that
many small regions in the body of the subject might exhibit the same average
intensity of values. Some of these regions might be away from the expected ROI
and may therefore be obstructive to the registration step. It might not be always
possible to avoid including these regions, but a small time-step tends to keep the
segmented region local to the initial guess. In addition, a large u also ensures
exclusion of regions far from the expected ROI since it penalizes the length of the
curve I' = {¢ = 0}.

The quality of the segmentation experiments at this stage in the project has
been based on visual inspection. Defining what is a good segmentation result has shown
to be quite challenging and is part of ongoing and future research.

While the segmentation step alone is hard to benchmark, the overall perfor-
mance and precision of the alignment process can be tested numerically as will be seen
in the following section.

4.2 Testing the Alignment Process

In this section the results of the overall alignment process will be described. The exper-
iments discussed here were carried out on 3D data. The alignment process was tested
using a number of simulated rigid transformations.

In order to get an idea of how much rotation and displacement there is in real-
life between ventilation and perfusion data the alignment process was run on all six
weeks of data provided. This was done to get an idea of what to consider a “valid”
transformation so that the alignment process would not be discarded as ineffective due
to some unrealistic displacement or rotation.

The alignment for the six weeks of data was done using the following parameters.

The Psp data is windowed at 300.

o Ellipsoid fitting to windowed Psp data (to obtain the initial guess) parameter a
in (3.13) settoa =1 .

e Segmentation parameters in (3.6) set to g = 0.5-255%, v = 10°, A = 1 and
7 = 0.046.

o Ellipsoid registration to ROI of Py data parameter set to a = 1 in (3.13).

e The objective function (3.24) used for the registration of the ROI of the Py data
to the Veor data is not parameterized.

e The resolution at which multi-level registration is performed is 2 x 2! x 2! voxels,
for i = {3,4,5,6}.

e 'I'he resolution at which the ellipsoid is registered is 32 x 32 x 32 voxels.

e 'T'he resolution at which segmentation is performed is 16 x 16 x 16 voxels.

e 'The metric space is unchanged at (58.88 x 58.88 x 58.88)mm? for all resolutions.
The resulting transformations are shown in Table 4.1. These transformations

were tested visually for correctness by applying the resulting transformation to the
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Week ; 1(?23301 e Pal;lgitl:; Completion Time (s)
-0.0114 0.4806

1 0.0005 -0.1256 1.2107 - 10?
-0.0041 -0.2083
-0.0049 0.3866

2 -0.0008 -0.0651 1.0754 - 10*
-0.0016 -0.1206
-0.0095 0.4089

3 0.0008 0.0317 1.4651 - 10*
-0.0067 -0.1200
-0.0102 0.2921

4 0.0004 -0.2967 1.1299 - 10°
-0.0008 -0.3034
0.0002 -0.0552

5 -0.0016 -0.1344 1.0866 - 10°
0.0015 -0.0150
0.0046 0.2886

6 -0.0022 0.0800 1.3306 - 10*
0.0023 -0.0237

Table 4.1: Rigid transformation parameters found by applying the alignment process to the siz
weeks of data provided by the McMaster Centre for Preclinical Imaging: 6 represents the angle
of rotation and d the displacement.

template data 7 then overlapping it with the reference data R to check for differences.
Table 4.1 provides a list of the transformations found.

The simulated rigid transformations applied on the six weeks of Por data were
chosen about ten times larger than those shown in Table 4.1. The alignment process uses
the same set of parameters mentioned above. The experiment setting is the following:

e 10 rigid transformations were applied to six weeks of perfusion data of a mouse to
simulate the misaligned ventilation data

e 'The transformations were chosen randomly using a normal distribution

— with mean 0 for rotation and translation

— and standard deviations o,tqti0n = 0.3rad and o,ansiation = 7MM;

the transformations range approximately between 6; € [—0.3,0.3]rad and
d; € [—16, 16jmm.

o The magnitude of the absolute error was analyzed

— based on a fixed ROI and ten transformations

— and on a fixed transformation over six different ROI.

Note that this type of test does not test the accuracy of the alignment process over
perfusion and ventilation data as in reality, however, the results obtained using the
warped samples provide an idea of the accuracy of the alignment process developed in
this thesis.

The magnitude of the absolute error in rotation and translation of the resulting
transformations is plotted in Figure 4.6 and 4.7. The magnitude of the average and
maximum absolute errors by fixed ROI over 10 transformations were

Eyotation = [3.9724, 5.8880,9.0892] x 10~5rad
Eiranslation = [1.1853,1.9847, 3.3910] x 103 mm
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Frotation = [0.5349,0.8427,1.0261] x 10~ %rad
FEtranslation = [1.5536,2.4020, 3.1456] x 10~ 3mm.

The magnitude of the average and maximum absolute errors by fixed transformation
over 6 ROI were

Eotation = [5.6360,8.0771,7.9695] x 10~5rad
Eliranslation = [2.6128,2.1828,3.8097] x 10~3mm

FErotation = [1.2403,1.3783,1.2517] x 10~%rad
Etranslation = [4.5065, 3.6320,5.4822] x 10~*mm.

1x104 1)(104
osf . = ’ 08
osf, - .. 06
04f . -, 0.4
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1X
0.8
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Figure 4.6: Magnitude of the absolute error of rotation (radians) for the transformations
applied.

For all simulated rigid transformations the rotation parameters are off by one
hundredth of a degree and the translation parameters are off by at most a hundredth of
a millimeter. This result is promising when considering that registration is performed
at most at 64 x 64 x 64 voxels whereas the initial resolution is 256 x 256 x 256 voxels.
At higher resolutions better accuracy may be achieved.

The average and maximum errors by ROI ad by transformation are similar
even though the ROI vary considerably. Table 4.2 shows the refined ROI values for each
week. The reason why the refined ROI is so small in week 6 is due to the fact that
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Figure 4.7: Magnitude of the error in displacement (millimeters) for the transformations
applied.
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Week Ellipse Paramaters (mm)

r1 | 72 ] T3 ] C1 | C2 [ C3
1] 6.4212 | 7.1103 | 5.8149 | 31.7222 | 28.7090 | 31.0768
2 | 4.8325 | 5.5471 | 3.5433 | 32.1205 [ 29.8128 | 29.3310
3| 4.1047 | 6.1601 | 3.4566 | 31.6564 | 27.1298 | 33.2126
41 4.2579 | 4.4618 | 3.0731 | 31.9380 | 32.1899 | 32.7206
5 | 2.4686 | 3.5114 | 2.1633 | 33.0492 | 27.5942 | 30.6513
6 | 2.0770 | 2.0770 | 0.7248 | 29.4400 | 29.4400 | 27.7073

Table 4.2: Refined ROI parameters for each week.: r; represent the radii of the ellipsoid and
ci the centre of the ellipsoid, with i € {1,2,3} as the direction.

the initial guess has radius zero since the intensity values of the Pgp data in this week
are all below 300 and therefore the windowed Psp contains no data. The segmentation
method terminates from reaching the maximum number of allowed iterations before it
can find a better guess.

In overall, the results obtained by these experiments are positive and indicate
that the current strategy used to align Psp data to the Vgp data as described in the
process shown in Figure 1.7 is effective. For the simulated transformations, using the
aforementioned parameters for the alignment, the process takes in average 3 hours and
15 minutes to complete with 4 minutes and 15 seconds for each week. The time for a
single week is distributed between each step as follows.

o Elliposid fitting takes 0.5 seconds.

e Segmentation takes 20 seconds.

e Registration takes 3 minutes and 20 seconds.
e File I/O operations 25 seconds.

The machine used is a standard PC using 2 GB of RAM with an AMD Turion X2
processor at 2 GHz and the and code is running in Matlab. If higher resolutions were
used both in terms of segmentation and registration the results may be more accurate
but the computing time and memory requirements would be much larger.

In this chapter some main experimental results were presented in order to give
an idea of the effectiveness of the alignment process. In the next chapter, the main
features of the applications will be discussed along with suggestions for the improvement
of computation time and areas of future research.
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Chapter 5

Discussion on Current and
Future Research

This chapter will discuss some issues of the alignment strategy, specifically with the
segnientation and registration methods. A large part of the focus will be given to the
segmentation piece. Future research concerning segmentation and alternatives to some
parts of the alignment process will also be discussed.

5.1 Issues in Segmentation and Registration

The work completed in this thesis has shown some promising results, however, there are
a number of issues that still need to be addressed in order to improve the work done.
These issues span across the entire alignment process including the registration of the
ellipsoids, the segmentation step and the ROI-based registration of the data.

Ellipsoid Fitting

As mentioned before, the first step to making an initial educated guess for the segmen-
tation process is to register an ellipsoid to the windowed Psp data. Given that Pgsp
data may vary in each scan as the condition of the subject deteriorates or improves the
windowing value may need to be different for each scan. While it is possible to set a
different thresholding value for each week of data, it is not preferable.

As mentioned in Chapter 1, the Psp data is windowed to remove regions outside
the lungs with small amounts of radiation from the contrast agent. These regions look
like a “cloud” around the high intensity values of the lungs, see Figure 5.1(a). The
cloud is caused by minor traces of contrast agent spreading possibly through the blood
in other areas. If the ellipse were to be registered directly to this data the cloud would
also be included and this is not desired. that is why the lungs are windowed at above
300.

Even though windowing is a fast way to remove the cloud, it is not the most
reliable as values in the Pgp data may widely vary in different scans. For instance,
looking at Figure 5.1(b) a very small part of the lungs has intensity values above 200.
If the windowing value was 300, no data would appear and in fact this happened during
the experiments in the sixth week of data where the initial guess and refined ROI were
very small.

This situation can be avoided, however, by using segmentation instead of win-
dowing. The good news is that there is no need to design a new objective functional
since the Chan-Vese approach will produce the desired result. Figure 5.1(c) shows the
segmented Psp data using the Chan-Vese approach without any modifications. While
this is a much better way to filter out the surrounding cloud, it needs to be tested against
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(a) Psp (b) Psp > 200 (c) Segmented Psp

Figure 5.1: Coronal slice of (a) Psp data from week siz showing surrounding cloud, (b)
windowed at above 200 shown in white and (c) segmented using the Chan-Vese method with
segmented area shown in white.

instances where the Chan-Vese approach would include parts of the cloud. For the data
of this project, however, this has shown nice results.

In a further outlook, the segmentation could replace the initial ellipsoid regis-
tration entirely by using the resulting ¢ of the Chan-Vese segmentation on the Psp data
as the starting guess for the level-set function in (3.6) for the ROI-refinement step.

Segmentation

Currently, the segmentation method makes use of a number of parameters (u, v and \)
and a time-step for the flow of ¢ in order to fine-tune it to the desired behaviour. In
this project, the time-step has been chosen empirically and is kept constant throughout
the evolution of the contour. This is not a preferred strategy since it has a slow rate of
convergence [34]. It might happen that the curve, after a certain number of iterations,
may change very little and, assuming the termination criteria are not fulfilled, the time-
step may need to be increased in order to make significant progress. Furthermore, the
parameters of the objective functional (3.1) were also chosen empirically which means
that these might have to be slightly changed depending on the type of data being
segmented. The optimization of the parameters and the time-step is outside of the
scope of this project.

Another issue with the segmentation is that the minimizer is found by using
the steepest descent method which has slow convergence [34]. The choice of the steepest
descent method in this project is based on the work of [50] and it is also a fast and simple
way to test whether the objective function achieves the desired result. The next step
is to implement segmentation using the conjugate gradient method in order to improve
convergence and completion time.

ROI-Based Data Registration

The drawback with the registration of the ROI-weighted Por data to the Vo data is
that it could be very sensitive to artifacts in the scan such as the inclusion of a foreign
object in the ROI. Figure 5.2 shows an example where the Pop and Vo data have to
be aligned but the ROI-weighted Pcr data includes a small part of the water cylinder.
This object could have adverse effects on the registration since it might align the edges
of the water cylinders in the two images instead. There may be alternatives to fitting
an ellipsoid to the segmented Por data, but for now fitting an ellipsoid has shown to be
the simplest and most logical way of including additional data from surrounding tissues
of the lungs. There may also be other factors that may cause the same problem such as
an implant that is later removed and therefore appears in one scan but not the next.
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(a) Per (b) ROI-weighted Por (¢) Ver

Figure 5.2: Given (a) the Por data, proper alignment of (b) the ROI-wighted Pcr data to
the (¢) Ver data could be obstructed by the existence of the small water cylinder edge in the
ROI-weighted Pcr data.

Another topic of discussion for the registration of the data is the restriction
to rigid transformations. For the simulated transformations used to test the alignment
process, rigid transformations suffice, however, in the future valid transformations may
include affine and elastic models.

5.2 Conclusions

The final goal of the project is to automatically align ventilation and perfusion SPECT
data in order to be able to study the effects of newly developed drugs for various lung
diseases including fibrosis and cancer. Due to the fact that the SPECT data from
different scans can have large structural differences, pre-aligned C'T' data can be utilized
to correct the alignment problems in the SPECT data. The objective of this thesis
was to develop a fully automated process by which different modalities of SPECT data
can be aligned by using the respective C'T" data over a number of weeks. Here, a new
objective functional for segmentation was proposed based on the work of [10, 49, 50] in
order to find a region of interest in the C'I' data and utilize it in order to find a rigid
transformation aligning the perfusion and ventilation C'I' data.

Some of the main highlights of this project are the usage of only two pieces of
information, namely lung volume and average HU intensity value in the lungs, in order
to segment the lungs of one subject over a number of weeks and the usage of multi-level
registration in order to avoid local minima and decrease computation time.

The results of the synthetic and real-life experiments so far have been promising
and indicate that with some further refinement of the alignment process better precision
and lower computation time can be achieved.
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Matlab Code Extracts

In this appendix the Matlab code extract for the most important parts of the thesis
application will be shown. The layout of the code is the following.

e First, the code for the ellipsoid and the objective function used in the ellipsoid

fitting steps is shown.

e Following, is the lung segmentation step code, which includes the calculation of
the Heaviside function and the divergence operator.

e Next, the distance function and the objective function used in the registration step

are shown.

e Finally, the main routine by which all of the above steps are integrated is shown.

A.1 Matlab Code for Ellipsoid Fitting

Listing A.1: ell3func.m

1 function [c,dc,dxc] = ell3func(z,x)
2 £ parameters:

3 ¢

4 3

5

6

7

8 enter
9

10

11 @& = [1;

12 dxc = [1;

13 doDerivative = 0;

14 doXDerivative = 0;

15

16 %calculate gradient if necessary
17 if nargout > 2

18 doDerivative = 1;

19 if nargout == 3

20 doXDerivative = 1;

21 end

22 end

23

24 x = reshape(x, [1,3);

25 x0 = [z(4), z(5), z(6)];

26 x(:,1) = (x(:,1)-x0(1))/z(1);
27 x(:,2) = (x(:,2)-x0(2))/2z(2);
28 x(:,3) = (x(:,3)-x%0(3))/z(3);
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30 % the magnitude of the radii
31 radius = sqrt(x(:,1).72 + x(:,2)."2 + x(:,3).72);

33 ¢ = zeros(size(radius));
34

35 1if doXDerivative

36 dxc = zeros(size(x));
37 end

38

39 if doDerivative

40 drc = zeros(size(radius));
41 dx0 = zeros(size(x));
42 end

43

44 %find the region J where the ellipse is '‘smooth’’
45 J = find(radius<l & radius>0.5);

46 %2calculate the values at the smooth region

47 c(J) = -cos(2*mxradius(Jd)) /2+0.5;

49 gcalculate the derivatives in the smooth region
50 if doXDerivative

51 dxc(J,1) = w+sin(2+w+radius(J))/z(1)./radius(J)
52 dxc(J,2) = mwxsin(2xwxradius(J))/z(2)./radius(J)
53 dxc(J,3) = wxsin(2sw+radius(J))/z(3)./radius(J)
54 end

55 $%derivative with respect to radius and center
56 if doDerivative

57 drc(J,1) = -wxsin(2+w+radius(J))/z(1)./radius (J)
58 drc(J,2) = -wmssin(2swsradius(J))/z(2)./radius(J).
59 drc(J,3) = -w*sin(2sw+radius(J))/z(3)./radius(J).
60

61 ax0(J,1) = -wxsin(2swsradius(J))/z(1)./radius(J)
62 dx0(J,2) = -w*sin(2+w*radius(J))/z(2)./radius (J)
63 dx0(J,3) = -wssin(2+w+radius(J))/z(3)./radius (J)
64 end

65

66 %reuse J for points flat at value 1
67 J = find(radius<0.5);

68 g&set flat points to 1

69 c(J) = 1;

70 %set derivative in the flat regions to 0
71 1if doXDerivative

72 axci(Jd,1) = 0;
73 dxc(J,2) = 0;
74 dxc(J,3) = 0;
75 end

76

77 if doDerivative
78 d&re(Jg.1) = 0;
79 drc(J,2) = 0;
80 drc(J,3) = 0;
81

82 dx0(J,1) = 0;
83 dx0(J,2) = 0;
84 dx0(J,3) = 0;
85 de = [dre,dx0];
86 end

.*x(J,1) ;
.*x(J,2);
.*x(J,3);

.xx(J,1).72;

*%{J,2).72;
*x(3,3).72;

.+x(J,1);
.xx(J,2);
.xx(J,3);

Listing A.2: objfctn3Dell.m

1 function [f,p,df,d2f] = objfctn3Dell(z,alpha,I,X)

¢ calculates the objective function used to minimize
the ellipse fitting the data I

¢ parameters:

I - data

X data points

z - ellipse parameters

N OO R W
oo Op o oo oo oy
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8 ¢ alpha - positive scalar

9

10 %get ellipse

11 [c,dc] = ell3func(z,X);

12 p = 0; %used for the GNA function options

13

14 %calculate the objective function, gradient and Hessian
15 £ = norm(z(1:3)) + alphaxI’'*(1l-c);

16 df = 1/norm(z(1:3))=[z(1),2z(2),2(3),0,0,0] - alphaxI’=xdc;
17 d2f = alphasw/norm(z(1:3)) xeye(6);

A.2 Matlab Code for Lung Segmentation

Listing A.3: Heaviside.m

function [H,dH] = Heaviside(z,e€)

Calculates a smooth/regularized Heaviside function

¢ - determines the steepness of the slcpe

z = [rl,r2,r3,cl,c2,c3] - are the parameters of the ellipse where
e ) is the radius in direction i
c(i) - is the position alogn direction i

o0 oo o o oo

culating the Heaviside function
.5x% (1+(2/m) xatan(z/¢€)) ;

OO U= WN =

o oe
I
O

10

11 if nargout < 2, return; end;

12 % if necessary calculate the first

13 ¢ derivative of the Heaviside function

14 dH = (e/w)+spdiags(reshape(l./(e"2+z.72),[1,1),0,
15 length(z),length(z));

Listing A.4: getGradientOperator.m

1 function [Gl1d,Gla,G2d,G2a,G3d,G3al = getGradientOperator (€2, m)
2 § calculates the gradient operator given the space €1 and the
3 % resolution m

4 %

5 & Output:

6 % Gid,G2d,G3d - the difference operators in direction 1,2,3
7 % Gla,G2a,G3a - averaging operators to be used on the difference
8 ¢ operators to bring the values back to the cell
9 % centers

10 % outside these are used to calculate the mangitude of

11 ¢ the gradient as follows:

12 ¢ |Grad| = sqgrt(Glas(Glds+phi)." 2 + G2ax(G2d+Phi)."2 + ...)

13

14 if length(Q) == 2,

15 G3d = @(Phi) [1;

16 G3a = @(Phi) [1;

17

18 $difference averaging operators

19 $these are named as avdl_2 =>

20 & averaging operator on dimenstion 1

21 % corresponding to dimension 2

22 avdl = kron(speye(m(2)),av_dash(2,m,1));

23 avd2 = kron(av_dash(2,m,2),speye(m(1)));

24

25 ¢difference operators

26 ¢forward difference

27 dip = kron(speye(m(2)),dp(Q,m,1));

28 d2p = kron(dp(f2,m,2),speye(m(1)));

29

30 ¢ this part is the "imprecise difference" for the direction
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31 ¢ that is not focal for the computation
32  G1d = dip;
33 G2d = d2p;

35 Gla = avdil;
36 G2a = avd2;

37 else

38 ¢difference averaging operators

39 g¢these are named as avdl_2 => averaging operator on dimenstion 1
40 2 corresponding to dimension 2

41 avdl = kron(speye (m(3)),kron(speye(m(2)),av_dash(2,m,1)));

42 avd2 = kron(speye (m(3)),kron(av_dash(2,m,2),speye(m(1))));
43 avd3 = kron(av_dash(f2,m, 3), kron (speye (m(2)), speye(m(1))));
44

45 ¢difference operators

46 ¢forward difference

47 dlp = kron(speye(m(3)),kron(speye(m(2)),dp(Q,m,1)));
48 d2p = kron(speye(m(3)),kron(dp(f2,m,2), speye(m(1))));
49 d3p = kron(dp(f2,m,3) ,kron(speye(m(1)), speye(m(2))));

51 $ this part is the "imprecise difference" for the direction
52 %2 that is not focal for the computation

53 Gld = dilp;

54 G2d = d2p;

55 G3d = d3p;

57 Gla = avdi;
58 G2a = avd2;
59 G3a = avd3;
60 end

62 function w = dp(f2,m, i)

63 % calculates the forward staggered difference

64 h = Q./m;

65 w = spdiags(ones(m(i),1)=[-1,1],[ 0,1],m(i)-1,m(i))/h(i);
66

67 function M = av_dash(,m,1i)

68 ¢ helper operator for the calculation of the

% averaging operators above

70 M = spdiags(ones(m(i),1)=*[1,1],[-1,0],m(i),m(i)-1)/2;
71 M(1,1) = 1;

72 M(end,end) = 1;

Listing A.5: getDivergenceOperator.m

function A = getDivergenceOperator (€2, m,3)
calculates the discrete divergence operator
\div(\grad\phi/[\grad\phi|)

) - the spatial domain

m the resolution

3 - a small positive regularizing constant for the
inverse gradient magnitude

oo oo oo oo oe

output:
A - the linearized divergence operator

oo oo op oo

12 sdiag = @(a) spdiags (reshape(a, [1,1),0,length(a),length(a));

14 if length(f)) == 2,

15 ¢difference averaging operators

16 ¢these are named as avdl_2 =>

17 g averaging operator on dimenstion 1
18 g corresponding to dimension 2

19 avdl_2 = kron(av_dash(f,m,2),av_dot(2,m,1));

20 avd2_1 = kron(av_dot (,m,2),av_dash(2,m, 1)) ;
21

22 ¢difference operators

23 $forward difference
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dlp = kron(speye (m(2)),dp(Q,m,1));
d2p = kron(dp(f2,m,2),speye(m(1)));

$this part is the "imprecise difference" for the direction
¥that is not focal for the computation

dla_2 = avdl_2xd2p;

d2a_1 = avd2_1xdlp;

Gl = @(Phi) sqgrt((dlpsPhi)."2 + (dla_2Phi)."2 + B72);
G2 = @(Phi) sqrt((d2a_1+Phi)."2 + (d2p*Phi)."2 + §72);
A = @(Phi) -dlp’ssdiag(1l./G1(Phi)) *dlp

- d2p’+sdiag(1./G2(Phi)) *d2p;

else

difference averaging operators
these are named as avdl 2 =>
averaging operator on dimenstion 1

oo op oo o

corresponding to dimension 2
avdl_2 = kron(speye (m(3)),kron(av_dash(f2,m,2),av_dot(Q,m,1)));
avdl_3 = kron(av_dash(f2,m,3) ,kron (speye (m(2)),av_dot (2,m,1)));

avd2_1 = kron(speye(m(3)),kron(av_dot (2,m,2),av_dash(Q,m,1)));
avd2_3 = kron(av_dash(2,m,3) ,kron(speye(m(1)),av_dot (2,m,2))) ;

avd3_1 = kron(av_dot (2,m, 3) ,kron (speye (m(2)),av_dash(Q,m,1)));
avd3_2 = kron(av_dot (2, m, 3) ,kron(av_dash(Q2,m, 2) ,speye (m(1))));

difference operators for the
staggered forward difference
dlp = kron(speye (m(3)), kron(speye (m(2)),dp(Q2,m,1)));
d2p = kron(speye (m(3)),kron(dp(£2,m,2),speye(m(1))));
d3p = kron(dp(f,m,3),kron (speye(m(1)),speye(m(2))));

oo oe

$this part is the "imprecise difference" for the
¢ direction that is notfocal for the computation
dla_2 = avdl_2xd2p;
dla_3 = avdl_3xd3p;

d2a_1 = avd2_1xdlp;
d2a_3 = avd2_3xd3p;

d3a_1 = avd3_1xdlp;
d3a_2 = avd3_2xd2p;

%each of the computed gradient magnitudes G(i) is exact
¢ in direction i while the other directions have
¢ approximation/assumptions at the boundary
Gl = @(Phi) sqrt((dipsPhi)."2 +
(dla_2xPhi)."2 + ...
(dla_3xPhi)."2 + B72);
G2 = @(Phi) sqrt((d2a_1sPhi)."2 +
(d2p*Phi) ."2 + ...
(d2a_3%Phi)."2 + 372);
G3 = @(Phi) sqrt((d3a_1sPhi)."2 + ...
(d3a_2#%Phi)."2 + ...
(d3p*Phi) ."2 + B72);
A = @(Phi) - dlp’ssdiag(1./G1(Phi))+dlp
- d2p’sdiag(1./G2(Phi)) *d2p
- d3p’=ssdiag(1./G3(Phi)) *d3p;
end;
function w = dp(2,m, 1)
¢helper function that calculates forward differences
h = Q./m;
w = spdiags(ones(m(i),1)*[-1,1],[ 0,1],m(i)-1,m(i))/h(i);
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94 function M = av_dash(,m,1i)

95 $this is a helper matrix for the av_dot matrix

96 ¢while the av_dot takes the average within a column, this matrix,
97 %in combination with the av_dot matrix, calculates the
98 %average between 4 adjacent cells with the assuption
99 $%of a contiving slope on the boundary

(always used together with av_dot:

eg. if av_dot(m(1)) -> av_dash(m(2)) )

102 M = spdiags(ones(m(i),1)=[1,1],[-1,0],m(i),m(i)-1)/2;
103 M(1,1) = 1;

104 M(end,end) = 1;

—
(=}
—_
oo oo

106 function M = av_dot (), m, i)
107 gtakes the average within cells in one direction

108 ¢

109 = f 4 1 i

110 ¢ A 0.5 % | % L7 /

11 3 / i 4

112 M = spdiags(ones(m(i),1)«[1,1],[0,1],m(i)-1,m(i))/2;

Listing A.6: driverChanVese3D.m

1 ¢ driver for ChanVese approach in 3D

2 ¢ variables that are assumed to exist at this point

3 % in the alignment process:

4 % -> eOpt - minimal ellipse [parameters] including SP-P lungs
5 % -> Vol - approximate volume of lungs [user input]

6 ¢ -> c0 - approximate average value of lungs [user input]
7T % -> X - the domain grid

8 close all

9

10 s%cell size

11 h = Q./m;

12

13 % this parameter regularizes the volume penalty term

14 B = le-5;

15 & parameter for the slope of the Heaviside function

16 € = le-4*min(h);

17

18 % termination criteria
19 tol = 1le-7;
20 eptol = 1le-8;

%get the image at a desired resolution from CTML
23 % -> CTML contains the data in many resolutions
u = CTML{sr_level}.T(:);

26 % viewers
27 viewI = @(F,H) imgmontageoverlay (F,H,CIML{sr_level}.(),

28 CTML{sr_level}.m, 'direction’,’'zxy');
29 viewS = @(Phi) imgmontage (Phi,CTML{sr_level}.Q,

30 CTML{sr_level}.m, ‘direction’,'zxy’);
31

32 %objective function parameters

33 & i - based on Chan-Vese experiments

34 ¢ rest - found emmrically

35 np = 0.5%25572;

36 lambda = 1;

37 v = 1le5;

38 T = le-1smin(h);

39

40 ¢ reshape the grid in order to construct \Phi

41 x = getCenteredGrid(CTML{sr_level}.Q,CTML{sr_ level}.m);

42 x = reshape(x, [1,3);

43

44 gconstruct initial \Phi based on eOpt resolved before
45 maxEOpt = max(eOpt (1:3));
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101

106
107
108
109
110
111
112
113
114

Phi = sqgrt(1/(eOpt (1)/maxEOpt) "2+ (x(:,1)-eOpt(4))."2

+ 1/ (eOpt (2) /maxEOpt) "2x (x(:,2) -eOpt (5)) ."2

+ 1/ (eOpt (3) /maxEOpt) "2x (x(:,3)-eOpt (6))."2);
the reason for using maxEOpt is to keep the initial cone
% '‘'steep’’ so as to not be affected by the change in \7
Phi = maxEOpt - Phi;

oo

g¢calculate initial H
[H,dH] = Heaviside(Phi,e€);
¢initialize Hc in order to compare for the stopmng criteria

$ figure(1); clf; viewS(Phi);
figure(2); clf; viewI(u,H)

A(phi) = \div([ \nabla\phi/|\nabla\phi| ]
= getDivergenceOperator (CTML{sr_level}.(), CTML{sr_level}.m,f);
speye (length (u) , length(u) ) ;

H O oo

$calculate the gradient operator in order to
[G14d,Gla,G2d,G2a,G3d,G3a] = .
getGradientOperator (CTML{sr_level}.Q,CTML{sr_level}.m);

$show a ‘'‘table’ of values

fprintf('iter| E | gradient | AE | A Phi \n’);
EprinEE (f ==~ comvsaticmbidon Sadumas soms sk s b le T e S5 E \n");
% follow the flow

¢ \phi’ = \u H’ « A(\phi)

& = \i H* « f[o=e 0)"2

% + \lambda H’ * (Vol - \int \Omega({H})

& 00 eEscshresssssssssviaasssssninssass

% ([Vol \int_\Omega{H}| + \3)

¢ Note: \phi is cell-centered, grad/|grad| comes staggered
¢ \phi~{k+1} - \phi“{k}

§ e = \p* H’ (\phi) A (phi~{k})+\phi“{k+1}
% \7 + H’ (\phi)*RHS

%

# RHS == = \P H" & (Q-£ 0)°2

% + \lambda H’ * (Vol - \int_\Omega{H})

% (|Vol - \int_\omega{H}[ + \3)
iter = 0;

Phic = Phi;

gcalculate initial energy

p*sum(prod (h) *dH*sqrt (Glax (G1d*Phi) .72 +
G2ax (G2d«Phi) ."2 +
G3ax (G3d+Phi) ."2))
+ v+abs(Vol - sum(prod (h) «H))
+ lambdasxsum(prod(h) = (u-c0) ."2.+H) ;
g§iterate until convergence
while (norm(Hc - H) > tol)
rhs = dHx( - lambdals (u-cl(H))."2 + lambda2s*(u-c2(H))." 2
- lambda3x (u-c0)."2
+ lambdadsx (Vol - sum(prod(h).s*H))./ ...
(abs (Vol - sum(prod(h).xH)) + B));

AA = (I - p*7+dH+A(Phi));
Phi = AA \ (Phi + Txrhs);

iter = iter + 1;

o new H

o

calculations of the gradient and function
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115 ¢ for stopmng criteria
116 grad = dHx( - lambdals(u-cl(H))."2 + lambda2s+(u-c2(H))."2
117 - lambda3=* (u-c0) ."2

118 + lambda4+ (Vol - sum(prod(h).+H))./

119 (abs (Vol - sum(prod(h).+H)) + (3))

120 + p*A(Phi) xspdiags (dH) ;

121 E = p+sum(prod(h) *dH+sqrt (Glax (Gld+Phi) . 2

122 + G2ax (G2dxPhi) ."2

123 + G3ax (G3d«Phi) ."2))

124 + lambda3sabs (Vol - sum(prod (h) =H))

125 + lambda4+sum(prod (h) = (u-c0) . “2.+H) ;

126 fprintf(’ %2d| %-12.4e | %-12.4e | %-12.4e | %-12.4e \n’,
127 iter, E, norm(grad), E-Ec, norm(Phic - Phi));
128

129 ¢stoprng criteria

130 STOP (1) abs (Ec - E) < tolx(1 + abs(E));

131 STOP (2) norm(Phic - Phi) < sqgrt(tol) = (l+norm(Phi)) ;
132 STOP(3) = norm(grad, 'inf’') < tol”(1/3)«(1 + abs(E));
133 STOP(4) = norm(grad, 'inf’') < eptol;

134 STOP (5) iter > maxSeglter;

135

136 if(all(STOP(1:3)) || any(STOP(4:5)))

137 if (all(STOP(1:3)))

138 fprintf (' Terminated by 3 conditions.\n’);

139 elseif (STOP(4))

140 fprintf (' Found point close to gradient = 0.\n’);
141 elseif (STOP(5))

142 fprintf (‘Maxipum vmber of iterations reached.\n’);
143 end

144 break;

145 end

146

147 $update energy and Phi
148 Ec = E;
149 Phic = Phi;

150

151 if (debug)

152 figure(2); viewI(u,H);
153 pause (0.1) ;

154 end

155 end

A.3 Matlab Code for Image Registration

Listing A.7: SSD.m

function [J,dJ,H] = SSD(Tc,Rc,f2,m)
¢ sum of squared differences function used for registration

template image
reference image
spatial domain

resolution

doH = 0;

10 doG = 0;

11 4J = 0;

12 H = 0;

13 2find whether the gradient and hessian need to be calculated
14 if nargout == 2

15 doG = 1;

16 elseif nargout == 3
17 doG = 1;

18 doH = 1;

19 end
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20 h = prod(f./m);

22 2calculate the difference image
23 J = h/2sxnorm(Tc-Rc) "2;

24 if doG

25 dJd = hx(Tc-Rc)’;

26 end

27 if doH

28 H = hsspeye (length(Tc)) ;
29 end

Listing A.8: rigidObjFctn.m

1 function [f,p,df,d2f] = rigidObjFctn(TD, Rc, 2, m, E, w)

2 % calculates the objective function for the image registration
3 & parameters:

4 % TD - template image coefficient (to be used for interpolation)
5 % Rc - reference image

6 ¢ () - the spatial domain

7 % m - the resolution

8 & E - the optimal ellipsoid found after the refinement step
9 %2 w= [01,02,03,d1,d2,d3] - the transformation

10 = paramters: €1 - the rotation around direction i

11 ¢ di - the translation along direction i
12 ¢ output:

13 & f - the evaluated objective function

14 ¢ df,H - the gradient and the Hessian

15

16 doG = 0;

17 doH = 0;

18

19 if nargout ==

20 doG = 1;

21 elseif nargout == 4

22 doH = 1;

23 end

24 % E = ellipse on X

25 p = [1; % parameters for plots in GNA

26 df = 0;

27 dz2f = 03

28

29 2%calculate the template image and its gradient if necessary
30 if —~doG && —doH
31 X = getCenteredGrid(f,m) ;

32 Y = trafo(w,X);

33 Tc = inter(TD,Q,Y);

34 else

35 X = getCenteredGrid (2, m) ;

36 % get the transformation

37 [Y d¥] = trafo(w,X);

38 % and calculate the values of the template on

39 ¢ the new transformed points Y

40 [Tc dT] = inter(TD,Q,Y);

41 end

42

43 % calculate the objective functio.

44 % its gradient and Hessian i

45 if —doG && —doH

46 f = SSD(Tc.*E,Rc,f),m); £ the difference image

47 elseif doG

48 [f df] = SSD(Tc.*E,Rc,Q,m); £ the difference image
49 dT = spdiags(E, 0, length(E),length(E)) *dT;

50 df = df«dT+dY; & get gradient of objeccctive function
51 else

52 [f df d2f] = SSD(Tc.*E,Rc,Q,m); ¢ the difference image
53 dT = spdiags(E,0,length(E), length(E)) *dT;

54 df = df+«dT+dY; % get gradient and Hessian

B85 d2f = (d2f+dT*dY) ' (AT*4dY) ;
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56 end

58 ¢ show the data T(Y), R and the difference image in a plot
59 p = struct(’Te’,Tc, Re’,Rc, Q" ,Q,"m’ ,m, "Yc',Y, 'Jc’ ,£);

A.4 Main Routine

Listing A.9: regsetup.m

1 & start main routine integrating

2 % ellipse fitting, segmentation and registration

3 clc; clear; close all;

4

5 $8%2%82%55822228522555822258538%228¢02%58585%52¢2¢8¢83¢8¢88%%¢8%¢
6 222%%%%% START OF DECLARATIONS $%%%%%%%%%%%%%%%%%¢22¢2
T 2%%%%2%%%%%%%22223%%235%22%%2328¢%2¢%%¢2%32%225%%¢22¢2%¢%28¢23%%%%
8

9 $file path contructor to retrieve data files

10 absPathToImg = 'C:\Users\Alvin\ThesisProject\FAIR-ext\';
11 folderName = @(w,s) fullfile(absPathToImg, ’'images’,
12 ‘Test_Registration’, ['Week’, int2str(w)],s);

14 ¢ debug - parameter for segmentation only
15 debug = 1;

17 & level at which ellipse fitting
$ and segmentation will be performed
19 sr_level = 5; % resolution (275)°3=32"3

21 ¢ default maxipm vmber of iterations for segmentation
22 maxSegIter = 50;

24 gsize of spatial domain of data
25 Q = 58.88%[1,1,1];

g¢note: here the maxium resolution will be 12873
28 % therefore if resolution is higher than this
% it will be reduced to 12873

31 %used in ellipse objective function
32 alpha = 1le0;

33 gellipse initial guess

34 e0 = 29.44+([1,1,1,1,1,1]’;

35

36 $%segmentation data

37 % Vol - user input parameter representing

38 ¢ the volume of the lungs in mm"3

39 % c0 - user input parameter for the

40 = average value of the lungs in HU

41 Vol = prod(f./7); %approximate volume of lungs for rat

42 c0 = -300; %approximate average value inside lungs for rat

43 viewImage('reset’, 'viewImage', 'imgmontage’,’colormap’,'gray(256)');
44 st = cputime;

45 %data for all weeks

46 for week=1:6

47 m = 128+[1,;1;1);

48 ¢variable calculating the time for the alignment process
49 startimeweek = cputime;

50

51 fprintf ('Week: %d\n',b week);

52

53 2''loadAllData’’ routine loads all the ventilation

54 ¢ and perfusion data for one week in pltilevel mode as:
55 ¢ CTML - Multilevel CT data

56 % -> CTML{i}.T = CT-P
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-> CTML{i}.R = CT-V

oo oo

SPML - Multilevel SPECT data
2 -> SPML{i}.T = SP-P
2 -> SPML{i}.R = SP-V
loadAllData

e

% viewer/debugger parameter
viewImage ('disp’)

£202222222220000022220022229902220222229922222928282¢222
G008 22505232%050252802222332%00222%3%%%%%¢%%%%¢%2e%822
gsgggeeegoce ggcgeeoocecooggeccooos
$%%%8%2%%%%%% ELLIPSOID FITTING %2%%%%%%%%%%%%8%2%%%%¢%
2202222990002 0022022000222222902202200229229000022980222%
2282533232335 333283050303283322358%33050%%8%223%2%%%%%%¢%%%¢%%¢¢

¢window the lungs in the SP-P data at above 300

Tperf = (SPML{sr_level}.T > 300);

fprintf(’Starting ellipse search with:\n e0 = %s’,
mat2str(e0));

@(ec) objfctn3Dell (ec,alpha,Tperf(:), ..

getCenteredGrid (), SPML{sr_level}.m));

use Gauss-Newton-Armijo method

to find the minimal ellipsoid

[eOpt eHist] = GNA(hfctn,e0);

clear Tperf %discard Tperf to save space

hfctn =

o0 op

fprintf (' Found optimal ellipse\n eOpt = %s\n’, mat2str(eOpt));

2882%2%2522%2%22¢8228225285%2%5%¢%%%%%2¢82%28%%%¢2¢2%%8¢2%%2¢2

$2%2%8%%2%28¢%%2%2¢% SEGMENTATION $%%%%%%%%%8%%2%%%%¢8%%82%2

22%%%8%2222%222%%48%8222%¢%%2%25%¢%2¢8%%%%492¢2%2%%%%2¢%8%¢%¢2¢%¢
outfile = ['setupRegData_week’', vm2str (week),’.mat’];

if —exist(outfile, 'file’)
¢ start segmentation part
fprintf (‘Using optimal ellipse data to segment.\n'’);
$ start segmentation by using eOpt
¢ as the initial guess
driverChanVese3D
fprintf (‘Done\n’);
else
% if for this week of data the ellipse
% already exists then load the saved eOpt
load (outfile);
end

now that the lungs are indicated by {\phis>0}
start second ellipse regisration part
fprintf(’'Fitting ellipse on segmented data.\n');
hfctn = @(ec) objfctn3Dell (ec,alpha,H > 0.5,x%);
[eOpt eHist] = GNA(hfctn,e0);

2
3
g

¢ save the ellipse for future use on the same data

eOptList (:,week) = eOpt;

fprintf (*Found final optimal ellipse\n eOpt =
mat2str (eOpt)) ;

%s\n’,

setup the ellipse E and heaviside H
in pltiple resolutions
setupRegData

2
®
)
k2

¢ set the options for display and interpolation of the

$ data during registration

viewImage ('disp’)

inter(’'reset’, 'inter’, ‘splinelnter3Dmex’, 'regularizer’,
‘moments‘,’'60',1le-2);

trafo('reset’, 'trafo’, ‘rigid3D’);

2gg2gse 2
ER LR ]
2eccee o
5%%ET 3
22208 2
22%%%% 2
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126
127
128
129
130
131
132
133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

163
164
165
166
167
168
169
170
171
172
173
174

wo0global = trafo(’'w0’);
¢ start plti-level registration from (27°3)°3 = 873 voxels
¢ incrementatlly up to (276) 73 = 3273 voxels
fprintf (’Starting plti-level registration\n’);
for level=3:6
% at the lowest level start with

if level==3

w0 = wOglobal;
else

w0 = wOpt;
end

use the minimzer of the last level as

the starting point of the new level

fprintf (‘Starting at:\n w0=%s\n’, mat2str(wo0));

Q = cTML{level}.Q;

m = CTML{level}.m;

fprintf (‘'Using:\n m=%s\n’, mat2str(m));

E = EML{level}.T(:); %use ellipsoid with level '‘'level’’

oo oo

[TD, RD] = inter(‘coefficients’,CTML{level}.T,
CTML{level}.R,Q) ;
objFctn = @(w) rigidObjFctn(TD, inter (RD,§2,
getCenteredGrid(2,m)), Q, m, E, w);

¢ initialize plots to view registration

FAIRplots(’'set’, 'mode’,'PIR-ML’,’'fig’,level, 'plots’,1,
‘direction’, ‘zxy’);

FAIRplots(’init’,struct('Tc’,TD,'Rc',RD,'Q',Q,’m',m));

g2use Gauss-Newton-Armijo method to find the minimizer

[wOpt wHist] = GaussNewtonArmijo (objFctn, w0,
‘maxIter’, 100, 'LSMaxIter’, 10,
‘Ystop',w0global, 'Plots’,@FAIRplots) ;

fprintf ('Optimal movement:\n wOpt=%s\n’, mat2str(wOpt));
% keep a list of the optimal values
¢ and their history for analysis
wOptList (:,level-2,week) = wOpt;
wHistList {level-2,week} = wHist;
end
fprintf ('Registration Complete\n’);
totaltimeweek (week) = cputime - startimeweek; 2%total time
end
fprintf (‘Total time: %f\n\n’,cputime - st);
¢ save history, minimizers and totaltime
save (‘results.mat’,'wOptList','wHistList’,’'eOptList’,
‘totaltimeweek’) ;
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