
A FULLY AUTOMATED ApPROACH TO
SEGMENTATION AND REGISTRATION OF

MEDICAL IMAGE DATA FOR PULMONARY
DIAGNOSIS

By
Alvin Ihsani

A Thesis Submitted to the

School of Graduate Studies

in Fulfillment of the Requirements

for the Degree
laster of Applied Science

Md/laster University

© Copyright by Alvin Ihsani, August 2009



COMPUTER AIDED PULMONARY DIAGNOSIS

A1domatic Region of Interest
Based Registration



Master of Applied Science (2009) Mc faster University
(Computing and Software) Hamilton; Ontario

TITLE:

AUTHOR:

SUPERVISOR:
NUMBER OF PAGES:

A Fully Automated Approach
to Segmentation and Registra­
tion of Medical Image Data for
Pulmonary Diagnosis
Alvin Ihsani B.A.Sc. (Univer­
sity of Toronto)
Jan Modersitzki
vii; 72

ii



Abstract

j\Iolecular imaging is an exciting and relatively new technology that has found widespread
use in the diagnosis and observation of various diseases. More recently, molecular imag­
ing has penetrated areas such as drug development in order to facilitate the observation
and analysis of the effects of newly de\eloped drugs. The amounts of data in drug
development experiments may be very large due to the fact that they contain both spa­
tial and temporal information of medical images. Imaging techniques can facilitate the
analysis of large amounts of data by automating information extraction and providing
meaningful results.

The focus of the project oncel'l1ing this thesis is to create a emporal and spatial
atlas of an animal by utilizing and integrating data from images of different modalities.
More specifically, the application treated in the thesis makes use of ventilation and
perfusion data from CT and SPEC'!' scans in order to aid in the observation of the
effects of newly developed drugs in the treatment of lung diseases. This thesis describes
the segmentation and registration techniques used in detail and how these were utilized
to align and combine ventilation and perfusion data from both CT and SPECT scans.
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Chapter 1

Automated Alignment of
Pulmonary SPECT Data: An
Introduction

l\Iolecular Imaging is a relatively new technology that has found widespread use in the
medical and pharmaceutical industries. This t 'pe of technology can provide very useful
information on a subject and can help in delivering a more precise diagnosis. A preci e
diagnosis, however, does not always impl that the subject \\"ill always be provided the
best reatment as there may exist more than one drug or therapy for the same s mptom.
In order to select the best reatment in terms of medication, where ideally the healing
process is "short" and the side effects are minimal, it is indispensable that one should
observe the short and long term effects of various drugs or therapies, especially when
these are in the development stages. The observation of the effects of a specific treatment
involves, however, a periodic "health check" which in some cases may involve scanning
the subject over the period of the treatment using dill"erent devices such as a '1', SPECT
or PET scanner as necessary. Periodic scans of the subject can provide temporal as \\'ell
as spatial information about. the subject thereby creating a better idea of the progress
of the treatment.

'''lhen dealing with data acquired over a period of time then it is inevitable that
corrections should be made to sub equent scans in order to facilitate the observation of
differences in the subject. There are a number of reasons why corrections need to be
made:

• It is not possible to place the subject in the same exact po ition in every scan

• There may be different machine artifa ts over ime

• Other artifacts are introduced 1y motion such as breathing, heart-beats or invol­
untary motions

• The subject. may exhibit phy iological differences O\'er the period of treatment

This thesis, as will be seen in the following sections, deals with certain aspects of motion
artifacts crea.ted by the placement of the subject in the scanning machine.

1.1 Problem Description and Motivation

The overall objective of the project this thesis is a part of is to enable the observation
of the effects of a treatment on a subject over a period of t.ime. A. mentioned before,
periodic scans of a. subject during treatment can help in observing the effects of the
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treatment over time. In this specific project the choice was to use a combined CT­
SPECT scanner. Computed Tomography (CT) and Single Photon Emission Computed
Tomography (SPECT) are described in more detail in later sections, but for now it is
not imperative to have thorough knowledge of these.

The project this thesis is a part of deals with the observation of the effects of
treatments on the lungs of a subject and specifically abnormal densities of air and blood
within the lungs. These can provide information on the symptom being experienced and
observe its development during the period of treatment.

In order to track air flow in the lungs a ventilation contrast agent is inhaled and
its diffusion is tracked using a SPECT scanner. In a similar way, a perfusion contrast
agent is injected in the blood stream then its diffusion through the lungs is observed using
the same scanning machine [23, 29]. The air and blood diffusion data, fused together,
provides information about healthy and unhealthy volumes in the lungs [23, 29, 33].
Figure 1.1 provides a 2D visualization of the aforementioned.

unhealthy

Figure 1.1: Visualization of the diffusion of the perfusion contrast agent (top-left), ventilation
contrast agent (top-right) and fused data (bottom).

The fusion of the ventilation and perfusion SPECT data and its interpretation
is outside the scope of the project treated in this thesis. The problem treated in this
thesis deals with aligning the ventilation and perfusion data so that it is ready for fusion
and interpretation.

At first, the alignment of the two types of imaging data may seem like a trivial
task, however, there are great challenges when trying to automatically align ventilation
and perfusion SPECT data. Since SPECT data provides information only on the diffu­
sion of a contrast agent it may not be possible to fuse the data due to large structural
differences between data samples. In Figure 1.1 the areas highlighted in red and blue
are the only areas that appear in the separate SPECT data and they do not provide any
information related to the real shape of the lungs. This means that if these two data
samples were to be registered based only on the image intensities (in this case detected
counts) the result may be meaningless for diagnosis. In order to register SPECT data,
CT data taken at the same time using a combined SPECT-CT scanner can be used. The
SPECT-CT scanner pre-aligns the SPECT and CT data since these are acquired only

2
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2 minutes apart. CT data unlike SPECT, is not based on the diffusion of a contrast
agent but rather on the densities of the tissues of the subject aJ1d therefore has more
stru tural consistency (see Figures 1.2, 1.3). By registering the Ventilation CT (\ICT)

data to the Perfusion CT data (PCT) a transformation can be found which aligns the
PCT to the VCT. The transformation found is then applied to the Ventilation SPECT
(Vs'p) to correctly align it to and Perfusion SPECT (Psp )·

Figure 1.2: Typical coronal slice of CT showing (a) body of subject, (b) couch, (c) water
cylinder and (d) muzzle holder.

If the CT data samples corresponding to the ventilation and perfusion SPECT
data are registered using the entire data then the results may still be meaningless from a
clinical perspective due to the fact that the CT data may also have structural differences
such as the different position of the limbs or head in between scans. It is possible,
however, to use parts of the CT data in order to achieve the desired alignment. CT
data can be I' gistered based only on information including and surrounding the lungs,
heart, ribs and chest and back mu cles. This area of the body will be referred to here
a the Region-of-Interest (ROI). '1 he ROI is important because it removes focus from
other a,reas of the body that may indeed obstruct proper registration between VCT and
PCT·

In summary, the process for the alignment of the SPECT data is the following:

• Given pre-aligned VCT-llsp and PCT-PSP pairs

• Find the region of interest in the PCT

• Register the region of interest of PCT to VCT

• Take the resulting transformation and apply it to Ps p to align it to \is p

To the best knowledge of the author, this process is unique, however, there exist alter­
natives to completing each task in the proce.-s. The al'ernative methods are treated in
more detail in a later section.

1.2 Materials

Th material for this project was provided by Dr. Troy F'arncombe and the l'\'lci\[aster

3
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(a)

(c)

(b)

(d)

Figure 1.3: Coronal slice of (a) Vsp, (b) Psp, (c) VCT and (d) PCT.

Centre for Preclinical Imaging. The samples provided were those of a mouse taken
over a period of six weeks with a total of 24 samples. For each week two pairs of
pre-aligned data were provided, namely VCT, Vsp and PCT, Psp at a resolution of
256 x 256 x 256 voxels. The total metric space included at this resolution in each sample
is (58.88 x 58.88 x 58.88)mm3 .

1.3 Thesis Structure

The rest of the thesis is structured as follows.
In Section 1.4, a brief introduction to Computed Tomography (CT) and Single

Photon Emission Computed Tomography (SPECT) is presented in order to provide
some background on the data used.

Section 1.5 will introduce an alignment process by which the desired alignment
between the Psp and Vsp data is achieved. Each step of the proposed alignment process
is then discussed in more detail.

In Chapter 2, the theoretical background on existing methodologies of registra­
tion and segmentation is presented. The actual implementation of one of the segmenta­
tion methods discussed will also be presented.

Chapter 3 will describe why not all the methods in Chapter 2 could not be used
"out of the box" for the project concerning this thesis and how they were modified to
fit the project-specific problem.

In Chapter 4, experimental results will be presented in detail for synthetic as
well as real-life examples.

Chapter 5 will discuss the segmentation and registration methods used in terms
of efficiency, advantages and disadvantages and suggest some further improvements and
draw some conclusions on the work completed in this thesis.

4
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1.4 A Brief Introduction to CT and SPECT

In order to have a clearer understanding of some parts of the alignment process pre­
sented in Section 1.5, it is beneficial to have some very basic background knowledge
of Computed lbmography (CT) and Single Photon Emission Computed Tomography
(SPECT). In the following sections a brief introduction to the CT and SPECT scanners
is presented along with some information about the data produced.

1.4.1 A Brief Introduction to CT

Computed lbmography (CT) is a medical imaging method that uses a series of 2D
X-ray projections in order to create 3D data [13, 55]. A CT scanner, as shown in Fig­
ure 1.4, has two main components, the detector and the X-ray source situated opposite
to the detector. These are connected to a computer which controls the operation, the
acquisition and the storage of data.
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Figure 1.4: Diagram of a CT scanner showing the detector (blue), the X-ray source (red) and
the subject (gray) in the center.

The source and detector rotate around a central axis by a step of Bdegrees every
T seconds acquiring an X-ray projection of the subject inside the scalmer at each step.
The detector consists of a sensing surface composed of Cesium Iodide which scintillates
when hit by the radiation thereby creating a flash of light which can be detected by the
underlying sensor.

The process by which the 2D projections are combined into 3D data is known
as tomographic reconstTuction. Based on the theory of tomographic reconstruction,
initially developed by Johann Radon, if there were an infinite amount of 2D projections
the original object can be perfectly reconstructed in 3D [26].

The important point about the data produced by the CT scanner is that it
measures tissue density expressed in Hounsfield units (HU). Each tissue in the body
exhibits a particular range of intensity values which mayor may not overlap with other
tissues. Windowing is one quick method to narrow focus to a specific range of intensity
values. For instance, by windowing values ranging between -500HU and -lOOHU one is
able to narrow focus on the lungs, however, this runs the risk of showing other tissues
which lie in the same intensity range.

1.4.2 A Brief Introduction to SPECT

In some cases CT data does not provide enough information about the condition of the
subject. For instance, CT data does not emphasize on patterns of air flow and blood
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flow in the lungs which can be indicative of diseases. For such cases, different imaging
techniques need to be employed.

Single Photon Emission Computed Tomography (SPECT) is another imaging
technique used in nuclear medicine. The idea of SPECT is the same as that of CT
where a detector is rotated on a central axis around the body of a subject, but instead
of measuring the attenuation of rays coming from an X-ray source, it detects radiation
levels from a radio-labeled contrast agent injected in the body of the subject by counting
the number of photons hitting the sensor. Different from CT, SPECT does not measure
tissue density but rather the diffusion of a contrast agent through the body and therefore
SPECT data has more structural variation then CT data. The choice of the contrast
agent depends on the organ of focus. For instance, for a lung perfusion scan of a mouse,
the contrast agent used is Tc-99m labeled macro-aggregate albumin. This contrast agent
"gets stuck" in small arterioles in the lungs thereby depicting blood flow. On the other
hand, for a ventilation scan the contrast agent used is Tc-99m Technegas. When the
compound is heated, the fumes of this contrast agent are inhaled by the subject and the
smoke sticks to the lungs thereby showing ventilation.
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Figure 1.5: Diagram of a SPECT scanner showing the contrast agent (green) in the subject
(gray) in the center.

The detector of the SPECT scanner is similar to that of the CT scanner. How­
ever, the detector is composed of two main components, the collimator and the sensing
surface. The collimator is a layer which is situated on top of the sensing surface. The
purpose of the collimator is to block the sensing surface from detecting rays that are
not perpendicular to the detector. Without the collimator the detector would detect
rays that may not come from the source and through the body of the subject thereby
providing inaccurate projections. Figure 1.6 shows the layers of the detector. The
data is reconstructed by combining the 2D projections acquired using tomographic re­
construction and the intensity values are represented as reconstructed counts per unit
time.

Collimator

Iodide Crystal

Sensors

Figure 1.6: Cross-section of SPECT detector surface. Rays approximately perpendicular to
the detector aloe sensed while others are blocked by the collimator.
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1.5 Alignment Process Breakdown

T he objective of the project concerning this thesis is to find a way of aligning the Psp

and Vsp data, by using the corresponding PCI' and VCT data since CT data has more
structural consistency than SPECT data. However, objects and body parts in the C'1'
data such as the couch, the water cylinder (used to calibrate Hounsfield Units for C'1'),
the muzzle holder, the position of the arms, legs and lower body (see Figure 1,2) may
obstruct the proper registration of the chest between t.he PCI' and VCT data. Tn order to
register the Crr data correctly the focus lUU t be narrowed down to the chest in the PCI'

data which in the context of this thesis is known as tbe Tegion of inter'est. Therefore,
proper registration of the ventilation and perfusion CT is achieved by aligning the region
of interest of the PCI' data with the VCT data,

An alignment process that aligns the PCI' and VCT data as required is described
by following three steps:

1. Find an initial gues. for t.he ROT on the PCI' data based on the Psp data.

2. Refine the initial guess based on the PCI' data alone

3, Register the ROT of PCI' data to the VCT data

Figure 1.7 provides a con eptual map of the overall proce s, Tn the following sections
each step is described in detail.

1.5.1 Finding an Initial Guess for the Region-of-Interest

At this stage an initial guess for the region of interest is needed, In order to obtain
a "good" initial guess the Psp data can be used. The P'c;p data typically shows the
highest concentration of the contrast agent inside the lungs, There may be cases wbere
the contrast agent used for lung perfusion SPECT scans spreads to the bladder, however,
this is not very common and can be easily masked off. Given the above information, the
assumption is that the largest concentration of the contrast agent in perfu ion SPECT
is within the lungs (Figme 1.3-b). Based on this assumption unle s there is a prior
misalignment between the PSP-PCT data pair, the initial ROI found from the Psp data
will lead to a volume that is within or very close to the lungs in the PCI' data.

For the first step of the alignment process, the approach is to fit an ellipsoid to
a windowed version of the Psp data. '1'he windowing is chosen to remove small non-zero
values outside of the lungs, The ellipsoid-fitting is done is such a way that the smalle. t
ellipsoid enclosing the windowed Psp data is found. This ellipsoid is indicative of the
approximate region where the lungs are situated in the PCI' data, Figure 1. shows a
typical result of the initial ROI.

The initial guess i. described by an ellipsoid because the shape of the ROl is
not important at this stage and an ellipsoid is easy to handle.

In the next step. presented in the following section, the ROT must be refined as
it may still include regions in the PCI' data that may ob truct correct alignment.

1.5.2 Refining the Region-of-Interest

The initial guess obtained in the step described in the previous section may still contain
organ. or objects which might ob truct proper alignment. The reason for the initial
guess containing these "foreign" objects is because it may be brger than the lungs.
}or instance. in ,"ubjects with no lung perfusion problems, the contrast agent spreads
throughout the entire volume of t.he lungs and therefore the ellipse enclosing the win­
dOII'ed data in the Ps P might be larger than the lungs. Thi means that t.he initial
region of interest in the P. 'I' data might contain part of the arms or other objects that
are in close proximity to the chest.. On the ot.her hand. if the initial region of interest is
too small then there may not. be enough information in Lhe region of interest to regi tel'

7
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Ventilation data Perfusion data
.............•....................................................•.........

...................
Pre-aligned

1. Find an initial guess for the
Region-of-Interest based on the Psp
data then transfer it to the PCT data.

.•••.....................•..•••••....•
2. Refine the initial guess then enclose
it by an ellipsoid.

....•.......•......•.................. .
3. Find transformation by registering
ROI of PCT data to VCT data and
apply transformation to SPECT data.

Register

..........
App, :/transformation

.:

Al'gn

······
Figure 1.1: Diagram of the perfusion/ventilation alignment process.
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(a) (b)

Figure 1.8: A typical TeSlllt of (a) the initia,l ROJ on the Psp data and (b) on the PCT data.

the data, reliably, An assumption that can be made about the initial region of interest
is t,hat the ellipsoid is very close to or within the lungs.

In order to remove any existing "foreign" objects from inside the region of in­
terest the ellipsoid is evolved to the shape of the lung' lIsing a segmentation method,
The segmentation method used is known as active contours using a level-set formula­
tion [31, 37, 3 ,47-50]. The thorough mathematical details will be discussed in later
chapters, but the underlying concept is presented here.

Given 3D data, a so-called level-set function ¢ : IR4
-t IR is used to describe the

contour r, which in turn is used to describe the shape of the lungs, as its intersection
with the 3D plane r = {¢ = O}, Initially r is the contour of the ellipsoid found in
the initial guess presented in the previous section. The hl11ction ¢ must then evolve
according to some predefined criteria in order for r to enclose some volumes of interest
in the body of the subject. There are many approaches to define how the function ¢
evolves. Some of these approaches include:

• Directly defining partial differential equations, such as that of curvature flow using
the heat quation [37]

• Using an optimization setting [2,18,31,37,38,44,47-50,53,54]

In the project treated in this thesis an optimization approach was chosen,
The purpo e of this step is to evolve an initial guess in such a way that the

volume it enclose approximately matches the volume of the lungs, see Figure 1.9.
Once this step is complete another ellipsoid is fit on the segmented volume. The

reason for tbis is that, even if the lungs are perfectly segmented, still more information
about the surrounding tissues, such as the ribs, is needed because they have a rigid
structure. \iVhile other organs such as the heart and the lungs may move within the
che t during a scan due to heartbeat and breathing th ribs are more ricrid and help
when finding a rigid t,ransformation to align the PCT and VCT data.

The purpose of this step is to find an ellipsoidal region that is more accurate
than the initial. The desired result is to find a refined region of interest that is dose to
the surface of the lungs. For instance,

• If the initial ellipsoid is too large then after the segmentation step, the Ilipsoid
should be smaller according to the size of the lungs in the PeT data.

• . nalogically, if the initial gue ' is too small then after tbis step the ellipsoid should
have grown,

In the next section, the incorporation of the resul from this step as well as the
registration process are described,

9
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(a)

evolve

(b)

Figure 1.9: The evolution from (aj the initial guess in the PCT data into (bj the segmented
volume in the PCT data.

1.5.3 Registration and Alignment

As a final step, the refined ellipsoidal ROI is used as a weight on the PCT data. In other
words, the PCT data is spatially filtered in such a way that the only regions containing
information about the subject are enclosed in the refined ROI.

Finally, the ROI of the PCT data is registered to the VCT data. The registration
in this specific project is multilevel [11, 22]. rVlulti-level registration involves registering
the template (PcT-ROI) and reference (VCT) data at multiple resolutions starting with
the lowest desired resolution and incrementing it to the highest desired level. At lower
resolutions, the data retains such properties as shape, orientation and relative position
but loses detail. This means that at lower resolutions the registration is faster and less
prone to finding local minima. As the resolution is increased the minimizers found at
lower resolutions are used as the initial guess and refined.

For the project concerning this thesis, the registration currently deals only
with rigid transformations. Other transformations, such as affine and elastic, will be
implemented in the future. Furthermore, it is assumed that the relative position and
shape of the organs inside the rib-cage remains unchanged due to the fact that the rib­
cage has a rigid structure. The registration finds the transformation that minimizes the
L2-norm of the distance between the ROI of the PCT and VCT data.

Figure 1.10 shows a typical pair of PCT-VCT data before and after registration.
Since the registration is based only on data inside the region of interest of the PCT, it
is expected that the two data are aligned correctly in the chest area.

As a final sub-step, the resulting transformation of the PCT data to VCT data
is applied to the Psp data in order to align this with the corresponding Vs p data.

1.6 Alternative Approaches

To the best knowledge of the author, there are no other fully automated processes that
try to achieve alignment between different measurements of SPECT data in the same
way. Each individual step of the aforementioned process, however, may be potentially
substituted by alternative segmentation and registration methodologies.

In the following sections, some alternative approaches to segmentation and reg­
istration are presented and compared to the current approach.

10
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(a)

(b)

(c)

(d)

Figure 1.10: Overlapped PCT (red) and VCT (gmy) shown (a.) befoTe Tegistmtion with (b)
closeup of the ROJ and (c) after the registmtian with (d) cla enp of the ROJ.

1.6.1 Segmentation

Segmentation methods aim to partition an image into separate regions according to
some criteria. For instance, when building an atlas of the human body the aim may be
to partition the image into separate regions showing different organs or tissues. In other
situations, it may be necessary to focus on a specific organ or object therefore a single
region containing the object of interest is needed.

There are many methods t.hat can be used in image processing for segmenta­
tion [7] some of which are briefly described in the following paragraphs and are compared
in terms of the objective of t,llis part of the project.

Histogram based methods use a histogram of the image in order t.o find clusters in
an image. The intensity of values or color can be used as the measure. Simple
histogram methods may not be able to isolate an organ of interest uch as the
lungs due Lo the fact that the lungs and other parts of the body ma.y have similar
intensity values. However, more advanced methods using also active contours
methods .'uch as that proposed in [51] may provide a closer result to the one
expected for the project of this thesis. oIethods such as that proposed in [51] may
be considered for future research in the segmen ation of the lungs.

Edge Detection methods accentuate the edges in an image. The edges in the image
are typically detected by the sharp transitions in color or intensity between dif­
ferent objects [19]. The edges detected can then be used in another segmentation
met.hod to find the boundaries of an object of interest. However, an object of
interest can also be isolated without using edges therefore edge detection methods

11
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were not used in the project of this thesis.

Region Growing methods such as the seeded region growing method can isolate an
organ of interest as required. The idea is to pick pixels from an organ of interest,
for axample, then expand the region defined based on the intensity values of the
neighboring pixels. The downside of this method is that the input provided by
the first step is an ellipsoidal region which may include other organs or a.ir from
outside the body of the subject. Using this region as a seed may have undesired
effects such as the inclusion of organs that are not the lungs or other objects.

Model-based Segmentation methods work under the assumpt;ion t;hat; organs ha.ve
a repetitive structure and geometry, therefore a probabilistic model can be used
to describe the variation of the shape of the organ and then impose constraints on
the segmentation using this model as prior [8]. Some approaches in model-based
segmentation require training samples. In the application of this thesis training is
being avoided due to the fact; that it is time consuming, in an off-line sense, cost;ly
and the models of statistical inference between t;he probabilistic model and actual
data may be very complex. Other model-based segmentat;ion approache do not
require training samples which is more desirable for the application in this thesis,
however, automatically finding a statistical or det;erministic model to describe the
lungs in different; subjects may be a very complex t;ask. Provided th assumption
that the initial guess is within or closely enclosing the lungs, it seelllS more nat;ural
to refine the initial guess based on the image.

Multi-Scale Segmentation met;hods segment an image in scale-space. This means
that during the proce s of segmentation the scale of the image varies increment;ally
from coarse details to finer details. From a recent number of test;s of the currently
implemented segmentation method in multi-scale, it seems that; the results are
promising and t;his is definitely a path that will be followed in the very near
future.

1.6.2 Registration

Image registration methods aim to find a reasonable transformation between two images
in order to make the images more similar to one another. A reasonable transformation is
problem specific and may include rigid, affine, elastic or other transformations. Likewise,
the similarity measurement is also problem specific. For instance, the project in this
thesis uses the energy of the difference image as a measurement of similarity between
the VeT and PeT data. An alternative way to m asme similarit;y is by using feature­
based methods. Typically, feature-based methods either require user input to draw
corresponding features (not; desirable for the application treated in this thesis) or find
corresponding features automatically. Since the v: 'T and PeT data are of the same
modality, the intensity-based registration was cho. en over the feature-based one.

The current approach of registration deals only with rigid transformations since
it works under the assumption that the rib-cage has a fairly rigid structure. However,
elastic and affine transformations are not being ruled out since there may be situations
for which a rigid transformation may not be sufficient to properly align the data. So
far, the restriction to rigid transformations has worked for the data used for the project
treated in this thesi·.

Multi-level and mult;i-scale registration are two registration methods that are
effective in avoiding local minima. i\lulti-Ievel registration consists of using multiple
resolutions to align images, while multi-scale registration consists of using a single res­
olution at multiple scales. These methods will be explained in more detail in a later
chapter.

In the application treated here, multi-level regi tration was the registration
method of choice since it avoids local minima and improves computation time. Local
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minima are avoided by using coarser resolutions which retain only the main features
such as shape, location and orientation. The minimizers found at each stage are used
as the starting guess at a finer level and refined until the maximum desired resolution
is reached. Computation time is improved due to the usage of lower resolutions.
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Chapter 2

Background on Existing
Methods of Segmentation and
Registration

This chapter will focus on existing met,hods of registration and segmentation. These
methods have theoretical and practical importance since this project is heavily based
on them. The notation and some of the functions presented here are inherited by later
chapters where these methods have been extended in order to fit the specific needs of
this project.

Due to the fact that segmentation has evolved significantly in the last twenty
years the description of it will be laid out chronologically. First, the early work of
.Mumford and Shah [10] will be de.·cribed due to its importance in posing the problem
of segmentation and de-noising. Later, a regularization to the i'dumford-Shah problem
proposed by Osher and Sethian [47], known as t,he level-set formulation, will be intro­
duced along with state of the art segmentation methods that. u e this formulation to
solve special cases of the Mumford-Shah problem such as those proposed by han and
Vese [49, 50]. The Chan and Vese methods proposed in [49, 50J will be discussed in finer
detail as these are the basis of the segmentation met,hod developed in the project of this
thesis.

Section 2.2 will provide some background on exi ·ting registration met.hods. This
section begins with an overview of image registration [3, 21, 35] using an optimization
approach followed by a description of single, multi-scale and multi-level regi. tration in
order to provide an idea of the tools used in this thesis.

2.1 Segmentation Methods

2.1.1 The Basic Concept of Segmentation

The basic idea of segmentation is to be able to partition th domain D C II{d of an image
11 : n -> II{ into a finite number of open subsets L: i . for i E {1,2, ... ,n}. where the
following conditions based on [10] hold

{

D = Uti
L:; n L: j = 0. Vi # j
L: i # 0
L:; c D

(2.1 )

The partitioning of the domain into ubsets is based on some predefined criteria
which are problem dependent.. For instance in some cases it may be necessary to
partition the domain of an image into separate objects with sharp boundaries between
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them. In other cases, it may be necessary to extract a single object from an image
dependjng on its shape, location, size or measured value.

A boundary r divjdes the image into open subsets L;i and is defined a.

r = nf:; n n. (2.2)

In other words, r is the union of the boundaries of subsets L;; inside n.
\11 ith this defini ion of r it is possible to enforce constraints on it based on

internal factors, such as length or curvature, and external factors such as the underlying
data [31,39,50,53,54]. One way to impose a certain shape on r is to use an optimization
approach where an objective funct.ional can be constructed that regularizes and penalizes
its behaviour. An objective Junctional can ha.ve internal energies E in and external
energies Eout as shown below.

(2.3)

In order to find the curve r* that minimizes (2.3) the steepest descent method can be
used where the evolution of r is defined by - \1E at each step.

In the following sections only most influential methodologies pertinent to the
project in this thesis will be discussed.

2.1.2 The Mumford-Shah Approach to Segmentation

In this section some of the work of j\!umford and Shah in [lOJ will be discus. ed. The
fllJ1ctionals described in this section are of importance due to the fact that they are
introductory to the work described in [47, 49, 50] which are treated in the following
section..

In [10]' an image is considered to be a projection of a 3D world into an observer
point P where g(p) represents the intensity of light reaching P in the direction p. ~When

these rays of light are projected onto a plane n. then t.he inten. ity of light incidental
to the plane can be represented by g(x, y). The light reflected from the surfaces S; of
objects Oi is projected on the plan n and divides the plane n into open subsets L;;.

Objects that overlap will create subsets L;; that share a common boundary r, also known
as an edge, where the image is considered to be discontinuous. Other discontinuities
may be introduced by surface orientation, such as the surfaces of a cube, markings on
the surface of the object and shadows. The assumption is that the image g(x, y) is
piece-wise smooth and it can be modelled by a set of smooth functions 1; defined on
disjoint regions L;i covering n. However. this model is not entirely accurate due to the
following:

• Textured objects, such as carpets, or fragmented objects, such as a ca.nopy of
leaves: define more complicated images

• Shadows create discontinuit.ie which are not real: due to the penumbra

• Surface markings may come in misleading forms

• Partially transparent objects and reflecting objects also define more complicated
images

• The measurement of 9 may contain noise

In summary. the domain of the image 9 is to be decomposed in such a way that

• the image 9 varies smoothly within each L;i: and

• i discontinuous over the boundary r between different L;i.
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From an approximation theory point of view, the problem seeks ways to define
and compute optimal approximations of a general function g(x, y) by a piece-wise smooth
function I(x, y), where each Ii defined on 2: i is differentiable. Given this definition then
the optimal approximation is defined as the minimizer of the following functional

EU,r) = p,2J (f - g?dxdy + r 11\711I2dxdy + vlrj
fl Jfl\r

Here, I is a differentiable function on U 2:;, which is allowed to be discontinuous over r
and WI represents the total length of the arcs making up r. In this functional, the first
term asks that f approximate g, the second term asks that f vary as little as possible
in each 2:i and the third term asks that the boundaries between different regions hat
make up r be as small as possible.

Dropping any of the three terms in (2.4) would lead to the following results.
·Without the first term then f = 0 and r = 0; without the second term then f = 9 and
r = 0; without the third term r can be a fine grid of N horizontal and vertical lines,
composing N 2 square regions, where f is the average value of 9 in each 2: i . If r covers
the entire s tn, r = n, the second term drops and f = g.

Loosely speaking, a minimizer uo, r-) of the fun -tional in (2.4) is a cartoon
of the actual image g. In r edges are drawn sharply and precisely and the objects
surrounded by the edges are smooth and without texture. It is obvious that r no
longer retains the amount of detail of g, but still contains many of its essential features.

It was not known whether the problem of minimizing (2.4) was well-posed, but
Mumford and Shah conjectured this to be true. The problem was proven to be well­
posed only later by !'vIa 0, lvIorel and Solimini in [15]. l\Iwnford and Shah conjectured
that for all continuous functions g, E has a minimum in the set of all pairs (j, r), with
f differentiable on each i and r a finite set of singular points joined by a finite set of
CI-arcs.

Functional (2.4) had been previously introduced in [45] for functions 9 and f
on a lattice and studied in [I, 25], however, lVfumford and Slmh introduced this for a
plane domain n.

A restriction on the functional in (2.4) is to use piece-\\ ise constant functions
f such that J = ai on each open set 2:i . This means that the second term in (2.4)
drops out since the gradient is zero. Dividing both sides by p, the following functional
is obtained

Eo(J, r) =~ h; (g - ai)2dxdy + voln

This functional is minimized in he variables ai by setting

ai = meanE, (g) = h; gdxdy / area(2:i ).

Therefore, the functional to be minimized is in fact the following

Eo(r) = L J (g - mean ,g?dxdy + voWI·
i O.

(2.5)

(2.6)

(2.7)

As shO\m in [10] by l\hUl1ford and Shah, if r is fixed then the J which minimizes E
in (2.4) tends to a piece-wise constant limit when J1 --> 0 and therefore Eo in (2.7) is the
natural limit functional of E. In addition, the problem of minimizing Eo is proven to be
well-posed: for any continuous function g, there exists a r made up of a finite number
of singular points joined by a finite set of C 2-arcs in which Eo attains a minimum [10].

2.1.3 Chan-Vese Approach to Solving the Mumford-Shah Prob­
lem

In the last section a brief description of the l\lumford-Shah problem \Vas laid out along
with the functionals proposed by them in order to address the problem of segmentation.
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Note that Mumford and Shah did not impose special conditions on the natme of r itself.
r introduces discontinuities where it passes and singular points wherever it "crosses"
with itself. The generalization of r complicates the problem.

A regularization on r, known as the level-set formulation was first introduced
by Osher and Sethian in [47] and has been used quite extensively since [50]. This for­
mulation simplifies a number of the special cases considered by Mumford and Shah [10].
In [47] the cmve r c n c JRd is defined as the zero level-set of a function </J : JRd+! ---> JR
(see Figure 2.1), therefore

r = {xl</J(x) = O}. (2.8)

Figure 2.1: Conceptual diagram showing the zero level-set r of the function </J in 3D.

This formulation allows for cusps and corners as dictated by automatic topo­
logical changes.

Assuming a single level-set functional and r lying entirely within the domain n,
then a natural question arises with regards to indicating what lies "inside" and "outside"
the curve r. It is then useful to define an indicator function that facilitates this.

One indicator function that can facilitate the identification of different regions
is the Heaviside function defined as

H(z) = { ~ if z::::: a
if z < 0

(2.9)

The actual Heaviside function used in this thesis is based on [50, 56].

H (z) = ~ (1 + ~ arctan (~) ) (2.10)

where E is a small positive number. As will be seen in the following material, it is
necessary to have a differentiable Heaviside function that is why (2.10) is used.

For simplicity, from this point on, all integrals over the domain n will be as­
sumed to be over x and y, therefore the following notation will be used unless otherwise
stated:

in q = in q(x, y)dxdy

A simplified approach to the Mumford-Shah functional in (2.4) was proposed
by Chan and Vese in [49]. The idea is to partition the image into two regions separated
by a boundary r. The regions h, 12 are defined as

g= { h
12

if</J> 0
if</J < 0

(2.11)

where hand 12 are 0 1 functions on {</J ::::: a} and {</J ::::: O} respectively. The image 9
can be constructed by combining hand 12. This is known as the two phase model [49].
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Using the above setting a simplified version of (2.4) can be written as follows

E(ft, h, ¢) /LI IV'!J 12 H(¢» +11ft - gl2 H(¢» (2.12)
\I n

+ /LI IV'hI 2 (1- H(¢») +1112 - g/2(1 - H(¢»)
n n

+ J/ in H'(¢» IV'¢>I

In this functional the first two terms ask that 11 approximate 9 inside the curve f while
keeping as "flat" as possible; the second two terms ask the same of 12, but for the region
outside f; th last term asks that f should have the smallest possible length. These
conditions closely resemble the conditions stated by f"Iumford and Shah for (2.4) with
an additional limitation imposed on the number of regions that compose the image.

The last term in equation (2.12) was obt,ained as follow. The length of the
curve f as defined in [27] is

If1=1II V'H(q'» II·
n

With some simple manipulations and considering that 0 ~ H(z) in (2.10) then

/IV'H(¢»/I = IIH'(¢)V'q'>/1 = H'(¢»IIV'¢II·
Therefore,

Ifl = in IIV'H(¢)II = in H'(1))IIV'¢II·

In order to minimize (2.12) the steepest descent method was used. In the
following sections the computation of - V'E and the necessary conditions are described
step by step. First, the first variation with resp ct to ¢ is computed. This is followed
by a first variation on hand h. Finally, a summary of the computed gradien and the
nece sary conditions is provided.

Computing the First Variation of E With Respect to ¢

In order to minimize functional (2.12) a variational approach is taken. Let II and 12 be
fixed, then

E(II, h ¢> + t'l/J) = 1.1,1 1\7hl 2H(¢ + tljJ) +i 1h - g/2H(¢ + t'ljJ)
n n

pi 1\71212 (1 - H(¢ + tif;)) + r112 - g12(1 ~ H(1jJ + t ))
\I in

1/ rH'(@+t'lj;)IV'¢ + tV'l,b1
in

P111V'fd2H'(¢>+tlj;)'ljJ+ inIfI-gI2H'(¢+t'lj;)'Ij;

/L 11 lV'hI2(1 - H'(d> + tl/;)'Ij;) + in 112 - g12(1 - H'(q'> + t7?)if;)

1/ in H"(¢ + tJiJ)IIV'1jJ + tV' II + 1/ in H'(1J) ,,~:: ~~'ljJ1l V''ljJ.

In order to find the descent at ¢> then set t = 0

~/(t) Pin IV'fd 2 H'(¢)'Ij; +11 Ih - gl2H'(¢) if;

+ pi 1\7121 2 (1 - H'(Q)¢) +1112 -gI2(1- fJ'(@)JiJ)
n n

+ 1/ 1/I"(1jJ)11V'¢11 + 1/ in H'(1)) II~:II \7'1j;
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The last term is this equation does not describe the variation in terms of the perturbation
'Ij; directly, but rather in terms of the change in perturbation \7'1j;. Using integration by
parts [17] the following form can be reached.

"/(0) f.L 11I\7hI2H'(¢)'Ij;+ 11Ift-912H'(¢)'Ij;

+ J-Ljl\71212 (1- ]{'(¢)lj;) + r112 - 91 2(1- H'(¢)!fJ) (2.13)n in
+ fan H'(¢)1f;\II~:1I ii) -h fJ'(<b)\7· CI~:II)1f;

where on is the normal to the boundary 80.,. In order to find the solution (jJ then ,'(0) = O.
Chan and Vese have assumed in their formulation that ¢ does not vary with

respect to the normal of the boundary of the domain and therefore the boundary term

fan fJ'(cf;)7f; \ 11\7:11' ii)
in equation (2.13) vanishes since

H'(¢) \ll~:lI'ii) = 0 (2.14 )

This is known as the natuml bounda1IJ condition [4, 28]. The natural boundary condition
on 80., means that the curve r will intersect with t.he boundary of n perpendicularly.
The physical equivalent. would be a soap bubble adhering to a surface. Once the soap
bubble touches he surface, the adhesiveness caused by the intermolecular forces will
make the bubble stick to the surface. The bubble will ultimately take th shape of a
hemisphere with its boundaries perpendicular to the surfa.ce.

Using the above bounda.ry conditions (2.13) can be written as

'/(0) d.pE(!J.hcp)=J-L hl\7fd2H'(¢)if;+ 11Ih-912H'(</J}!fJ

+ p r 1\71212(1 - H'(IjJ)¢) + jl12 - g12(1 - H'(¢)1f;) (2.15)in n
- 11 H'(¢)\7· CI~:II)1f;

In order to conclude that ,,/ (0) = 0, then for any perturbation I/J

H'((jJ) [IN. (II~:II) -If] - gl2 - pl\7h 1
2 + 112 - 91

2
+ ttl \7121

2
] = O.

The de cent direction for dJ is parameterized llsing an artificial "time" i ~ 0 as <p(x, t)
where <p(x, 0) = q>o(x).

~~ = H'(q» [1/\7 . (II~:II) - IfI - 91
2

- J-LI\7 fl1
2 + 112 - gl2 + ttl \7121

2
] (2.16)

Computing the First Variation of E With Respect to fl and 12

So far the flow of </J was found, but in order to fa 110\\' the steepe. t descent the flow
of (2.12), the nece. sary conditions for hand h must be computed also. Fixing (jJ and
12 and following a similar approach as above

,(t) E(h + is]. h </J) = J-L r1\7fl +t\7sIi 2 H(dJ) + jlJI + iSI - 91 2 H(<D)in n
+ phi 1212 (1 - H(?)) +hlh - g12(1 - H(0))

+ 1/hH'(</J)I\7d>I·
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Then

'Y'(t) =JL r(\lh +t\l8])\l8I H (¢) + r(h +t8]-g)8]H(¢)In In
In order to find the descent at h then t = 0, therefore

Let X = {¢ > O} and OX = {<p = O}, then the above equation can be written as

The first term in the last equation does no describe the variation in terms of the
perturbation 81l but using integration by parts [17] with the following substitutions

11 = \lh

u' = 6.11

then 1"(0) can be written as

U = 81

(2.17)

where n is the normal to the boundary ox.
Let 8] = 0 in a neighborhood to at. the boundary r. Then

r 81 (\Ih ,fi) = 0la,

(2.1 )

Since 1"(0) = 0 then

which implies

Letting to -t 0 and relaxing 81 to be any smooth perturbation then

Since this is valid in the ntire X, then it remains that

for any variation 81 and so
(\IhJi) = 0

Then ,'(0) can be written as

Letting 1"(0) = 0 then for any perturbation 81, I] can be. olved as follows.

(1- p6.)fl = 9

The \'ariation and necessary condition for h is found by the same analogy as h.

(1- p6.)h = 9

20
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Summary of the Gradient Flow and Necessary Conditions

The gradient of the functional in (2.12) is described by

d",E(h,h</!) IJ.- J/\7flI 2H'(</!),t/;+ Jll12-gI2H'(cP)'I/;

+ IJ.-jl\71212(1- H'(1))'I/;) + r112 - g12(1 - H'(1))'I/;)n In

I , ( \7</! )
n H (1))\7. /1\7011 J/;.

ds1E(Jl,12,¢) J(J1-9)81 - P! /::,h 8 1
x A

dS2 E(h,h0) = r (12-g)82 -lJ.-l /::,1282
In\x n\:\

(2.21)

where X = {¢ ~ O} and 81, 82 and are the perturbations on f], 12 and 0 respectively.
With -\7E = 0 the above equations lead to the following necessary condi ions.

8¢
8t

h
12

H'(¢) [V\7. CI~:II) -Ih - gl2 - pl\7fd2+ 112 - 91 2+ III \71'21 2
]

9 + p/::'fJ (2.22)

g+p/::'1'2

I n the next section the algorithm by which the minimizer is found using the
system in (2.22) is described.

Algodthm

The standard steps to solve the Euler-Lagrange equations in (2.22) are described below.
Assuming a time-discretization of ¢(t,x) as ¢(nT,x), where T is the time-step and 11 a
finite positive integer representing the iteration number then let (¢)", (ft)" and (h)" the
respective function at iterat,ioll n. Some of the steps ill the algorithm will be elaborated
upon later.

1. Let n = 0 be he init,ial level-set function ¢o

2. Calculate (I])" on {0 ~ O} and (h)" on {¢ S O} using (2.19) and (2.20)

3. Extend by C 1 functions (!J)" on {(» < O} and (h)" on {q.> > O} in a small
neighborhood near the {¢ = O}

4. Solve (2.16) to obtain ¢rt+l

5. Re-initialize (j)" to the signed distance function to the curve. This i done only
near the zero level-set 132]

The discretization scheme will be explained ill a later section, but for now the algorithm
is presented to give an idea of the typical steps in the evolution of ¢, hand h.

In the third step, the extension of hand 1'2 is necessary since. in practice, these
have to be computed near a narrow band on the boundary. but neit,her is defined across
the boundary. There are a number of options to perform this extension the details of
which are described in [36,40,41 43 52].

In step five, the re-initialization of the function </> is important due to the fact
that the level-set fUllction develops shocks. a very sharp or flat shape during evolution
(see Figure 2.1.3), which can make further computations inaccurate [5]. The effect of
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(b) </J with shock

Figure 2.2: The (aJ initial ¢ develops (bJ shocks dUling evolution.

shocks can be removed using re-initialization. For instance, ¢ can be re-initialized using
the signed distance function at its zero level-set as described in [16, 32]:

7/JT = sign(¢(t))(l - 1V'7/J1)
7/J(0,') = ¢(O,·)

(2.23)

Here, ¢(t, .) is ¢ at time t. The new ¢(t, .) will be 7/J, such that 7/J is obtained at the
steady-state of (2.23). The solution of 7/J(t,') will have the same zero level-set as ¢(t,')
and away from the contour 1V'7/J1 converges to 1.

The method proposed by Chan and Vese [49] on the first functional proposed by
Mumford and Shah [10] is effective for de-noising signals as well as segmentation. The
drawback of this model is the continuity conditions over the boundary r. This adds
some difficulty to implementation due to the fact that some special cases have to be
considered for the calculation of the gradient on the boundary. As shown in Figure 2.3
not all neighboring points of a point are inside the same region therefore assumptions
must be made when solving the problem in a discrete setting.

This approach to segmentation, however, is more complex than needed for the
purpose of the project of this thesis since it both segments and de-noises the image. The
purpose of the segmentation step for this project is to extract a single organ, namely
the lungs, from the body of a subject without retaining additional information about
the measured values in the image so no de-noising is required.

Figure 2.3: Visualization of the curve r passing in a grid showing points a, band c on the
boundary with a different number of neighboring points lying outside their region.

A simplified approach proposed in [50] by Chan and Vese partitions the domain
of the image according to the average values inside and outside the curve r. This is a
restriction on the approach just discussed where II = aj and h = a2.
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2.1.4 Chan-Vese Approach to Segmentation

In this section a. reduced case of the functional trea.ted so far proposed by Chan and
Vese [50] will be discussed. The basic idea of this approach is to separate components
in an image into background and foreground. Specifically, all regions enclosed by the
curve f are part of the foreground and the rest is background.

Many approaches to segm ntation make use of the edges in the image [31, 37,
53, 54]. In the Mumford-Shah model the image 9 is assumed to be smooth due to
the fact that direct use of IV'gl is made. Other methods t.ry to relax this assumption
by introducing an edge detector that makes use of a smoothing operator, such as the
following

1
1](IV'g(x, y)1) = 1 + IV' (. )Ip' ]J::::: 1 (2.24)ug x,y

where V'ug(x, y) = V'[Gu (.'!:, y) *g(x, y)]. Gu *9 produces a smoother version of 9 since
this is typically the convolution of an image 9 with a Gaussian function Gu(x,y) =
(J-l/2 e-lx'+y2l/4u where (J > 0 is the spread. The resulting image 1/(lV'gl) is positive in
homogeneous regions and close to zero at the edges.

The purpose of an edge detector is to have the curve evolution stop at the points
where 1] is zero. However, this is true only for the highest edges in g. Other edges in 9
that may indeed be of interest to the problem may have values away from zero in 1] and
therefore the cmve might not stop there. Furthermore, when an image contains a lot of
noise the Gaussian smoothing applied to the image, hould be stronger and this means
that sharp edges are smoothed as well.

Problem Statement

The functional constructed by Chan and Vese in [50] will be the focus of this section.
This functional closely reo embles a reduced case of the functional (2.7) where the domain
n is partitioned only in two regions ~out and ~in outside and inside r respectively.

The model is the followiJ1g. Assume that the image 9 is formed by two regions
of approximately piece-wi e constant intensities with values gout and gin and that the
object to be detected is represented by the value gin with a boundary f o separating it
from the other value. Then 9 is approximately the same to gin insjde f o and to goul

out ide fo· Letting the region inside f be denoted by X then the fitting term then can
be expressed as

E1(r) + E2(f) = 1 Ig
E",

(2.25)

(2.26)

where f is any variabl curve, and the constants CI and C2 that depend on f represent
the average value of 9 inside and outside f respectively. For the image ju. t described
the curve f o is the minimizer. This explanation is depicted below in Figure 2.4.

sing the level-set formulation, assuming a single level-set fun ·tion ¢ then the
fuJI form of the Chan-V se functional is the following

E(Cl.C2,t;» /1 l H'(9)1V'91

+ 1/1 H(</J)
II

+ >'1j Iv-cJ!2 H(¢)
n

+ A2! Iv - c21 2 (1 - H(9))In
\\'here the fir t term represents the length of the curve, the second term represents
the area in. ide the curve or {(j) ::::: O} and the last t\\'o are the data-fitting terms with
parameters /1, 1/, A1 and A2 greater than zero.
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1.

3.

2.

4.

Figure 2.4: Typical cases of the data-fitting teml depending on the position of the CllTVe,
ee {50}.

The minimizer of the functional in (2.27) can be found using a variational
approach as done before. By fixing </J the analytical solutions to Cl and C2 are found as

Cl (</J)
In H(</J)g

(2.27)In H((j))

C2(</J)
In (1- H(</»)g

(2.28)In 1 - H (</J)

Here Cl turns out to be the average value of the image 9 insid the curve rand C2 the
average value outside the curve f. Analogically, a first variation on <b can be taken,
obtaining the following flow.

(2.29)

The minimizer (ci, c;. 9~) can be found by olving the Euler-Lagrange equations
in (2.27). (2.2 ) and (2.29).

Discretization

In this section. the discretization of the han- Ve e approach in [50] will be treated in
detail. The discretization of this approach i of importance. ince the same discretization
is used in the segmentation approach de"eloped in the project of thi thesis.

The system can be discretized and solved numerically as proposed in [12, 14. 46].
Given that the data in this project is 3D then the following discretization will assume
3D data, however. the visualizations will be in 2D for simplicity.

First. let the discretization in "time" be o(l1r. x) = (iJ" and

(2.30)
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where T is the t.ime step and n is a finite positive integer representing the iteration
number. The constants defined in (2.27) a.nd (2.28) can then be written as

(2.31)

and (2.29) can be written as

(2.32)

The next step is to discretize the imag , the level-set function and the gradient and diver­
gence operators in (2.32). In this context, the values in the image and level-set function
are cell-centered [22], therefore cell gi.j,k centered at (Xi,yj,Zk) ha, value g(xi,yj.zd.
Analogically, ¢i.j.k = ¢(x; Yj,Zk) with centre (Xi,Yj,Zk)'

In order to discretize the gradient and divergence operators in (2.32) t.he fol­
lowing difference operators are used.

~U
-1 a a

) E Rm-'m
1 -1 a

[)+ (2.33)

a -1

[)- -([)+f E R m .m - 1 (2.34)

where h is the discretization of the domain n according to the resolution of the data. The
difference operators above calculate the staggered (forward and backward) diA'erence in
the direction applied in order to avoid boundary assumptions. As shown in Figure 2.5
below, if the image has size In in direction 1, after applying [)+ the difference obtained
in that direction will be of size m - 1.

r

I
I

t -

~
I
I

FigUl'e 2.5: Original grid oJ image (gray) with locat'ioll oJ calculated JorwaTd differ nce vahle
(Ted triangles) in di7'ection 1.

Additionally, there are two averaging operators A and A that for the most part
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.4 is similar to .iF, but differ in two elements as shown below

(2.35)

(2.36)

, , ,
"

These two operators are used in combination with the difference operators. .4, when
applied after 8+, assumes that the slope extends over the boundary of n linearly and
computes the slope by averaging at the cell centers. A brings the cell-centered difference
to the location of the staggered difference of the other direction. The combination of
these two operators facilitates the computation of the magnitude of the gradient as
will be explained later. In order to have a better idea of the purpose of the averaging
operators assume that the staggered difference of </> was computed in direction 1 as shown
in Figure 2.5. In order to calculate an approximated difference in direction 2 that fits
direction 1, then the staggered difference 8+ can be taken in the second direction and
averaged to fit the same grid as that of 8+ applied in direction 1. Figure 2.6 provides a
visual aid to the above explanation.

1

rF ', ,, ,, ,
'.J l!

2 ,,' r,, ,, ,, ,, ,
I----V---+--~v'-,---+--,',10y/---l

,,,
of

,.' r,, ,, ,, ,, ,
I----v---+------l'{f--+---V-

Figure 2.6: Original grid of ¢J (gray) with location of calculated forward difference values
in direction 2 (blue triangles) with assumed difference on boundary (green) showing the path
by which the combined averaging operators compute and relocate the staggered difference to
direction 1 (red triangles).

Letting a vectorized version of the image 9 and the level-set function </> be
denoted by § and ($ respectively one may use the following difference operators on § and
($.

8t = I Q9 I Q9 8+ E lR(knl,kn(l-l»

8t = I Q9 8+ Q9 I E lR(knl,k(n-l)l) (2.37)
8t = 8+ Q9 I Q9 I E lR(knl,(k-l)nl)

where Q9 is the Kronecker product, I is the identity matrix and k, nand l are the sizes
of the data in the directions 3, 2 and 1 respectively. The operator 8t computes the
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staggered difference in the direction d. To fit to § and (j the averaging operators are
extended as follows.

Al.2 = I®A®.A E jR(k(n-I)I,kn(/-I)
Au = A®I®.A E jR«k-l)nl.kll(/-I»

A2.
1

= I®.A®A E jR(k-n(I-1).k(1l-1)1)
A2.a = A ® I ®.A E jR«k·-l)ln.kl(n-l)

Au = .A ® I ® A E jR(k·ll(l-l).(k-l)lll)
Au = .A ®.A ® I E jR(k(n-l )I.(k-I )111)

(2.3 )

The purpose of the operator Ad,.d2 i to "relocate" the calculated difference in direction
d1 to the position of the difference in direction d2 . For instance, the location of the
values computed by A2,1 at if> is the same a. those computed by ot q>. The purpose
of the averaging operators becomes clearer when looking at the following difference
operators combined in the calculation of the magnitude of the gradient as follows:

0l.2 = A l.2ot
Ol.a = Al.:1o:t

02.1 = A210t
02.a = A 2.:10:t

O:l.l = A:u at
0:1.2 = A\.20t

(2.39)

With these averaging operators the magnitude of the gradient of ¢ can be calculated as

G1(if» = j(ot1w + (Ol.2 IW + (ouif>F

G2(q» = j(02,1IfJF + (ot¢)2 + (02,3IfJF

G:1(<iJ) = j(o:l1dJF + (0:J2IfJF + (0:1¢)2.

(2.40)

Each one of the above is an approximation of 1\71>1. Gd(¢) calculat.es the difference in
dimen ion d exactly, but in the other dimensions the difference is approximated due to
assumptions over the boundary of the domain O.

Finally, the divergence operator can be approximated by an operator A(@) of
the following form.

:\ :\

A(") = "" O~-]-0+ = - "" (0+)T_
1

_ o+
'P L...- 1 G (+) 1 L...- 1 G ( ') 1

,=1 1 'P 1=1 1 IfJ
(2.41)

\I' here 1/Gi (<p) is a square matrix in which the values in th main diagonal are those of
G i (¢) ill\'erted. 'fbi dis -retization of the divergence operator was uggested in 146, 50].

At this point equotion (2.32) can be written as

dJl1+1 -

T
(2.42)

Using some mathematical manipulations the following form is obtained.

(2.43)

Equation (2.43) can be solved iteratively u ing the steps described below_
Letting the iteration step be denoted by 11. then the principal steps of the

algorithm are the following.
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1. Initialize the level-set function cPo = cPo at n = O.

2. Compute CI (¢") and C2(¢n) by (2.27) and (2.28).

3. Solve (2.43) to obtain ¢>n+l.

4. Optional Step: Re-initialize ¢> on a small neighborhood of r to the signed dis­
tance function as shown in (2.23).

5. Check if solution is stationary by using termination criteria as de. cribed in [34]
on (¢, Cl, cz), E and \1E. If solution is not stationary, n = n + 1 and repeat from
step 2.

'I'his last method proposed by Chan and Vese in [50] deals with the partitioning
of an image into two possible regions with distinct constant values. Assumptions need
only to be made about the continuity of ¢> on the boundary all.

Since this problem is also a special case of the second Mumford-Shah functional
in (2.7) for i E {1,2} then it is well-posed. This was proven initially by t-Iumford and
Shah in [10] for smooth images and later in [20] for more general data.

To summarize, in this section a brief overview on some of the most influential
methods for segmentation was described. The Chan-Vese methods proposed in [49,
50] were described in more detail in terms of the variational approach to solving the
minimization problem and discretization.

2.2 Registration Methods

In this section a quick overview of the registration method used for this project will be
discus ·eel. Since this is not the subject of focus and also due to the fact the registration
software in the FAIR framework [22] was used "out of the box" the thorough details of
the representation of the images, the interpolations and the transformations will not be
discussed. The actual objective functions used for t.he registration of the ellipsoids and
of the template and reference images are discu. sed later in section 3.2.

2.2.1 The Basic Concept of Registration

In general, the problem in image registration i' the following: Given an image T called
a templat.e and an image R called a reference where T, R : n E ~d -l ~d, find a suitable
transformation y : Il -l ~d such that the transformed T is similar to the image R. This
can be written as an optimization problem where a joint functional such as the following
must be minimized.

S[y] = 'D[Tly]' R] +as[y - yrdJ (2.44)

Here, T[y] = T(y(x)) is the transformed template image, 'D is the image similarity
measure and S measures the reasonability of the transform.

One way to measure the similarity of images is to measur the sum of squared
differences or the energy of the difference image. In a continuous setting

11 ?'D[T[y], R] = ? (T(y(x)) - R(x))-dx
- II

(2.45 )

Since non-rigid registration is an ill-posed problem [21, 30], regularization is necessary.
The transformation reasonability term in (2.44) regularizes the problem. There is a
number of choices for measuring the reasonability of the transformation y (21, 22], but
these are not discussed here due to the fact that for this project, y is restricted to rigid
t.ransformations, therefore the joint functional (2.44) simplifies to

Sly] = 'D[T[y], R].
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The transformation y is parameterized by a set of parameters was y(w,x) that restrict
the transformation to rotation and translation and therefore the registration becomes
parameterized. As will be seen in Section 3.2, the distance measure used in this project
is the sum of squared differences as proposed in (2.45).

In FAIR, image registration is facilitated by the built-in Gauss-Newton method
with Armijo line-search (GNA). The GNA method need only be provided with the
objective function, the gradient and the Hessian. The termination criteria are handled
internally using the default parameters which can be overridden if necessary.

2.2.2 Multi-Level Registration

The FAIR framework allows for different of types of registration including multi-level,
multi-scale or fixed grid. In the case of fixed grid, the registration is done at a single
resolution without any modifications, however, this is not a recommended strategy [21,
22] due to the fact that the minimization algorithm may find a local minimum. In order
to get an idea of why a fixed grid is not recommended, one can think of the images of
two hands at a fine scale rotating on top of each other. When two fingers are on top
of each other, a local minimum is found. However, the global minimum is found only
when a.ll five fingers are on top of each other.

Multi-scale and multi-level strategies are more effective in avoiding local minima
due to the fact that registration starts by using very coarse details, such as position,
orientation and size, and continues using incrementally finer details. Figure 2.9 shows
the differences between multi-scale and multi-level strategies in the same image with
different levels of coarseness. Figure 2.7 shows three typical joint functionals at different
coarseness levels.

- T .Il ;-1 'I"""

:Jcoal~C'
Startmg pomt

Figure 2.7: Punctionals at different levels of COa1'seness. Using the starting point shown, the
minimizer of Jeoarscst is a good starting guess f01' Jeoarse and in turn the minimizer oj the last
one is a good starting guess for Jfine. Using the multi-level 01' multi-scale strategy local minima
in Jfine can be avoided.

In multi-scale registration an image is registered in multiple scales therefore a
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35,---_-~-~-~-~-~-_____,

Figure 2.8: Spline approximation with varying (smoothness) pammeter B, B = 0 (solid line),
(J 1 (dashed), B = 10 (dashed dotted), B = 100 (dotted). The pammeter B is a weighting
factor controlling the smoothness of interpolating function. Example pl'Oduced using function
E3MSsplinelnterpolationlD from the FAIR F'ramewol'k [22;'

scale-space representation of the image is needed. One method to obtain the scale-space
representation of an image is to use a parameter which controls the smoothness of an
interpolating function. In this thesis, this parameter will be referred to as the scale­
space parameter. Figure 2. shows a ID example of a set of points interpolated using a
varying scale-space parameter e. Multi-scale registration is t 'pically performed starting
with a coarse scale or a large scale-space parameter and then gradually decreasing the
scale-space parameter in order to register the image at finer scales.

In multi-level registration an image is registered in multiple resolutions. Reg­
istration is performed starting from the lowest desired resolution then increasing the
resolution in order to register the image at finer levels. Figure 2.9 shows the clifferences
between l11ulti- cale and multi-level strategies in the same image at different levels of
coarseness,

\iVhile both multi-scale and multi-level registration are effective in evading local
minima, the multi-level strategy was chosen for the project-specific application. In order
to perform registration using a multi-level approach as shown in Figure 2.7 t,he algorithm
shown in 2.1 is used.

Algorithm 2.1 Pseudocode used for multi-level registration, see [22].

T nat lmax

for 1 = lmin to lmax do
transfer images to level 1
register 7J to R( find transformation YI
use VI in the next level

end for

To summarize, the multi-level regist.ration approach is chosen for this project
because

• it focuses on essential minima,

• the starting value in consecutive levels is an educated guess towards the minirnizer

• and reduces computation time.

To conclude, this chapter has provided an overview of the base theory behind
the segmentation used in thi. proj ct as well a. an overview of the multi-level registra­
tion approach supported by the FAIR framework. 1\{ore details a.bout registration and
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segmentation using the level-set approach can be found in [6, 10,21,22,24,47-50]. In
the next chapter the details pertaining to the registration and segmentation used in this
project will be presented along with a quick overview of the termination criteria used
for the segmentation method.
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Ivfulti-Scale .'lulti-Level

(a) e= 101

(b) e = 1

(e) e = 10- 1

(d) e= 10-2

(e) 16 X 16 pixels

(f) 32 X 32 pixels

(g) 64 X 64 pixels

(h) 128 X 128 pixels

Figure 2.9: Coronal slice oj a mouse shown in dijJel'ent scales (Figul'e 2.9{a)-2.9{d)), using
a varying scale-space pammetel' 8, and dijJeTcnt levels (Pigul'e 2.9{e)-2.9{h)), using 1nv.ltiple
l'esolution .

32



l\Iaster Thesis - Alvin Ihsani - Computing and Software

Chapter 3

Project-Specific Methods for
Segmentation and Registration

This chapter will focus on the project-specific object.ive functions and functionals used
in registration and segmentation respectively. First, the focus will be on the modifi­
cation of the Chan-Vese objective functional for segmentation [50] to meet th needs
of the project-specific application. Following this, the objective functions used in the
registration of the ellipsoids wi h the Ps p data and the segmented data along with the
objective functions used for the ROI-based data registration will be discussed. Finally,
an overview of the termination criteria for the segmentation and registration will be
presented.

3.1 The Modification of the Chan-Vese Functional for
Segmentation

In this sectioll, the project specific segmentation method will be dis 'ussed in detail start­
ing with the ideas behind the construction of the obje tive functional. The discretization
scheme, the algorithm Llsed to satisfy the necessary conditions and the termina.tion cri­
teria used to check for stationarity on the segmentation algorithm will follow. The
sect.ion concludes wi h a description of a number of alternative of objective functionals
developed in the course of the thesis project

3.1.1 Problem Statement and Model

'Vhen the Chan-Vese functional \\'as tried on the project data it did not provide th
expected result "out of the box" even though the initial guess is proximal to the excepted
result as shown in Figures 3.1(a)-3.1(c). Even with some fine-tuning of the parameters
1/, fl. )'1 and A2 the results were not satisfactory. For instance the parameters can be
tuned for the initial guess in Figure 3.1(c), however this same se of parameters would
not work for the initial guesses in Figure 3.1(a) and 3.1(b). As can be seen in Figure
3.1 the Chan-Vese segmentation method segments the entire image, but does not focu .
on a p ciflc region as is required in the application of this thesis.

The first condition for the objective functional in this project is that, using the
same set of parameter. example cases uch as those shOlm in Figures 3.1(a) to 3.1(c)
should segment the lungs. In other words, if the guess is larger, approximate or smaller to
the volume of the lungs t.he resulting segmentation should show a "good" approximation
of the lungs.

In order to achieve a good segmentation on the lungs some information about
the underlying data. can be used.
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(a)

(d)

(b)

(e)

(e)

(f)

Figure 3.1: Typical initial guesses 3.1{a)-3.1{c) and results 3.1{d)-3.1(f) of the Chan- Vese
segmentation method with segmented area shown in red. The parameters were set as suggested
in {50}: JL = 0.1.2552

, v = 0, ),1 = 1 and ),2 = 1.

1. One can use the fact that the underlying data is CT and therefore provides infor­
mation about tissue density in Hounsfield units. By observing the data samples
provided by Dr. Farncombe and the IvlcMaster Centre for Preclinical Imaging, the
lungs of the mouse range between -500HU and -IQOHU, so a rough approxima­
tion of the average value in the lungs in a CT scan would be -300HU. In humans
the typical range of intensity values in the lungs is larger (see Table 2.2 in [9]).

2. In real-life experiments the subject exhibits high Hounsfield values around the
lungs, typically greater than 200HU, due to the hard tissue of the ribs [9]. This
leads to the conclusion that in most subjects there is a high gradient between the
inner part of the chest and the ribs.

3. The tidal volume of the lungs of the subject can be estimated by observation or
by using statistical data [42].

From these three pieces of information the first and third were crucial in providing the
expected result.

The most successful objective functional so far has been the following.

where V 0 is a constant representing the approximate estimate of the volume of the lungs
and Co is a constant representing the average Hounsfield Unit value in the lungs. The
parameters J.l, v and>. are positive scalars which are chosen empirically. The first term
in equation (3.1) asks that the curve r = {¢ = O} be as short as possible; the second
term asks that the volume inside {¢ = O} be as close as possible to the volume V o
defined by the user; the third term asks that the region of 9 inside the curve r be as
close as possible to the user estimated average Hounsfield unit value CO in the lungs.
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An outline of the other objective functionals constructed will be presented in
the n xt section in order to give an idea of the reasoning behind them. The main
diA'erence between he functional (3.1) and the other functionals is that the first makes
use of two pieces of information based on the properties of CT data and the properties
of the subject itself while the others are an attempt at generalizing the segment.ation by
u ing only the properties of the CT data.

The synthetic and practical experiments as well as the fine-tuning of the param­
eters carried out to test functional (3.1) will be discussed in Chapter 4 in more detail.
In this chapter the focus remains on the functional (3.1).

In this thesis the problem of finding a minimizer for (3.1) is assumed to be well­
posed since a. rigorous proof is beyond the scope of this thesis. It is also assumed that g
is measurable and square integrable. Furthermore, the problem is not convex since the
solution depends on the starting guess ¢o. However, in the project of this thesis effort
was put to make the initial guess ¢o vary as little as poss.ible.

In order to find the evolution of ¢ the same variational approach employed by
Mumford-Shah and Chan-Vese is used along with the same boundar r assumptions. The
necessary condi tion for <p is

(3.2)

Note that if the minimizer <p* satisfies V o = I" H(¢*) then the fraction IVo
- TH(¢:)j is

" Vo- n H(¢ )

undefined. For this reason a small constant fl ;:: a is introduced and (3.2) is n;~dified to

(3.3)

One may suggest that using a slightly modified functional from that proposed in (3.1)
such as

similar re.sults may be obtained without the need for a regularizer fl. In fact, the objec­
tive functional (3.4) does obtain similar results with some fine-tuning on the parameter,
however, not as llluch time was spent in fine-tuning the parameters of (3.4). A compar­
ison of the results obtained with (3.1) and (3.4) is outside the scope of this thesis due
to time limitations, but will be considered for futme research.

3.1.2 Discretization, Implementation and Termination Criteria
for Segmentation

D iscret ization

The same discretization as in the Chan-Vese approach was used for (3.3). Letting
the diverg nce operator in (3.3) be denoted by A(¢) using the definition in (2.41) the
following is obtained.

11+1 Il [ V _ r H(A.") ]
<p -<p =H'(¢") pA(@")d>,,+1+11 0 Jo Of' ->-lg-coI2

T IVo- In H (<p" )I+ fl
(3.5)

where (1)" = <D(nT, x). Using some mat hematical manipulations this last equation can
be writ.ten as
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Segmentation Algorithm

To solve equa ion (3.6) the following algorithm is used.

1. Set <po = <Po.

2. Solve equation (3.6).

3. Check if solution is stationary using criteria described in the next section. If not
n = n + 1 and repeat the last step.

Termination Criteria for Segmentation

This section will provide an overview of the termination conditions used in this project
for the segmentation step.

G nerally, given a function P, the problem is to find x k that is a good approx­
imation of the minimizer x' [34]. In order to find a good approximation of x', one may
want a desired accuracy in xk and in pk = P(x"). If a problem is well-behaved there is
an established relationship between desired accmacy in x k and the desired accuracy in
pk, as shown in Section .2.2.1 of [34], hOI 'ever if the problem is ill-conditioned it might
happen hat \\ hile pk is a good approximation to F(x*), x k is not a good approximation
of x'. For this reason a user-specified parameter ~ can be used to enforce accuracy on
both x" and pk.

Assuming that the desired accuracy of the solution F(x') to p k has to be up
to p digits then by setting ~ = lO-p a measure of absolute accuracy can be defined as

(3.7)

A sensible set of termination criteria are the following:

Cl. Ipk-l - pkl < (Jkl.

C2. Ilxk- 1
- xklb < A(1 + IlxkIl2)'

C3. Ibkll :::; ~(1 + IFk !), where -l is the gradient of the function P at point .x"-

Conditions Cl and C2 are design d to test whether the sequence {x"} is converging,
while condition C3 tests the for necessary optimality condition Ih(x')11 = O. For we1l­
scaled problems, the satisfaction of condition Cl automatically implies the satisfaction
of condition C2, however, for ill-conditioned problems condition C2 forces the algorithm
to find a better solution.

As stated in [34], the choice for the usage of A in condition C2 is due to the
fact that using ~ might be an overly stringent condition. Flll'thermore, in condition C3
the L 2 norm can be used, but wh n it comes to a very large number of variables it
is better to use the infinity norm due to the fact that it is a less stringent condition
provided that condition Cl and C2 should be satisfied at the same time.

Conditions Cl to C3 are unsatisfactory if the initial point xO is in such a close
neighbourhood of t.he solution and that no further progress can be made, or if an iterate
x" lands by chance very clo e to the solution. In this case, an additional condition on
the gradient must be satisfied.

C4. II-lib" < cA

where cA is a very small number greater than the machine epsilon EM.

Finally, a condition that guarantees termination in a finite number of iterations
must be enforced.

C5. k < 1(, where k is the current iteration number and J( is the maximum number
of iterations allowed.
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Although this condition may be satisfied before the algorithm has found a reasonable
solution, it is important to have it, since for all practical purposes the algorithm should
termjnate in a finite amount of time.

In order to terminate the algorithm the following logical condition mu t b
satisfied.

(Cl and C2 and C3) or C4 or C5 (3. )

For segmentation step in the project of this thesis the aforementioned parame­
ters are set as ~ = 10- 7 , lOA = 10-8 and J( = 50. The functional (3.1) is discretized as
follows

B(qi) jJ, I>I .h2 . h:j . H'(rj}) JA1 (OttJl)2 + A 2(otq}')2 + A:j(o:fql)2
11"

+ viVo - I:>l .h2 · h:l · H(lJk)1
Il"

+ )1] I.:> I . h2 . h:J ·lIg - coIIH(¢k)
nJ,

(3.9)

where H is the I-Ieaviside function, 0" is the discretized domain n and hi is the dis­
cretization which in this case is 1.84mm/voxel-edge in each direction considering the
resolution 32 x 32 x 32 voxels and metric pace (58. x 58.88 x 58.88)rnm:J In (3.9),
Ai is an averaging operator acting along direction i that brings the staggered clifference
in direction i back to the centre of the cell defined as

Al = I @I @.A E jRkn(l+ 1),k1l1

A 2 = I @.A @ I E jRk(1l+ l)/.knl

A:J = .A @I@I E jR(k+1)nl.lml

(3.10)

where k, nand l represent the size in cells of the data in each direction. Here B(efi)
substitutes F k in conditions Cl and C3.

ondition C2 can be checked by substituting the discretized ¢k for x k as

Condition C3 ancl C4 are both based on the gradient --/. These conditions can
be checked using the right hand side of equation (3.5) therefore,

In summary, using

Ok = ~(l + IB(q>,") I)

the termination conclitions for segmentation can be checked by

Cl. IB(1/- I ) - E(¢k)1 < Ok.

C2. 114/"-1 - a} 112 < ~(1 + Ilq}lb)·

C3. II kll x ~ ~(] + IB(¢k)1)

C4. 11'/lIx < £.4

with ...,J; as defined ill (3.11).
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3.1.3 Alternative Objective Functional '!rials for Segmentation

The objective of this section is to provide an idea of the reasoning used to construct of
the objective functionals for lung segmentation.

As mentioned before, the functional (3.1) makes use of information from a
property of the lungs exhibited in the crr data as well as a property of the subject itself.
However, attempts were made to make use of only the average intensity value of the
lungs in the crr data.

As mentioned in Section 3.1.1, there is a large change in values, from an average
of -300HU in the inner part of the lung to 2: 200HU on the ribs. This leads to th
conclusion that there is a high gradient on the border of the lungs and ribs. This means
that one may make use of \79 in order to attract the contour, therefore

The first two terms in this functional try to minimize area of and volume inside {¢ = O}
respectively. The third term aims to attract the contour towards high gradients in the
image. The last term aims to minimize the difference between the image 9 and Co in
{¢ > O}. This is not possible to implement because the third term produces

wh n the first variation is taken. The reason this cannot be used is because, unlike
the regularized HI which resembles the properties of H when integrated. H" does not
produce an HI that resembles the properties of the Dirac delta function when integrated.

A modification of the above functional is the following

E(¢) = iL rH I(¢»I\7¢>1 + 1/ rH(¢» -)'1 rl\7gl2H(</J) + A2 rIg - col2H(¢»in in in in
While this is very similar to the last one it trie to maximize the gradient in {</J> O}
"'hich rneans that l.he curve {¢> = O} will try to include into the foreground all areas
with high gradient. This was done with the intention of putting a high emphasis on the
length penalty term, by choosing a large J.t. This method was deemed ineffective due to
the fact that it does not, 'ork for all cases as shown in Figures 3.1(a)-3.1(c).

Another choice based on the last functional is the assumption that the curve
resulting from the segmentation should be close to th initial curve. This condition is
based on the assumption of proximity of the initial guess to the lungs.

E(</J) f1 r H'(¢»I\7</J1 + 1/ r (H(</J) - H(¢>U))2in in
A111\7g12H(@) + A211g - col2H((iJ)

n !l

Here, </Jo is the initial level-set fW1ction. This functional, however, has the same draw­
backs as the one before and was not effecl.ive in achieving the desired result.

Another attempt was to extend the existing Chan-Vese approach using l.he fact
that the initial guess is in close proximity to the expected result,. This leads to the
construct.ion of the following functional.

E(</J) iL in HI(cp)/\7¢1 + v in H(¢) + Al in Ig - Cl (¢>w H(¢»

+ A2 j' 19 - C2(¢W(l- H(cp)) + A3119 - col 2H(cp)
n !l

Thi functional makes use of the constant Co as a user input for the average value of
the lungs, but also of Cl(¢) and C2(4)) as defined in (2.27) and (2.28) respectively, The
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reasoning is to use the user's knowledge about the lungs of the subject as well as to use
the underlying da a in order to refine the region of interest. 'l'his was not very successful
due to the fact the result was no the one desired for cases such as that as shown in
Figure 3.1(a), where regions exhibiting values of -300HU outside the lungs were also
segmented.

A slightly modified version of the last functional which accounts for the fact
that intensity value in the lungs may vary between -500HU and -100HU was also
tried, however, this did not prove to be successful for all the three cases shown in
Figures 3.1(a)-3.1(c).

E(¢) fJ 11 H'(¢)I'V¢I + IlL H(¢) + A1 11 Ig - C1 (¢)1 2 H(¢)

+ A2 j' Ig - C2(¢W(1 - H(¢)) + Aj j Ig - cn l2 H(¢)
D 12

+ ,,\;j Llg-CbI2H(<p)

where Cn = -500 and Cb = -100. The first two terms minimize the area of and volume
inside {4> = O}. Terms 3 and 4 make u. e of the values in the underlying data. The last
two terms try to force the curve {¢ = O} to include regions in the data with intensity
va lues between the user- provided values Cn and Cb.

Alternatively, one may want to include values -300HU and exclude values such
as -lOOOHU (the intensity of air).

E(4)) J.L rH'(¢)I'V¢I + 1/ rH(tb) + A111g - cl(¢)1 2 J-J(¢)in in \l

+ A2 r Ig-c2(¢)1 2 (1-H(@))+Ajjlg-Co I2 J-l(dl)in 12

+ >':1 rIg - cbI 2 (1- H(4)))in
This funcl.ional tries to include va.lues close to Co = -300HU in {¢ > O} and value.
clo..e to Cb = -lOOOHU in {¢ < O}. Approximate results to using he Chan-Ve.
functional (2.27) are obtained.

Each of these functionals took an amount of time to be tested since the pa­
rameters need to be fine-tuned in order to ensure whether the mod I can produce the
desired result.

3.2 Objective Functions for Ellipsoid Fitting and Reg­
istration

In this section the objec 'ive function used for ellipsoid fit!;ing to find the initial and final
guess of the region of interest (ROI) will be described in detail. Following, will be a
de cription of how the ROI-weighted PeT data is registered/aligned to the VeT data.

3.2.1 Ellipsoid Fitting

As mentioned in the Introduction the first step to obtaining an initial guess for the ROI
is to register an ellipse to a windo\\'ed version of the Psp data. The rea. on for this is
that it is assumed that the Psp and PeT data are pre-aligned and therefore the regions
of the lungs appearing in the Psp data ar indicative of (he location of the lungs in th
PeT dat.a.
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Before going into the details of the objective function, the function used to
describe the ellipsoid will be discussed. The function

W(w,x) ~ { ~=(:'R) + I
R<0.5
0.5::; R::; 1
R>l

(3.13)

defines a smooth ellipsoid with a ::; W(w, x) ::; 1 where w = [W1,W2,Wa,W4,W5,W6]T with
the first three parameters as the radii of the ellipsoid in direction i and the last three
parameters as the spatial position of the ellipsoid along direction i. Furthermore,

with
1'1 = x':;,w4

1'2 = x 2:;2
w5

fa = xa:;aWG

(3.14)

(3.15)

Figure 3.2 provides a visualization of the structure of the ellipsoid in one and two
dimensions.

1-----'/
(a) (b)

Figure 3.2: Visualization of the ellipsoid function W in (aJ one and (bJ two dimensions.

As mentioned in section 2.2, the FAIR F'l:amework uses the Gauss-Newton
method with Armijo line-search therefore it is necessary to compute the gradient of (3.13)
with respect to w.

OwW(w,x) =

7rsin(27rR)ff
w,R

7r sin(27rR)f~
W2 R

7r sin(27rR)f~
w~R

7rsin(27rR)f,
W1 R

7r sin(27rR)f2
w2R

7r sin(27rR)fa
waR

0.5::; R::; 1

otherwise

(3.16)

The objective function for the registration of the ellipse to some data u is defined
as follows

F(w) = Ilwi +w~ +wj112 + a in u(x)(l - W(w,x))dx
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where a > O.The first term aims to minimize the three radii of the ellipsoid while the
second term aims to exclude as much data as possible from the reverse ellipsoid therefore
including as much data as possible in. ide the ellipsoid. The gradient of function (3.17)
is

WI

W2
') W:J

'i7F(w) = I? ~ 211 01WI +Wi +W:J 2
o
o

The Hessian matrix has been approximated by

-1 0U(x)'i7W(W,x)dx.
n

(3.1 )

7[

7-f.F(w) = I? ? ?I IIWI +w:i +w:112
(3.19)

where I i the identity matrix.
Equations (3.17), (3.18) and (3.19) are then used in Gauss-Newton method of

the FAIR framework in order to find the optimal size and position of the ellipsoid that
includes the data 1/.

In the project treated in this thesis the ellipsoid fitting is performed in two steps
of t,he alignment process. First to find the initial gues. 90 on a windowed version of the
Ps p data, therefore u in (3.17) becomes

1£ = windowed Psp = { ~ if P,c;p > 300
if Psp ~ 300

(3.20)

then to find the refined region of interest, using the segmented PCT data therefore

1£ = segmented PCT = { ~ in {¢finol 2': a}
in {¢ final < O}

(3.21)

In this section the mathematical description of the smooth ellipsoid as well as
the objective functions used to optimize its size and po ition \yere presented. Further
details to the Gauss-Newton method with Armijo line- earch used in the FAIR Frame­
work can be found in [22]. In the next section the region-of-interest based registration
is discussed.

3.2.2 Region-of-Interest Based Registration

In this section the objective function used to register the template data Y, or PCT, and
the reference data R or VCT, will be discu sed. At this stage only rigid transformations
are con idered to align the data. In order to register the data based on the region-of­
interest, the final ellipsoid resulting from step 3 of the process shQ\n1 in Figure 1.7 is
used as a "weight" or spat,ial filter on l.he l.emplat,e data T, The ROI-weighted template
data is obtained as

y W (x) = Y(x)W(wopt ..x)

where Wopt is the set of parameters of t,he refined ROJ.
The objective functional used in the following

(3.22)

(3.23).1[v] = D[T\\'[y(v)], R] = ~1(yW (y(//,x)) - R(x))2dx
2 n

where y is the transformation and v = [v], //2, 1J:\.V\.V2, v:dT are the parameters of the
rigid transformation, with the first, three being the angle of rotation around axis i and
the last three being the translation along axis i E {l. 2. 3}.

By di. cretizing (3.23) the following objective fundion is obtained

(3.24)
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where T~¥ and Rit represent the cell-centered discretization of T W and R respectively.
The h; is the metric size of the ell in direction i E {l, 2, 3} and nit represents the cells
of the discretized domain n.

In order to use (3.24) in the FAIR framework the gradient and Hessian are
computed as follows

VJ(y(W))

11.J(Y(I/))

h1h2h311Tj,W (Y(I/)) - RltlldTw (y)dy(v)

h1h2h;) (dT\\f (y )dy(v) f (dT\ V (y )dY(I/))

(3.25)

(3.26)

where dTw (x) = dT(x)vl (wopt, x) with lV (wopt, x) being a diagonal matrix with values
W(woPt, x) in the main diagonal and

where dT E lR(n.dn) with d being the number of dimensions, o.i the difl'erence operator
along dimension i and T(yd the value of T at cell Yk and finally

The equations in (3.24) (3.25) and (3.26) can now be used with the Gauss­
ewton met,hod of the FAIR Framework in order to find the parameters v of the rigid

tran. formation y.
So far, the project-specific methods of segmentation and registration were de­

scribed. In the next chapter, some experimental results including both synthetic and
practical examples will be presented. The synthetic examples concern only the segmen­
tation piece in order to provide some idea of the "preciseness" of t.he segmentation step
while the real-life examples, provided by Dr. Troy Famcombe and the fvIcMaster Centre
for Preclinical Imaging, test the overall preciseness of the a.lignment process.
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Chapter 4

Testing the Segmentation and
Alignment Processes

In this chapter, the experiments carried out for the segmentation and alignment pro 'ess
will be discllssed. Section 4.1 will show some typical experiments on synthetic data
that was designed to test whether the model can extract the desired object from a 2D
image. In this same section, the tests carried out on 2D slices of the data provided by
the JvlciVlaster Centre for Preclinical Imaging for some typical initial guesses will a.lso
be shown. In section 4.2 the testing carried out on the whole alignment process will be
shown along with the results of the alignment for he six weeks of data provided.

4.1 Segmentation Experiments

Segmentation experiments were carried out on 2D and 3D samples of synthetic and real­
life data. However in this section, for ea. e of visualization, only experiments carried out
on 2D data will be shown. The experiments in this section include the segmentation of

• synthetic data mimicking a cro s-. ectional slice of the chest of the mouse,

• synthetic data to 01 serve the in Jusion of regions with approximate value to the
region of interest and

• a coronal lice of a mouse.

Two typical images constructed for the purpose of testing 'egmentation are the
images shown in Figure 4.1. Figure 4.1(30) shows two circles in the middle surrounded by
a circle with high intensity values which in turn is surrounded by low intensity values.
This is done to simulate the lungs in the body with surrounding air in a cross-se tional
slice. Figure 4.1(b) shows three squares with three dift"erent intensit;y values. This image
was created to observe how the curve evolves according to (3.1) when there are objects
in the vicinity of the object of interest that have similar intensity values. The resolution
of the images is 12 x 128 pixels and the metric space It is (10 x 10)mm2 .

For the image in 4.1(a), the objective is to extract the area in the centre of the
image with value 102 th refore Co = 102. The area of this piece i about one half of
the domain It therefore V o = 50mm2 Figures 4.2(a)-4.2(h) show some initial guesse.
along with some typical results. The parameters were found empirically and set to
p = 0.5 . 2552 , A = 10 1/ = 10') with time-step T = 0.7 for all of the initial guesses
shown.

Figures 4.3(a)-4.3(h) show the segmentation results on the image in 4.1(a) with
some added noise. The noi e is normally distributed with mean 0 and standard devia.tion
100. The parameter p = 2552 was the only one changed in this case.
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(a) (b)

Figme 4.1: Images with re olution 128 x 12 a.nd metric size (10 x 10)mm2 used to test the
segmentat'ion method. The numbers on t.he images l'epl'esent the intensity values oj each distinct.
l'egion.

By visual inspection it seems that the segmentation is working fairly well for
the test image in 4.1(30) with and without noise. For larger amounts of noise, this
segmentation method does not work as well. A workaround is to regularize the image
using tools in the FAIR Framework [22], such as increasing the scale-space parameter,
in order to minimize the noise after which segmentation can be performed.

The next step is to test. segmentation on Figure 4.1(b) in order to see what is
segmented when regions close to the region of interest exhibit the same intensity values.
Figures 4.4(a)-4.4(h) show some typical initial guesses and results. The area is set to
V o = 31.25m.m2 and Co = 133. The parameter f.L was switched back to 0.5, 2552

As can be seen from Figures 4.4(a)-4.4(h) the object of interest is segmented,
but due to the high emphasis on the penalty on the curvature a region not having the
value Co is included as welL This occurs in real-life data also, where the lungs are
segmented along with most of the heart. For the real-life data u I'd in the project this
ha: not posed a problem due to the fact that the heart is expected to be included in the
refined ellipsoidal ROI.

The synthetic experiments 0 far have shown promising results. The next step
is to test the segmentation method in a 2D slice of the data provided by Dr. Troy
Farncombe and the Mcr-la tel' Centre for Preclinical Imaging. The data, that is initially
256 x 256 x 256 voxels, is first reduced to 12 x 128 x 128 voxels by averaging neighboring
values in each direction, then it is further reduced to 128 x 128 pixels by extracting the
72" d coronal slice. The reduction in resolution is done mainly to reduce computation
time for experiments. The metric space of the image is (5 ,88 x 5 . 8)mm2 . The exper­
iments run on this part.icular slice are ShOWll in Figures 4.5(a)-4.5(h). The parameters
used for this experiment are f.L = 0.5 . 2552 , v = 105 , ,\ = 1 with time-step T = 0.046.
The average value of the lungs is set to Co = -300 and the area of the lungs is set to
V 0 = 71 mm2 The time-step was chosen small in order for he curve to expand more
"conservatively" and not include other areas with average value arOlUld -300HU such
as fat and excess skin in the arms of the mouse. If the time step is increased by a factor
of 2 or more the segmented region Bows outside the lungs, therefore to have the desired
segmentat.ion the time-step must be small.

The initial guesses shown in Figure 4.5 are chosen in such as way that they
resemble the initial guesses produced by the first step of the alignment process. Typical
cases include large, medium and small ini ial guesse and, as it seems from the results
in 4.5. the refined region of interest include the lungs satisfactorily.

The important features of the parameters in the above experiments are the
following.
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Initial Guess Resulting Segmentation
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Figure 4.2: Typical initial guesses (left) and their respective results (right) for image 4.1(a).
The area in red represents the segmented region {4> 2: O}. For all initial guesses on the left the
segmented area approximates the region of interest.
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Initial Guess Resulting Segmentation

._ .. _._._--_._-_._-------------~------------------------------

(a)

(e)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 4.3: Typical initial guesses (left) and their respective results (right) for image 4.1 (a)
with added normally distributed noise. The area in red represents the segmented region {</> ~ O}.
Even with a ce7'tain amount of noise in the image, approximate results to those in Figure 4.2
are obtained.
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Resulting Segmentation

-------------------------------.-------------------------------

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 4.4: Typical initial guesses (left) and their respective results (right) for image 4.1(b).
The area in red represents the segmented region {if> 2: O}. For all initial guesses on the left the
region of interest is included in the segmented area.
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Initial Guess Resulting Segmentation

-------------------------------r---------------------- --------

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 4.5: Typical initial guesses (left) and their respective results (right) for coronal slices
of laboratory data. The area in l'ed represents the segmented region {¢ 2: O}. For all initial
guesses on the left the segmented Tegion approximates the lungs.
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• The parameters fJ and II were not modified for any of the experiments therefore
when it comes to . egmenting data over a number of weeks since the user need
not correct the parameters for each week. In fact, as will be seen in section 4.2,
the parameters are kept the same for all the six weeks of data provided by the
rvlcMaster Centre lor Preclinical Imaging.

• The time-step has to be small when it comes to real data du to the fact that
many small regions in the body of the subject might exhibit the same average
intensity of values. Some of these regions might be away from the expected ROI
and may therefore be obstructive to the registration step. It might not be always
possible to avoid including these regions, but a small t.ime-step tends to keep the
'egmented region local to the initial guess. In addition, a large fJ also ensures

exclusion of regions far from the expected ROI since it penalizes the length of the
curve r = {¢ = O}.

The quality of the segmentation experiments at this stage in the project has
been based on visual inspection. Defining what is a good segmentation result has shown
to be quite challenging and is part of ongoing and future research.

While the segmentation step alone is hard to benchmark, the overall perfor­
mance and precision of the alignment process can be tested numerically as will be seen
in the following section.

4.2 Testing the Alignment Process

In this section the results of the overall alignment proces. will be described. The exper­
iments discussed here were carried out on 3D data. The alignment process was tested
using a number of simulated rigid transformations.

In order to get an idea of how much rotation and displacement there is in real­
life between ventilation and perfu ion data the alignm nt process was run on all six
weeks of data provided. This was done to get an idea of what to consider a "valid"
transformation so that the alignment process would not be discarded as ineffective due
to some unrealistic displacement or rotation.

The alignment for the six weeks of data was done using the following parameters.

• The Psp data is windowed at 300.

• Ellipsoid fitting to windowed Psp data (to obtain the initial guess) parameter a.
in (3.13) set to ct = 1 .

• Segmentation parameters in (3.6) set to II
'/ = 0.046.

0.5 . 2552 , 1/ 10\ A 1 and

• Ellipsoid registration to ROI of PCT data parameter set to 0 = 1 in (3.13).

• The objective function (3.24) u ed for the registration of the ROI of the PCT data
to the VCT data is not paramet.erized.

• The resolution at "'hich multi-level registration is performed is 2i x 2i
X 2 i voxels,

for i = {3,4.5,6}.

• The resolution at which the ellipsoid is registered is 32 x 32 x 32 voxels.

• The resolution at which segmentation is performed is 16 x 16 x 16 voxels.

• The metric space is unchanged at (5. x 5. x 5 .8 )mm,J for all resolutions.

The I' suiting transformation are shown in Table 4.1. These transf rmations
were ested visually for correctness by applying the resulting transformation to the
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\\eek
Transformation ParameLers

Completion Time (s)
8 (rad) d (111m)

-0.0114 0.4806
1 0.0005 -0.1256 1.2107. lOa

-0.0041 -0.2083
-0.0049 0.3866

2 -0.0008 -0.0651 1.0754 . 10:)
-0.0016 -0.1206
-0.0095 0.4089

3 0.0008 0.0317 1.4651 . lOa
-0.0067 -0.1200
-0.0102 0.2921

4 0.0004 -0.2967 1.1299 . 10:1

-0.0008 -0.3034
0.0002 -0.0552

5 -0.0016 -0.1344 1.0 66·1O:l

0.0015 -0.0150
0.0046 0.2886

6 -0.0022 0.0800 1.3306 . 10:)
0.0023 -0.0237

Table 4.1: Rigid tmnsformation pammeters found by applying the alignment process to the six
weeks of data provided by Ihe McMaster Centre f01' Preclinical Imaging: 0 repl'esents the angle
of l'otal.ion and d the displacement.

template data T then overlapping it with the reference data R to check for dillerences.
Table 4.1 provides a list of the transformations found.

The simulated rigid transformations applied on the six weeks of PeT data were
chosen about ten times larger than those shown in Table 4.1. The alignment process uses
the ame set of parameters mentioned above. The experiment setting is the following:

• 10 rigid transformations were applied to six weeks of perfusion data of a mouse to
simulate the misaligned ventilation data

• The transformations were chosen randomly using a normal distribution

- with mean 0 for rotation and translation

- and standard deviations UTotaUon = 0.3rad and Utranslaliol1 = 7mm;

- the transformations range approximately between 8i E [-0.3,0.3]rad and
di E [-16, 16]mm.

• The magnitude of the absolute error was analyzed

- based on a fixed ROI and ten transformations

- and on a fixed transformation over six different ROT.

Note that this type of test does not test the accuracy of the alignment process over
perfusion and ventilation data as in reality, however, the results obtained using the
warped samples provide an idea of the accuracy of the alignment process developed in
this thesis.

The magnitude of the absolute error in rotation and translation of the resulting
transformations is plotted in Figure 4.6 and 4.7. The magnitude of the average and
maximum absolute errors by fixed ROI over 10 transformations were

{

Erotafioll = [3.9724,5.8880,9.0892] x lO-''Iad
Etranslation = [1.1853,1.9847,3.3910] x 1O-:3mm
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{
Erotation = [0.5349,0.8427, 1.0261] x 1O-4 rad
Etranslation = [1.5536,2.4020,3.1456] x 1O-3 mm.

The magnitude of the average and maximum absolute errors by fixed transformation
over 6 ROJ were

{
Erotation = [5.6360,8.0771,7.9695] x 1O-5 rad
Etranslation = [2.6128,2.1828,3.8097] x 1O-3mm

{
El'Otation = [1.2403,1.3783,1.2517] x 1O-4 rad
Etranslation = [4.5065,3.6320,5.4822] x 1O-3 111m.
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Figure 4,6: Magnitude of the absolute e7Tor of rotation (radians) for the transformations
applied.

For all simulated rigid transformations the rotation parameters are off by one
hundredth of a degree and the translation parameters are off by at most a hundredth of
a millimeter. This result is promising when considering that registration is performed
at most at 64 x 64 x 64 voxels whereas the initial resolution is 256 x 256 x 256 voxels.
At higher resolutions better accuracy may be achieved.

The average and maximum errors by ROJ ad by transformation are similar
even though the ROJ vary considerably. Table 4.2 shows the refined ROI values for each
week. The reason why the refined ROI is so small in week 6 is due to the fact that
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applied.
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vVeek
Ellipse Paramaters (mm)

1'1 '1'2 r:l Cj C2 C:j

1 6.4212 7.1103 5.8149 31.7222 28.7090 31.0768
2 4.8325 5.5471 3.5433 32.1205 29.8128 29.3310
3 4.1047 6.1601 3.4566 31.6564 27.1298 33.2126
4 4.2579 4.4618 3.0731 31.9380 32.1899 32.7206
5 2.4686 3.5114 2.1633 33.0492 27.5942 30.6513
6 2.0770 2.0770 0.7248 29.4400 29.4400 27.7073

Table 4.2: Refined ROJ pamrneters fOl' each week.: ri l'epresent the md'ii of the ellipsoid and
Cj the centl'e of the ellipsoid, with i E {I, 2, 3} as the direction.

the initial guess has radius zero since the intensity values of the Psp data in this week
are all below 300 and therefore the windowed Psp contains no data. The segmentation
method terminates from reaching the maximum number of allowed iterations before it
can find a better guess.

In overall, the results obtained by these experiments are positive and indicate
that the current strategy used to align Psp data to the Vs p data as described in the
process shown in Figure 1.7 is effective. For the simulated transformations, using the
aforementioned parameters for the alignment, the process takes in average 3 hours and
15 minutes to complete with 4 minutes and 15 seconds for each week. The time for a
single week is distributed between each step as follows.

• Elliposid fitting takes 0.5 seconds.

• Segmentation takes 20 seconds.

• Registration takes 3 minutes and 20 seconds.

• File I/O operations 25 seconds.

The machine used is a standard PC using 2 GB of RAM with an Ai\ID Turion X2
processor at 2 GHz and the and code is running in i\Iatlab. If higher resolutions were
used both in terms of segmentation and registration the results may be more accurate
but the computing time and memory requirements would be much larger.

In this chapter some main experimental results were presented in order to give
an idea of the effectiveness of the alignment process. In the next chapter, the main
features of the applications will be discussed along with suggestions for the improvement
of computation time and areas of future research.
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Chapter 5

Discussion on Current and
Future Research

This chapter will discuss some issues of the alignment strategy, specifically with the
segmentation and registration methods. A large part of the focus will be given to the
segmentation piece. Future research concerning segmentation and alternatives to some
parts of the alignment process will also be discussed.

5.1 Issues in Segmentation and Registration

The work completed in this thesis has shown some promising results, however, there are
a number of issues that still need to be addressed in order to improve the work done.
These issues span across the entire alignment process including the registration of the
ellipsoids, the segmentation step and the ROI-based registration of the data.

Ellipsoid Fitting

As mentioned before, the first step to making an initial ed ucated guess for the segmen­
tation process is to register an ellipsoid to the windowed Psp data. Given that Psp
data may vary in each scan as the condition of the subject deteriorates or improves the
windowing value may need to be different for each scan. 'Vhile it is possible to set a
different thresholding value for each lVeek of data it is not preferable.

As ment.ioned in Chapter 1, the Ps P data is windowed to remove regions outside
the lungs with small amounts of radiation from the contrast agent. These regions look
like a "cloud" around the high intensity values of the lungs, see Figure 5.1(a). The
cloud is caused by minor traces of contrast agent spreading possibly through the blood
in other areas. If the ellipse were to be registered directly 0 this data the cloud would
also be included and this is not desired, that i. wby the lungs are windowed at above
300.

Even t.hough windowing is a fast way to remove the cloud, it is not the most
reliable as values in the Psp data may widely vary in different scans. For instance,
looking at Figure 5.1(b) a very small part of the lungs has intensity value above 200.
If the windowing value was 300, no data IVould appear and in fact this happened during
the experiments in the sixth week of data where the init.ial guess and refined ROI were
very small.

TJ1is situation can be a\·oided. however, by using segmentation instead of win­
dowing. The good ne\\'s is that there is no need to design a new objecti\'e functional
since the Chan-Vese approach will produce the desired result. Figure 5.1(c) shows the
segmented Psp data u ing the Chan-Vese approach without any modifications. While
this is a much better way to filter out the surrounding cloud, it needs to be tested against
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(a) Psp (b) Psp > 200 (c) Segmented Psp

Figure 5.1: Coronal slice of (a) Psp data from week six showing surrounding cloud, (b)
windowed at above 200 shown in white and (c) segmented using the Chan- Vese method with
segmented area shown in white.

instances where the Chan-Vese approach would include parts of the cloud. For the data
of this project, however, this has shown nice results.

In a further outlook, the segmentation could replace the initial ellipsoid regis­
tration entirely by using the resulting ¢> of the Chan-Vese segmentation on the Psp data
as the starting guess for the level-set function in (3.6) for the ROI-refinement step.

Segmentation

Cmrently, the segmentation method makes use of a number of parameters (p" v and ..\)
and a time-step for the flow of ¢> in order to fine-tune it to the desired behaviour. In
this project, the time-step has been chosen empirically and is kept constant throughout
the evolution of the contour. This is not a preferred strategy since it has a slow rate of
convergence [34]. It might happen that the curve, after a certain number of iterations,
may change very little and, assuming the termination criteria are not fulfilled, the time­
step may need to be increased in order to make significant progress. Furthermore, the
parameters of the objective functional (3.1) were also chosen empirically which means
that these might have to be slightly changed depending on the type of data being
segmented. The optimization of the parameters and the time-step is outside of the
scope of this project.

Another issue with the segmentation is that the minimizer is found by using
the steepest descent method which has slow convergence [34]. The choice of the steepest
descent method in this project is based on the work of [50] and it is also a fast and simple
way to test whether the objective function achieves the desired result. The next step
is to implement segmentation using the conjugate gradient method in order to improve
convergence and completion time.

ROI-Based Data Registration

The drawback with the registration of the ROI-weighted PCT data to the VCT data is
that it could be very sensitive to artifacts in the scan such as the inclusion of a foreign
object in the ROI. Figure 5.2 shows an example where the PCT and VCT data have to
be aligned but the ROI-weighted PCT data includes a small part of the water cylinder.
This object could have adverse effects on the registration since it might align the edges
of the water cylinders in the two images instead. There may be alternatives to fitting
an ellipsoid to the segmented PCT data, but for now fitting an ellipsoid has shown to be
the simplest and most logical way of including additional data from surrounding tissues
of the lungs. There may also be other factors that may cause the same problem such as
an implant that is later removed and therefore appears in one scan but not the next.
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(a) PCT (b) ROJ-weighted PCT (e) VCT

Figure 5.2: Given (a) the PCT data, proper alignment of (b) the ROI-wighted PCT data to
the (c) VCT data could be obstructed by the exist,ence of t.he small water cylinder edge in the
ROI-weighted PCT data..

Another topic of discussion for the registration of the data is the restriction
to rigid transformations. For the simulated transformations used to test th alignment
process, rigid transformations suffice, however, in the future valid transformations may
include affine and elastic models.

5.2 Conclusions

The final goal of the project is to automatica.Jly align ventilation and perfusion SPECT
data in order t,o be able to study the effects of newly developed drugs for various lung
diseases including fibrosis and cancer. Due to the fact that the SPECT data from
different scans can have large structural differences, pre-aligned CT data can be utilized
to correct. the alignment problems in the SPECT data. The objective of this thesis
was to develop a fully a.utomated process by which different modalities of SPECT data
can be aligned by using the respective CT data over a, number of weeks. Here, a new
objective functional for segmentation was proposed based on the work of [10, 49, 50] in
order to find a region of interest in the CT data and utilize it in order to find a rigi I
transformation aligning the perfusion and ventilation T data.

Some of the main highlights of this project are the usage of only two pieces of
information, namely lung volume and average HU int.ensit) value in the lungs in order
to segment the lungs of one subject over a number of weeks and the usage of multi-level
registration in order to avoid local minima and decrease computation time.

The results of the synthetic and real-life experiments so far have been promising
and indicate that with some further refinement of the alignment process better precision
and lower computation time can be achieved.
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Appendix A

Matlab Code Extracts

In this appendix the Matlab code extract for the most important parts of the thesis
application will be shown. The layout of the code is the following.

• First, the code for the ellipsoid and the objective function used in the ellipsoid
fitting steps is shown.

• Following, is the lung segmentation step code, which includes the calculation of
the Heaviside function and the divergence operator.

• Next, the distance function and the objective function used in the registration step
are shown.

• Finally, the main routine by which all of the above steps are integrated is shown.

A.I Matlab Code for Ellipsoid Fitting

Listing A.I: e1l3func. m

x = reshape (x, [] ,3);
xO ~ [z(4), z(5), z(6));

x(:,l) (X(:,l)-xO(l))/z(l);
x(:,2) (x(:,2)-xO(2))/z(2);
x(:.3) (x(:.3)-xO(3))/z(3);

1 ;

end

parameters:
z (1"1,12, r3,xO(l) ,xO(2} ,xO (3)]

-> the radii and center ot the ellipsoid
x - the points at h'hich to calculate values
output:
c - evaluated ellipsoid
dc the gradient \"ith respect to radius and center
dxc - the gradient ot the ellipsoid

end

dc = [];

dxc ~ [];
doDerivative = 0;
doXDerivative = 0;

%calculate gradient lt necessa1Y
if nargout 2: 2

doDerivative = 1;
if nargout == 3

doXDerivative

1 function [c,dc,dxc] = el13func(z,x)
2 %
3 %
4 %
5 %
6 %
7 %
8 %
9 %

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

61



IVlaster Thesis - Alvin Ihsani - Computing and Software

-n*sin(2*n*radius(J»)/z(l) ./radius(J) .*x(J,I);
-n*sin(2*n*radius(J))/z(2) ./radius(J) .*x(J,2);
-n*sin(2*n*radius(J))/z(3) ./radius(J) .*x(J,3);

dxO(J,I) 0;
dxO(J,2) O'
dxO (J, 3) 0;
dc = [drc,dxOl;

doDerivative
drc(J,I) 0;
drc (J, 2) 0;
drc(J,3) 0;

% the magnitude of the radii
radius = sqrt(x(:,I).-2 + x(:,2).-2 + x(:,3).-2);

if doDerivative
drc zeros(size(radius);
dxO = zeros(size(x);

%find the region J ,.here tlJe ellipse is . 'smooth"
J = find(radius~1 & radius~0.5);

%calculace the values at the smooth region
c(J) = -cos(2*n*radius(J))/2+0.5;

%calculace the derivatives in the smooth region
if doXDerivative

dxc(J,I) n*sin(2*n*radius(J))/z(l) ./radius(J) .*x(J,I);
dxc(J,2) n*sin(2*n*radius(J))/z(2) ./radius(J) .*x(J,2);
dxc(J,3) n*sin(2*n*radius(J))/z(3) ./radius(J) .*x(J,3);

dxO(J,I)
dxO(J,2)
dxO(J,3)

end

end
%deri vative ,,'ith respect to l"adius and centel
if doDerivative

drc(J,I) -n*sin(2*n*radius(J))/z(l) ./radius(J) .*x(J,I) ."2;
drc (J, 2) -n*sin (2*nHadius (J) ) /z (2) . /radius (J) . *X (J, 2) . -2;
drc (J, 3) -n*sin (2*nHadius (J) ) /z (3) . /radius (J) . *x (J, 3) . "2;

%reuse J fOl points flat at value I
J = find(radius~0.5);

%set flat points to 1
c (J) = 1;
%set derivative in the flat regions to 0
if doXDerivative

dxc(J,I) 0;
dxc(J,2) 0;
dxc(J,3) 0;

29
30
31
32
33 c = zeros(size(radius»;
34
35 if doXDerivative
36 dxc = zeros(size(x);
37 end
38
39
40
41
42 end
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75 end
76
77 if
78
79
80
81
82
83
84
85
86 end

Listing A.2: objfctn3Dell. m

1 function [f,p,df,d2fl = objfctn3Dell(z,alpha,I,X)
2 % calculates the objective function used to minimize
3 % the ellipse fitting the data I
4 % parameters:
5 % I data
6 X - data points
7 % z ellipse parameters
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8 % alpha - positive scalar
9

10 %get ellipse
11 [c,dc) = e1l3func(z,X);
12 p = 0; %used for the GNA function options
13
14 %calculate the objective function, gradient and Hessian
15 f norm(z(1:3)) + alphad'*(l-c);
16 df 1/norm(z(1:3))*[z(1),z(2),z(3},0,0,0] - alphad'*dc;
17 d2f alpha*n/norm(z(1:3)}*eye(6);

A.2 Matlab Code for Lung Segmentation

if nargout < 2, return; end;
% if necessary calculate the first
% derivative of the Heaviside function
dB = (f/n) *spdiags (reshape (1. / (f'2+z. '2), [], 1),0,

length(z) ,length(z));

function [H,dH) = Heaviside(z,f)
% Calculates a smooth/regularized Heaviside function
% ( - determines the steepness of the slope
% z = {r1,r2,13,cl,c2,c3] - are the parameters of the ellipse where
% 1 (i) - is the radius in direction i

cli} - is the position alogn direction i

Listing A.3: Heaviside. m

1
2
3
4
5
6
7
8 % calculating the Heaviside function
9 H = 0.5*(1+(2/n)*atan(z/f));

10
11
12
13
14
15

Listing A.4: getGradientOperator. m

1 function [Gld,Gla,G2d,G2a,G3d,G3a] = getGradientOperator(n,m)
2 calculates the gladient operator given the space 0 and the
3 % lesolution m
4 %
5 % Output:
6 % G1d,G2d,G3d - the difference operators in direction 1,2,3
7 % G1a,G2a,G3a - averaging operators to be used on the difference
8 % operators to bring the ,ralues back to the cell
9 % centers

10 % outside these are used to calculate the mangitude of
11 % the gradient as follows:
12 !Grad! = sqrtIG1a.(G1d*phi).-2 + G2a.(G2d*Phi).-2 .)
13
14 if length(n) == 2,
15 G3d @(Phi) [];
16 G3a = @(Phi) [] ;
17
18 %difference averaging operators
19 %these are named as aVd1_2 =>

20 % averaging operator OIl dimenst ion
21 % corlesponding to dimension 2
22 avdl kron(speye(m(2» ,av_dash(n,m,l);
23 avd2 kron (av_dash (n,m,2) ,speye(m(l)));
24
25 %difference operators
26 %foH/ard difference
27 dIp kron(speye(m(2) ,dp(n,m,l));
28 d2p = kron(dp(n,m,2) ,speye(m(l}»);
29
30 % this part IS the "imprecise difference" for tile direction
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% that is not focal for the computation
G1d dIp;
G2d d2p;

function w = dp(rl,m,i)
% calculates the forward staggered difference
h rl./m;
w = spdiags (ones (m(i), 1) * [-1, 1], [ 0,1] ,m(i) -1,m(i)) /h(i);

%difference operators
%forward difference
dIp kron(speye(m(3)),kron(speye(m(2)),dp(rl,m,1)));
d2p kron(speye(m(3)),kron(dp(rl,m,2),speye(m(1))));
d3p kron(dp(rl,m,3) ,kron(speye(m(1»,speye(m(2))));

% this part is the "imprecise difference" for the direction
% that is not focal fOl the conputation
G1d dIp;
G2d d2p;
G3d d3p;

avd1;
avd2;

avdl;
avd2;
avd3;

G1a
G2a

else
%difference averaging operators
%these are named as aVdl_2 => averaging operator on dimenstion
% corresponding to dimension 2
avd1 kron(speye(m(3)) ,kron(speye(m(2),av_dash(rl,m,l)));
avd2 kron(speye(m(3») ,kron(av_dash(rl,m, 2) ,speye(m(l)))) ;
avd3 kron(av_dash(rl,m,3),kron(speye(m(2)),speye(m(1))));

Gla
G2a
G3a

end

function M = aV_dash(rl,m,i)
% helper opelator for the calculation of the
% averaging operators above
M = spdiags(ones(m(i) ,1)*[1,1] , [-1,0],m(i),m(i)-I)/2;
M(I,l) = 1;
M(end,end) = 1;

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Listing A.5: getDi vergenceOperator. m

1 function A = getDivergenceoperator(rl,m.~)

2 calculates the discrete divergence operator
3 % \div !lgrad\phi/ I \grad\phi I)
4 %
5 % n - the spatial domain
6 % m - the resolution
7 % - a small positive regularizing constant for the
8 inverse gradient magnitude
9 %output:

10 % A - the linearized divergence operator
11
12 sdiag = @(a) spdiags (reshape (a, [], 1) ,0, length (a) ,length (a») ;
13
14 if length(rl) == 2,
15 %difference averaging operators
16 %these are named as aVdl_2 =>

17 % averaging operatol on dimenstlon
18 % corresponding to dimension 2
19 avd12 kron(av_dash(rl,m.2).av_dot(rl.m.l));
20 avd21 = kron(av_dot(rl,m,2),av_dash(rl,m,I));
21
22 %difference operators
23 %fon,'ard difference
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% difference operators for the
% staggered forward difference
dIp kron(speye(m{3» ,kron(speye(m(2»),dp(O,m,1»));
d2p kron(speye(m(3») ,kron(dp(O,m,2),speye(m(1)));
d3p kron(dp(O,m,3),kron(speye(m(1»),speye(m(2»));

else
%difference averaging operators
%these are named as aVdl_2 =>

% averaging operator on dimenstion
% corresponding to dimension 2
avdl 2 kron(speye(m{3»,kron (av_dash(O,m, 2) ,av_dot{O,m,l)}) ;
avd13 kron(av_dash(O,m,3},kron(speye(m(2» ,av_dot{O,m,l)});

exact

difference" for the
for the computation

kron(av dot(O,m,3),kron(speye(m(2) ,av dash{O,m,l));
kron(av=dot(O,m,3),kron(av_dash(O,m,2)~speye(m(1»)));

kron(speye(m{3»),kron(av dot(O,m,2) ,av dash{O,m,l)});
kron(av_dash(O,m,3) ,kron(speye(m(1»),a~_dot{O,m,2)});

avd2_1*dlp;
avd2_3*d3p;

avd3_1*dlp;
avd3_2*d2p;

part is the "imprecise difference" for the direction
is not focal for the computation

avdl_2*d2p;
= aVd2_hdlp;

kron(speye(m(2)),dp(O,m,1)) ;
kron(dp(O,m,2),speye(m(1))) ;

@(Phi) sqrt ({dlp*Phi) ."2 + (dla_2*Phi)."2 + /3"2);
@(Phi) sqrt «d2a_l*Phi)."2 + (d2p*Phi)."2 + /3"2);

@(Phi) -dlp'*sdiag(l./Gl(Phi)*dlp
- d2p'*sdiag(1./G2(Phi»)*d2p;

@(Phi) - dlp'*sdiag(l./Gl(Phi))*dlp
- d2p'*sdiag(1./G2(Phi))*d2p
- d3p'*sdiag(1./G3(Phi»*d3p;

dIp
d2p

A

A

%this
%that
dla 2
d2a 1

Gl
G2

G3

%this part is the "imprecise
% direction that is notfocal
dla_2 avdl_2*d2p;
dla_3 avdl_3*d3p;

G2

teach of the computed gradient magnitudes G(iJ is
% in direction i while the other directions have
% approximation/assumptions at the boundary
Gl = @{Phi} sqrt{(dlp*Phi) ."2 +

(dla_2*Phi) ."2 +
(dla_3*Phi) ."2 + ~"2);

@(Phi) sqrt «d2a_hPhi) ."2 + ...

(d2p*Phi) . '2 +
(d2a_3*Phi). '2 + ~"2);

@(Phi) sqrt«d3a_l*Phi) ."2 +

(d3a_2*Phi) . '2 +

(d3p*Phi) ."2 + ~"2);

avd2 1
avd2 3

avd3 1
avd3 2

end;

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
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64
65
66
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68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89 function w ~ dp(O,m,i)
90 %helper funct ion that cal culates forward differences
91 h O./m;
92 w = spdiags(ones(m(i) ,1)*[-1,1], [ 0,1] ,m(i)-l,m(i»)/h(i);
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93
94 function M = aV_dash(n,m,i)
95 %this is a helper matrix for the aV_dot matrix
96 %while the aV_dot takes the average within a column, this matrix,
97 %in combination with the aV_dot matrix, calculates the
98 %average between 4 adjacent cells 'vi th the assuption
99 %of a contiving slope on the boundary

100 % (always used together with aV_dot:
101 % ego if aV_dot (m(l)) -> aV_dash (m(2)) )
102 M = spdiags(ones(m{i),I»[I,I],[-I,O],m(i),m(i)-I)/2;
103 M(1 , 1) = 1;
104 M(end, end) 1;
105
106 function M av_dot(n,m,i)
107 %takes the average within cells in one direction
108 %
109 % 1 1 I
110 % A O. 5 > 1 1 I
111 % I 1 1 I
112 M = spdiags(ones(m(i),I»[I,IJ, [O,IJ,m(i)-I,m(i))/2;

Listing A.6: dri verChanVese3D. m

% termination cri teria
tal = le-7;
eptol = le-B;

%get the image at a desired resolution from CTML
% -> CTML contains the data in many resolutions
u = CTML{sr_Ievel}.T(:);

% reshape the grid in order to construct \Phi
x getCenteredGrid(CTML{sr_Ievel}.n,CTML{sr_Ievel}.m);
x = reshape (x, 1],3);

slope of the Heaviside function

regularizes the volume penalty term

imgmontageoverlay(F,H,CTML{sr_level}.n,
CTML{sr_Ievel}.m, 'direction' ,'zxY');

imgmontage (Phi, CTML{sr_Ievel) .n, ...
CTML{sr_Ievel}.m, 'direction' ,'zxy');

@(Phi)

driver for ChanVese approach in 3D
variables that are assumed to exist at this point
in the alignment process:

-> eOpt - minimal ellipse (parameters) including SP-P lungs
Vol - approximate volume of lungs (user input)
cO - approximate average value of lungs {user input}
X - the domain grid

all

%
%
%
%
close

% this parameter
f3 = le-5;
% parametel for the
f = le-4*min(h);

1 %
2 %
3 %
4
5
6
7
8
9

10 %cell size
11 h = n./m;
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 % viewers
27 view! @(F,H)
28
29 viewS
30
31
32 %objective function parameters
33 % II - based on Chan Vese experiments
34 % rest - found enmrically
35 J.L = 0.5>255'2;
36 lambda = 1;
37 v = le5;
38 T = le-l*min (h) ;
39
40
41
42
43
44 %construct initial \Phi based on eOpt resolved before
45 maxEOpt = max(eOpt(I:3));
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iter = iter + 1;

% calculations of tI,e gradient and function

%calculace Del,' H
[H,dH] = Heaviside(Phi,t);

\/1* H' (\phi) *Alphi Ark}) ,\phi '{kd}
+ H' (\phi) ,RHS

(/1'01 - \int_\Omega{H)! + \.3)

\T

- \'1 H' * (u-c_O) '2
+ \lambda H' , (Vol - \int_ IOmega (H})

%
%

%
%

AA = (I - ~*T*dH*A(Phi»;

Phi = AA \ (Phi + T*rhs);

%showa 'table l of values
fprintf('iterl E I gradient I -"_E I-"_Phi \n');
fprintf('---------------------------------------------\n');

Phi sqrt (11 (eOpt (1) ImaxEOpt) A2* (x (:,1) -eOpt (4» . '2
+ 1/(eOpt(2)/maxEOpt)'2*(x(:,2)-eOpt(S» .'2
+ 11 (eOpt(3) ImaxEOpt) '2* (x(: ,3) -eOpt (6» . '2);

% the reason for using maxEOpt is to keep the initial cone
% "steep" so as to not be affected by the change in \T
Phi = maxEOpt - Phi;

% A (phi) = \div[ \nabla\phi/!\nabla\phi! ]
A getDivergenceOperator(CTML{sr_leve1}.n,CTML{sr_level}.m,p);
I = speye(length(u) ,length(u»;

%
% Note: \phi is cell-centered, gradl!gradj comes staggered

%calculate the gl'adient operator in order to
[G1d,G1a,G2d,G2a,G3d,G3a) =

getGradientOperator(CTML{sr_level}.n,CTML{sr_level}.m);

%calculate initial H
[H,dH] = Heaviside(Phi,t);
%initialize Hc in order to con~are for the stoprrng critelia
Hc = -H;

%
% RHS
%

% follow the flow
% \phi' \" H' * A (\phi)
% - \1) H' * (u-c 0) '2

+ \lambda H' * (Vol - \int_ \ Omega (H})

% figure (l); clf; viewS (Phi) ;
figure(2); clf; view1(u,H)

% (/1'01 - lint_\Omega{H)/ + \.3)
iter = 0;
Phic = Phi;
Icalculate initial energy
Ec = ~*sum(prod(h)*dH*sqrt(G1a*(G1d*Phi) .A 2 +

G2a*(G2d*Phi) .'2 +

G3a*(G3d,Phi) .A 2 »
+ v*abs(Vol - sum(prod(h)*H»
+ lambda*sum(prod(h) * (u-cO) .'2.*H);

literate until convergence
while (norm(Hc - H) > toll

rhs dH* ( - lambda1* (u-c1 (H» ,'2 + lambda2* (u-c2 (H» ,'2
- lambda3*(u-cO) ,'2 ...
+ lambda4*(Vol - sum (prod (h) .*H».I

(abs (Vol - sum (prod (h) ,*H» + P»;

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
III
112
113
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end

end
end

end
break;

%update energy and Phi
Ec = E;
Phic = Phi;

criteria
abs(Ec - E) < tol*{1 + abs{E»);
norm(Phic - Phi) < sqrt{tol)*{I+norm(Phi});
norm (grad, 'inf') $ tol A{I/3)*(1 + abs{E));
norm (grad, 'inf') < eptol;
iter> maxSeglter;

% for stop7rng criLeria
grad ~ clH* ( - lambda!> (u-cl (H)) . A2 + lambda2* (u-c2 (H)) . A2

- lambda3* (u-cO) . A2 ...
+ lambda4*(Vol - sum (prod(h) .*H))./ ...

(abs {Vol - sum (prod (h) . *H}) + {3)) ..•

+ ~*A(Phi)*spdiags(dH);

E ~*sum(prod(h)*clH*sqrt{Gla*(Gld*Phi) .A 2
+ G2a*{G2d*Phi) .A2
+ G3a*{G3d*Phi) .A 2)) .

+ lambda3*abs{Vol - sum(prod(h}*H) .
+ lambda4*sum{prod{h)*{u-cO) .A 2 .*H);

fprintf(' %2dl %-12.4e I %-12.4e I %-12.4e I %-12.4e \n',
iter, E, norm (grad) , E-Ec, norm{Phic - Phi»);

if(all(STOP(I:3)) II any(STOP(4:S)))
if (all {STOP (1: 3)) )

fprintf('Terminated by 3 conditions.\n');
elseif (STOP(4))

fprintf{'Found point close to gradient = O.\n');
elseif (STOP{S))

fprintf (' Maxi/1m I/mber of iterat ions reached. \n' ) ;

%stop7rng
STOP(I)
STOP(2)
STOP (3)

STOP(4)
STOP(S)

if (debug)
figure (2) ; viewI{u,H);
pause(O.I) ;

115
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A.3 Matlab Code for Image Registration

Listing A.7: SSD.m

the gradient and hessian need to be calculated
2

used for registratIon

3

doH O'
doG 0;
dJ ~ 0;
H = 0;
%find .,'hethel
if nargout ==

doG = 1;
elseif nargout

doG 1;
doH = 1;

1 function [J,dJ,H) = SSD(Tc,Rc,n,m)
2 % sum of squared differences function
3 % parameters:
4 Tc - template image
5 Rc - reference image
6 % n spatial domain
7 % m resolution
8
9

10
11
12
13
14
15
16
17
18
19 end
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end
if doH

H = h*speye(length(Tc));
end

%calculate the difference
J = h/2*norm(Tc-Rc)A 2 ;
if doG

dJ = h* (Tc-Rc) , ;

20 h = prod (fl. 1m) ;
21
22
23
24
25
26
27
28
29

image

Listing A.8: rigidObjFctn.m

function [f,p,df,d2f) = rigidObjFctn(TD, Rc, n, m, E, w)

% output:
% f - the evaluated objective function
% df,H - the gradient and the Hessian

% calculates the objective function for the image registration
% parameters:
% TD - template image coefficient (to be used for interpolation)
% Rc - reference image
% n the spatial domain
% m - the resol ution
% E - the optimal ellipsoid found after the refinement step
% w rOI,02.03,dl,d2,d3} - the transformation
% paramters: Oi the rotation around direction i
% di - the translation along direction i

for plots in GNA

4

0;
O'

if nargout == 3

doG = 1;
elseif nargout

doH = 1;
end
% E = ellipse on X
p = []; % parameters
df = 0;
d2f = 0;

%calculate the template image and its gradient if necessalY
if -doG && -doH

X getCenteredGrid(n,m);
Y trafo(w,X);
Tc inter(TD,n,Y);

else
X = getCenteredGrid(n,m);
% get the transformation
[Y dY] = trafo(w,X);
% and calculate the values of the ten~late on
% the new transformed points Y
[Tc dT) = inter(TD,n,Y);

end

% calculate the objective function and
% its gradient and Hessian if necessalY
if -doG && -doH

f = SSD(Tc.*E,Rc,n,m}; % the dlfference image
elseif doG

[f df] = SSD(Tc.*E,RC,n,m); % the difference image
dT spdiags(E,O,length(E) ,1ength(E»)*dT;
df = df*dT*dY; % get gradient of objeccctive function

else
[f df d2f] = SSD(TC.*E,Rc,n.m}; % the difference image
dT = spdiags(E,O,length(E) ,1ength(E»*dT;
df = df*dT.dY; % get gradient and Hessian
d2f = (d2f.dT*dY) '*(dT*dY);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 doG
17 doH
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
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% show the data TIY), R and the difference image in a plot
p = struct (' Tc' , Tc, , Rc' , Rc, 'n' ,n, 'm' , m, '¥c' , Y, 'Jc' , f) ;

56 end
57
58
59

AA Main Routine

Listing A.9: regsetup. m

1 % start main routine integrating
2 % ellipse titting, segmentation and registration
3 c1c; clear; close all;
4
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 %%%%%%%% START OF DECLARATIONS %%%%%%%%%%%%%%%%%%%%%
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
9 %file path contructor to retrieve data files

10 absPathTolmg = 'C:\Users\Alvin\Thesisproject\FAIR-ext\';
11 folderName = @(w,s) fullfile{absPathTolmg,' images', ...
12 'Test_Registration' , [' Neek' ,int2str (w) ] ,s) ;
13
14 % debug parameter tal segmentation only
15 debug = 1;
16
17 % level at which ellipse titting
18 % and segmentation I"ill be performed
19 sr_Ievel = 5; % resolution 12-5)-3=32-3
20
21 % detaul t maxi/1m I/mber of iterations for segmentation
22 maxSeglter = 50;
23
24 %size of spatial domain ot data
25 n = 58. 88* [1 , 1 , 1] ;
26
27 %note: here the maxi/lnl resolution l,-ill be 128"3
28 % therefore it resolution is higher than this
29 % it will be reduced to 128"3
30
31 %used in ell ipse objecti ve function
32 alpha = leO;
33 %ellipse initial guess
34 eO = 29.44*[1,1,1,1,1,1]';
35
36 %segmentation data
37 % Vol - user input parameter representing
38 % the volume ot the lungs in mm-3
39 % cO user input parameter for the
40 % average value of the lungs in HU
41 Vol = prod(n./7); %approximate volume of lungs for rat
42 cO -300; %approximate average value inside lungs for rat
43 viewlmage('reset' ,'viewImage', 'imgmontage', 'colormap', 'gray(256) ');
44 st = cputime;
45 %data tor all weeks
46 for week=1:6
47 m = 128*[1,1,1];
48 %variable calculating the time tor the alignment process
49 startimeweek = cputime;
50
51 fprintf('Week: Id\n',week);
52
53 %' 'loadAllData" routine loads all the ventilation
54 % and pertusion data for one week in /dti level mode as:
55 CTML - Multilevel CT data
56 % -, CTML(i}.T = CT-P
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% -;> CTML{i}.R ~ CT-V
% SPML - Multilevel SPECT data
% -;> SPML{i}.T SP-P
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Master Thesis - Alvin Ihsani - Computing and Software

57
58
59
60
61 loadA11Data
62
63 % vieh'er/debugger parameter
64 viewlmage (' disp')
65
66 %%%%!%%%%%%%%%%%%%%%%%%%%%%%%%%%!%%%%%%%%%%%%%!%!%%%
67 %%%%%%%%%%%% ELLIPSOID FITTING %%%!%%%%%%%%%%%%%%%%%
68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
69
70 !ldndoh' the lungs in the SP-P data at above 300
71 Tperf ~ (SPML{sr_1evel}.T ;> 300);
72 fprintf('Starting ellipse search with:\n eO ~ %s',
73 mat2str(eO));
74 hfctn ~ @(ec) objfctn3Del1(ec,a1pha,Tperf(:), ...
75 getCenteredGrid(n, SPML{sr_level}.m));
76 % use Gauss-Neh'ton-Armijo method
77 % to find the minimal ellipsoid
78 [eOpt eHist] ~ GNA(hfctn,eO);
79 clear Tperf %discard Tpelt to save space
80
81 fprintf('Found optimal e11ipse\n eOpt ~ %s\n', mat2str(eOpt)};
82
83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
84 %%%%%%%%%%%%%%%%% SEGMENTATION !%%%%%%%%%%%%%%%%%%%%
85 %%%%%%!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!%%
86
87 outfile ~ ['setupRegData_week' ,vm2str(week) , '.mat'];
88 if .exist(outfile, 'file')
89 % start segmentation part
90 fprintf('Using optimal ellipse data to segment.\n');
91 % start segmentation by using eOpt
92 % as the initial guess
93 driverChanVese3D
94 fprintf('Done\n');
95 else
96 % it tor this .,'eek ot data the ellipse
97 % already exists then load the saved eOpt
98 10ad(outfi1e);
99 end

100
101 % nOI. that the lungs are indicated by {lphi;>O}
102 % start second ellipse regisration part
103 fprintf('Fitting ellipse on segmented data.\n');
104 hfctn ~ @(ec) objfctn3Dell(ec,alpha,H ;> O.S,x);
105 [eOpt eHistl ~ GNA(hfctn,eO);
106
107 % save the ellipse tor future use on the same data
108 eOptList(:,week) ~ eOpt;
109 fprintf('Found final optimal ellipse\n eOpt ~ %s\n',
110 mat2str(eOpt));
111
112 % setup the ellipse E and heaviside H
113 % in jlltiple resolutions
114 setupRegData
115
116 % set the options fOl display and interpolation ot tile
117 % data during registration
118 viewlmage ( 'disp' )
119 inter('reset', 'inter', 'splinelnter3Dmex', 'regu1arizer',
120 'moments' ,'0' ,le-2);
121 trafo('reset', 'trato', 'rigid3D');
122
123 %%%i%%%%%%%%%%%%%%%%!§%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
124 %%%%%%%% MULTILEVEL REGISTRATION %%%%%%%%%%!%%%%%%%%
125 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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126
127 wogiobai = trafo('wO');
128 % start Idti-1eve1 registration from (2 A 3)"] = 8"] voxe1s
129 % incrementat11y up to (2"6)"] = ]2

A

3 voxe1s
130 fprintf('Starting plti-level registration\n');
131 for level=3:6
132 % at the 101_est level start with
133 % the ini tia1 guess wOg1obal
134 if level==3
135 wO wOglobal;
136 else
137 wO wOpt;
138 end
139 % use the minimzer of the last level as
140 % the starting point of the nell' level
141 fprintf('Starting at:\n wO=%s\n', mat2str(wO»;
142 n = CTML{level}.n;
143 m = CTML{level}.m;
144 fprintf('Using:\n m=%s\n' ,mat2str(m»);
145 E EML{level}.T(:); %use ellipsoid with level' 'level"
146
147 [TO, RD] = inter('coefficients' ,CTML{level} .T, ...
148 CTML{level} .R,n);
149 objFctn = @(w) rigidObjFctn(TO, inter(RO,n,
150 getCenteredGrid(n,m», n, m, E, w);
151
152 % initialize plots to view registration
153 FAIRplots('set', 'mode', 'PIR-ML', 'fig' ,level,'plots' ,1,
154 'direction', 'zxy');
155 FAIRplots (' init' ,struct (' Tc' ,TO, 'Rc' ,RD, 'n' ,n, 'm' ,m)} ;
156
157 %use Gauss-Newton-Armijo method to find the minimizel'
158 [wOpt wHist] = GaussNewtonArmijo(objFctn, wo,
159 'maxlter', 100, 'LSMaxlter', 10, ...
160 'Ystop' ,wOglobal, 'plots' ,@FAIRplots};
161
162 fprintf('Optimal movement:\n wOpt=%s\n', mat2str(wOpt»;
163 % keep a list of ti,e optimal values
164 % and their history for analysis
165 wOptList(:,level-2,week} = wOpt;
166 wHistList{level-2,week} = wHist;
167 end
168 fprintf('Registration Complete\n');
169 totaltimeweek(week) = cputime - startimeweek; %tota1 time
170 end
171 fprintf('Total time: %f\n\n' ,cputime - st);
172 % save history, minimizers and total time
173 save('results.mat', 'wOptList', 'wHistList', 'eOptList',
174 'totaltimeweek');
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